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Abstract

It is well known that permutations, binary trees and compositions are strongly related together through
mathematical objects such that Hopf algebras (free quasi-symmetric functions or Malvenuto-Reutenaeur
algebra, Loday-Ronco algebra, noncommutative symmetric functions) equipped with their posets (weak
order, Tamari lattice, boolean lattice inclusion). This article is an attempt to reproduce this theory for type B.

1 Introduction

In [10], Novelli and Thibon introduced Hopf algebras for colored combinatorial objects such that colored
permutations and colored binary trees. Hence, free quasi-symmetric functions have their colored analogs

denoted by FQSymplq, namely the free quasi-symmetric functions of level l. A simple observation to make is
to notice that colored permutations with only two colors are obviously in bijection with signed permutations.

Hence, we shall consider FQSymp2q as the Hopf algebra of signed permutations. We should emphasize here

that the product and the coproduct of FQSymp2q are very natural and hence nicely generalize the algebraic
structure of FQSym (see [3]) for the type B case. Then, similarly than in the case of type A, we naturally consider

FQSymp2q together with its poset, that is the weak order of the Coxeter group of signed permutations. One
main contribution of this article is to investigate relations between the Hopf algebra of signed permutations
and its poset.

Another Hopf algebra we shall consider in this paper is an analog of PBT, which is well known to be
isomorphic to the Loday-Ronco Hopf algebra (see [6] [7]). Indeed, once again in [10], Novelli and Thibon

introduced the colored analogs of planar binary trees, written PBTplq. In this paper, we will focus only on

PBTp2q, which is indexed by bicolored binary trees, and also virtually consider it as a Hopf algebra of type B.

Let us mention that, similarly that in the type A case where PBT is a Hopf subalgebra of FQSym, PBTp2q is a

Hopf subalgebra of FQSymp2q.
Let us now recall some useful facts of the case of type A theory. As mentioned above, it is natural to consider

FQSym, or the Malvenuto-Reutenaeur Hopf algebra [9], together with the weak order of permutations of type
A. Indeed, the algebraic structure is related to its poset through a key notion of poset theory: the interval
notion. First, a well known result is that product of intervals of permutations is an interval of permutations
itself. Second, elements themselves of interesting subalgebras of FQSym - such that PBT (or Loday-Ronco
Hopf algebra), SP (see [11]), Baxter (see [5]), or the noncommutative symmetric functions Sym (see [4])- are
intervals over the elements of FQSym. Moreover, the interval notion helps to define posets associated to the
subalgebras of FQSym and also often allow to describe the product of these subalgebras over their posets.

In type B theory, the interval notion does not play this key function. Indeed, a quick check allow us to

see that the product in FQSymp2q of two intervals of signed permutations is generally not an interval itself of
signed permutations. Hence, in order to reach our goal, we have to find the analogous notion of interval -
which we recall to be the key notion for type A theory - for type B theory; in other words, we have to find a
kind of interval of type B.

In this paper, we propose a candidate notion of poset theory to fulfill this function: we introduce the
multi-interval notion. We believe that the multi-interval notion is the key poset theory notion for type B theory
for at least two reasons we state next and which are the main contributions of this paper.

1. The product in the Hopf algebra of signed permutations FQSymp2q of two multi-intervals gives as a
result a multi-interval of signed permutations.

2. The elements of PBTp2q, which we recall to be the type B analog of PBT and a subalgebra of FQSymp2q,
are multi-intervals of signed permutations.

Moreover, it is well known (see [6] [8]) that PBT, or the Loday-Ronco Hopf algebra, has the Tamari lattice
as poset. Similarly, in order to reinforce the consideration for what we call the type B case, based on several
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computations, we state a conjecture of the existence of a Tamari lattice of type B which is naturally associated

to PBTp2q.

In Section 2, we provide basic material used in the sequel. Then, in Section 3, we provide definitions and

examples for the Hopf algebra of signed permutations, that is FQSymp2q, and for PBTp2q; we also briefly
mention the possibility of the existence of noncommutative symmetric functions of type B. In the following

Section 4, we define multi-intervals and prove the main result of this article: the product in FQSymp2q of
multi-intervals gives a multi-interval again. Then, in order to strengthen the multi-interval notion, we prove

in Section 5 that elements of PBTp2q are multi-intervals of signed permutations. Moreover, we state the
conjecture about the Tamari lattice of type B in Section 6. Finally, due to the size of the studied combinatorial
objects, the computer exploration associated to this mathematical work could not have been possible without
efficient algorithms; hence, in Appendix A, we provide an algorithm to efficiently compute intervals in the
weak order of the Coxeter group of signed permutations.

2 Preliminaries

A signed permutation σ of size n is a word of size n over the alphabet r´n,´1s Y r1,ns such that if i appears
in σ then ´i does not appear in σ and with the additional constraint to have no repetitions of letters. Thus,
we denote by Bn the set of the signed permutations of size n and by B the set of all signed permutations.
An inversion of a signed permutation σ is a pair pσi, σ jq such that σi ą σ j with i ă j; moreover, every signed
permutation which the first letter l is negative has the inversion denoted by pl,´lq. We denote by Ipσq the set of
inversions of the signed permutation σ. The weak order over signed permutations is the partial order defined
by the following covering relation: we have σ Ì π if Ipσq Ă Ipπq and | Ipπq |“| Ipσq | `1. For example, we have
13-2 Ì -13-2 and 3-41-2 Ì 31-4-2.

The map perm associates to a signed permutation σ its permutation of type A by associating to each letter of
σ its absolute value and preserving the order between letters of σ. For example, we have permp3-41-2q “ 3412.
The map sign associates to a signed permutation σ a word made by reading σ from left to right and concatening
1 if the letter is positive and ´1 if the letter is negative. For example, we have signp3-41-2q “ 1-11-1.

Let w1 and w2 be two words. Then the shuffle of w1 and w2 denoted by w1 w2 is recursively defined by

• w1 ǫ “ w1, ǫ w2 “ w2,

• au bv “ apu bvq ` bpau vq,

where a, b are letters, and u, v are words. For example, we have 12 -43 “ 12-43 ` 1-423 ` 1-432` -4123 `
-4132 ` -4312 . The shift of a signed permutation σ by n is word obtained by deleting the signs for every
letter of σ, then adding n to every letter and setting the sign for every letter as initial. For example, we have
3-41-2r2s “ 5-63-4. The shifted shuffle of two signed permutations σ and π is the operation σ πrns where n is
the size of σ and is denoted σ ] π. Let γ be a signed permutation that appears in the shifted shuffle of two
signed permutations σ and π, then we set γ |σ“ σ and γ |π“ π; if σ belongs to a set X and π to a set Y we use
without ambiguity the equivalent notation γ |X“ σ and γ |Y“ π.

Remark 2.1 We notice that the result of the shifted shuffle of two signed permutations (as well as for permutations of
type A) can be structured as a tree. Indeed, for example -231 ] 1-2 can be represented as follows:

-2314-5 -2341-5

-2431-5

-234-51 ¨ ¨ ¨

¨ ¨ ¨

,

where every pair pσ, πq of adjacent signed permutations of the tree have the following property: π can be obtained from σ
by transposing two consecutive letters of σ; hence, we have either σ Ì π or σ Í π.

A colored permutation is a pair pσ, cq where σ is a permutation and c a word named a color, over an alphabet
C, and which the size is identical to the size of σ. Since clearly a signed permutation π is defined by the
pair ppermpπq, signpπqq, it follows that signed permutations are in bijection with bicolored permutations that are
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colored permutation which the color is defined over t´1, 1u. We denote by pσ, cqÒ the signed permutation
associated to the bicolored permutation pσ, cq.

The standardization process sends a word v of length n to a permutation Stdpvq of size n, called the stan-
dardized of v, defined as the permutation obtained by iteratively scanning v from left to right, and labeling
1, 2, ... the occurrences of its smallest letter, then numbering the occurrences of the next one, and so on. For
example, Stdpabcadbdaaq “ 157286934. Let pv, cq be a pair such that v is a word and c a color; then the colored
permutation Stdpv, cq is set as pStdpvq, cq.

Let σ be a permutation; its binary search tree denoted Ppσq is obtained as follows: reading σ from right to
left, one inserts each letter in a binary search tree in the following way: if the tree is empty, one creates a node
labeled by the letter; otherwise, this letter is recursively inserted in the left (resp. right) subtree if it is smaller
than or equal to (resp. strictly greater than) the root. The shape of a binary search tree T is the binary tree
structure of T. A bicolored binary tree is the pair pT, cq where T is a binary tree and c a color.

An interval denoted rα,ωs over the poset pB,ďq is the set tσ P B | α ď σ ď ωu. A path between two signed
permutations σ and π, denoted by σ { π, is a sequence σ Ì ¨ ¨ ¨ Í π where the relation between two signed
permutations of the sequence can indifferently be either Ì or Í. A set X of signed permutations is connected if
for every pair of signed permutations σ and π of X there is a path σ{ π.

Remark 2.2 Let X,Y be connected sets of signed permutations such that X X Y ‰ H. Then, clearly, X Y Y is connected.

3 Two Hopf algebras of type B

In this Section, we define the Hopf algebra of signed permutations straightforwardly from FQSymp2q. As the
reader should notice, it admits a very natural definition, similar to FQSym. We then provide the definition

of its Hopf subalgebra PBTp2q, which is indexed by bicolored binary trees. The proofs that these objects are
effectively Hopf algebras are not difficult and done in [10]. Finally, in order to fully reproduce the type A
theory, we quickly discuss about potential candidate for noncommutative symmetric functions of type B.

3.1 Hopf algebra of signed permutations

Similarly than FQSym, we define an algebraic structure over the signed permutations.

Definition 3.1 We setKrBs :“
À

ně0KrBns.

1. The spaceKrBs is endowed with an algebra structure by providing the shuffle product ] over this space.

2. Moreover, we endow the space KrBs with a coalgebra structure by providing the following coproduct ∆ over this
space.

∆pσq :“
ÿ

u¨v“permpσq

Stdpu, signpσqqÒ b Stdpv, signpσqqÒ ,

where σ is a signed permutation.

We denote by the triple pKrBs,],∆q these algebra and coalgebra structures.

Example 3.2

-231 ] 1-2 “ -2314-5 ` -2341-5 ` -234-51 ` -2431-5 ` -243-51 ` -24-531 ` 4-231-5 ` 4-23-51
` 4-2-531 ` 4-5-231

∆p2-41-3q “ 1 b 2-41-3 ` 1 b -31-2 ` 1-2 b 1-2 ` 2-31 b -1 ` 2-41-3 b 1

We state the following Proposition without proof.

Proposition 3.3 [10] pKrBs,],∆q is a Hopf algebra written FQSymp2q.
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3.2 Hopf algebra of binary trees of type B

Definition 3.4 Let pPbqbPBBT a family of elements of FQSymp2q indexed by bicolored binary trees such that:

PpT, cq :“
ÿ

σ; shapepPpσqq“T

pσ, cqÒ , (1)

where σ runs over permutations.

Example 3.5

P “ 2-13-54 ` 2-1-534 ` 2-5-134 ` -52-134

We remind to the reader that binary search trees are in bijection with binary trees. Hence, a color associated to a node of
a binary tree can be associated to an element of a permutation.

Then, we remind first a construction coming from the type A case in order to formulate another useful
definition of the elements of Definition 3.4 through Proposition 3.9.

Definition 3.6 Let Ñsylv be the rewriting rule on permutations such that:

u ac v b w Ñsylv u ca v b w, (2)

where u,v and w are words and a,b and c are letters such that a ă b ă c. Moreover, let
˚

ÐÑsylv the reflexive-symmetric-
transitive closure of Ñsylv.

Then, we define ”sylv as the equivalence relation over permutations such that σ ”sylv π if σ
˚

ÐÑsylv π, for any
permutations σ and π. It is named the sylvester equivalence relation.

For example, we have 21534 Ñsylv 25134 and 21354 ”sylv 21534 ”sylv 25134 ”sylv 52134. Then, Definition 3.6
allows us to state the following useful Proposition from [6].

Proposition 3.7 [6] Let σ, π be permutations. Then, shapepPpσqq “ shapepPpπqq if and only if σ ”sylv π.

Next, we give the analog type B definition of Definition 3.6.

Definition 3.8 We define ”B
sylv

as the equivalence relation over signed permutations such that σ ”B
sylv
π if

permpσq ”sylv permpπq and signpσq “ signpπq.

For example, one can check that the set of signed permutations t2-13-54, 2-1-534, 2-5-134, -52-134u of Example
3.5 is an equivalence classe of ”B

sylv
. More generally, we have the following result.

Proposition 3.9 The pPbqbPBBT elements are sum of the elements of equivalence classes of ”B
sylv

over signed permutations.

Proof – The result comes straightforwardly from Definition 3.4, Definition 3.8 and Proposition 3.7.

At last, we state the following Proposition without proof.

Proposition 3.10 [10] The family pPbqbPBBT spans a Hopf subalgebra of FQSymp2q written PBTp2q.

3.3 Noncommutative symmetric functions of type B

Noncommutative symmetric functions of type B, in the meaning discussed in this paper, have still to be
discovered.

Nevertheless, the author believes that by defining hypoplactic relations over signed permutations then,

similarly than Proposition 3.9 and Proposition 3.10, one can defines elements over FQSymp2q which span a
Hopf subalgebra indexed by bicolored compositions. Some arguments of the Proof of Theorem 5.3 could
potentially be used to prove that elements of this hypothetical Hopf algebra describe multi-intervals over
signed permutations. Moreover, one could check we may have a kind of hypercube lattice of type B naturally
defined from the weak order of type B.

However, even if such a mathematical object exists and fulfills all the conditions mentionned above, some
additional work has to be done. In particular, noncommutative symmetric functions of type B already exist
and are introduced in [2]; then it would be appropriate to check either there is a link between these objects.
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4 Intervals of type B

In this Section, we provide the definition of intervals of type B which are called multi-intervals. Then, we state

the main Theorem of this Section which describes the behavior of the multi-intervals into FQSymp2q, with all
the necessary Lemmas.

Definition 4.1 Let X be a set of signed permutations. Then, X is a multi-interval if it is a connected set such that:

1. X has at least one minimal element (we note SX the set of minimal elements),

2. X has at least one maximal element (we note GX the set of maximal elements),

3. For all s P SX and for all g P GX, we have rs, gs Ă X.

It obviously follows from Definition 4.1 that intervals of signed permutations are multi-intervals with a unique
minimal element and a unique maximal element.

Example 4.2

X “

-312-4

1-32-4-321-4

12-3-42-31-4

-32-41

2-3-41

2-4-31

2-41-3 -2-4-31

21-4-3 -2-41-3

21-3-4 -21-4-3

12-4-3

1-2-4-3

We have SX “ t-32-41, -312-4, 12-4-3, 2-4-31u and GX “ t21-3-4, 1-2-4-3u. In particular, one can check that we
have r12-4-3, 1-2-4-3s “ t12-4-3, 21-4-3, -21-4-3, 1-2-4-3u. We notice that an empty interval like r-312-4, 1-2-4-3s is
included in X.

Example 4.3

-42-315

2-4-315-42-351

2-3-4152-4-351 -2-4-315

2-31-452-3-451 -2-3-415

2-315-4 -2-31-45

2-351-4 -2-315-4

25-31-4 -2-351-4

2-35-41

25-3-41 -2-35-41

-2-3-451

2-45-31 -2-4-351

-425-31

-452-31

25-4-31 -2-45-31

52-4-31 -25-4-31

52-3-41

5-42-31

52-31-4

-25-3-41

-25-31-4

5-2-31-4

5-2-3-41

5-2-4-31

-4-3-215

-3-4-215-4-2-315 -4-3-251

-3-2-415 -3-4-251

-3-2-451-3-21-45

-4-2-351

-4-25-31

-4-35-21

-3-45-21

-3-25-41 -45-2-31

5-4-2-31

-45-3-21

5-4-3-21 -35-4-21

5-3-4-21-35-2-41

5-3-2-41

-3-251-4

-35-21-4

5-3-21-4

-3-215-4

This multi-interval is made of three non-trivial intervals of signed permutations.
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4.1 The main Theorem

In this Subsection we only state the main result of this Section, and provide the proof in Section 4.5.

Theorem 4.4 Let X,Y be two multi-intervals of signed permutations. Then, Z “ X ] Y is a multi-interval.

In order to help to reader to browse the whole proof, we display the graph of dependencies of Theorem 4.4.

Theorem 4.4

Lemma 4.5

Lemma 4.11

Proposition 4.9

Remark 4.12

Claim 4.6

Claim 4.7 Claim 4.8

Lemma 4.10

4.2 Around connected property

Lemma 4.5 Let X,Y be two multi-intervals. Then, Z “ X ] Y is connected.

Proof – Let γ and λ be signed permutations which belongs to Z. Let σ, σ1 be signed permutations of X and π, π1

be signed permutations of Y such that γ P σ ] π and λ P σ1 ] π1. Since X and Y are connected by Definition
4.1, we have σ { σ1 and π { π1. It follows, by Claim 4.7, that pσ ] πq Y ¨ ¨ ¨ Y pσ1 ] πq is connected and, by
Claim 4.8, that pσ1 ] πq Y ¨ ¨ ¨ Y pσ1 ] π1q is connected. Hence, for all x P σ ] π and for all y P σ1 ] π we have
x { y and for all x1 P σ1 ] π and for all y1 P σ1 ] π1 we have x1

{ y1. Moreover, since σ1 ] π is connected by
Claim 4.6, we have y{ x1. It follows that, for all x P σ] π and for all y1 P σ1 ] π1 we have x{ y1. Hence, in
particular, we obtain γ{ λ.

Claim 4.6 For every signed permutations σ and π, we have that σ] π is connected.

Proof – Let σ, π be two signed permutations. By Remark 2.1, we have that σ ] π can be represented as a tree
where every adjacent signed permutations respectively cover each other. Then, since a tree is connected (in
the graph theory meaning), as a result there exists a path between every pair of signed permutations of σ] π.
Hence, it follows that σ] π is connected.

Claim 4.7 For every signed permutations σ, π and γ such that σ{ π, we have that pσ]γqY¨ ¨ ¨Ypπ]γq is connected.

Proof – Let us prove that for every signed permutations σ, π and γ such that σ Í πwe have that pσ]γqYpπ]γq
is connected. We distinguish two cases.

‚ Let us assume that the first letter of π is positive and the first letter of σ is negative. Then, we have

σ ¨ γrns Í π ¨ γrns , (3)

where n stand for the size of σ. Obviously, we have that σ ¨γrns belongs to σ]γ and that π ¨γrns belongs
to π ] γ. Let now σ1 and π1 be signed permutations such that σ1 P σ ] γ and π1 P π ] γ. Since σ ] γ is
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connected by Claim 4.6, we have σ1
{ σ ¨ γrns; and since π] γ is connected again by Claim 4.6, we have

π1
{ π ¨ γrns. Hence, by Equation (3), we have σ1

{ π1. It follows that for every signed permutations
σ1 and π1 such that σ1 P σ] γ and π1 P π] γ, we have σ1

{ π1. Thus, we have that pσ] γq Y pπ] γq is
connected.

‚ If we have σ “ u ba v and π “ u ab v where u, v stand for words and a, b for letters, we also have
σ ¨ γrns Í π ¨ γrns, where n stand for the size of σ. Hence, by the same arguments than for the previous
case, we have that pσ] γq Y pπ] γq is connected.

Thus, by induction and Remark 2.2, it follows that for every signed permutations σ, π and γ such that σ{ π
we have that pσ] γq Y ¨ ¨ ¨ Y pπ] γq is connected.

Claim 4.8 For every signed permutations σ, π and γ such that σ{ π, we have that pγ]σqY¨ ¨ ¨Ypγ]πq is connected.

Proof – Let us prove that for every signed permutations σ, π and γ such that σ Í πwe have that pγ]σqYpγ]πq
is connected. We distinguish two cases.

‚ Let us assume that the first letter of π is positive and the first letter of σ is negative. Then, let us write
γ ¨ σrns “ γ ¨ -a v and γ ¨ πrns “ γ ¨ a v where n is the size of γ, a a letter and v a word. Clearly, we have
γ ¨ -a v{ -a ¨ γ ¨ v and γ ¨ a v{ a ¨ γ ¨ v. Moreover, we obviously have -a ¨ γ ¨ v Í a ¨ γ ¨ v.

-a ¨ γ ¨ v Í a ¨ γ ¨ v , (4)

Then, we have that -a ¨γ ¨ v clearly belongs to γ]σ and that a ¨γ ¨ v belongs to γ]π. Let now σ1 and π1 be
signed permutations such that σ1 P γ] σ and π1 P γ] π. Since γ] σ is connected by Claim 4.6, we have
σ1
{ -a ¨γ ¨ v; and since γ]π is connected again by Claim 4.6, we have π1

{ a ¨γ ¨ v. Hence, by Equation
(4), we have σ1

{ π1. It follows that for every signed permutations σ1 and π1 such that σ1 P γ ] σ and
π1 P γ] π, we have σ1

{ π1. Thus, we have that pγ] σq Y pγ] πq is connected.

‚ If we haveσ “ u ba v andπ “ u ab v where u, v stand for words and a, b for letters, we haveγ¨σrns Í γ¨πrns,
where n stand for the size of σ. Hence, by the same arguments than for the previous case, we have that
pσ] γq Y pπ] γq is connected.

Thus, by induction and Remark 2.2, the result follows.

4.3 Technical results

Let X,Y be two multi-intervals of signed permutations; we set Z “ X ] Y. We know from Lemma 4.5 that Z
is connected. Thus, we can consider the minimal and maximal elements of Z (respectively SZ and GZ). We do
not give a way to compute the minimal and maximal elements of Z from the elements X and Y, instead we
state the following Proposition.

Proposition 4.9 Let X,Y be two multi-intervals of signed permutations. Let Z “ X ] Y, we denote by SZ the minimal
elements and GZ the maximal elements of the connected set Z. Then,

1. for all sz P SZ, it exists e1
x P X and sy P SY such that sz P e1

x ] sy,

2. for all gz P GZ, it exists e2
x P X and gy P GY such that gz P e2

x ] gy.

Proof – We start to prove the first assertion. Let sz P SZ; then it exists e1
x and ey such that sz P e1

x ] ey, since SZ Ă Z
and by definition of Z. Let us assume that there exists e1

y P Y such that e1
y Ì ey. We consider two cases.

‚ If the first letter of ey “ -l ¨ v is negative and the first letter of e1
y “ l ¨ v is positive, then we distinguish two

cases again.

1. If the first letter of ey is equal to the first letter of sz, we can write sz “ -l ¨ w. Then, let us consider
s1

z “ l ¨ w; clearly we have s1
z Ì sz and s1

z P e1
x ] e1

y. Hence, we have a contradiction since sz is a
minimal element of Z.

7



2. If the first letter of ey is not equal to the first letter of sz, then we can write sz “ v ¨ b ¨ -pl ` nq ¨ w where
v,w are possibly empty words such that v is made of letters of e1

x, b a letter of e1
x and n the size of

e1
x. Clearly, -pl ` nq is smaller than any letter of e1

x; hence, in particular, b ą -pl ` nq. Thus, we set
s1

z “ v ¨ -pl ` nq ¨ b ¨ w. Obviously, we have s1
z Ì sz and s1

z P e1
x ] ey. Hence, we have a contradiction

since sz is a minimal element of Z.

‚ In this case, we write ey “ α ¨ a ¨ b ¨ β and e1
y “ α ¨ b ¨ a ¨ β where α, β are words and a, b letters such that

a ă b. We set a1 “ arns and b1 “ brns where n is the size of e1
x. We distinguish two cases.

1. If we have sz “ u ¨ b1 ¨ a1 ¨ v, in other words if a1 and b1 are consecutive in sz, then we can set
s1

z “ u ¨ a1 ¨ b1 ¨ v. Clearly, we have s1
z P Z since s1

z obviously belongs to e1
x ] e1

y. Moreover, we also
have s1z Ì sz. Hence, we have a contradiction since sz is a minimal element of Z.

2. Otherwise, we can write sz “ u ¨ b1 ¨ v ¨ a1 ¨ w where u, v and w are words. Clearly, v in sz is made only
of letters of e1

x. We consider two subcases.

(i) If a is negative, then a1 is smaller than every letters of v. Thus, we set s1
z “ u ¨ b1 ¨ a1 ¨ v ¨ w; hence,

we have s1
z ă sz. Moreover, since we obviously have s1

z P e1
x ] ey, we have s1

z P Z. Hence, we
have a contradiction since sz P SZ.

(ii) Otherwise, a is positive, then b is also positive since b ą a. Moreover, b1 is greater than every
letters of v. Thus, we set s1

z “ u ¨ v ¨ b1 ¨ a1 ¨ w; hence, we have s1
z ă sz. Moreover, since we

obviously have s1
z P e1

x ] ey, we have s1
z P Z. Hence, we have a contradiction since sz P SZ.

The proof of the second assertion is similar.

In order to state the following Lemma, we use the Lemma 4.5 and Proposition 4.9.

Lemma 4.10

- Let X,Y be two intervals of signed permutations; we set Z “ X ] Y.

- Let sz P SZ and gz P GZ such that sz ă gz.

- Let e1
x P X and sy be the minimal element of Y such that sz P e1

x ] sy.

- Let e2
x P X and gy be the maximal element of Y such that sz P e2

x ] gy.

Then, we have e1
x ď e2

x.

Proof – If sz ă gz then we have the chain C “ sz Ì ¨ ¨ ¨ Ì gz. Let ez P C and e1
z P C such that ez Ì e1

z. Let us prove
that we either have ez |X“ e1

z |X or ez |XÌ e1
z |X. We distinguish two cases.

‚ If the first letter of e1
z is negative and the first letter of ez is positive, then we consider two cases again.

1. If the first letter l of ez is equal to the first letter of ez |X, then we easily have, by considering the range
of values where l belongs, that the first letter of e1

z is equal to the first letter of e1
z |X. Hence, since

ez Ì e1
z, we have ez |XÌ e1

z |X.

2. If the first letter l of ez is not equal to the first letter of ez |X, then l is equal to a shifted letter of ez |Y.
Thus, we easily have, by considering the range of values where l belongs, that the first letter of e1

z is
also equal to a shifted letter of e1

z |Y. Hence, we have ez |X“ e1
z |X.

‚ If ez “ u ¨ a ¨ b ¨ v and e1
z “ u ¨ b ¨ a ¨ v where u, v are words and a, b letters, then we distinguish four cases.

1. If a P ez |X and b P ez |Yrns where n is the size of ez |X, then we have a P e1
z |X and b P e1

z |Yrns. Hence,
we have ez |X“ e1

z |X.

2. If a P ez |Yrns and b P ez |X, then we have a P e1
z |Yrns and b P e1

z |X. Hence, we have ez |X“ e1
z |X.

3. If a P ez |Yrns and b P ez |Yrns, then we have a P e1
z |Yrns and b P e1

z |Yrns. Hence, we have ez |X“ e1
z |X.

4. If a P ez |X and b P ez |X, then we have a P e1
z |X and b P e1

z |X. Hence, we clearly have ez |XÌ e1
z |X.

Moreover, we have e1
x “ sz |X and e2

x “ gz |X. Hence, by induction on C, we have e1
x ď e2

x.
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4.4 A smaller problem

In this Section, we prove an easier, but necessary, result than the main Theorem 4.4.

Lemma 4.11 Let X,Y be two intervals of signed permutations. Then, Z “ X ] Y is a multi-interval.

Proof – By Lemma 4.5, we have that Z have a set SZ of minimal elements and a set GZ of maximal elements.
Let sz P SZ and gz P GZ. Since sz is a minimal element we cannot have sz ą gz; thus we distinguish two cases.

‚ If sz and gz are not comparable, then we have rsz, gzs “ H.

‚ If sz ă gz, then let us prove that rsz, gzs Ă Z. Thus, by Proposition 4.9, there exists e1
x P X and sy P Y such

that sz P e1
x ] sy; moreover, we also have e2

x P X and gy P Y such that gz P e2
x ] gy. Then, by Lemma 4.10,

we have e1
x ď e2

x. Hence, since both e1
x and e2

x belong to X and since X is an interval by hypothesis, we
easily have re1

x, e
2
xs Ă X.

In order to prove that rsz, gzs Ă Z, we proceed by induction on the elements of rsz, gzs. Our inductive
assumption is the following.

For all ez P rsz, gzs having n inversions, there exist ex P re1
x, e

2
xs and ey P rsy, gys such that ez P ex ] ey.

We notice, since Y is an interval by hypothesis, that rsy, gys “ Y. For the initial case, we have that
sz P e1

x ] sy; hence we have sz P Z.

We now consider e1
z P rsz, gzs having n ` 1 inversions such that e1

z Í ez, with ez P rsz, gzs. By inductive
assumption, we have ez |X“ ex and ez |Y“ ey; let k be the size of ex and m be the size of ey. We denote
by e1

x the signed permutation build by extracting the letters of e1
z which belong to the range r´k, ks still

preserving the order among them. Similarly, we denote by e1
y the signed permutation build by extracting

the letters of e1
z which belong to the range r´k ´m,´k ´1sYrk `1, k `ms still preserving the order among

them. Then, since ez P ex ] ey, we clearly have

e1
z P e1

x ] e1
y . (5)

We distinguish two cases.

1. If the first letter of e1
z is negative and the first letter of ez is positive, then we consider two cases again.

(i) If the first letter of e1
z is equal to the first letter of e1

x, then we have e1
x Í ex and e1

y “ ey. Moreover,

since e1
z ď gz, we have e1

x ď gz |X, so e1
x ď e2

x. Moreover, since e1
x Í ex and ex ě e1

x by inductive
assumption, we have e1

x ą e1
x. Hence, we have e1

x P re1
x, e

2
xs and trivially e1

y P Y. As a result, by
Relation (5), we have e1

z P Z.

(ii) If the first letter of e1
z is equal to the first letter of e1

y shifted by the size of e1
x, then e1

x “ ex and
e1

y Í ey. Moreover, since e1
z ď gz, we have e1

y ď gy. Moreover, since e1
y Í ey and ey ě sy by

inductive assumption, we have e1
y ą sy. Hence, we have e1

y P Y and trivially e1
x P re1

x, e
2
xs. As a

result, by Relation (5), we have e1
z P Z.

2. If we can write ez “ u ¨ a ¨ b ¨ v and e1
z “ u ¨ b ¨ a ¨ v where u, v are words and a, b letters, then we

distinguish four cases.

(i) If a P e1
x and b P e1

y, then we have a P ex and b P ey. Hence, we have e1
z P ex ] ey, and as a result

e1
z P Z.

(ii) If a P e1
y and b P e1

x, then we have a P ey and b P ex. Hence, we have e1
z P ex ] ey, and as a result

e1
z P Z.

(iii) If a P ex and b P ex, then e1
x Í ex and e1

y “ ey. Moreover, since e1
z ď gz, we have e1

x ď gz |X, so

e1
x ď e2

x. Moreover, since e1
x Í ex and ex ě e1

x by inductive assumption, we have e1
x ą e1

x. Hence,
we have e1

x P re1
x, e

2
xs and trivially e1

y P Y. As a result, by Relation (5), we have e1
z P Z.

(iv) If a P ey and b P ey, then e1
x “ ex and e1

y Í ey. Moreover, since e1
z ď gz, we have e1

y ď gy. Moreover,
since e1

y Í ey and ey ě sy by inductive assumption, we have e1
y ą sy. Hence, we have e1

y P Y and

trivially e1
x P re1

x, e
2
xs. As a result, by Relation (5), we have e1

z P Z.
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4.5 Proof of the main Theorem

Remark 4.12 Let σ, π, γ and λ be signed permutations.

‚ If σ and π are not comparable, then for all x P σ] γ and for all y P π] λ, x and y are not comparable.

‚ If γ and λ are not comparable, then for all x P σ] γ and for all y P π] λ, x and y are not comparable.

Proof of the main Theorem – By Lemma 4.5, there is a set SZ of minimal elements of Z and a set GZ of maximal
elements of Z; let sz P SZ and gz P GZ . We distinguish two cases.

‚ If there exist sx P SX, gx P GX and sy P SY, gy P GY, such that both sz and gz belong to rsx, gxs ] rsy, gys, then
rsz, gzs Ă rsx, gxs ] rsy, gys, since by Lemma 4.11 rsx, gxs ] rsy, gys is a multi-interval. Hence, rsz, gzs Ă Z.

‚ Otherwise,

- let s1
x P SX, g1

x P GX and s1
y P SY, g1

y P GY such that sz P rs1
x, g

1
xs ] rs1

y, g
1
ys,

- let s2
x P SX, g2

x P GX and s2
y P SY, g2

y P GY such that gz P rs2
x, g

2
xs ] rs2

y, g
2
ys.

By Proposition 4.9, it exists e1
x P rs1

x, g
1
xs such that sz P e1

x ] s1
y; it also exists e2

x P rs2
x, g

2
xs such that gz P e2

x ] g2
y.

Let us assume sz ă gz. Then, by Remark 4.12 (and by contraposition), we have e1
x ď e2

x or e1
x ě e2

x, and
s1

y ď g2
y or s1

y ě g2
y. Since s1

y is a minimal element of Y, we cannot have s1
y ě g2

y. Hence, we have s1
y ď g2

y

and since Y is a multi-interval we have rs1
y, g

2
ys Ă Y. We consider the two remaining cases.

1. If e1
x ě e2

x, then since g1
x ą e1

x and e2
x ą s2

x we have g1
x ą s2

x. Then, since X is a multi-interval we have
rs2

x, g
1
xs Ă X. Hence, we have that sz and gz both belong to rs2

x, g
1
xs ] rs1

y, g
2
ys but this a contradiction.

As a result, we do not have sz ă gz.

2. If e1
x ď e2

x, then since s1
x ă e1

x and e2
x ă g2

x we have s1
x ă g2

x. Then, since X is a multi-interval we have
rs1

x, g
2
xs Ă X. Hence, we have that sz and gz both belong to rs1

x, g
2
xs ] rs1

y, g
2
ys but this a contradiction.

As a result, we do not have sz ă gz.

Thus, in both cases we do not have that sz ă gz. Moreover, since sz is a minimal element of Z, we cannot
have sz ą gz. Hence, sz and gz are not comparable and as a result we trivially have rsz, gzs Ă Z.

5 On elements of PBTp2q

Proposition 5.1 [1] Sylvester equivalence classes are intervals over the weak order of permutations of type A.

Lemma 5.2 Let S be a sylvester equivalence classe over permutations.

1. Let e P S such that e “ ¨ ¨ ¨ a c ¨ ¨ ¨ with a ă c. If there is no b such that e “ ¨ ¨ ¨ a c ¨ ¨ ¨ b ¨ ¨ ¨ with a ă b ă c, then for
every permutations of S we have that a is located before c.

2. Let e P S such that e “ ¨ ¨ ¨ c a ¨ ¨ ¨ with a ă c. If there is no b such that e “ ¨ ¨ ¨ c a ¨ ¨ ¨ b ¨ ¨ ¨ with a ă b ă c, then for
every permutations of S we have that c is located before a.

Proof – We start to prove the first assertion. We proceed by induction; let e “ ¨ ¨ ¨ a c ¨ ¨ ¨ be a permutation such
that there is no b such that e “ ¨ ¨ ¨ a c ¨ ¨ ¨ b ¨ ¨ ¨ with a ă b ă c, our inductive assumption is the following.

For all permutations obtained by applying indifferently n times the rewriting
rules Ñsylv or Ðsylv from e, there is no b such that a ă b ă c to the right of a.

Let us notice that the induction works by Proposition 5.1, since an interval is a connected set. For the initial
case, there is no b to the right of a in e by hypothesis.

Let x be a permutation satisfying the inductive assumption; then we notice that a is before c in x. We now
consider y a permutation obtained from x by applying Ñsylv or Ðsylv. We distinguish the two cases.

‚ If x Ñsylv y, then we consider four cases.
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1. If the elementary transposition of the rewriting rule is located to the left of a, in other words if we can
write x “ ¨ ¨ ¨ a1 c1 ¨ ¨ ¨ a ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ c1 a1 ¨ ¨ ¨ a ¨ ¨ ¨ c ¨ ¨ ¨ , then obviously y satisfies the inductive
assumption.

2. If the elementary transposition of the rewriting rule is located to the right of a, in other words if we
can write x “ ¨ ¨ ¨ a ¨ ¨ ¨ a1 c1 ¨ ¨ ¨ and y “ ¨ ¨ ¨ a ¨ ¨ ¨ c1 a1 ¨ ¨ ¨ with a1 or c1 possibly equal to c, then obviously
y satisfies the inductive assumption.

3. If we can write x “ ¨ ¨ ¨ a1 a ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ a a1 ¨ ¨ ¨ c ¨ ¨ ¨ , then by Definition 3.6 of Ñsylv we have
a1 ă a. Hence, we have y satisfies the inductive assumption.

4. If we can write x “ ¨ ¨ ¨ a c1 ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ c1 a ¨ ¨ ¨ c ¨ ¨ ¨ , then we obviously have that y satisfies
the inductive assumption.

‚ If y Ñsylv x, then we also consider four cases.

1. If the elementary transposition of the rewriting rule is located to the left of a, in other words if we can
write x “ ¨ ¨ ¨ c1 a1 ¨ ¨ ¨ a ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ a1 c1 ¨ ¨ ¨ a ¨ ¨ ¨ c ¨ ¨ ¨ , then obviously y satisfies the inductive
assumption.

2. If the elementary transposition of the rewriting rule is located to the right of a, in other words if we
can write x “ ¨ ¨ ¨ a ¨ ¨ ¨ c1 a1 ¨ ¨ ¨ and y “ ¨ ¨ ¨ a ¨ ¨ ¨ a1 c1 ¨ ¨ ¨ with a1 or c1 possibly equal to c, then obviously
y satisfies the inductive assumption.

3. If we can write x “ ¨ ¨ ¨ c1 a ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ a c1 ¨ ¨ ¨ c ¨ ¨ ¨ , then by Definition 3.6 of Ñsylv we have
c1 ą a. Let us assume that c1 ă c. Then, since y Ñsylv x, it exists b1 in x such that a ă b1 ă c1.
Hence, we have that a ă b1 ă c and that b is located to the right of a in x; but this a contradiction by
inductive assumption. Hence, we have c1 ą c and as a result y satisfies the inductive assumption.

4. If we can write x “ ¨ ¨ ¨ a a1 ¨ ¨ ¨ c ¨ ¨ ¨ and y “ ¨ ¨ ¨ a1 a ¨ ¨ ¨ c ¨ ¨ ¨ , then we obviously have that y satisfies
the inductive assumption.

The proof of the second assertion is similar.

Theorem 5.3 Let X be an equivalence classe of ”B
sylv

over signed permutations. Then, X is a multi-interval.

Proof – Let X1 “ tpermpσq | σ P Xu; then, by Definition 3.8, X1 is a sylvester equivalence classe over permutations.
Then, by Proposition 5.1, X1 is an interval; hence X1 is connected. Let σ,π be two signed permutations of X; then
by Definition 3.8, we have permpσq ”sylv permpπq. Then, since X1 is connected, we have permpσq { permpπq;
hence, we clearly have σ{ π. Hence, X is connected.

Since X is connected, we can consider SX the set of minimal elements of X and GX the set of maximal elements
of X. Let sx P SX and gx P GX. We distinguish two cases.

‚ If sx and gx are not comparable, then trivially rsx, gxs Ă X.

‚ If sx ă gx, we proceed by induction in order to prove that rsx, gxs Ă X. For the initial case, we clearly
have that sx P X. Then, let ex P rsx, gxs such that ex P X and consider e1

x P rsx, gxs such that e1
x Í ex. We

write e1
x “ ¨ ¨ ¨ c a ¨ ¨ ¨ and ex “ ¨ ¨ ¨ a c ¨ ¨ ¨ with a ă c. We distinguish two cases.

1. If |a | ă |c |, then let us assume we do not have permpexq Ñsylv permpe1
xq. Then, since e1

x ď gx, we write

gx “ ¨ ¨ ¨ c ¨ ¨ ¨ a ¨ ¨ ¨ . (6)

Moreover, since ex P X by inductive assumption and gx P X by hypothesis, we have, by Definition 3.8,

permpexq ”sylv permpgxq. Hence, we have permpexq
˚

ÐÑsylv permpgxq. Then, since ex “ ¨ ¨ ¨ a c ¨ ¨ ¨ and

by Equation (6), there clearly exists x and y in X1 such that permpexq
˚

ÐÑsylv x Ñsylv y
˚

ÐÑsylv permpgxq
with x “ ¨ ¨ ¨ | a || c | ¨ ¨ ¨ and y “ ¨ ¨ ¨ | c || a | ¨ ¨ ¨ . Then, since we do not have permpexq Ñsylv permpe1

xq,
there is no b satisfying Definition 3.6 in permpexq. Hence, by Lemma 5.2, we have in particular that
y which belong to X1 has its letter |a | located before |c |; but this is a contradiction. Hence, we have
permpexq Ñsylv permpe1

xq and then ex ”B
sylv

e1
x by Definition 3.8; in other words we have e1

x P X.

2. If |a | ą | c |, then we assume we do not have permpexq Ðsylv permpe1
xq. Thus, we have a similar proof

than the previous case, involving the second assertion of Lemma 5.2.
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6 A Tamari lattice of type B

Definition 6.1 For all equivalence classes X, Y of ”B
sylv

, we set the relation X ďB Y if there exists a signed permutation

x P X and a signed permutation y P Y such that x ď y.

Based on computations, we state the following conjecture.

Conjecture 6.2 The set of all equivalence classes of ”B
sylv

together with the relation ďB is a lattice.
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Appendix A An algorithm to efficiently compute intervals in a graded

poset

The Algorithm provided in this Section can be applied to any graded poset, in particular to the weak order of
type B. We recall the definition of a graded poset.

Definition A.1 A graded poset is a poset P equipped with a rank function ρ from P toN satisfying the following two
properties.

• The rank function is compatible with the ordering, meaning that for every x and y such that x ă y, then we have
ρpxq ă ρpyq.

• The rank is consistent with the covering relation of the ordering, meaning that for every x and y such that y covers
x, then we have ρpyq “ ρpxq ` 1.

The Algorithm avoids the use of the traditional computation of an interval rα,ωs by application of the following
Formula :

rα,ωs “ suppαq X in f pωq , (7)

where suppαq computes all the elements greater than α and in f pωq all the elements smaller than ω. Formula
(7) have a high computational complexity compare to our Algorithm, especially for graded poset of huge size.

Algorithm A.2

Input

- min elt : the minimal element of the interval to be computed

- max elt : the maximal element of the interval to be computed

Output

- result : the set of the elements of the interval rmin elt, max elts

Interval(min elt, max elt):

rank min :“ ρpmin eltq
rank max :“ ρpmax eltq

flag := True
elts up :“ t max elt u
elts down :“ t min elt u

while rank min ă rank max:
if flag:

elts up :“ tx | Dy P elts up, x ă yu
rank min :“ rank min `1

else:
elts down :“ tx | Dy P elts down, x ą yu
rank max :“ rank max ´1

flag :“ not flag

inter :“ elts up X elts down

for elt P inter:
Interval(min elt, elt)
Interval(elt, max elt)

result :“ result Y inter

Basically, Algorithm A.2 works similarly than a dichotomic algorithm: it determines the elements which
are at an intermediate rank between the two minimal and maximal elements. Once this is done, it applies
recursively between several new and smaller intervals until the whole interval is explored.
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