A phase transition in blockweighted random maps

LACIM Seminar, UQAM, Montréal 27 October 2023

Zéphyr Salvy (he/they)

w/ William Fleurat

LIGM, Université Gustave Eiffel

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size m = number of edges;
- Corner (does not exist for graphs!) = space between an oriented edge and the next one for the trigonometric order.

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and uniform maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere \mathcal{S}_e

Universality results for planar maps

- Enumeration: $\kappa \rho^{-n} n^{-5/2}$ [Tutte 1963];
- Distance between vertices: $n^{1/4}$ [Chassaing, Schaeffer 2004];
- Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, Miermont 2013] and uniform maps [Bettinelli, Jacob, Miermont 2014];

- Universality:
 - Same enumeration [Drmota, Noy, Yu 2020];
 - Same scaling limit, e.g. for triangulations & 2q-angulations [Le Gall 2013], simple quadrangulations [Addario-Berry, Alberque 2017].

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

Universality results for plane trees

- Enumeration: $\kappa \rho^{-n} n^{-3/2}$;
- Distance between vertices: $n^{1/2}$ [Flajolet, Odlyzko 1982];
- Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

- Universality:
 - Same enumeration,
 - Same scaling limit, even for some classes of maps; e.g. outerplanar maps [Caraceni 2016], maps with a boundary of size $>> n^{1/2}$ [Bettinelli 2Q15].

Models with (very) constrained boundaries

Motivation Inspired by [Bonzom 2016].

Two rich situations with universality results:

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

Interpolating model using blocks!

Outline of the talk

A phase transition in block-weighted random maps

- I. Model
- II. Block tree of a map and its applications Interlude. Quadrangulations
- III. Scaling limits
- IV. Extension to other families of maps
- V. Perspectives

I. Model

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathbf{m}) = \frac{u^{\#blocks(\mathbf{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{maps of size } n\}$, $\mathbf{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation.}$

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Phase transition

Theorem [Fleurat, S. 23] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat, Z. Salvy (2023)

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration			
Size of - the largest block - the second one			
Scaling limit of M_n			

II. Block tree of a map and its applications

Inspiration from [Tutte 1963]

Inspiration from [Tutte 1963]

GS of 2-connected maps -

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

$$M(z) = B(zM^2(z))$$

GS of 2-connected maps -

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one			
Scaling limit of M_n			

Inspiration from [Tutte 1963]

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps — Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

⇒ Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps —

Berry 2019].

$$M(z, u) = \sum_{\mathfrak{m} \in \mathscr{M}} z^{\mathfrak{m}} u^{\#blocks(\mathfrak{m})}$$

Decomposition of a map into blocks: properties

- Internal node (with k children) of $T_{\mathfrak{m}} \leftrightarrow$ block of \mathfrak{m} of size k/2;
- ${\bf m}$ is entirely determined by $T_{\bf m}$ and $({\mathfrak b}_v,v\in T_{\bf m})$ where ${\mathfrak b}_v$ is the block of ${\bf m}$ represented by v in $T_{\bf m}$.

 T_{M_n} gives the block sizes of a random map M_n .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Galton-Watson trees for map blocks

 μ -Galton-Watson tree : random tree where the number of children of each node is given by μ independently, with μ = probability law on \mathbb{N} .

Theorem [Fleurat, S. 23]

u > 0

If $M_n \hookrightarrow \mathbb{P}_{n,u'}$ then there exists an (explicit) y = y(u) s.t.

 T_{M_n} has the law of a Galton-Watson tree of reproduction

law $\mu^{y,u}$ conditioned to be of size 2n, with

$$\mu^{y,u}(\{2k\}) = \frac{B_k y^k u^{\mathbf{1}_{k\neq 0}}}{uB(y) + 1 - u}.$$

Phase transition

Largest blocks?

- Degrees of T_{M_n} give the block sizes of the map M_n ;
- Largest degrees of a Galton-Waston tree are well-known [Janson 2012].

Rough intuition

	<i>u</i> < 9/5	u = 9/5	<i>u</i> > 9/5
$\mu^{y(u),u}(\{2k\})$	$\sim c_u k^{-5/2}$		$\sim c_u \pi_u^k k^{-5/2}$
Galton- Watson tree	subcritical	critical	

Dichotomy between situations:

- Subcritical: condensation, cf [Jonsson Stefánsson 2011];
- Supercritical: behaves as maximum of independent variables.

Size $L_{n,k}$ of the k-th largest block

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016]	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

Interlude: quadrangulations

Quadrangulations

Def: map with all faces of degree 4.

Simple quadrangulation = no multiple edges.

Size q = number of faces.

$$V(\mathfrak{q}) = \mathfrak{q} + 2$$
, $E(\mathfrak{q}) = 2 \mathfrak{q}$.

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Construction of a quadrangulation from a simple core

Block tree for a quadrangulation

With a weight u on blocks: $Q(z, u) = uS(zQ^2(z, u)) + 1 - u$

Remember: $M(z, u) = uB(zM^{2}(z, u)) + 1 - u$

Tutte's bijection

Tutte's bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations

Block trees under Tutte's bijection

Implications on results

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{q}) = \frac{u^{\#blocks}(\mathfrak{q})}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{Q}_n = \{\text{quadrangulations of size } n\}$, $\mathfrak{q} \in \mathcal{Q}_{n'}$, $Z_{n,u} = \text{normalisation.}$

Results on the size of (2-connected) blocks can be transferred immediately for quadrangulations and their simple blocks.

Results

For $M_n \hookrightarrow \mathbb{P}_{n,u}$	<i>u</i> < 9/5	u = 9/5	u > 9/5
Enumeration [Bonzom 2016] for 2-c case	$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
Size of - the largest block - the second one	$\sim (1 - \mathbb{E}(\mu^{4/27,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Scaling limit of M_n			

III. Scaling limits

Scaling limits

Convergence of the whole object considered as a metric space (with the graph distance), after renormalisation.

 $M_n \hookrightarrow \mathbb{P}_{n,u}$ (carte ou quadrangulation)

What is the limit of the sequence of metric spaces $((M_n, d/n^?))_{n \in \mathbb{N}}$?

(Convergence for Gromov-Hausdorff topology)

Lemma For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_e.$$

• If u = 9/5,

Brownian Tree \mathcal{T}_{ρ}

39/58

Stable Tree $\mathcal{T}_{3/2}$

Lemma For
$$M_n \hookrightarrow \mathbb{P}_{n,u'}$$

• If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n}\to \mathcal{T}_e.$$

• If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n}\to \mathcal{T}_{3/2}.$$

Proof Known scaling limits of critical Galton-Watson trees

- with finite variance [Aldous 1993, Le Gall 2006];
- infinite variance and polynomial tails [Duquesne 2003]

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n} \to \mathcal{T}_{e'} \frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_{e}.$$

• [Fleurat, S. 23] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n} \to \mathcal{T}_{3/2}, \frac{c_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$$

Brownian Tree \mathcal{T}_{ρ}

40/58

Stable Tree $\mathcal{T}_{3/2}$

Theorem For $M_n \hookrightarrow \mathbb{P}_{n,u'}$

• [Stufler 2020] If u > 9/5,

$$\frac{c_3(u)}{n^{1/2}}T_{M_n} \to \mathcal{T}_{e'} \frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{T}_{e}.$$

• [Fleurat, S. 23] If u = 9/5,

$$\frac{c_2}{n^{1/3}}T_{M_n} \to \mathcal{T}_{3/2}, \frac{c_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}.$$

Proof Distances in M_n behave like distances in T_{M_n} !

Supercritical and critical cases

Difficult part = show that distances in M_n behave like

Let $\kappa = \mathbb{E}$ ("diameter" bipointed block). By a "law of large numbers"-type argument

$$d_{M_n}(e_1, e_2) \simeq \kappa d_{T_{M_n}}(e_1, e_2)$$
.

Difficult for the critical case => large deviation estimates

Scaling limits of subcritical maps

Theorem [Fleurat, S. 23] If u < 9/5, for $M_n \hookrightarrow \mathbb{P}_{n,u}$ and

 B_n a uniform block of size n:

$$d_{GH}\left(\frac{C_1(u)}{n^{1/4}}M_n, \frac{1}{n^{1/4}}B_n\right) \to 0.$$

Brownian Sphere \mathcal{S}_e

So, if
$$cn^{-1/4}B_n \to \mathcal{S}_e$$
, then
$$\frac{C_1(u)}{cn^{1/4}}M_n \to \mathcal{S}_e.$$

See [Addario-Berry, Wen 2019] for a similar result and method.

Scaling limits of subcritical maps

Theorem [Fleurat, S. 23] If u < 9/5, for $Q_n \hookrightarrow \mathbb{P}_{n,u}$ a quadrangulation:

$$\frac{C_1(u)}{n^{1/4}}Q_n \to \mathcal{S}_e.$$

Moreover, Q_n and its simple core converge jointly to the same Brownian sphere.

Proof

- Previous theorem
- Scaling limit of uniform simple quad. rescaled by $n^{1/4}$
 - = Brownian sphere [Addario-Berry Albenque 2017].

Subcritical case

Diameter of a decoration ≤ blocks to cross × max diameter of blocks

$$\leq \operatorname{diam}(T_{M_n}) \times (O(n^{2/3}))^{1/4+\delta} = \operatorname{diam}(T_{M_n}) \times O(n^{1/6+\delta})$$

$$= O(n^{1/6+2\delta}) = o(n^{1/4}).$$
 [Chapuy Fusy Giménez Noy 2015]

47/58

Subcritical case

Diameter of a decoration ≤ blocks to cross × max diameter of blocks

$$\leq diam(T_{M_n})\times (O(n^{2/3}))^{1/4+\delta}=diam(T_{M_n})\times O(n^{1/6+\delta})$$

$$=O(n^{1/6+2\delta})=o(n^{1/4}).$$
 [Chapuy Fusy Giménez Noy 2015]

Subcritical case

The scaling limit of M_n (rescaled by $n^{1/4}$) is the scaling limit of uniform blocks!

Results

<i>u</i> < 9/5	u = 9/5	u > 9/5
$\rho(u)^{-n}n^{-5/2}$	$\rho(u)^{-n}n^{-5/3}$	$\rho(u)^{-n}n^{-3/2}$
$\sim (1 - \mathbb{E}(\mu^{y,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020]	$\Theta(n^{2/3})$	$\frac{\ln(n)}{2\ln\left(\frac{4}{27y}\right)} - \frac{5\ln(\ln(n))}{4\ln\left(\frac{4}{27y}\right)} + O(1)$
Assuming the convergence of 2-	$\frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$	$\frac{C_3(u)}{n^{1/2}}M_n \to \mathcal{F}_e$ [Stufler 2020]
	$\rho(u)^{-n}n^{-5/2}$ $\sim (1 - \mathbb{E}(\mu^{y,u}))n$ $\Theta(n^{2/3})$ [Stufler 2020] $\frac{C_1(u)}{n^{1/4}}M_n \to \mathcal{S}_e$	$\rho(u)^{-n}n^{-5/2} \qquad \rho(u)^{-n}n^{-5/3}$ $\sim (1 - \mathbb{E}(\mu^{y,u}))n$ $\Theta(n^{2/3})$ [Stuffler 2020] $\frac{C_1(u)}{n^{1/4}}M_n \to \mathcal{S}_e \qquad \frac{C_2}{n^{1/3}}M_n \to \mathcal{T}_{3/2}$ Assuming the convergence of 2-

50/58

Brownian sphere

IV. Extension to other families of maps

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$	u_C
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$	
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_	81/17
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_	9/5
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_	135/7
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$	
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_	36/11
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$	
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_	52/27
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_	68/3
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_	16/7
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_	64/37

→ Unified study of the phase transition for block-weighted random planar maps Z. Salvy (EUROCOMB'23)

Statement of the results

Theorem [S. 23] Model of the preceding table without coreless maps exhibits a phase transition at some explicit u_C . When $n \to \infty$:

- Subcritical phase $u < u_C$: "general map phase" one huge block;
- Critical phase $u = u_C$: a few large blocks;
- Supercritical phase $u > u_C$: "tree phase" only small blocks.

We obtain explicit results on enumeration and size of blocks in each case.

V. Perspectives

Extension to decompositions with coreless maps

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^2$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	

Critical window?

Phase transition very sharp => what if $u = 9/5 \pm \varepsilon(n)$?

- Block size results still hold if $u_n = 9/5 \varepsilon(n)$, $\varepsilon^3 n \to \infty$;
- For $u_n = 9/5 + \varepsilon(n)$, this is the case as well: when $\varepsilon^3 n \to \infty$

$$L_{n,1} \sim 2.7648 \,\varepsilon^{-2} \ln(\varepsilon^3 n)$$

(analogous to [Bollobás 1984]'s result for Erdős-Rényi graphs!);

Results exist for scaling limits in ER graphs [Addario-Berry,
 Broutin, Goldschmidt 2010], open question in our case.

Is there a critical window? If so, what is its width?

Extension to tree-rooted maps

$$u_C = \frac{9\pi(4-\pi)}{420\pi - 81\pi^2 - 512} \simeq 3.02$$

Thank you!