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• Rooted planar map = map endowed with a marked oriented edge 
(represented by an arrow); 

• Size  = number of edges; 
• Corner (does not exist for graphs !) = space between an oriented 

edge and the next one for the trigonometric order.

|𝔪 |

2

Planar maps

Planar map = planar graph + 
cyclic order on neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

𝔪

= ≠
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Brownian Sphere 𝒮e

• Enumeration:  [Tutte 1963]; 

• Distance between vertices:  [Chassaing, Schaeffer 2004]; 

• Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013, 
Miermont 2013] and uniform maps [Bettinelli, Jacob, Miermont 2014];

κρ−nn−5/2

n1/4

3

• Universality: 
• Same enumeration [Drmota, Noy, Yu 2020]; 

• Same scaling limit, e.g. for triangulations & -angulations [Le 

Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].

2q

Universality results for planar maps
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• Universality: 
• Same enumeration, 
• Same scaling limit, even for some classes of maps; e.g. 

outerplanar maps [Caraceni 2016], maps with a boundary of size >> 
 [Bettinelli 2015].n1/2

• Enumeration: ; 

• Distance between vertices:  [Flajolet, Odlyzko 1982]; 

• Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

κρ−nn−3/2

n1/2

4

Universality results for plane trees

Models with (very) constrained boundaries
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Motivation

Interpolating model?

Two rich situations with universality results:
Planar maps Plane trees

Inspired by [Bonzom 2016].
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2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6

Model definition



/39

2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6

Model definition



/39

Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].
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Interpolating model using blocks!

Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

2-connected = two vertices must be removed to disconnect. 

Block = maximal (for inclusion) 2-connected submap. 

6

Model definition

Only small blocks.
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Model
Goal: parameter that affects the typical number of blocks.

We choose:  whereℙn,u(𝔪) =
u#blocks(𝔪)

Zn,u

, 

 = {maps of size }, 

, 

normalisation. 

u > 0
ℳn n
𝔪 ∈ ℳn

Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞
7

Inspired by [Bonzom 2016].
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u = 1

n ≈ 55 000
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u = 8/5

n ≈ 55 000
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u = 9/5

n ≈ 80 000
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u = 5/2

n ≈ 75 000
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u = 5

n ≈ 50 000
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Theorem [Fleurat, S. 23] Model exhibits a phase transition at 
. When : 

• Subcritical phase : “general map phase” one huge 
block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small blocks. 

We obtain explicit results on enumeration, size of blocks and 
scaling limits in each case.

u = 9/5 n → ∞
u < 9/5

u = 9/5
u > 9/5

13

Phase transition

→ A phase transition in block-weighted random maps 
W. Fleurat, Z. Salvy (2023)
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Results
u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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I. Block tree of a map 
and its applications

15
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Inspiration from [Tutte 1963]
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Decomposition of a map into blocks
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Decomposition of a map into blocks

 With a weight  on blocks: u M(z, u) = uB(zM2(z, u)) + 1 − u

1
2

34

5
6

7

8
9 10

M(z, u) = ∑
𝔪∈ℳ

z|𝔪|u#blocks(𝔪)

GS of 2-connected maps
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Results
u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration
[Bonzom 2016]

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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Decomposition of a map into blocks: properties

• Internal node (with  children) of   block of  of size ; 

•  is entirely determined by  and  where  is the 
block of  represented by  in .

k T𝔪 ↔ 𝔪 k/2
𝔪 T𝔪 (𝔟v, v ∈ T𝔪) 𝔟v

𝔪 v T𝔪

 gives the block sizes of a random map .TMn
Mn
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Galton-Watson trees for map blocks

-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  = 
probability law on .

μ
μ μ

ℕ
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Galton-Watson trees for map blocks

-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  = 
probability law on .

μ
μ μ

ℕ

Theorem [Fleurat, S. 23] 

If , then there exists an (explicit)  s.t. 

 has the law of a Galton-Watson tree of reproduction 

law  conditioned to be of size , with  

.

Mn ↪ ℙn,u y = y(u)
TMn

μy,u 2n

μy,u({2k}) =
Bkyku1k≠0

uB(y) + 1 − u

u > 0
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• Degrees of  give the block sizes of the map ; 

• Largest degrees of a Galton-Waston tree are well-known 
[Janson 2012].

TMn
Mn

21

Largest blocks?
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Results

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μy,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Scaling limit of 
Mn
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II. Scaling limits

23
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Convergence of the whole object considered as a metric 
space (with the graph distance), after renormalisation.

24

Scaling limits

u

v

d(u, v) = 4
Mn ↪ ℙn,u

What is the limit of the sequence of metric spaces  ?((Mn, d/n?))n∈ℕ

(Convergence for Gromov-Hausdorff metric)
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Scaling limit of supercritical and critical maps
Theorem For , 

• [Stufler 2020] If , 

, . 

• [Fleurat, S. 23] If , 

, .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

C3(u)
n1/2

Mn → 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
C2

n1/3
Mn → 𝒯3/2
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. 

26

Critical and supercritical and cases

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

d𝔪(e1, e2) ≃ κdT𝔪
(e1, e2) .

So distances in  behave like distances in .𝔪 T𝔪

e1

e2
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u = 9/5

n ≈ 80 000
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u = 5/2

n ≈ 75 000
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u = 5

n ≈ 50 000
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Brownian Sphere 𝒮e

Theorem [Fleurat, S. 23] If , for  and 

 a uniform 2-connected map of size : 

.

u < 9/5 Mn ↪ ℙn,u

Bn n

dGH ( C1(u)
n1/4

Mn,
1

n1/4
Bn) → 0

30

Scaling limits of subcritical maps

See [Addario-Berry, Wen 2019] for a similar result and method.

So, if , then 

. 

cn−1/4Bn → 𝒮e
C1(u)
cn1/4

Mn → 𝒮e
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Subcritical case = “general map” case

The scaling limit of  (rescaled by ) is the scaling limit 
of uniform blocks!

Mn n1/4

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameters of decorations = .o(n1/4)
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u = 1

n ≈ 55 000
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u = 8/5

n ≈ 55 000
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Results

C2

n1/3
Mn → 𝒯3/2

C3(u)
n1/2

Mn → 𝒯e
C1(u)
n1/4

Mn → 𝒮e

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

Assuming the convergence of 2-
connected maps towards the 

Brownian sphere

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

Θ(n2/3)
Θ(n2/3)

Scaling limit of 
Mn

[Stufler 2020]

[Stufler 2020]

[Bonzom 2016]

∼ (1 − 𝔼(μy,u))n



/39

III. Extension to other 
families of maps

35
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Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

→ Unified study of the phase transition for block-weighted 
random planar maps Z. Salvy (EUROCOMB’23) 
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Theorem [S. 23] Model of the preceding table without coreless 
maps exhibits a phase transition at some explicit . When 

: 

• Subcritical phase : “general map phase” one huge 
block; 

• Critical phase : a few large blocks; 

• Supercritical phase : “tree phase” only small blocks. 

We obtain explicit results on enumeration and size of blocks in 
each case.

uC
n → ∞

u < uC

u = uC

u > uC

37

Statement of the results



/39

• Extension to decompositions with coreless maps; 
• Study of the critical window(s); 
• Extension to spanning-tree decorated maps.

38

Perspectives
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Thank you!

39


