
Phase transition for block-
weighted random planar 

maps

Joint work with William Fleurat

Probability and Geometry in, on and of non-Euclidian spaces

Zéphyr Salvy



/18

• Rooted planar map = map endowed with a marked oriented edge 
(represented by an arrow); 

• Size  = number of edges; 
• Corner (does not exist for graphs !) = space between an oriented 

edge and the next one for the trigonometric order.

|𝔪 |
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Planar maps

Planar map = planar graph + 
cyclic order on neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

𝔪

= ≠
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2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 
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Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].
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Block decomposition

Only small blocks.
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Model
Goal: parameter that affects the typical number of blocks.

We choose:  whereℙn,u(𝔪) =
u#blocks(𝔪)

Zn,u

, 

 = {maps of size }, 

, 

normalisation. 

u > 0
ℳn n
𝔪 ∈ ℳn

Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞
4

Inspired by [Bonzom 2016].
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Results
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Theorem [Fleurat, S. 23] Model exhibits a phase transition at 
. When : 

• Subcritical phase : “general map phase” one huge 
block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small blocks. 

We obtain explicit results on enumeration, size of blocks and 
scaling limits in each case.

u = 9/5 n → ∞
u < 9/5

u = 9/5
u > 9/5

6

Phase transition

→ A phase transition in block-weighted random maps 
W. Fleurat, Z. Salvy (2023)
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Subcritical case u = 1

n ≈ 55 000
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(Less) subcritical case u = 8/5

n ≈ 55 000
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Critical case u = 9/5

n ≈ 80 000
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Supercritical case u = 5/2

n ≈ 75 000
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(More) supercritical case u = 5

n ≈ 50 000
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Focus: scaling limits
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Subcritical case = “general map” case

The scaling limit of  (rescaled by ) is the scaling limit 
of the huge block!

Mn n1/4

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameters of decorations = .o(n1/4)

uniform, size-concentrated
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. 
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Critical and supercritical cases

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

d𝔪(e1, e2) ≃ κdT𝔪
(e1, e2) .

So distances in  behave like distances in .𝔪 T𝔪

e1

e2

𝔪 T𝔪
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Conclusion
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Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

→ Unified study of the phase transition for block-weighted 
random planar maps Z. Salvy (EUROCOMB’23) 
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• Extension to decompositions with coreless maps; 
• Study of the critical window(s); 
• Extension to spanning-tree decorated maps.
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Perspectives
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Thank you!
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