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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

Planar map = planar graph +
cycliclorder on neighbours

+

- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

+ Size | m| = number of edges;

- Corner (does not exist for graphs !) = space between an oriented
edge and the next one for the trigonometric order.
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Block decomposition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.
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Block decomposition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].
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Block decomposition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a Only small blocks.

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

3/18



Model Inspired by [Bonzom 2016].

Goal: parameter that affects the typical number of blocks.

> 0,
1 #blocks(m) b;% { I
We choose: P, (m) = where “%n=1maps of size n},
’ Z, me .M,

Z,,, = normalisation.
« u = 1: uniform distribution on maps of size n;
« 4 — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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Results




Phase transition

Theorem [Fleurat, S. 23] Model exhibits a phase transition at

u=9/5. Whenn — oo:

. Subcritical phase u < 9/5: “general map phase” one huge
block;

. Critical phase u = 9/5: a few large blocks;

. Supercritical phase u > 9/5: “tree phase” only small blocks.

We obtain explicit results on enumeration, size of blocks and
scaling limits in each case.

— A phase transition in block-weighted random maps
W. Fleurat, Z. Salvy (2023)
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Focus: scaling limits



Subcritical case = “general map” case

@ O Decorations = groups of smaller blocks

Large block of size

O(n)
Diameters of decorations = o(n'’%).

The scaling limit of M, (rescaled by n1/4) Is the scaling limit
of the huge block!

\uniform, size-concentrated
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Critical and supercritical cases

Let k = E("diameter" bipointed block). By a “law of large
numbers”-type argument

dm(ey, ) =~ kdp (e, €,).

So distances in m behave like distances in 1,,.
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Conclusion



Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = CoH + D,
except the last one where M = (1 + M) x (C o H).

maps, M(z) cores, C'(z) submaps, H(z) coreless, D(z)
all, M (2) Eilﬁ)g()e;f::; My(z)  2/(1—z2(1+ M) 21+ M)’
loopless Mo (z) simple M3(z) 2(1+ M) —

all, M1(z) nonsep., M4 (z) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M;5(z) z(14+ M) -
nonsep. M4(2)/z —2 3-connected Ms(z) M z+2M?/(1+ M)
bipartite, Bi(z) bip. simple, Bz(z) z2(1+ M) -
bipartite, Bi(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, Bi(z) bip. nonsep., B4(z) z(1+ M)? —

bip. nonsep., B4(z)  bip. ns. smpl, Bs(z) z(1+ M) —
singular tri., T1(2) triang., z + 271%(2) z(1+ M)° —
triangulations, T>(z) irreducible tri., T3(2) z(1 4 M)? —

— Unified study of the phase transition for block-weighted
random planar maps Z. Salvy (EUROCOMB’23)
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Perspectives

« Extension to decompositions with coreless maps;
 Study of the critical window(s);
» Extension to spanning-tree decorated maps.
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Thank you!



