Phase transition for blockweighted random planar maps

Probability and Geometry in, on and of non-Euclidian spaces

Zéphyr Salvy

Planar maps

Planar map \mathfrak{m} = embedding on the sphere of a connected planar graph, considered up to homeomorphisms

- Rooted planar map = map endowed with a marked oriented edge (represented by an arrow);
- Size |m| = number of edges;
- Corner (does not exist for graphs!) = space between an oriented edge and the next one for the trigonometric order.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a large block concentrates a macroscopic part of the mass [Banderier, Flajolet, Schaeffer, Soria 2001; Jonsson, Stefánsson 2011].

Only small blocks.

Inspired by [Bonzom 2016].

Goal: parameter that affects the typical number of blocks.

We choose:
$$\mathbb{P}_{n,u}(\mathfrak{m}) = \frac{u^{\#blocks(\mathfrak{m})}}{Z_{n,u}}$$
 where $u > 0$, $\mathcal{M}_n = \{\text{maps of size } n\}$, $\mathfrak{m} \in \mathcal{M}_n$, $Z_{n,u} = \text{normalisation}$.

- u = 1: uniform distribution on maps of size n;
- $u \to 0$: minimising the number of blocks (=2-connected maps);
- $u \to \infty$: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour when $n \to \infty$?

Results

Phase transition

Theorem [Fleurat, S. 23] Model exhibits a phase transition at u = 9/5. When $n \to \infty$:

- Subcritical phase u < 9/5: "general map phase" one huge block;
- Critical phase u = 9/5: a few large blocks;
- Supercritical phase u > 9/5: "tree phase" only small blocks.

We obtain explicit results on enumeration, size of blocks and scaling limits in each case.

→ A phase transition in block-weighted random maps W. Fleurat, Z. Salvy (2023)

Focus: scaling limits

Subcritical case = "general map" case

The scaling limit of M_n (rescaled by $n^{1/4}$) is the scaling limit of the huge block!

uniform, size-concentrated

Critical and supercritical cases

Let $\kappa = \mathbb{E}(\text{"diameter" bipointed block})$. By a "law of large numbers"-type argument

$$d_{\mathfrak{m}}(e_1, e_2) \simeq \kappa d_{T_{\mathfrak{m}}}(e_1, e_2).$$

So distances in \mathfrak{m} behave like distances in $T_{\mathfrak{m}}$.

Conclusion

Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

Table 3. Composition schemas, of the form $\mathcal{M} = \mathcal{C} \circ \mathcal{H} + \mathcal{D}$, except the last one where $\mathcal{M} = (1 + \mathcal{M}) \times (\mathcal{C} \circ \mathcal{H})$.

maps, $M(z)$	cores, $C(z)$	submaps, $H(z)$	coreless, $D(z)$
all, $M_1(z)$	bridgeless, or loopless $M_2(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
loopless $M_2(z)$	simple $M_3(z)$	z(1+M)	_
all, $M_1(z)$	nonsep., $M_4(z)$	$z(1+M)^2$	_
nonsep. $M_4(z)-z$	nonsep. simple $M_5(z)$	z(1+M)	_
nonsep. $M_4(z)/z-2$	3-connected $M_6(z)$	M	$z + 2M^2/(1+M)$
bipartite, $B_1(z)$	bip. simple, $B_2(z)$	z(1+M)	_
bipartite, $B_1(z)$	bip. bridgeless, $B_3(z)$	$z/(1-z(1+M))^2$	$z(1+M)^{2}$
bipartite, $B_1(z)$	bip. nonsep., $B_4(z)$	$z(1+M)^{2}$	_
bip. nonsep., $B_4(z)$	bip. ns. smpl, $B_5(z)$	z(1+M)	_
singular tri., $T_1(z)$	triang., $z + zT_2(z)$	$z(1+M)^{3}$	_
triangulations, $T_2(z)$	irreducible tri., $T_3(z)$	$z(1+M)^2$	_

→ Unified study of the phase transition for block-weighted random planar maps Z. Salvy (EUROCOMB'23)

Perspectives

- Extension to decompositions with coreless maps;
- Study of the critical window(s);
- Extension to spanning-tree decorated maps.

Thank you!