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Planar maps

Planar map m = embedding on the sphere of a connected
planar graph, considered up to homeomorphisms

Planar map = planar graph +
cycliclorder on neighbours

+

- Rooted planar map = map endowed with a marked oriented edge
(represented by an arrow);

+ Size | m| = number of edges;

- Corner (does not exist for graphs !) = space between an oriented
edge and the next one for the trigonometric order.
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Universality results for planar ma

« Enumeration: K,o_”n_S/2 [Tutte 1963];
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« Distance between vertices: n [Chassaing, Schaeffer 2004];

» Scaling limit: Brownian sphere for quadrangulations [Le Gall 2013,
Miermont 2013] and uniform maps [Bettinelli, Jacob, Miermont 2014];

Brownian Sphere &,

» Universality:
.+ Same enumeration [Drmota, Noy, Yu 2020];

+ Same scaling limit, e.g. for triangulations & 2g-angulations [l
Gall 2013], simple quadrangulations [Addario-Berry, Albenque 2017].
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Universality results for plane trees

. Enumerationzkp_”n_3/2;
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« Distance between vertices: 1 '“ [Flajolet, Odlyzko 1982];

 Scaling limit: Brownian tree [Aldous 1993, Le Gall 2006];

N ‘v SR

» Universality: i | 7
. Same enumeration, '

« Same scaling limit, even for some classes of maps; e.g.”
outerplanar maps [Caraceni 2016], maps with a boundary of size >>

/2 : .
[Bettinelli 2015]. \_/ Models with (very) constrained boundaries
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Motivation Inspired by [Bonzom 2016].

Two rich situations with universality results:
Planar maps Plane trees

y

Brownian Sphere &, 5/39 Brownian Tree I,



Model definition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.
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Model definition
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Condensation phenomenon: a
large block concentrates a

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].
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Model definition

7-conhected = two vertices must be removed to disconnect.

Block = maximal (for inclusion) 2-connected submap.

Condensation phenomenon: a
large block concentrates a Only small blocks.

macroscopic part of the mass
[Banderier, Flajolet, Schaeffer, Soria 2001;

Jonsson, Stefansson 2011].

Interpolating model using blocks!
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Model Inspired by [Bonzom 2016].

Goal: parameter that affects the typical number of blocks.

> 0,
1 #blocks(m) b;% { I
We choose: P, (m) = where “%n=1maps of size n},
’ Z, me .M,

Z,,, = normalisation.
« u = 1: uniform distribution on maps of size n;
« 4 — 0: minimising the number of blocks (=2-connected maps);

« 4 — 00: maximising the number of blocks (= trees!).

Given u, asymptotic behaviour whenn — 00?
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n ~ 55000
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Phase transition

Theorem [Fleurat, S. 23] Model exhibits a phase transition at

u=9/5. Whenn — oo:

. Subcritical phase u < 9/5: “general map phase” one huge
block;

. Critical phase u = 9/5: a few large blocks;

. Supercritical phase u > 9/5: “tree phase” only small blocks.

We obtain explicit results on enumeration, size of blocks and
scaling limits in each case.

— A phase transition in block-weighted random maps
W. Fleurat, Z. Salvy (2023)
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ForM, < P, ,

u<9/5

Results

u=9/5

u>9/5

Enumeration

Size of

- the largest
block

- the second
one

Scaling limit of
M

n
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|. Block tree of amap
and its applications




Decomposition of a map into blocks

Inspiration from [Tutte 1963]
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Decomposition of a map into blocks

Inspiration from [Tutte 1963] M(z,u) = Z 7| mly #blocks(m)

meH

GS of 2-connected maps

With a weight u on blocks: M(z, u) = uB(zM?*(z, 1))
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Results
For M, < IP’W u < 9/5 u=9/5 u>9/5

—Ny —5/2 —Ny —5/3 —Ny —3/2

Enumeration p(u) p(u)

[Bonzom 2016]

p(u)

Size of

- the largest
block

- the second
one

Scaling limit of
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Decomposition of a map into blocks

Inspiration from [Tutte 1963]

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

\\\\

GS of 2-connected mapSﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

™

= Underlying block tree structure, made explicit by [Addario-

GS of 2-connected maps
Berry 2019]. ﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

(7

D //«\\\\}\

GS of 2-connected mapSﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

(7

Y — //«\\\\}\

GS of 2-connected mapSﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

(7

Y — //«\\\\}\

GS of 2-connected mapSﬁ
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

GS of 2-connected mapSﬁ d
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

GS of 2-connected mapSﬁ d \
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

GS of 2-connected mapSﬁ d \
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39



Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

(7

— 7

o/./l\\ l\d .

GS of 2-connected mapSﬁ d \
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks

. : _ m|, , #blocks(m
Inspiration from [Tutte 1963] M(z,u) = 2 zI™ly (m)
mel

(7

— 7

o/./l\\ l\d L\

GS of 2-connected mapSﬁ d \
With a weight u on blocks: M(z, u) = uB(zM?*(z,u)) + 1 — u

18/39




Decomposition of a map into blocks: properties

(7
@ //"\\\\
DN ]
//l\/\d ‘¥

§ 3
- Internal node (with k children) of T, <> block of m of size k/2;

. m is entirely determined by 7,,, and (b, v € T ,,) where b, is the
block of m represented by vin 7.

1), gives the block sizes of arandom map M,
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of
children of each node is given by u independently, with u =
probability law on N.
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Galton-Watson trees for map blocks

1-Galton-Watson tree : random tree where the number of

children of each node is given by u independently, with u =
probability law on N.

Theorem [Fleurat, S. 23]

u> (0

f M, < P, . then there exists an (explicit) y = y(u) s.t.
1)y has the law of a Galton-Watson tree of reproduction
law 1" conditioned to be of size 2n, with

Byy*ulio

p(12k}) =

uBO) +1—u
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Largest blocks?

» Degrees of 1), give the block sizes of the map M,;

« Largest degrees of a Galton-Waston tree are well-known
Janson 2012].
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Results

ForM, < P, , u<9/5 u=9/5 u>9/5

Enumeration p(u)""'n=>" p(u)"n >R p(u)"'n="?
[Bonzom 2016]

Size of

- the |argest ~ (1 . E(ﬂy,u))n /3 In(n) 5 In(In(n)) +0(1)
block . Sl 21n<27y) 41n<2‘7‘y)

- the second O®n")
one [Stufler 2020]

Scaling limit of
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ll. Scaling limits




Scaling limits
Convergence of the whole object considered as a metric
space (with the graph distance), after renormalisation.

du,v) =4
Mn = [lj)n,u

What is the limit of the sequence of metric spaces ((M,, al/n?))nEN ?

(Convergence for Gromov-Hausdorff metric)
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Scaling limit of supercritical and critical maps

T

neorem For M, & P

n,u’

. [Stufler 2020] If u > 9/5,

C3(u)
172

1y

n

0«
el

C3(M)

112

+ [Fleurat, s.23] If u = 9/3,
¢

Brownian Tree 7, 25/39

Stable Tree I 5,



Critical and supercritical and cases

Let k = E("diameter" bipointed block). By a “law of large
numbers”-type argument

dm(ey, ) =~ kdp (e, €,).

So distances in m behave like distances in 1,,.
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Scaling limits of subcritical maps

Theorem [Fleurat, S. 23] If u < 9/5, for M, & P, , and

B, a uniform 2-connected map of size n:

p Cl(M)M 1 B
GH n1/4 H’W n

So, if cn™"B_— &, then
C(u)

cn /4

n €

P Bt NA
- G s )
A R
=% RN A
[ ] P i e N
N Ny,
¥ S AEAN
S A8 Nori”
; ez, 2
et
GEETES
5 dngn
3 ¥k
<5 %k

See [Addario-Berry, Wen 2019] for a similar result and method.
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Subcritical case = “general map” case

@ O Decorations = groups of smaller blocks

Large block of size

O(n)
Diameters of decorations = o(n'’%).

The scaling limit of M, (rescaled by n1/4) Is the scaling limit
of uniform blocks!

31/39






n ~ 55000



For M, < IP’W

Results

u<9/5

u=9/5

u>9/5

Enumeration
[Bonzom 2016]

p(u)—nn—S/Z

p(u)"n

—5/3

p(u)—nn—3/2

Size of

the largest
block

the second
one

~ (1 = E@”™))n

@(n2/3)

[Stufler 2020]

@(n2/3)

In(n) B 5 In(In(n))

4 4
o (2—7y) 41n <2_7y>

+ O(1)

Scaling limit of

C1(u)
y1/4

M — &

n €

Assuming the convergence of 2-
connected maps towards the
Brownian sphere
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lll. Extension to other
families of maps




Extension to other models
[Banderier, Flajolet, Schaeffer, Soria 2001]:

TABLE 3. Composition schemas, of the form M = CoH + D,
except the last one where M = (1 + M) x (C o H).

maps, M(z) cores, C'(z) submaps, H(z) coreless, D(z)
all, M (2) Eilﬁ)g()e;f::; My(z)  2/(1—z2(1+ M) 21+ M)’
loopless Mo (z) simple M3(z) 2(1+ M) —

all, M1(z) nonsep., M4 (z) z(1+ M)? —
nonsep. My(z) — z nonsep. simple M;5(z) z(14+ M) -
nonsep. M4(2)/z —2 3-connected Ms(z) M z+2M?/(1+ M)
bipartite, Bi(z) bip. simple, Bz(z) z2(1+ M) -
bipartite, Bi(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? z(1+ M)?
bipartite, Bi(z) bip. nonsep., B4(z) z(1+ M)? —

bip. nonsep., B4(z)  bip. ns. smpl, Bs(z) z(1+ M) —
singular tri., T1(2) triang., z + 271%(2) z(1+ M)° —
triangulations, T>(z) irreducible tri., T3(2) z(1 4 M)? —

— Unified study of the phase transition for block-weighted
random planar maps Z. Salvy (EUROCOMB’23)
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Statement of the results

Theorem [S. 23] Model of the preceding table without coreless

maps exhibits a phase transition at some explicit u,-. When

n — o0:

. Subcritical phase u < u,: “general map phase” one huge

block;

- Critical phase u = u,: a few large blocks;

. Supercritical phase u > u,: “tree phase” only small b

We obtain explicit results on enumeration and size of bloc
each case.

ocks.

KS 1IN
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Perspectives

« Extension to decompositions with coreless maps;
 Study of the critical window(s);
» Extension to spanning-tree decorated maps.
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Thank you!



