
Thèse
en vue de l’obtention du titre de

Docteur
de l’Université Paris-Est

Spécialité : Informatique

École doctorale : MSTIC

Scheduling of Parallel Real-time DAG Tasks
on Multiprocessor Systems

Manar Qamhieh

soutenue le 26 Janvier 2015

Jury:

Sanjoy K. Baruah UNC, USA Rapporteur

Maryline Chetto IRCCyN, France Examinateur et

Président du jury

Liliana Cucu-Grosjean INRIA, France Examinateur

Laurent George ESIEE, France Directeur

Serge Midonnet UPEM, France Examinateur

Pascal Richard ENSMA, France Rapporteur

http://igm.univ-mlv.fr/~qamhieh/

* Peace to a land that was created for peace, and never saw a peaceful day.
Mahmoud Darwish (Palestinian poet)

سَلامٌ لأَِرضٍ خلُقتْ للسّهَلام وَ ما رأَتْ يوَماً سَلاماً*
محمود درويش (شاعر فلسطيني)

Acknowledgements

During my PhD studies, I have met many people who a↵ected me personally and scientifically.

Their presence was essential for my achievements and success, therefore, I dedicate the following

humble words to express my gratitude and to acknowledge their help each in their own way.

I would like to start by thanking my supervisors LaurentGeorge and SergeMidonnet for their

expert advice and constant encouragements during the entire period of research work. When

our work together began 4 years ago as an internship in the LIGM laboratory, scientific research

was a new domain for me. They taught me the proper research methodology and how to write

scientific papers. Many thanks to Serge for his logical evaluation of research by questioning

every choice and solution. Similarly, many thanks to Laurent for his precious guidance and

advice regarding my research, and for being available whenever I needed a meeting with him

despite his busy schedule.

I would like to thank the members of the AlgoTR and LRT teams at LIGM for the interesting

scientific discussions about various real-time and network research problems. Among these

members, I would especially like to thank Frédéric Fauberteau with whom I have worked

since my first day in the lab. He was always available to answer my questions, to discuss

possible solutions and approaches in my research and to proof-read my thesis manuscript.

Many thanks to Prof. Sanjoy Baruah for welcoming me into his lab at the University of North-

Carolina at Chapel-Hill for two months during my thesis. It was a real honor to work under his

supervision and to absorb some of his research methodology.

Over the years of my thesis, I shared an o�ce with good colleagues, with whom I became close

friends, Younès Chandarli, Fadhela Kerdjoudj and Paul Morel. The o�ce was a comfort

zone for me and our various discussions and co↵ee breaks were a stress reliever from work.

Thanks to Fadhela for encouraging my culinary skills, to Younès for being a good travel friend

when we attended the same conferences and seminars and to both of them for teaching me the

Algerian accent and for being my private French tutors. On the other hand, Paul was one of

the most gentle people I ever met, he was always smiling, considerate and pleasant to talk with.

I met many wonderful friends from the lab and the University Paris-Est with whom I interacted

and I had various scientific, personal and cultural discussions and activities. Among them are

my lunch buddies Ali Marandi, Karel Břinda, Safa Hamdoun, Younes Maaouni and Zakaria

Chemli. Many thanks to my friend Rémi Maurice for helping me solve some of my LATEX

problems. Finally, I would like to thank the administration sta↵ in the lab and the university

for their constant help.

I am fortunate to have a loving family who supports me all the time and has faith in me. I

dedicate this work to my mother who is by far the strongest woman I have ever met and who

v

taught me how to face challenges with patience and persistence. I am thankful for my father,

my brothers and my sister (who is also my best friend) for being always there for me despite

the long graphical distance that separated us over the last five years. I learned a lot from this

experience and I believe that I could not have succeeded in my work without their support and

encouragement.

I am very grateful to my husband Saleh, who I met at the beginning of my thesis, got married

in the following year and became inseparable since then. The life of a couple of PhD students

is complicated, but he made it possible with his kindness, gentleness and patience. I will never

forget his supportive and understanding attitude when I am nervous or overloaded with work.

His presence in my life was a great bless.

Finally, I am thankful for Allah the Almighty, my success can only come from Him.

To my family & my husband

for their

love, endless support and encouragement . . .

vii

Abstract

Scheduling of Parallel Real-time DAG Tasks on Multiprocessor

Systems

The use of multiprocessor systems has been increased recently in industrial applications,

and parallel architectures have been introduced for the software to become compati-

ble with the hardware. Respectively, their use has been extended to real-time systems,

whose execution is performed based on certain temporal constraints. Thus, the real-time

scheduling problem has become more complex and challenging. In multiprocessor sys-

tems, a hard real-time scheduler is responsible of allocating active jobs to the available

processors of the systems while respecting their timing parameters.

In this thesis, we are interested in studying the hard real-time scheduling problem of

parallel Directed Acyclic Graph (DAG) tasks on multiprocessor systems. In this model, a

task is defined as a set of dependent subtasks that execute under precedence constraints.

The execution order of these subtasks is dynamic, i.e., a subtask can execute either

sequentially or in parallel with its siblings based on the decisions of the real-time scheduler.

To this end, we analyze two DAG scheduling approaches to determine the execution

order of subtasks: the Model Transformation and the Direct Scheduling approaches. We

consider global preemptive multiprocessor scheduling algorithms to be used with the

scheduling approaches, such as Earliest Deadline First (EDF) and Deadline Monotonic

(DM).

The Model Transformation approach aims at converting each DAG task into a collection

of independent sequential threads with intermediate timing parameters. The objective

of this approach is to facilitate the scheduling process of parallel tasks by avoiding the

internal dependencies between subtasks through transformation. We provide a DAG-

Str (DAG Stretching) Algorithm to schedule periodic implicit-deadline DAG tasks. The

concept of the DAG-Str algorithm is to execute DAGs as sequentially as possible and

avoid their parallel execution. After applying the DAG-Str algorithm, at most one thread

from each segment in the DAG is forced to execute on two processors. In order to

reduce the number of thread migrations, we present the Seg-Str (Segment Stretching)

algorithm which is a modified version of the DAG-Str algorithm. Briefly, the Seg-Str

algorithm forces a single thread from each stretched job to migrate between processors.

We evaluate the schedulability performance of both stretching algorithms by providing

ix

a resource augmentation bound when global EDF scheduling algorithm is used, which

computes the least processor speed that guarantees the schedulability of stretched DAG

sets.

The second approach is the Direct Scheduling, which aims at scheduling DAG tasks using

any real-time scheduling algorithm directly on DAGs without modifying their model or

their timing characteristics. The real-time scheduler is aware of the intra-task parallelism

of DAG tasks and of the precedence constraints that determine the execution order of

their subtasks. We are interested in analyzing the importance of the internal structure on

the schedulability analysis of common multiprocessor scheduling algorithms. We study

the Direct Scheduling at DAG-Level, in which real-time algorithms take scheduling de-

cisions based on the global timing parameters of DAGs. Then, we analyze the GEDF

schedulability condition for DAG tasks while taking into consideration the internal struc-

ture of DAGs. As a result, we provide an adapted schedulability condition for DAG

scheduling for any work conserving algorithm and GEDF. Then, we propose a Subtask-

Level scheduling of DAGs in which real-time algorithms take scheduling decisions based

on local timing parameters of subtasks. We also provide interference and workload anal-

yses for this scheduling, and we provide schedulability conditions for any work conserving

algorithm and GEDF. Due to the incomparability of DAG scheduling approaches, we use

extensive simulations to compare their schedulability performance when global EDF and

DM are used.

x

Résumé

Ordonnancement Temps Réels des Tâches Parallèles sur des

Systèmes Multiprocesseurs

Les applications temps réel durs sont celles qui doivent s’exécuter en respectant des con-

traintes temporelles. L’ordonnancement temps réel a bien été étudié sur mono-processeurs

depuis plusieurs années. Récemment, l’utilisation d’architectures multiprocesseurs a aug-

menté dans les applications industrielles et des architectures parallèles sont proposées

pour que le logiciel devienne compatible avec ces plateformes. L’ordonnancement multi-

processeurs de tâches parallèles dépendantes n’est pas une simple généralisation du cas

mono-processeur et la problématique d’ordonnancement devient plus complexe et di�cile.

La responsabilité de l’ordonnanceur multiprocesseur est de trouver une façon de choisir,

à chaque instant, quelles taches doivent s’exécuter sur les processeurs en respectant leurs

contraintes temporels.

Dans cette thèse, nous étudions le problème d’ordonnancement temps réel de graphes

de tâches orientés acycliques parallèles sur des plateformes multiprocesseurs. Dans ce

modèle, un graphe est composé d’un ensemble de sous-tâches dépendantes avec des

contraintes de précédence. L’ordre d’exécution des sous-tâches est dynamique, c’est-

à-dire que les sous-tâches peuvent s’exécuter en parallèle ou en séquence par rapport aux

décisions de l’ordonnanceur temps réel. Pour traiter les contraintes de précédence, nous

proposons deux méthodes pour ordonnancer les graphes, par transformation du modèle

de graphe et par ordonnancement direct des graphes.

Concernant la méthode de transformation du modèle de graphe, nous nous intéressons à

l’ordonnancement des graphes périodiques à échéance sur requête. Cette méthode sim-

plifie l’ordonnancement des graphes en transformant le modèle parallèle en un modèle

séquentiel de sous tâches indépendantes afin d’éviter les dépendances internes. Nous pro-

posons deux algorithmes de transformations (DAG-Str et Seg-Str) pour forcer l’exécution

séquentielle des sous-tâches. Nous proposons une analyse d’ordonnancabilité par calculer

le facteur d’expansion (speedup) pour l’ordonnancement EDF.

Concernant la méthode d’ordonnancement direct, nous nous intéressons à l’ordonnance-

ment des graphes sporadiques à échéance contrainte. Cette méthode garde les car-

actéristiques générales des graphes et elle considère que l’ordonnanceur prend en compte

ces contraintes de précédence. Nous nous montrons l’importance de la structure interne

des graphes sur l’ordonnancement et l’analyse.

xi

Nous proposons l’ordonnancement direct au niveau des graphes, qui considère les param-

ètres temporels des graphes comme leurs échéances et leurs périodes. Puis, nous pro-

posons un ordonnancement direct au niveau des sous-tâches, qui considère les paramètres

temporels des sous-tâches. Le modèle de graphe ne caractérise pas les sous-tâches par

des échéances ou des périodes locales. Nous proposons donc des algorithmes simples

pour définir les paramètres temporels locaux des sous-tâches, comme des échéances, des

périodes et des gigues d’activation.

Enfin, nous prouvons que les deux méthodes d’ordonnancement de graphes ne sont pas

comparables. Nous fournissons alors des résultats de simulation pour comparer ces

méthodes en utilisant les algorithmes d’ordonnancement globaux EDF et DM. Nous avons

développé un logiciel nommé YARTISS pour générer des graphes aléatoires et réaliser les

simulations.

xii

Contents

Acknowledgements v

Abstract ix

Résumé xi

Contents xiii

List of Figures xvii

List of Tables xix

List of Algorithms xxi

Abbreviations xxiii

Symbols xxv

1 General Introduction 1

1.1 Real-time Systems . 1

1.1.1 Real-time Task Model . 3

1.1.2 Real-time Scheduling . 5

1.1.3 Real-time Algorithms . 6

1.2 Development of Computer Processors . 10

1.2.1 History of Processor Development . 10

1.2.2 Uniprocessor Systems . 10

1.2.3 Multiprocessor Systems . 12

1.2.4 Real-time Multiprocessor Systems . 15

1.3 Parallel Applications . 16

1.3.1 Parallelism in Uniprocessor Systems . 17

1.3.2 Parallelism in Real-time Systems . 18

1.3.3 General Parallel Real-time Task Models 18

1.3.4 Directed Acyclic Graph (DAG) . 19

1.3.4.1 Special Parallel Model: Fork-Join Tasks 22

1.3.4.2 Special Parallel Model: Multi-Threaded Segment Tasks 22

1.4 Problem Description and Contributions . 23

xiii

Contents xiv

2 Related Work 27

2.1 Real-time Scheduling of Uniprocessor Systems . 27

2.2 Real-time Scheduling of Multiprocessor Systems 28

2.3 Parallel Real-time Scheduling . 31

2.3.1 Parallel Scheduling on Uniprocessor Systems 32

2.3.2 Parallel Scheduling on Multiprocessor Systems 37

2.3.2.1 Model Transformation Scheduling Approach 39

2.3.2.2 Direct Scheduling Approach . 44

3 Scheduling of Parallel Tasks using Model Transformation 51

3.1 Introduction and Motivation . 52

3.2 Task Model and Notation . 54

3.3 DAG Stretching (DAG-Str) Algorithm . 56

3.3.1 The Multi-Threaded Segment (MTS) Representation 57

3.3.2 The DAG-Str Algorithm . 59

3.3.3 Resource Augmentation Bound Analysis 67

3.4 Segment Stretching (Seg-Str) Algorithm . 72

3.4.1 Concept and Algorithm . 73

3.4.2 Resource Augmentation Bound Analysis 78

3.5 Simulation-Based Evaluation . 81

3.5.1 DAG-Str Algorithm . 82

3.5.2 Seg-Str Algorithm vs. DAG-Str Algorithm 85

3.6 Summary . 86

4 Direct Scheduling Approach of Parallel DAG Tasks 87

4.1 Defining Extra Timing Parameters of DAG Tasks 89

4.1.1 Local O↵set and Deadline for Subtasks 92

4.1.2 Local Release Jitter of Subtasks . 96

4.2 Scheduling DAGs using Global Parameters . 97

4.2.1 Interference Analysis on DAGs . 99

4.2.1.1 The Worst Case Interference Scenario for DAG tasks 100

4.2.2 Sustainability Analysis . 105

4.2.3 Schedulablity test . 108

4.3 Scheduling DAGs using Local Parameters . 110

4.3.1 Advantage of Subtask-Level Scheduling 112

4.3.2 Interference Analysis . 115

4.3.3 Workload Analysis for Work Conserving Algorithms 120

4.3.4 Global Earliest Deadline First Scheduling Algorithm 125

4.3.5 Simulation-Based Evaluation . 130

4.4 Summary . 133

5 Experimental Analysis of DAG Task Scheduling 135

5.1 Incomparability of DAG Scheduling Approaches 136

5.1.1 DAG Stretching Algorithm vs. Direct Scheduling 136

5.1.2 Direct Scheduling: DAG-Level vs. Subtask-Level 140

5.2 Simulation-Based Evaluation . 144

5.2.1 Simulation Tool: YARTISS . 145

5.2.2 Simulation Features and Functionality . 146

Contents xv

5.3 Simulation Results of DAG Scheduling Approaches 155

5.3.1 Simulation Results for GEDF Scheduling Algorithm 156

5.3.2 Simulation Results for GDM Scheduling Algorithm 160

5.4 Summary . 162

6 Conclusion and Perspectives 165

6.1 List of Contributions . 165

6.2 Future Work and Perspectives . 168

A DAG TASK Generator in YARTISS Simulator 183

B Subtasks in YARTISS Simulator 203

Bibliography 213

List of Figures

1.1 Timing parameters of an independent sequential real-time task. 3

1.2 Di↵erent states and transitions of a real-time task. 6

1.3 Evolution of Intel processor development showing their transistor count. 11

1.4 Shifting from uniprocessor to multiprocessor systems in industrial applications. . 13

1.5 A multicore-multiprocessor system architecture. 14

1.6 Example of the Dhall E↵ect on multiprocessor systems. 15

1.7 Di↵erent models of parallel tasks. 19

1.8 An example of a DAG task ⌧
1

which consists of 7 subtasks. 20

1.9 Fork-Join model of parallel real-time tasks. 22

1.10 Multi-Threaded Segment model of parallel real-time tasks. 23

1.11 An example showing anomaly of DAG scheduling when Fixed Task Priority
scheduling algorithm is used. 25

2.1 Periodic constrained-deadline parallel task ⌧i of the Gang model. 38

2.2 An example of stretching algorithm of Fork-Join task model. 41

2.3 An example of Decomposition algorithm of Multi-Threaded Segment task model. 43

3.1 An example of a real-time DAG task. 55

3.2 The Multi-Threaded Segment (MTS) representation ⌧
1

of DAG task ⌧
1

from
Figure 3.1. 59

3.3 Example of the DAG stretching algorithm applied on DAG ⌧
1

from Figure 3.1. . 60

3.4 Example of Seg-Str algorithm. 76

3.5 Comparison results of GEDF scheduling simulation between the DAG-Str algo-
rithm and the DCMP algorithm. 83

3.6 Simulation results show the e↵ect of processor speed on the schedulability of the
DAG-Str algorithm. 84

4.1 An example showing the importance of internal structure of DAGs. 91

4.2 An example showing the local timing parameters of subtasks in a DAG task. . . 93

4.3 The di↵erent types of interfering jobs (carry-in, body and carry-out jobs). 99

4.4 The worst-case interference scenario of an interfering DAG task ⌧i on a job of
DAG ⌧k when GEDF scheduling algorithm is used. 101

4.5 Carry-in interference of subtasks of DAG ⌧i on DAG ⌧k when GEDF is used. . . 103

4.6 An example of job collection generated by the sporadic {⌧
1

(3, 3), ⌧
2

(2, 4), ⌧
3

(2, 4)}
implicit-deadline task set where ⌧i is characterized by (Ci, Ti). 106

4.7 Example of Subtask-Level Scheduling of DAG tasks. 111

4.8 Processor load analysis of DAG-Level vs. Subtask-Level Scheduling. 114

4.9 The interference window on subtask ⌧k,h excluding the interference from its pre-
decessor subtasks. 118

xvii

List of Figures xviii

4.10 The optimized release jitter of subtask ⌧k,h which has a sole parent ⌧k,i. 119

4.11 The densest possible packing of jobs in an interference interval for traditional
task using any work conserving algorithm. 122

4.12 An example of workload analysis of external subtasks. 123

4.13 The workload performed by external subtasks of ⌧i when subtask ⌧i,j is the ref-
erence interval. 127

4.14 An example of workload analysis of external subtasks using GEDF scheduling
algorithm. 129

4.15 Simulation results analyzing the GEDF schedulability condition at DAG-Level. . 131

4.16 Simulation results analyzing the GEDF schedulability condition at Subtask-Level. 132

5.1 An example of scheduling incomparability in favor of DAG-Str when compared
to Direct Scheduling. 137

5.2 An example of DAG scheduling incomparability in favor of Direct Scheduling
when compared to DAG-Str algorithm. 139

5.3 An example of DAG scheduling incomparability in favor of DAG-Level scheduling
when compared to Subtask-Level scheduling. 141

5.4 An example of DAG scheduling incomparability in favor of Subtask-Level schedul-
ing when compared to DAG-Level. 143

5.5 The multiprocessor view of YARTISS simulation tool. 147

5.6 A UML diagram describing the addition of a new scheduling policy. 154

5.7 E↵ects of the number of processors on the performance of DAG scheduling ap-
proaches when GEDF is used. 156

5.8 The e↵ect of size of DAG tasks on the performance of DAG scheduling approaches
when GEDF is used. 158

5.9 The e↵ect of probability of internal parallelism on the performance of DAG
scheduling approaches when GEDF is used. 159

5.10 Simulation results comparing the performance of DAG-Str algorithm and DAG-
Level scheduling while varying the number of processors in the system. 161

5.11 Simulation results comparing the schedulability performance of DAG-Level schedul-
ing while varying the probability of internal parallelism. 162

5.12 Simulation results comparing the schedulability performance of DAG-Level schedul-
ing while varying the number of processors in the system. 162

5.13 Simulation results comparing the schedulability performance of DAG-Str algo-
rithm while varying the probability of internal parallelism. 163

5.14 Simulation results comparing the schedulability performance of DAG-Str algo-
rithm while varying the number of processors in the system. 163

6.1 Simulation results showing tardiness bounds of DAG scheduling approaches. . . . 169

6.2 Modèle de tâches indépendantes séquentielles. 174

6.3 Un exemple d’une tâche du modèle DAG. 175

6.4 La méthode de transformation du modèle. 177

6.5 Seg-Str algorithm. 178

6.6 Les paramètres temporels locales des sous-tâches. 179

6.7 Les résultats de simulations. 182

List of Tables

3.1 Scheduling comparison between DAG-Str algorithm and the Seg-Str algorithm. . 86

4.1 Sustainability of GEDF scheduling policy and schedulability test from Theorem
4.7. 107

4.2 Processor load of DAG set ⌧ from Figure 4.8 at DAG-Level Scheduling. 114

4.3 Processor load of DAG set ⌧ from Figure 4.8 at Subtask-Level Scheduling. 114

xix

List of Algorithms

3.1 DAG Stretching (DAG-Str) Algorithm . 65
3.2 Procedure to calculate xi and Si,x for the Segment Stretching (Seg-Str) Algorithm 74
4.1 Local o↵set algorithm . 93
4.2 Local deadline algorithm . 95
5.1 The UUniFast-Discard Algorithm . 149

xxi

Abbreviations

DAG Directed Acyclic Graph

DAG-Str DAG Stretching Transformation

DM Deadline Monotonic

DP Dynamic Priority

EDF Earliest Deadline First

FJP Fixed Job Priority

FTP Fixed Task Priority

GEDF Global EDF

LLF Least Laxity First

MTS Multi-Threaded Segment task

OPA Optimal Priority Assignment

RM Rate Monotonic

Seg-Str Segment Stretching Transformation

Task-Str Task Stretching Transformation

WCET Worst-Case Execution Time

xxiii

Symbols

⌧ a real-time task set

m the number of processors in the system

⌫ processor’s speed

⌧i the ith task ⌧

⌧ i the ith task from the Multi-Threaded Segment (MTS) model

⌧i,j the jth subtask in DAG task ⌧i

Si,j the jth segment in the MTS task ⌧i

⌧ki,j the kth thread in segment Si,j of ⌧i

Jk
i the kth job of task ⌧i

Jk
i,j the kth job of subtask ⌧i,j

Ji any job of task ⌧i

Ci the worst-case execution time of task ⌧i

Ci,j the worst-case execution time of subtask ⌧i,j

ci,j the worst-case execution time of any thread in segment Si,j

Ti minimum inter-arrival time / period between successive jobs of task ⌧i

Di relative deadline of task ⌧i

Di,j local relative deadline of subtask ⌧i,j

Oi local/intermediate o↵set of task ⌧i

Oi,j local/intermediate o↵set of subtask ⌧i,j

dki absolute deadline of task job Jk
i

dki,j local absolute deadline of subtask job Jk
i,j

Li critical path length of DAG task ⌧i

Pred(⌧i,j) the set of predecessor subtasks of subtask ⌧i,j

Succ(⌧i,j) the set of successor subtasks of subtask ⌧i,j

Sibling(⌧i,j) the set of sibling subtasks of subtask ⌧i,j

xxv

Chapter 1

General Introduction

We start this thesis by a general introduction about the main axes of our work. Section 1.1

presents definitions and notations of real-time systems and their basic task models and compo-

nents. Then, Section 1.2 provides a brief history description of processor development through

the years until multiprocessor systems which are the center of our attention. Finally we fo-

cus on software development and its compatibility with hardware advancement by the use of

parallelism in Section 1.3.

1.1 Real-time Systems

The Oxford dictionary defines real-time as “the actual time during which a process or event

occurs”. In computer science, a real-time system is defined as the system whose correctness

depends on executing processes correctly within certain timing constraints. Recently, the term

real-time is widely used to describe many applications and computing systems that are somehow

related to time, such as real-time trackers, gaming systems and information services. The

following list contains certain examples of practical real-time applications:

• Mobile and communication systems. For example, wireless communication systems in

automotive and industrial applications which consist of a large number of nodes that

require certain guarantees w.r.t. message passing and delays.

• Multimedia and entertainment systems: multimedia information is in the form of stream-

ing audio and video. The communication between multimedia servers and receivers during

information processing can have firm real-time requirements.

1

Chapter 1. Introduction: Real-Time Systems 2

• Data distribution systems which notify users of important information in a short delay

(few minutes or less). Such systems are found mainly in transport systems to inform

passengers of accidents and schedule delays or changes.

• General purpose computing such as in financial and banking systems.

• Medical systems such as peacemakers and medical monitors of treatments or surgical

procedures.

• Industrial automation systems such as the ones found in factories to control and monitor

production process. For example, sensors collect parameters periodically and send them to

real-time controllers, which evaluate the parameters and modify processes when necessary.

These systems can handle non-critical activities as in logging and surveillance.

• General control management systems such as the ones found in avionic systems. Real-

time engine controllers are responsible of automatic navigation and detection of hardware

malfunctions or damages through reading sensors and processing their parameters and

react within an acceptable delay. Another example is the air tra�c control system which

is classified as a critical application.

Based on these examples of real-time applications, we can notice that the criticality of the

systems varies. Some applications require a strict respect of timing constraints such as in

control and management systems. Whereas media and communication systems, for example,

can tolerate timing delays without major consequences. Thus, real-time systems are categorized

mainly into two groups, hard and soft real-time systems. In hard real-time systems, the

correctness of their outputs depends on respecting given timing constraints or catastrophic

results occur. If such systems fail in performing their tasks within acceptable deadline margins,

their results become useless and might lead to catastrophic consequences.

Unlike hard real-time applications, soft real-time systems have flexible timing constraints and

they perform less critical activities and tasks. The quality of services provided by soft real-time

systems depends on providing results within a minimum delay. If such delay is not respected,

the quality degrades but not the correctness of the execution or results.

In general, the most important aspect to be considered in real-time systems is to design appli-

cations and guarantee their execution within certain timing constraints before implementation.

Also, such applications should have fault tolerance techniques and be reliable and robust against

Chapter 1. Introduction: Real-Time Systems 3

!21,2 !21,4

!31,2 !31,4

rij0

Offset Oi

dij

Job Jij Job Jij+1

Period Ti
Deadline Di

WCET Ci

Task
"i

time

Job Jij-1

!11,1

!21,1

!y11,1

Deadline

Deadline

!11,2

!y21,2

!11,x

!21,x

!y31,x

!11,2!11,1 !11,3 !11,4 !11,x

Figure 1.1: Timing parameters of an independent sequential real-time task.

unexpected modifications of system parameters. Possible solutions can be considered to guar-

antee such characteristics as implementing recovery systems, alternative designs and acceptance

tests and analyses.

1.1.1 Real-time Task Model

A real-time application is composed of a set of tasks denoted by ⌧ composed of n tasks where

⌧ = {⌧
1

, ⌧
2

, ..., ⌧n}. Each task ⌧i is assumed to generate one or more identical instances which

are called jobs. The default real-time model [85] considers independent sequential tasks, and

task ⌧i has the following timing parameters:

• Worst-Case Execution Time (WCET) Ci which is an estimation of the longest possi-

ble execution time of any job of task ⌧i, i.e., the actual execution time of a job should never

exceed its WCET in any scenario. The evaluation of WCET of tasks is very important

for the reliability of real-time systems, and the pessimism of their estimations increases

relatively to the criticality of the application.

• Relative deadline Di which is the time interval in which each job executes w.r.t. its

release time. In hard real-time systems, jobs of any task must always meet their deadline,

whereas execution tardiness of jobs is accepted in soft real-time systems.

• Period or minimum inter-arrival time Ti which is the time interval between suc-

cessive jobs of task ⌧i. A periodic task generates jobs which are activated periodically

with identical time intervals between successive jobs, while a sporadic task generates jobs

separated by at least Ti time units. If task ⌧i generates a single job only, then its period

is considered infinite.

• O↵set Oi is defined as the time delay of the first job of the task w.r.t. a reference time 0.

Chapter 1. Introduction: Real-Time Systems 4

Let Ji (respectively J j
i) denotes any job generated by task ⌧i (respectively the jth job of ⌧i).

A job is an instance of the task with the same WCET and it is characterized by an absolute

release time ri � Oi and an absolute deadline di = ri +Di. Figure 1.1 shows an example of the

traditional real-time task model.

A real-time task is characterized by the relation between its deadline and its period:

• Implicit-deadline: task ⌧i has a relative deadline equal to its period (Di = Ti).

• Constrained-deadline: task ⌧i has a relative deadline less than or equal to its period

(Di  Ti).

• Arbitrary-deadline: task ⌧i has a relative deadline which can be less, equal or greater

than its period.

In the case of implicit and constrained deadline tasks, there is at most one active job at any

time instant t, while jobs having an arbitrary-deadlines may overlap and more than one job

of such tasks can be active at any time t. The slack time of a task is defined as the time

di↵erence between the relative deadline of the task and its WCET. While the laxity of a job

at time t is defined as the amount of time remaining for the active job to execute at time t.

Also, the response time of a job is defined as the time required for it to be executed relative

to its release time. The response time of a task is the maximum response time of all jobs. In

order to calculate the response time of a task, busy-period approach can be used Lehoczky

[78] defined this approach as follows:

Definition 1.1 (Level-i busy period [78]). A level-i busy period is a time interval [a, b] within

which jobs with priorities higher than ⌧i are processed throughout [a, b] but no jobs of priorities

higher than ⌧i execute in (a� ✏, a) or (b, b+ ✏) for su�ciently small ✏ > 1.

A task set is referred to as synchronous or asynchronous based on the first activation scenario

of its tasks. A synchronous task set is defined as the task set whose first job of its tasks are

activated at the same time. While the first jobs of an asynchronous task set are activated at

di↵erent time.

The processor utilization of task ⌧i is defined as the task’s processor usage and it is denoted

by Ui =
C

i

T
i

. The utilization U(⌧) of a task set ⌧ is the sum of utilization of its tasks, where

U(⌧) =
nX

i=1

Ui. The density �i of task ⌧i is denoted by C
i

min(D
i

,T
i

)

. The density of an implicit-

deadline task is equal to its utilization because its period is equal to its deadline. On a processing

Chapter 1. Introduction: Real-Time Systems 5

platform of m processor, a necessary feasibility condition based on system utilization U(⌧) is

defined as follows:

U(⌧)  m (1.1)

The workload of real-time tasks can be characterized by the Demand Bound Function and

the processor load which are defined as follows:

Definition 1.2 (Demand Bound Function (DBF)[22]).

The Demand Bound Function (DBF i) of a sequential task ⌧i in a time interval [0, t] for any

t > 0 is defined as the sum of execution time of all jobs of ⌧i that have both their arrival time

and deadline in [0, t].

DBF i(t) =

✓�
t�Di

Ti

⌫
+ 1

◆
+

⇤ Ci (1.2)

where (x)+ = max(0, x).

Consequently, the processor load [21, 22] of task set ⌧ is defined as:

load(⌧) = max
8t>0

0

BBBB@

nX

i=1

DBF i(t)

t

1

CCCCA
(1.3)

1.1.2 Real-time Scheduling

A real-time scheduling is defined as the process that defines the execution order of tasks on a

platform of processors. An example of such systems is the Real-Time Operating System (RTOS)

which is responsible for choosing which jobs to execute on which processor and at what time.

The main objective of a real-time scheduler is to guarantee the correctness of the results while

respecting the timing constraints of the tasks (no deadline miss). It is important to clarify that

real-time scheduling does not necessarily mean executing tasks as soon as possible, but taking

scheduling decisions that guarantee their timing constraints.

Based on the decisions of the scheduler, a real-time task can be in one of the following states:

• Ready state: the task is activated and it is available for execution, but it is not currently

selected by the scheduler to execute on a processor.

• Running state: the task is assigned to at least one processor (according to its model of

parallelism) and it is actually executing.

Chapter 1. Introduction: Real-Time Systems 6

• Blocked state: if the task is waiting for an event to happen such as an I/O event, it

remains blocked and cannot be scheduled until the event happens. Then the task moves

to the ready state.

The di↵erent states of tasks are shown in Figure 1.2. Moreover, a real-time scheduler controls

the transitions between the ready and running states of tasks, but it has no control over the

external events that block the execution of tasks.

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

!

Figure 1.2: Di↵erent states and transitions of a real-time task.

Furthermore, a real-time scheduling is divided into two categories based on the scheduling

decisions and when they are taken:

• O✏ine scheduling: a real-time system is scheduled based on a scheduling table that

contains all scheduling decisions of the system and the activation times of all tasks. Hence,

the scheduling decisions are taken prior to the running of the system and they rely on a

knowledge of the process behavior.

• Online scheduling: scheduling decisions are taken during run time of the system based

on certain priority assignment rules defined by the scheduling algorithm. It is used usually

in dynamic systems where jobs may arrive or leave the system at any time, or when the

scheduling table cannot be stored in the system (e.g. embedded systems).

1.1.3 Real-time Algorithms

A RTOS, which schedules tasks on a platform of processors, consists of certain scheduling

algorithms (policies) that define the priority assignment of tasks and jobs and choose which

Chapter 1. Introduction: Real-Time Systems 7

jobs to execute at which processor at what time. The scheduling algorithms are divided into

three main categories:

• Fixed Task Priority (FTP): each task in the set is assigned a fixed priority based on

its timing parameters. In this category, all jobs of the same task inherit the same priority

of their task. Examples of such algorithms is the Deadline Monotonic (DM) and the Rate

Monotonic (RM) scheduling algorithms.

• Fixed Job Priority (FJP): when a job is activated, it is assigned a fixed priority

according to its timing parameters. Hence, priorities are assigned based on the activation

events of jobs. As a result, various jobs of the same task may have di↵erent priorities.

Example of this category is the Earliest Deadline First (EDF) algorithm.

• Dynamic Priority (DP): the assigned priorities to jobs may vary as a function of time.

Hence, the priority of a job may change during its execution. Example of such category

is the Least Laxity First (LLF) scheduling algorithm.

Real-time scheduling is categorized based on the execution behavior of high priority tasks as

follows:

• Preemptive scheduling in which running jobs are interrupted by higher priority jobs

for some time, and they are allowed to continue their execution when all high priority jobs

terminate their execution. An e↵ect due to preemption by a higher priority job is referred

to as preemption e↵ect.

• Non-preemptive scheduling in which running jobs cannot be interrupted and the ac-

tivation of a higher priority task can be delayed by the execution of at most one job of

lower priority if this job is executing when the higher priority job is released. The e↵ect

due to execution blocking of high priority job by a lower priority one is referred to blocking

e↵ect.

A real-time scheduling algorithm is said to be work-conserving if it schedules ready jobs on

available processors and it does not delay them if there are idle processors in the system.

Chapter 1. Introduction: Real-Time Systems 8

Real-time Feasibility and Schedulability

For a given scheduling algorithm A, a task is referred to as A-schedulable if all of its jobs

respect their deadline when scheduled with algorithm A. Similarly, a task set is said to be A-

schedulable if all of its tasks are A-schedulable. A task set is said to be feasible, if there is at

least one scheduling algorithm that can schedule the task set while meeting all task deadlines.

Additionally, a scheduling algorithm A is said to be optimal if all feasible task sets are A-

schedulable.

In general, a scheduling algorithm defines the scheduling decisions of a system which are nec-

essary for its execution. Therefore, schedulability conditions can be defined to determine the

status of the task set and whether it is schedulable or not using a given scheduling algorithm A
before its implementation. There are three types of schedulability conditions w.r.t. algorithm

A:

• Su�cient condition: if the condition is true then the task set is deemed A-schedulable,

otherwise the schedulability of task set is undetermined, it can be schedulable or not.

• Necessary condition: if the condition is not true, then the task set is unschedulable

using algorithm A. Otherwise, the schedulability of the task set is undetermined, it can

be schedulable or not.

• Exact condition: it is the combination of su�cient and necessary conditions. If the con-

dition is true, then the task set is A-schedulable. Otherwise, it is definitely unschedulable.

Comparability of Scheduling Algorithms

Real-time scheduling algorithms are compared with each other based on the scheduling results

of task sets. For scheduling algorithms A and B, their schedulability relationship can be as

follows:

• Domination: A dominates B if all B-schedulable task sets are also A-schedulable but

there is at least one task set that is schedulable by A and not schedulable by B.

• Incomparability: if there is at least one task set that is A-schedulable and it is not

schedulable by B. At the same time, there is at least one task set that is not schedulable

by A but schedulable by algorithm B.

Chapter 1. Introduction: Real-Time Systems 9

• Equivelance: if all A-schedulable task sets are also B-schedulable. The same is applied

on unschedulable task sets.

In order to compare the performance of real-time scheduling algorithms, Kalyanasundaram and

Pruhs [73] introduced the resource augmentation factor (or speedup factor) as a comparison

method. The resource augmentation factor of an algorithm A measure the required increase of

processor speed for a feasible task set to become A-schedulable on a system of the same number

of processors.

Definition 1.3 (from [73]). For a given task set ⌧ that is feasible on m unit-speed processors

using an optimal scheduler, it is schedulable using A scheduling algorithm on m processors that

are ⌫ times faster. The minimum speedup factor of processors speed is the resource augmentation

bound of scheduler A.

Sustainability of scheduling algorithms

A scheduling algorithm is said to be sustainable [18] w.r.t. a task model, if and only if

schedulability of any task set compliant with the model implies schedulability of the same task

set modified by at least one parameter: (i) decreasing execution times, (ii) increasing periods

or inter-arrival times and (iii) increasing deadlines. These timing changes are considered as

positive changes of task set which should decrease the execution time of jobs or decrease their

processor demand. Hence, negative scheduling results are not always intuitive.

Definition 1.4 (Scheduling anomaly). A scheduling anomaly occurs when a positive change in

task set parameters results in a counter-intuitive e↵ect on schedulability.

Thus, a scheduling algorithm or a schedulability test that have no scheduling anomalies is called

sustainable. This property is important to consider in scheduling design because scheduling

analysis is done usually while considering the worst-case execution time of tasks, while in reality,

jobs hardly execute up to this value. A system may be considered unreliable if a task set ceases

to be schedulable after a reduction in the execution time or any other parameters (described

above).

Chapter 1. Introduction: Real-Time Systems 10

1.2 Development of Computer Processors

1.2.1 History of Processor Development

The concept of algorithms and modern computers is defined by Turing [115] who presented the

Turing Machine. He proved that mathematical computations can be performed by machines if

they are represented by an algorithm. Turing machines are considered as the central concept of

modern computers.

The history of computer systems can be summarized into the following main generations:

• Vacuum Tube (1939-1954): at that time, computers were implemented using electron

tubes (valves) of glass in which internal gas has been removed so as to control electron

flow. The first working electro-mechanical programmable computer is the Z3 which was

designed by Konrad Zuse in 1939. Then, electronic programmable computers replaced

the electro-mechanical one. This started by the design of the Atanaso↵–Berry Computer

(ABC) machine in 1942 by John Vincent Atanaso↵ and Cli↵ord Berry.

• Transistors (1953-1958) : a transistor is defined as a semiconductor device which is used

to amplify and switch electronic signals and electrical power. Transistors, which were

invented in 1947, replaced vacuum tubes in the design of computer systems, because they

are smaller than vacuum tubes and they consume less power. The first computer based

on transistors was designed by Tom Kilburn in 1953 but it used also vacuum tubes in the

design.

• Integrated Circuits (ICs) (1958-1971): they referred to chips on which set of electronic

circuits are placed. The idea of ICs was presented by Geo↵rey W.A. Dummer in 1952, but

the first practical implementation of the idea was done by Jack Kilby in 1958. Modern

computer systems are based on ICs, and they are divided mainly into two categories based

on the number of available processing units: uniprocessor and multiprocessor systems.

1.2.2 Uniprocessor Systems

A uniprocessor platform is a system which consists of a single Central Processing Unit (CPU). All

computations are done on this unit sequentially and a single task is executing at any time. Hence,

no real (physical) parallelism is performed on such systems due to the hardware restriction,

Chapter 1. Introduction: Real-Time Systems 11

Tr
an

si
st

or
 C

ou
nt

0

225000000

450000000

675000000

900000000

Production Year
1970 1978 1986 1994 2002 2010

In
te

l 4
00

4
In

te
l 8

00
8

In
te

l 8
08

6

In
te

l 2
86

In
te

l 3
86

In
te

l 4
86

Pe
nt

iu
m

Pe
nt

iu
m

 P
ro

Pe
nt

iu
m

 Ⅱ
Pe

nt
iu

m
 Ⅲ Pe

nt
iu

m
 It

an
iu

m
 2

Q
ua

d-
C

or
e
#

In
te

l X
eo

n

In
te

l C
or

e#
 2

 Q
ua

d

Quad/Dual-Core Intel Xeon

Pe
nt

iu
m

 D
Pe

nt
iu

m
 #

C
or

e
2

D
uo

Pe
nt

iu
m

 4

Pentium M

Figure 1.3: Evolution of Intel processor development showing their transistor count.

however, multitasking architecture is supported in such systems. Multitasking architecture in

uniprocessor systems means that more than one task can be allocated to the processor and

execute on time sharing basis.

Uniprocessor systems have been used in industry for decades and the performance of such

systems was su�cient for the designed applications at that time. Even in real-time systems,

scheduling on uniprocessor platforms was thoroughly studied since the 70s, and many algorithms

and schedulability analyses were provided for such systems. However, software and applications

are getting more and more complicated, and they require more powerful platforms to execute

on.

In 1965, Moore [92] provided an observation regarding the industrial manufacturing of chips

and ICs which is well known as the Moore’s Law. Moore’s observation states that the number

of transistors in an IC doubles each two years, hence the performance of chips doubles as well.

Although this observation was not presented as a physical law, it proved its correctness for more

than forty years. For example, we can notice that the Moore’s law is approximately followed by

the development of Intel processors. The number of transistors integrated in their processors

has exponentially increased during the years, as shown in Figure 1.3.

Based on Moore’s law, the performance of processors grows exponentially by time due to dou-

bling the number of transistors in ICs, which increases clock speed of processors and makes

them execute tasks faster. In 1974, Robert Dennard [49] observed a relation between the size of

Chapter 1. Introduction: Real-Time Systems 12

transistors and their power density. From what is later known by Dennard’s scaling, the power

density of ICs was expected to remain constant through the years if the size of transistors keep

scaling down. Around 2005-2007, the Dennard’s scaling seemed to break down due to energy

leakage from transistors of small sizes. Due to these physical constraints of IC manufacturing,

multicore/multiprocessor solution was presented instead of reducing transistor sizes and trying

to maintain Dennard’s scaling. Since clock rates of processors are not going faster in the same

previous rate, platform performance is enhanced by duplicating the number of CPUs.

1.2.3 Multiprocessor Systems

Multiprocessor systems are defined as the systems which consist of more than one processing

unit, hence, computations can be done faster and in parallel. Until recently, uniprocessor sys-

tems dominated the industrial execution platforms rather than the multiprocessor systems. It

is either because system designers were afraid of the risk resulted from changing their previous

stable uniprocessor designs, or that uniprocessor performance was su�cient for most embedded

systems applications. However, with the increased demand for processing power and e↵ective-

ness for massive computations and applications, the shifting from uniprocessor to multiprocessor

systems is on the way. Figure 1.4 shows the result of a study conducted by the VDC Research1

in 2011. This study observed the percentage of industrial applications using single processor or

more. We notice that in 2011, the percentage of uniprocessor applications was more than 30%

of total applications. However, in few years this percentage is expected to drop to 15% in favor

of multiprocessor platforms.

Consequently, personal computers (PCs) have been designed with multicore and/or multipro-

cessor chips in the last few years. The same has happened in the recent manufacturing of

smart-phone systems.

Di↵erently from multitasking architecture, multiprocessor systems support physical parallelism

in hardware. Hence, concurrent tasks and processes can execute simultaneously on di↵erent

processing units. Multiprocessing systems can be categorized as follows, based on their struc-

ture:

• Multiprocessor system: it consists of more than one processing unit that shares sys-

tem memory through a communication bus. Applications and executing software have

1
http://www.vdcresearch.com/

Chapter 1. Introduction: Real-Time Systems 13

Current

11%

9%

7%

39%

34%

Single Processor
Multiprocessor (more than one processor on separate silicon)
Multicore (more than one processor core on the same silicon)
Multicore & Multiprocessor
Don’t know

Expected

19%

24%

12%

30%

15%

Figure 1.4: Shifting from uniprocessor to multiprocessor systems in industrial applications
[64].

the choice of getting advantage of the performance boost from this architecture. In other

words, sequential applications can choose to execute on such systems sequentially without

the need of changing their programming techniques. Parallelism can be achieved by split-

ting processes/threads of an application if possible on di↵erent processors of the system

to gain more execution speed.

• Multicore system: the core of a system consists of more than one logical unit. These

units (usually between 2 to 8 cores) have their own individual memory cache and another

level of cache memory which is shared between the di↵erent cores of a processor. The

di↵erence between multiprocessor and multicore systems lies in application programming.

In order for an application to scale up its performance while executing on multicore sys-

tems, it has to change its sequential architecture. Multicore systems are found usually

in personal computers (PCs) and smart-phones. Examples are Intel, AMD and ARM

processors.

• Many-core system: this system has the same technical structure of multicore systems

and it is used usually to refer to massive multicore systems. It consists of a large number of

cores which is between dozens and hundreds in a single processor. Such systems implement

parallel architecture, and software has to be adapted to such systems so as to run e�ciently

Chapter 1. Introduction: Real-Time Systems 14

and get advantage of hardware capabilities. For example, the CSX7002 processor which

is released by ClearSpeed in 2008 and has 192 cores, and the TILE-GX3 72-core processor

from Tilera released in 2009.

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

System Bus

Core 2Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1 Processor 2

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

System
Memory

!

Figure 1.5: A multicore-multiprocessor system architecture.

The combination of the multicore and multiprocessor architectures forms a system which is

referred to as a multicore multiprocessor system. In such systems, a processor consists of more

than one core that shares cache memory, and there is more than one processor that shares the

system memory by a bus. Figure 1.5 shows an example of such architecture.

Multiprocessor systems can be divided into categories based on the type of processors as follows:

• Homogeneous or Symmetric Multi-Processors (SMP): all processors of the system

are identical and the execution rate of tasks is the same on all processors.

• Uniform Processors: each processor is characterized by a speed or computing capacity,

which determines the execution rate of a task.

• Heterogeneous Processors: Processors of the same system have di↵erent speed, and

the execution rate of a task depends on the type of processor and on the task itself.

In the remainder of this thesis, we use the term “multiprocessor system” to refer to any platform

which contains more than one CPU, which might be multicore, many-core or multiprocessor

systems. Further more, we consider execution platforms of homogeneous unit-speed processors.

2
CSX700: http://www.clearspeed.com/products/csx700.php

3
TILE-GX: http://www.tilera.com/products/processors/TILE-Gx_Family

http://www.clearspeed.com/products/csx700.php
http://www.tilera.com/products/processors/TILE-Gx_Family

Chapter 1. Introduction: Real-Time Systems 15

1.2.4 Real-time Multiprocessor Systems

The problem of scheduling real-time applications on multiprocessor systems is more complicated

and challenging than real-time scheduling on uniprocessor systems. It is because there are more

decisions to be taken in the case of multiprocessor scheduling and more issues to be considered.

The responsibility of a real-time scheduler is not limited to decide which job to execute at what

time, but also to decide on what processor to execute. Moreover, the multiprocessor scheduling

problem can be seen as two parts, (i) allocating tasks/jobs to processors and (ii) assigning them

priorities to be used by the scheduler.

Real-time multiprocessor scheduling is divided into the following categories based on migration

level of jobs between processors:

• Global scheduling in which job migration is completely allowed at any time and for all

jobs. Hence, a given job can start its execution on one processor and migrate to another

during its execution. In such systems, overheads due to job migration can be costly (e.g.

additional communication loads, context switching and cache misses).

Proc3

Proc2

Proc1 !3

!2

!3

!2

!4!1

0 2" 1 1+"
Rate Monotonic Scheduling

Response time of !1,4

!1 = {c1 = 2", T1 = 1}!
!2 = {c2 = 2", T2 = 1}!
!3 = {c3 = 2", T3 = 1}!
!4 = {c4 = 1, T4 = 1+"}

!4!1

!1,4

!1,6

!1,5

!1,2

!1,3

!1,7

Fixed Task Priority Scheduling.!!
Subtask index is its priority.!
!1,1 is the highest priority !
!1,7 is the lowest

Proc1

Proc2

!1,7!1,6

!1,2

!1,3

!1,1

!1,5!1,4

!4 misses its deadline

!1,7!1,6!1,5!1,4

!1,2

!1,3

!1,1

!1,4

Response time of !1,4

!1,1

Figure 1.6: Example of the Dhall E↵ect on multiprocessor systems (From Dhall and Liu [51]).

Following our previous remark regarding the complexity of multiprocessor scheduling when

compared to uniprocessors, Dhall and Liu [51] described a particular problem of multipro-

cessor scheduling which is called the Dhall e↵ect. It shows that task sets can be unschedu-

lable using common scheduling algorithms such as RM, DM and EDF regardless of the

number of used processors, as shown in the example in Figure 1.6. Thus, the scheduling

algorithms lose their scheduling properties and their optimality when used on multipro-

cessor systems. The Dhall e↵ect discouraged researchers from considering multiprocessor

systems until Phillips et al. [95] showed that Dhall e↵ect was related to high utilization

Chapter 1. Introduction: Real-Time Systems 16

tasks. Furthermore, Fisher [58] proved the impossibility of an online optimal scheduling

algorithm for sporadic tasks on multiprocessor systems. This result is extended also to

consider more general task models that include dependencies such as the generalized mul-

tiframe model and the recurring task model4. Global scheduling has many advantages

such as acceptable overheads and context switches and avoiding the complexity of job

assigning on processors.

• Partitioned scheduling allocates tasks to processors before scheduling and all of their

jobs are forced to execute without the possibility of migration. The problem of multipro-

cessor scheduling is transformed into multiple uniprocessor scheduling problems on each

processor of the system. The main concern regarding partitioned scheduling is that pro-

cessor capacity can be fragmented and not fully used. The maximum utilization bound

of such systems can reach 50% of total processing capacity for some cases (Dhall e↵ect).

Also, allocation process of tasks on processors is an NP-Hard problem and it requires bin-

packing heuristics such as First Fit, Next Fit, Best Fit. However, classical uniprocessor

scheduling algorithms can be used on each processor individually as a result.

• Restricted-migration scheduling allows tasks to migrate between processors at job

boundaries (activation time of jobs) and never during the execution of jobs.

• Semi-partitioned scheduling in which most tasks are fixed to specific processors to

reduce number of migration, while a few tasks migrate across processors to improve pro-

cessor utilization.

1.3 Parallel Applications

A parallel application is defined as an application that performs its computations simultaneously

on multiple processors. Parallelism is important so as to get advantage of hardware advancement

of processor architecture such as multiprocessor and many core systems. It is important to notice

that increasing the performance of execution platforms by duplicating their processing units is

useless if designed software is not compatible with the hardware. As in the case of industrial

projects, increasing the number of workers of a project does not accelerate the development

of the project instantly. It is done by modifying management strategies so as to distribute

tasks between workers. The same concept can be applied to software design so as to consider

4
For more details, please refer to Subsection 1.3.3 “General Parallel Real-time Task Models”

Chapter 1. Introduction: Real-Time Systems 17

parallelism and avoid sequential design whose performance does not scale up by the use of

multiprocessors.

Software parallelism is divided into the following categories:

• Inter-task parallelism in which tasks execute in parallel. A set of tasks which executes

on multiple processors is an example of such parallelism.

• Intra-task parallelism (inter-subtask parallelism): A parallel task consists of portions

(subtasks) which execute in parallel.

• Intra-subtask parallelism: A subtask of a parallel task consists of a set of threads that

execute in parallel. Hence, a subtask needs more than one processor to execute.

However, there is a limitation of software parallelism represented by the Amdahl’s law which

states that the performance of an application cannot be enhanced infinitely when executed in

parallel. Amdahl [3] described the relationship between the speedup of parallel execution of an

application relative to the serial execution. The speedup of a program using multiple processors

in parallel computing is limited by the time needed by the sequential fractions of the program

to execute. For example, if an application needs x time units to execute sequentially on a single

processor, and among this execution, there is a strictly-sequential portion of code that needs y

time units (where y  x), then this application requires at least y time units to execute even

on unlimited number of processors.

1.3.1 Parallelism in Uniprocessor Systems

As stated earlier, a uniprocessor system consists of a single processing unit (CPU). Hence, there

is no actual physical parallelism applied on such systems and only a single process can execute

at any time instant. However, this does not mean that only a single application or task executes

in a given time interval on uniprocessor systems. Multiple applications can run at the same time

on uniprocessor systems by supporting multitasking architecture. This is done based on time

sharing and by allocating some resources to each application. Hence, multiple processes seem

to be executing at the same time but actually only one process is executing on the available

processor of the system at every time slot. Multiple processes are queued and wait for their

turn to be executed on CPU, but it appears as if they were running in parallel. The switching

between executing processes is done fast enough to be transparent for a human, and thus it

Chapter 1. Introduction: Real-Time Systems 18

appears that the system is running all processes simultaneously. So multitasking is a software

technique related to the operating system rather than physical parallelism on hardware.

1.3.2 Parallelism in Real-time Systems

In this document we assume that a parallel real-time task consists of a set of subtasks. A subtask

is an execution portion of the task which is characterized by a WCET. Similarly, a thread is

defined as an execution portion of a parallel task (or even a subtask). Threads of a task execute

usually within a segment and they are all activated at the same time and have to terminate

their execution at the same time. All threads of a segment have the same WCET.

Moreover, a real-time job/task is said to be:

• Rigid, if the number of processors assigned to this job/task is specified a priori and does

not change throughout its execution.

• Moldable, if the number of processors assigned to this job/task is determined by the

scheduler and does not change throughout its execution.

• Malleable, if the number of processors assigned to this job/task can be changed by the

scheduler during its execution.

1.3.3 General Parallel Real-time Task Models

There are di↵erent models of real-time parallel tasks which are shown in Figure 1.7:

• Independent task model which has been defined by Liu and Layland [85] and is con-

sidered as the basic model of tasks where each one consists of a single vertex.

• Multiframe model proposed by Mok and Chen [91]: this task model is a generalization

of the independent task model. A multiframe task generates an infinite succession of

frames which are separated by a minimum separation time. The WCET of the task is not

constant and it is defined according to a cyclic pattern.

• The Generalized MultiFrame (GMF) model presented by Baruah et al. [25]: it is a

generalization of the Multiframe model. The deadlines of frames are allowed to di↵er from

the minimum separation time. Frames have di↵erent deadlines and minimum separation

times.

Chapter 1. Introduction: Real-Time Systems 19

• Recurring branching [14]: this model allows selection points to determine the execution

behavior of a given task instance, such as conditional statements “if-then-else” and “case”.

The corresponding task graph is a directed tree.

• Recurring (Directed Acyclic Graphs) [15]: it defines a task as a Directed Acyclic

Graph (DAG) which is the most general model of parallel tasks and the other parallel

models can be represented as special cases of the DAG model.

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

System Bus

Core 2Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1 Processor 2

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

System
Memory

src src src src

Recurring !
(DAG)

Recurring !
branching

Multiframe !
& GMIndependent

!1,2

!1,1

!1,5

!1,4

!1,3

!1,7

!1,6

3

3

2

1

2

1

2

Figure 1.7: Di↵erent models of parallel tasks [119].

1.3.4 Directed Acyclic Graph (DAG)

In this thesis we concentrate on the common model of parallelism which is the DAG model from

the recurring task model. A DAG task consists of a set of subtasks (execution portions) with

precedence constraints. Let ⌧i be the ith DAG task in the set ⌧ where 1  i  n. Task ⌧i consists

of a set of subtasks under precedence constraints that determine their execution flow, and it is

characterized by ({⌧i,j |1  j  ni}, Gi, Oi, Di, Ti) , where the first parameter represents the set

of subtasks of ⌧i and ni is their number. Each subtask is denoted by ⌧i,j where 1  j  ni.

Parameter Gi is the set of directed relations between these subtasks, Oi is the o↵set of the

DAG, Di is ⌧i’s relative deadline and Ti is its period (or minimum inter-arrival time between

jobs). Each subtask ⌧i,j is characterized by a specific WCET Ci,j . A job Ji of DAG task ⌧i

consists of a set of subtask jobs based on the same inter-subtask parallelism of the DAG. Let

Ji,j (respectively Jk
i,j) denotes a job of subtask ⌧i,j (respectively, the kth job of subtask ⌧i,j)

and it is characterized by an absolute release time ri,j � Oi (respectively rki,j) and an absolute

deadline di,j  Di (respectively dki,j).

Chapter 1. Introduction: Real-Time Systems 20

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

System Bus

Core 2Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1 Processor 2

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

System
Memory

src src src src

Recurring !
(DAG)

Recurring !
branching

Multiframe !
& GMIndependent

!1,2

!1,1

!1,5

!1,4

!1,3

!1,7

!1,6

3

3

2

1

2

1

2

Figure 1.8: An example of a DAG task ⌧1 which consists of 7 subtasks.

The activation of subtasks of a DAG depends on its structure. A source subtask has no inputs

and it is activated by the activation of its DAG. A sink subtask is an ending subtask in the

DAG which does not generate outputs used by other subtasks. When subtask ⌧i,u uses the

outputs of subtask ⌧i,v as its inputs, then subtask ⌧i,v is considered as its parent subtask while

subtask ⌧i,u is a child subtask. More generally, a predecessor subtask is an indirect parent,

while a successor subtask is an indirect child. Let Pred(⌧i,u) (respectively Succ(⌧i,u)) be the

set of all predecessor subtasks of ⌧i,u (respectively, the set of all of its successor subtasks). We

assume that a DAG task has at least one source subtask and one sink subtask.

The dependencies between subtasks are due to the inter-subtask parallelism of DAG tasks and

they determine their execution flow. However, parallelism is not mandatory and it is based on

the decisions of the real-time scheduler. A DAG task may be executed sequentially as a chain

if necessary.

The global timing characteristics of a DAG task are the same as the common sequential task

model. We suppose that a DAG generates an infinite number of jobs separated by a minimum

(or exact) inter-arrival time and a deadline to be respected by each job. The WCET of a DAG

task is the sum of WCET of all of its subtasks, where Ci =
n
iX

j=1

Ci,j .

An example of a DAG task is shown in Figure 1.8 which shows the structure of the DAG model.

In this example the circles in the figure represent the subtasks of the DAG task while the arrows

represent their precedence constraints and the execution behavior of the DAG task. The number

on the upper right side of each subtask represents its WCET.

Chapter 1. Introduction: Real-Time Systems 21

Determining the topology of a DAG task is important in real-time scheduling so as to choose

the scheduling order of subtasks. There are many techniques and algorithms to traverse DAG

tasks such as the number of children or parent subtasks or based on their timing characteristics.

However, the most common technique used in real-time scheduling is based on the critical path

of the DAG.

Definition 1.5 (DAG’s critical path). For a given DAG task, its critical path is defined as the

path of subtasks with the longest sequential execution time among all other paths of the DAG

when it executes on a system of unlimited resources (e.g. number of processors).

Let a critical subtask be any subtask in the critical path of the DAG. Based on the definition

above, a DAG task can be seen as a sequence of critical subtasks executing sequentially, while

non-critical subtasks execute in parallel with it. Moreover, the critical path length Li is consid-

ered as the minimum response time of the DAG. For example, the critical path of task ⌧
1

from

Figure 1.8 is defined as {⌧
1,1, ⌧1,4, ⌧1,6} with length equal to 6. The choice between subtask ⌧

1,1

and ⌧
1,2 is done arbitrarily.

A DAG task is said to be feasible if of all of its subtask jobs respect their absolute deadlines.

For any given DAG set, there are two trivial necessary feasibility conditions. A DAG set ⌧ is

deemed unfeasible when scheduled using any scheduling algorithm on m unit-speed processors

if, at least, one of the following conditions is false:

• The total utilization U(⌧) of a task set ⌧ , which is the sum of utilization of its DAGs,

should be less than the number of processors in the system (U(⌧)  m).

Regarding the case of identical unit-speed processors, the system’s capacity within an

interval of length t cannot exceed (m ⇤ t) execution time units. Hence, it is impossible for

any task set to be feasible on a system of unit-speed processors if its processing demand

exceeds this value and if processors are overloaded.

• The deadline of any DAG task should be at least as long as its critical path length

(8⌧i 2 ⌧ : Li  Di).

The critical path length of a DAG task represents the minimum response time of the DAG

task, and it is impossible for a DAG task which executes on unit-speed processor systems

to finish its execution earlier than this value. In order for a DAG to be feasible, it should

finish its execution not later than its deadline, hence, its relative deadline should be at

least as long as its critical path length.

Chapter 1. Introduction: Real-Time Systems 22

!21,2 !21,4

!31,2 !31,4

rij0

Offset Oi

dij

Job Jij Job Jij+1

Period Ti
Deadline Di

WCET Ci

Task
"i

time

Job Jij-1

!11,1

!21,1

!y11,1

Deadline

Deadline

!11,2

!y21,2

!11,x

!21,x

!y31,x

!11,2!11,1 !11,3 !11,4 !11,x

Figure 1.9: Fork-Join model of parallel real-time tasks.

By default in this document, we consider global preemptive scheduling of periodic implicit-

deadline DAG sets which execute on homogeneous unit-speed processors.

1.3.4.1 Special Parallel Model: Fork-Join Tasks

The Fork-Join (FJ) model of parallel tasks is well known as the execution model of the famous

OpenMP [1] framework and Cilk programming language5. In this model, a task is defined as an

alternative sequence of sequential and parallel segments. It consists mainly of a master thread

that forks into multiple threads of the same WCET to form a parallel segment. When all threads

terminate their execution they merge again into the master thread.

Figure 1.9 shows an example of a fork-join model. In this document, we consider that all

parallel segments consist of the same number of threads. All threads of the same segment have

the same WCET. The master thread of the FJ task represents its critical path and its length is

the minimum sequential execution time of the task.

1.3.4.2 Special Parallel Model: Multi-Threaded Segment Tasks

Another model of parallel tasks is the Multi-Threaded Segment (MTS) model, which is a more

general version of the FJ model but still a special case of the Directed Acyclic Graphs. Instead

of having alternative sequence of sequential and parallel segments as in the Fork-Join model, a

MTS task consists of a sequence of parallel segments, where each one consists of at least one

thread. A segment is activated when all threads of the predecessor segment terminate their

5
https://software.intel.com/en-us/intel-cilk-plus

https://software.intel.com/en-us/intel-cilk-plus

Chapter 1. Introduction: Real-Time Systems 23

!21,2 !21,4

!31,2 !31,4

rij0

Offset Oi

dij

Job Jij Job Jij+1

Period Ti
Deadline Di

WCET Ci

Task
"i

time

Job Jij-1

!11,1

!21,1

!y11,1

Deadline

Deadline

!11,2

!y21,2

!11,x

!21,x

!y31,x

!11,2!11,1 !11,3 !11,4 !11,x

Figure 1.10: Multi-Threaded Segment model of parallel real-time tasks.

execution, and similarly, its successor segment becomes active after it terminates its execution.

A segment that consists of a single thread is considered as a sequential segment.

1.4 Problem Description and Contributions

In this thesis, we are interested in studying the problem of global preemptive scheduling of

parallel real-time DAG tasks on homogeneous multiprocessor systems. Based on the DAG

model, the execution order of their subtasks is dynamic, i.e., a subtask can execute either

sequentially or in parallel with its siblings based on the decisions of the real-time scheduler.

To this end, we analyze two DAG scheduling approaches to determine the execution order

of subtasks: the Model Transformation and the Direct Scheduling approaches. The Model

Transformation converts parallel tasks into other models to simplify the real-time scheduling,

and the Direct Scheduling adapts the scheduling algorithm and feasibility analysis of the DAG

model so as to take into consideration the dependencies and the precedence constraints to

schedule DAGs directly.

List of Contributions & Thesis Outline

• Chapter 2 (Related Work).

• Chapter 3 (Scheduling of Parallel Tasks using Model Transformation):

Concerning the Model Transformation approach, we propose a DAG Stretching (DAG-Str)

algorithm which is an extension of a stretching algorithm for the parallel FJ task model

studied in [77]. The general structure of the DAG model makes stretching transformation

Chapter 1. Introduction: Real-Time Systems 24

more challenging. The concept of DAG-Str algorithm is to force parallel tasks to execute

as sequentially as possible and avoid their parallel structure whenever it is possible. We

analyze our DAG-Str algorithm by showing its resource augmentation bound in the case

of global preemptive Earliest Deadline First scheduling algorithm.

Moreover, we prove that global preemptive EDF scheduling of DAG tasks when DAG-Str

is used has a resource augmentation bound equal to 3+

p
5

2

for all task sets with n < '.m0,

where n is the number of tasks in the task set, ' is the golden ratio6 and m0 is the

number of available processors in the system after stretching. Otherwise, the resource

augmentation bound is equal to 4. Recently, the same resource augmentation bound of

GEDF has been proved in [82] in the case of Direct Scheduling of DAG tasks.

• Chapter 4 (Direct Scheduling Approach of Parallel DAG Tasks):

In the case of Direct Scheduling, many researches from the state-of-the-art have been

interested in this problem but they mainly consider DAG scheduling without including

their internal structure in the scheduling. In this work, we show that including extra

information about the internal structure of DAGs and adding extra timing parameters of

their subtasks enhance the scheduling process of DAGs and helps real-time scheduler to

take better scheduling decisions adapted to the DAG model.

In this work, we divide Direct Scheduling into two categories, DAG-Level scheduling and

Subtask-Level scheduling. The DAG-Level scheduling executes DAGs based on their global

timing parameters without considering the parameters of their subtasks. Our contribution

lies in proposing a scheduling analysis that takes into consideration the internal structure

of DAGs, and we provide a su�cient schedulability condition based on the workload

analysis which is aware of the internal structure of DAGs.

In Subtask-Level scheduling of DAGs, a real-time scheduler takes decisions based on the

timing parameters of subtasks and not DAGs. Before scheduling, we assign extra local

timing parameters to subtasks that are extracted from the global parameters of DAGs. We

provide a scheduling analysis of global EDF at a Subtask-Level and we provide su�cient

schedulability conditions based on interference and workload analyses.

• Chapter 5 (Experimental Analysis of DAG Task Scheduling):

We start this chapter by proving the incomparability of DAG scheduling approaches while

using global preemptive multiprocessor scheduling while using Earliest Deadline First and

Deadline Monotonic scheduling algorithms. We provide DAG scheduling examples so as

6
The value of the golden ratio is

1+
p
5

2

Chapter 1. Introduction: Real-Time Systems 25

to prove that these approaches are not comparable, i.e., there exist task sets that are

schedulable using one scheduling approach and they are unschedulable using the other

one, and vice versa.

Due to the incomparability of DAG scheduling approaches, we use extensive simulations

to compare their schedulability performance. To this end, we present YARTISS which

is a general multiprocessor simulation tool written in Java and developed at our LIGM

research Lab. YARTISS is designed specifically in a way that enables users to extend it

and add modules to it easily. Using YARTISS, we generated DAG sets randomly and we

performed extensive simulations to compare schedulability performance of DAG scheduling

approaches.

Anomalies in DAG scheduling

In this thesis, we consider that each real-time task/subtask execute up to its WCET at all

times, because DAG scheduling su↵ers from execution anomalies. DAG scheduling algorithms

can be unpredictable when the actual execution time of a task is less than its WCET. Ha and

Liu [66] proved that global preemptive fixed task priority scheduling algorithms for independent

sequential tasks on multiprocessor systems are predictable. However, this is cannot be extended

to the case of DAG scheduling. An example is shown in Figure 1.11 which presents the scheduling

Proc3

Proc2

Proc1 !3

!2

!3

!2

!4!1

0 2" 1 1+"
Rate Monotonic Scheduling

Response time of !1,4

!1 = {c1 = 2", T1 = 1}!
!2 = {c2 = 2", T2 = 1}!
!3 = {c3 = 2", T3 = 1}!
!4 = {c4 = 1, T4 = 1+"}

!4!1

!1,4

!1,6

!1,5

!1,2

!1,3

!1,7

Fixed Task Priority Scheduling.!!
Subtask index is its priority.!
!1,1 is the highest priority !
!1,7 is the lowest

Proc1

Proc2

!1,7!1,6

!1,2

!1,3

!1,1

!1,5!1,4

!4 misses its deadline

!1,7!1,6!1,5!1,4

!1,2

!1,3

!1,1

!1,4

Response time of !1,4

!1,1

(a) Example of a DAG task ⌧1. The index of a subtask ⌧1,j represents its priority where j = 1 is the

highest priority and 7 is the lowest.

Proc3

Proc2

Proc1 !3

!2

!3

!2

!4!1

0 2" 1 1+"
Rate Monotonic Scheduling

Response time of !1,4

!1 = {c1 = 2", T1 = 1}!
!2 = {c2 = 2", T2 = 1}!
!3 = {c3 = 2", T3 = 1}!
!4 = {c4 = 1, T4 = 1+"}

!4!1

!1,4

!1,6

!1,5

!1,2

!1,3

!1,7

Fixed Task Priority Scheduling.!!
Subtask index is its priority.!
!1,1 is the highest priority !
!1,7 is the lowest

Proc1

Proc2

!1,7!1,6

!1,2

!1,3

!1,1

!1,5!1,4

!4 misses its deadline

!1,7!1,6!1,5!1,4

!1,2

!1,3

!1,1

!1,4

Response time of !1,4

!1,1

(b) The scheduling of the first job of ⌧1 when all jobs

execute up to their WCET.

Proc3

Proc2

Proc1 !3

!2

!3

!2

!4!1

0 2" 1 1+"
Rate Monotonic Scheduling

Response time of !1,4

!1 = {c1 = 2", T1 = 1}!
!2 = {c2 = 2", T2 = 1}!
!3 = {c3 = 2", T3 = 1}!
!4 = {c4 = 1, T4 = 1+"}

!4!1

!1,4

!1,6

!1,5

!1,2

!1,3

!1,7

Fixed Task Priority Scheduling.!!
Subtask index is its priority.!
!1,1 is the highest priority !
!1,7 is the lowest

Proc1

Proc2

!1,7!1,6

!1,2

!1,3

!1,1

!1,5!1,4

!4 misses its deadline

!1,7!1,6!1,5!1,4

!1,2

!1,3

!1,1

!1,4

Response time of !1,4

!1,1

(c) Subtask ⌧1,1 job executes for 3 time units instead of

5.

Figure 1.11: An example showing anomaly of DAG scheduling when Fixed Task Priority
scheduling algorithm is used.

Chapter 1. Introduction: Real-Time Systems 26

of a single DAG task ⌧
1

on 2 processors using preemptive fixed priority scheduling algorithm.

The DAG task consists of 7 subtasks and their priorities are the numbers inside each subtask in

the figure. Inset 1.11(b) shows the scheduling of a DAG task ⌧
1

when its WCETs are considered.

The response time of the DAG is equal to 10. However, when the first subtask executes for

3 time units instead of 5, this causes successor subtasks to be activated earlier and this leads

to increase the response time of the scheduled DAG. Hence, a positive change in the execution

time of the DAG has negative results. The scheduling is not sustainable w.r.t. execution time.

Due to these scheduling di�culties and the special characteristics of DAG tasks, we concentrate

our work in this thesis on including knowledge about the internal structure of DAGs in the

scheduling process. Unlike DAG scheduling methods and approaches found in literature, our

method aims at extracting extra information about subtasks that are not provided by the model

and include them in the scheduling process. We believe that by doing so, we can enhance the

scheduling of DAG tasks on multiprocessor systems to obtain a sustainable scheduling.

Chapter 2

Related Work

In this chapter, we briefly present the main algorithms and results regarding real-time scheduling

in uniprocessor and multiprocessor systems which are found in the state-of-the-art. Section 2.1

concentrates on uniprocessor systems and we review the main scheduling algorithms which

are proved to be optimal. Section 2.2 describes the e↵ect of multiprocessor scheduling on the

optimality of uniprocessor algorithms and their performance in term of schedulability. Then,

we present some multiprocessor algorithms (optimal and variations of optimal uniprocessor

algorithms). Finally, Section 2.3 focuses on parallelism in real-time systems and the main

scheduling algorithms and approaches proposed to overcome the challenge due to parallelism.

The section is divided into two subsections to present parallelism in the case of uniprocessor

and multiprocessor systems.

2.1 Real-time Scheduling of Uniprocessor Systems

Most of real-time scheduling research began in 1973 when Liu and Layland [85] analyzed the

preemptive scheduling problem of hard real-time systems on uniprocessor platforms. Among

their contributions, the authors provided optimal scheduling algorithms based on Fixed-Task

(FTP) and Fixed-Job (FJP) Priority assignment for independent sequential tasks (sporadic or

periodic). They proved the optimality of Rate Monotonic (RM) FTP scheduling algorithm for

sporadic and synchronous periodic implicit-deadline tasks and provided the following schedula-

bility condition for a task set ⌧ of n tasks:

U(⌧)  n(21/n � 1)

27

Chapter 2. Related Work 28

So in the general case, RM scheduling algorithm can meet all the deadlines in task set ⌧ if its

utilization U(⌧) is not greater than ln2 ⇡ 0.69 (when the number of tasks n tends towards

infinity). In the case of FJP class, Liu and Layland proved the optimality of Earliest Deadline

First (EDF) scheduling algorithm for arbitrary-deadline tasks for all sets with utilization less

than 1.

It is interesting to note that uniprocessor FTP scheduling algorithms gained great practical

importance when compared to EDF despite the dominance in schedulability performance of the

latter. However, the advantage of FTP algorithms is that they are generally easier to implement

and to analyze. Furthermore, they cause less system overheads (mainly due to job preemption

and context switches), and system schedulability can be enhanced by simply modifying priority

assignment of tasks without modifying the scheduler.

In 1982, Leung and Whitehead [80] proved that Deadline Monotonic (DM), which is a FTP

algorithm, is optimal for sporadic and synchronous periodic uniprocessor sets with constrained-

deadline tasks (deadlines are not greater than periods). Moreover, the authors proved that DM

is not optimal in the case of asynchronous periodic task sets. A while later in 1990, Lehoczky

[78] proved that DM is not optimal also in the case of arbitrary-deadline tasks.

Oppositely to the above-described FTP algorithms, Audsley [8, 9] presented an optimal fixed pri-

ority scheduling algorithm which is known by OPA. It stands for Optimal Priority Assignment

and it is proved to be optimal for asynchronous periodic arbitrary-deadline tasks. The authors

proved that OPA can determine priority ordering of tasks in a given set in polynomial time

which is not greater than n(n+ 1)/2 schedulability tests.

Regarding scheduling algorithms which are based on Dynamic Priority (DP) assignment (e.g.,

Least Laxity First algorithm), they are not usually used in uniprocessor systems because their

implementation is complicated when compared to FTP and FJP classes, and they can cause

higher system overheads. The use of other simpler optimal scheduling algorithms such as EDF

is a better choice and it avoids such development and execution complications.

2.2 Real-time Scheduling of Multiprocessor Systems

Originally, the concept of multiprocessor platforms has been presented a long time ago. The

SIMD (Single Instruction, Multiple Data) model for instance, which is a class of parallel comput-

ers, was firstly presented in 1958 by Unger [117]. The idea of increasing processing performance

Chapter 2. Related Work 29

by duplicating processors was found interesting and appealing by many researchers as stated

by Bouknight et al. [37]:

The cost of a general multiprocessor is, however, very high and further design op-

tions were considered which would decrease the cost without seriously degrading

the power or e�ciency of the system. The options consist of re-centralizing one of

the three major components . . . Centralizing the [control unit] gives rise to the basic

organization of [an] . . . array processor . . .

However, the need for hardware development was not pressing at that time which delayed its

evolution and allowed uniprocessor systems to dominate industrial projects and platforms. The

same observation can be applied in real-time systems, it has been identified a long time ago

by Liu [84] that real-time multiprocessor scheduling problem is challenging. In addition to the

problem of deciding which job to execute and at what time, real-time schedulers have to decide

on which processor these jobs have to execute as well. This concern was expressed by Liu as

follows:

. . . few of the results obtained for a single processor generalize directly to the mul-

tiple processor case: bringing in additional processors adds a new dimension to the

scheduling problem. The simple fact that a task can use only one processor even

when several processors are free at the same time adds a surprising amount of di�-

culty to the scheduling of multiple processors. . .

As predicted by Liu, many optimal uniprocessor scheduling algorithms were proved to lose their

optimality when used on multiprocessor systems due to their scheduling complications such as

the Dhall’s e↵ect [51]. For instance, in the case of fixed priority assignment, Dhall and Liu

proved that scheduling performance of Rate Monotonic and Deadline Monotonic degrades on

partitioned multiprocessor systems and they fail at low utilization. A significant amount of

research has been done to enhance the performance of such scheduling algorithms by proposing

hybrid priority assignment techniques in which tasks are divided into groups that are assigned

priorities based on di↵erent assignment rules. Andersson et al. [7] proposed RM-US (Rate

Monotonic with Utilization Separation) which assigns highest priorities to tasks whose utiliza-

tion is above a given threshold and the remaining tasks are scheduled using RM. Similarly,

Bertogna et al. [31] provided DM-DS (Deadline Monotonic with Density Separation) which uses

DM instead of RM.

Chapter 2. Related Work 30

Similarly, FJP scheduling algorithms su↵er from the same problem of FTP class. For instance,

EDF scheduling algorithm loses its optimality when extended to multiprocessor systems, but it

remains as an interesting multiprocessor scheduling algorithm and many variations have been

proposed to enhance its performance. In 2002, Srinivasan and Baruah [112] provided EDF-US

(Earliest Deadline First with Utilization Separation) which schedules a group of tasks with

static priorities and the remaining tasks using EDF. Bertogna [28] used task densities instead

of utilization in EDF-DS (Earliest Deadline First with Density Separation) to schedule sporadic

task sets with constrained and arbitrary deadlines.

In 2004, Baruah [16] provided a fixed priority scheduling algorithm of periodic tasks on a

platform ofm identical processors, which assigns highest priority to the first (m�1) tasks having
utilization greater than one half, and schedules the remaining ones with EDF. The algorithm

leads to a utilization at most equal to (m+ 1)/2 which is the maximum utilization that can be

achieved by fixed priority algorithms. The same utilization bound has been proved for global

multiprocessor FJP scheduling with implicit-deadlines in [7]. Another algorithm called EDF(k),

proposed in [12, 63], assigns highest priorities to the k tasks with the highest utilization and

the remaining tasks are scheduled using EDF.

Dynamic priority scheduling algorithms, in which priority of a job changes during its execu-

tion, are useful for multiprocessor systems. This priority assignment overcomes multiprocessor

scheduling complications such as the Dhall’s e↵ect. A number of scheduling algorithms based

on dynamic priority (e.g., PFair, RUN and U-EDF) are proved to be optimal in the case of

periodic task sets with implicit deadlines.

PFair (Proportionate Fairness) is an optimal multiprocessor scheduling algorithm which was

introduced by Baruah et al. [24] in 1996 for periodic and sporadic global scheduling of implicit-

deadline task sets. PFair utilizes the full capacity of processors by scheduling successfully any

task set whose utilization is not greater than the number of processors. It is based on the

concept of slots, i.e., the time line is divided into equal quanta. Each quantum is assigned to

tasks fairly by the scheduler. The main disadvantage of fairness-based scheduling algorithms

lies in the generated overheads of job execution and the huge number of job migrations and

context switches forced by the scheduler. There are many variations to enhance its performance

and reduce overheads such as PD [23], SA [75], ERFair [4], PD2 [5], BF [122] and LLREF [43].

Another optimal multiprocessor scheduling algorithm for periodic implicit-deadline tasks called

RUN was introduced by Regnier et al. [106] in 2011. The RUN algorithm, which stands for

Chapter 2. Related Work 31

Reduction to Uniprocessors, is a real-time scheduler which reduces the multiprocessor problem

into a series of uniprocessor problems which are scheduled using EDF. Unlike other scheduling

algorithms, RUN schedules the idle time of tasks rather than their execution time, and it is

proved to have an upper bound of O(logm) average preemptions per job on m processors.

Similarly to PFair, it can successfully schedule task sets whose utilization is not greater than

the number of processors in the system.

In 2012, Nelissen et al. [94] introduced U-EDF which is an optimal multiprocessor scheduling

algorithm for sporadic implicit-deadline tasks and for sporadic tasks when their total density

is smaller than the number of processors in the system. The concept of this algorithm is

summarized into two main steps: when a job is released, (i) U-EDF pre-allocates execution

time to active tasks in a horizontal manner (tries to maximize utilization of first processor, then

the second one, . . .) so as to save enough execution resources for future jobs that might be

released and interfere with currently active ones. (ii) Based on these allocations, active jobs

execute using EDF scheduling algorithm which is slightly modified so as to prevent parallel

execution within jobs.

There are many other scheduling algorithms and solutions which can be found in the state-of-

the-art regarding multiprocessor schedyling problem. In 2011, Davis and Burns [48] gathered

and summarized the main results regarding this problem in a general survey which is an excellent

reference.

2.3 Parallel Real-time Scheduling

The development of multiprocessor systems and their growing importance in industrial applica-

tions nowadays encourage researchers to analyze the evolution of software in real-time systems

as well. They considered more general task models which contain parallelism and precedence

constraints rather than the classical sequential model of real-time tasks. Thus, di↵erent for-

mal models have been proposed for representing recurrent tasks; these models di↵er from one

to another in the restrictions they place on the jobs that may be generated by a single task

[50, 83–85, 113].

In this section, we briefly present the main scheduling algorithms and their associated schedu-

lability conditions regarding the problem of scheduling parallel dependent real-time tasks on

Chapter 2. Related Work 32

uniprocessor and multiprocessor systems. We highlight the main scheduling techniques used in

the state-of-the-art in order to take into account parallelism in real-time systems.

2.3.1 Parallel Scheduling on Uniprocessor Systems

In general, when parallelism is mentioned we think directly of physical parallelism which is

associated with distributed and multiprocessor systems, where multiple processes execute si-

multaneously on the available processing units of the system. Applications with parallelism

and precedence constraints were first implemented on uniprocessor systems due to the practical

importance of such systems in industrial embedded systems. In real-time systems, the wealth of

scheduling algorithms and analyses of uniprocessor systems makes them a tempting execution

platform even in the case of parallel tasks. There had been some researches which proposed to

simplify the parallel scheduling problem by model transformation. A parallel dependent task is

converted into sequential chains which are scheduled on uniprocessors using common scheduling

algorithms. It is important to determine the execution order of subtasks within chains which

enhances the schedulability of task set. In this subsection, we will describe the related researches

found in the state-of-the-art.

The Canonical Scheduling Form

In 1991, Harbour et al. [68, 69] studied the problem of scheduling dependent periodic tasks on

uniprocessor systems. Each task is composed of sequential subtasks which are characterized

by specific WCETs and fixed priority. Thus, each parallel task may have di↵erent priorities

during its execution based on the priority of its current running subtask. There is no intra-

subtask parallelism in this model, i.e., subtasks are sequential threads and they are similar to

the classical uniprocessor model with the only exception of the multiple priorities.

In this model, a scheduling di�culty arises due to the di↵erent priorities within the same parallel

task, which complicates the calculations of the worst-case response time of the task. In the case

of the classical real-time task model, the worst-case response time of a certain task occurs in

the case of synchronous task sets, in which its job is activated at the same time with all higher

priority jobs in the set. Hence, a schedulability test is required to verify the finish time of the

task with the lowest priority in the system and check if it is less than its deadline. The authors

showed an example to prove the inaccuracy of this scenario in the case of dependent tasks. They

Chapter 2. Related Work 33

concluded that a correct schedulability test has to check the deadlines of more than one job of

a particular task in the busy period.

In order to simplify the scheduling analysis of dependent tasks and reduce the number of di↵erent

priorities of subtasks, Harbour et al. [68] introduced a canonical form of dependent tasks which

changes the priorities of its subtasks. It is defined as follows:

Definition 2.1 (Canonical task form). A task is said to be canonical if it consists of consecutive

subtasks that increase in priority.

The transformation into the canonical form is done by changing the priorities of subtasks and

then by combining subtasks of the same priority into segments. The authors proved that this

transformation does not a↵ect the scheduling characteristics of the original dependent tasks.

The finish time of a transformed task into its canonical form is the same as the finish time of

the original task.

The schedulability analysis proposed in this paper is based on checking the final deadline of the

task and identifying the blocking and preemption e↵ects on the canonically-transformed tasks.

Procedure: Let ⌧ 0i be the canonical form of a dependent task ⌧i in the task set. ⌧i consists of

ni subtasks, each is denoted by ⌧i,j where 1  j  ni.

The schedulability condition starts by calculating the response time of the first subtask ⌧i,1 in

the canonical task ⌧ 0i , then iteratively determines the finish time of its successors as a function

of its finish time until the final subtask ⌧i,n
i

. This procedure is performed on every job in ⌧ 0i ’s

busy period.

Schedulability Condition: All jobs of task ⌧i will meet their deadlines if the following con-

dition is satisfied:

max(k � 1)Ti +Di � Ei.n
i

(k) � 0 (2.1)

for k  Ni

• Ti is the period of task ⌧i.

• Di is the deadline of task ⌧i.

• Ei.n
i

(k) is the finish time of the final subtask ⌧i,n
i

of the kth job of task ⌧i.

• Li is the length of busy period of task ⌧i of synchronous task set.

Chapter 2. Related Work 34

• Ni = dLi

T
i

e is the number of jobs of task ⌧i in its busy period.

The schedulability condition has been extended in the state-of-the-art to consider more general

task models, including recurrent tasks with intra-task parallelism and resource sharing. For

instance, Richard et al. [107] analyzed the scheduling problem of graph tasks on uniprocessor

systems where each task consists of a set of dependent fixed-priority subtasks with precedence

constraints. In order to remove the parallelism within subtasks, the authors provided a graph-

to-chain transformation which is described as follows:

Graph-to-Chain Transformation: A graph task is transformed into a chain by placing the

eligible subtasks of the graph with the highest priority subtasks at the tail of the chain. A

subtask is called eligible if it has no predecessor subtasks or all its predecessors are already in

the chain.

As in the transformation from [68], Richard et al. [107] proved that this transformation does not

a↵ect the schedulability of the original graph tasks, and the scheduling results of any algorithm

is the same for both forms; the original graph task and its sequentially-transformed chain.

It is also proved by examples that periodic dependent tasks su↵er from scheduling anomalies

regarding smaller execution time and removal of a precedence relation between subtasks. In

other words, a feasible periodic graph task on uniprocessor may become infeasible if it executes

for less than its WCET or if one or more of its intra-task precedence constraints are removed.

Additionally, the authors provided a schedulability condition for fixed-priority scheduling of

arbitrary-deadline chains on uniprocessor systems, by following these given steps:

Schedulability Test:

• Transform each task chain into its canonical form (from [68]).

• Determine the blocking and preemption e↵ects in the chain.

• Calculate the finish time (worst-case response time) of the task and the chain during the

busy period.

For any subtask ⌧i,j of transformed chain ⌧ 0i with priority Pi,j , the worst-case interference on

⌧i,j in a busy period starting at t = t
0

is identified by the following scenario:

• Subtask ⌧i,j is activated at t = t
0

.

Chapter 2. Related Work 35

• A job of each task that starts by a high-priority segment of multiple blocking e↵ect arrives

at t
0

(a segment is a sub-chain of ⌧i).

• A job of the longest task that starts by a high-priority segment of single blocking e↵ect is

activated at t
0

.

The schedulability condition is applied on all chains of the task set based on this scenario to

calculate the worst-case response time.

In 2005, Zhao et al. [120] generalized the canonical transformation to schedule a set of fixed-

priority sporadic graph tasks on uniprocessor systems. Similarly to [107], each graph consists of

a set of subtasks which are identified by specific WCET and fixed priority. The authors proposed

to transform graph tasks into canonical chains, and to use the chains to establish the worst-case

response time of a graph task for a fixed-priority scheduling. The scheduling analysis is studied

for di↵erent scheduling situations: the preemptive scheduling, non-preemptive scheduling and

hybrid tasks in which a single graph have both preemptive and non-preemptive subtasks.

In this work, the authors transformed graphs into sequential canonical chains, then they calcu-

lated the finish time of chains by analyzing their blocking and the preemption e↵ects. In [121],

the work had been extended to consider Fixed Job Priority (FJP) scheduling of graph tasks

when Earliest Deadline First (EDF) algorithm is used. The authors provided schedulability

conditions for preemptive and non-preemptive graph scheduling.

Intermediate Timing Parameters

In 2008, Jayachandran and Abdelzaher [72] targeted uniprocessor scheduling in distributed

systems where tasks are represented by Directed Acyclic Graphs (DAGs), by applying priority-

based resource scheduling and resource partitioning. Their main motivation behind the trans-

formation is to get advantage of the uniprocessor scheduling theories and algorithms which are

studied thoroughly. The di↵erence between this work and above-described researches is that the

proposed transformation depends only on the load which the analyzed task encounters along its

execution path (it is linear to the number of other scheduled tasks). Their main contribution is

summarized as follows:

Given a distributed task A in a distributed task system of workload Wdist, it is possible to

systematically construct a uniprocessor task B of a uniprocessor workload Wuni, such that if B
is schedulable on uniprocessor system, then A is schedulable in the distributed system.

Chapter 2. Related Work 36

This is done by applying a Delay Composition theorem (from [71]) which is defined as the max-

imum time a task waits for its slot on the execution platform. The scheduling analysis provides

a worst-case bound on the end-to-end delay of a job under both preemptive and non-preemptive

scheduling in the distributed system. Then a transformation is proposed for distributed task

to convert them into uniprocessor-compatible form so as to use common traditional scheduling

theorems. This transformation is applied to various situations such as static-priority scheduling,

dynamic priority scheduling, aperiodic task scheduling and partitioned-resource systems.

At first, Jayachandran and Abdelzaher [72] considered parallel tasks whose subtasks form a path

in a directed graph. This work was then extended to tasks whose subtasks form a DAG with

internal precedence constraints and each subtask executes on a di↵erent resource. In order to

apply the Delay Composition theorem on DAGs, tasks have to be split into smaller tasks which

form a path in the DAG with artificial deadlines after each merger of subtasks. Assigning these

artificial deadlines adds pessimism to the schedulability analysis, but the Delay Composition

theorem reduces the need to impose artificial deadlines to only certain stages in the execution

interval where two or more subtasks merge. The Delay Composition theorem performs well and

obtains better results when compared to other techniques.

A di↵erent approach to schedule dependent tasks with precedence constraints has been proposed

by Chetto et al. [41]. In 1990, the authors studied the problem of scheduling sets of two kinds

of tasks: independent periodic sequential tasks and sporadic groups of dependent graphs with

precedence constraints. All task groups execute on uniprocessor systems. They also provided a

schedulability test for task sets when preemptive EDF algorithm is used.

Based on their task model, real-time uniprocessor scheduling algorithms can be applied directly

to schedule the first type of tasks which belongs to the classical model. Regarding task group,

they considered the case of aperiodic dependent tasks that may arrive at any time and execute

one time only. Each task in the graph is characterized by an execution time, a release time and

a deadline.

For practical reasons, a transformation method was proposed to convert dependent tasks into

independent tasks with modified timing parameters. As a result, the same scheduler can be used

to schedule both periodic and aperiodic tasks in the set without distinction. The transformation

algorithm starts by modifying the release and deadline of dependent tasks, then it constructs a

priority list in a way that preserves both timing and precedence constraints.

Chapter 2. Related Work 37

For a given task in the graph, its deadline is modified based on the deadline of its successors,

while its release time is modified based on the finish time of its predecessors. The second part of

the algorithm constructs a priority list for tasks based on the modified parameters using EDF

scheduling algorithm. The authors proved that the original task group is schedulable if and only

if the modified group is schedulable, which means that such transformation is optimal since it

respects all timing and precedence constraints of tasks whenever it is possible. The authors

provided as well a polynomial online acceptance test to verify whether an occurring task group

can be accepted or not.

Recently in 2011, Stigge et al. [113] considered a task model that uses directed graphs to

represent the release scenario of jobs in terms of order and timing on uniprocessor systems.

Namely, a task is represented by a DAG where each vertex represents one type of jobs that can

be released by the task and the edges represent the order in which jobs are released. In this

work, the main contribution is to show that the feasibility problem can be decided in pseudo-

polynomial time. In [114], the authors studied the computational complexity of the extension

to the model which allows to express global inter-release time constraints between non-adjacent

job releases.

2.3.2 Parallel Scheduling on Multiprocessor Systems

On multiprocessor systems, preemptive scheduling of jobs with precedence constraints has been

proved NP-Hard in the strong sense in 1975 by Ullman [116]. Moreover in 1989, Han and Lin

[67] analyzed the e↵ect of job parallelism on the complexity of multiprocessor scheduling of hard

real-time systems. They considered a system which consists of a set of independent jobs where

each jobs is allowed to execute on multiple processors simultaneously. They proved that parallel

fixed priority scheduling on multiprocessor systems is NP-Hard and an exact schedulability

analysis of job parallelism is intractable (hard to be controlled or dealt with).

Based on the characteristics of parallel tasks and their internal structure, parallel scheduling is

divided into two approaches :

• Gang Scheduling [55–57, 60, 74]: It is defined as the scheduling in which all parallel

threads are forced to execute simultaneously on multiple processors due to concurrent

necessary communications between them. As shown in Figure 2.1, a parallel task is

characterized by its WCET and the number of processors that it executes on. Gang

Chapter 2. Related Work 38

Deadline Di

Offset Oi

dij

Job Jij+1

Task
!i

rij time0

Period Ti

Job Jij-1

WCET of a thread Ci

Job Jij

N
um

be
r o

f p
ro

ce
ss

or
s

Figure 2.1: Periodic constrained-deadline parallel task ⌧
i

of the Gang model.

scheduling is a prominent feature of the Connection Machine CM-5 [87] which was a se-

ries of supercomputers that supported parallelism. The first result regarding real-time

Gang scheduling was provided by Kato and Ishikawa [74] who presented an preemptive

Gang EDF scheduling algorithm. Later on, Goossens and Berten [60] provided an exact

schedulability condition for FTP Gang scheduling on identical processors.

Another parallel approach that is relatively similar to the Gang model is the Work-Limited

Parallelism described in [45, 46]. On a system of m identical processors, each sporadic

implicit-deadline task ⌧i is characterized as (Ci, Ti,�i) where �i = (�i,1, �i,2, ..., �i,m). As

in the classical sequential model, Ci denotes ⌧i’s WCET, Ti is its period and parameter �i

represents job parallelism of ⌧i, i.e., its degree of parallelism. A job that executes for t time

units on j processors completes (�i,j ⇤ t) units of execution. Collette et al. [45] proved that

time complexity of task set feasibility is linear and they provided a theoretically optimal

scheduling algorithm for such systems.

• Multi-Threaded Scheduling: its parallel tasks consist of threads that execute on mul-

tiple processors based on the decisions of the real-time scheduler. Unlike the Gang model,

parallelism is a choice given to the scheduler and it can execute tasks either sequentially

or in parallel. The task model defines the number of threads of each parallel task (or

segment) and the scheduler determines which threads execute in parallel and which se-

quentially. An example of this model is the recurrent tasks1 which is the base of famous

parallel programming libraries such as OpenMP and POSIX Thread (pthread). In the

remainder of this section, we will focus on researches and results which concentrate on

this scheduling approach and specially the parallel scheduling of recurrent task model such

as the Fork-join model and the Multi-Threaded Segment model. Then we will explain in

more details the related researches done on Directed Acyclic Graph model.

1
For more details, please refer to Section 1.3.3 (General Parallel Real-time Task Models).

Chapter 2. Related Work 39

RT-OpenMP is a real-time concurrent platform presented in [2] based on OpenMP [1]. It

includes real-time semantics and scheduling of parallel tasks and it provides a true parallel

programming interface. In [2], the platform performance is evaluated by executing parallel

task sets under various partitioned scheduling strategies and utilization.

There are two main scheduling approaches resulting from the researches found in the state-of-

the-art regarding the problem of scheduling recurrent task model, (i) the Model Transformation

approach which is used to simplify the scheduling process by converting the task model and (ii)

the Direct Scheduling approach which adapts the scheduling process to take into consideration

the special characteristics of parallel tasks and their dependencies.

2.3.2.1 Model Transformation Scheduling Approach

The Multi-Threaded model of parallel tasks (such as the Fork-Join and the Segment model)

defines parallel tasks as a sequence of segments which consists of parallel threads. Each seg-

ment is activated when its predecessor segments terminate their execution. Hence, the task

model does not require individual o↵sets or deadlines for parallel segments, which complicates

the scheduling process. Many researches from the state-of-the-art propose to schedule parallel

tasks by modifying them in a way that gets rid of the internal execution dependencies and con-

verts it into a set of independent sequential tasks with individual o↵sets and deadlines. Then,

scheduling decisions and analyses are performed using intermediate o↵sets and deadlines which

are assigned by the transformation approach and used by real-time algorithms to be scheduled

on multiprocessor systems.

The Model Transformation approach simplifies the problem of parallel scheduling at the expense

of incurring some non-trivial transformation overheads. Also, to the best of our knowledge, there

is no optimal method which assigns intermediate timing parameters to subtasks and guarantees

the feasibility of the task set.

Stretching Algorithm of Fork-Join Model

Lakshmanan et al. [77] introduced the Fork-Join (FJ) model of parallel tasks in real-time sys-

tems, in which they studied partitioned scheduling of periodic implicit-deadline tasks on homo-

geneous multiprocessor systems. Figure 2.2(a) shows an example of a FJ task ⌧
1

which consists

of 5 segments and a master thread of length equal to 9. The master thread of any FJ task is

Chapter 2. Related Work 40

defined as the thread with the longest sequential execution time. The FJ task begins execut-

ing the master thread and when a fork event happens, the master thread splits into a number

of identical threads that execute in parallel which forms a parallel segment. When all of the

threads of a parallel segment terminate their execution, they join to resume the execution of

the master thread. The slack time of a FJ task is defined as the timing di↵erence between the

deadline of the task and the WCET of its master thread.

After identifying the best-case and the worst-case structure of FJ task sets from feasibility per-

spective, the authors showed that the parallel structure of FJ tasks is undesirable and should be

avoided. As mentioned in their work, “FJ task sets on multiprocessor systems can have schedu-

lable utilization bounds slightly greater than and arbitrarily close to uniprocessor schedulable

utilization bounds. From the perspective of schedulability, it is therefore desirable to avoid such

task structures as much as possible . . . ”.

As a result, Lakshmanan et al. provided a stretching algorithm for the FJ tasks so as to execute

them as sequential as possible. The algorithm is divided into two main cases:

• Low utilization FJ tasks whose utilization is not greater than 1 are forced to execute

sequentially, since their total WCET is less than the deadline. The threads of each task

are ordered to form a sequential chain which executes on a single processor.

• High utilization FJ tasks whose utilization is greater than 1 must execute in parallel and

one processor is not enough for them to be feasible. Hence, the stretching algorithm is

applied as follows:

– The stretching algorithm aims to fairly fill the slack of the FJ task by fractions of

threads from the parallel segments of the task, based on a distribution factor. The

distribution factor is calculated based on the relation between the slack time of the

task and the minimum sequential execution time of all of its parallel segments.

– The master thread is stretched up to its deadline which extends the parallel segments.

The remaining parallel threads are then forced to execute within fixed execution

intervals.

– The result of applying the stretching algorithm is a fully-stretched master thread

(with utilization equal to 1) and a set of constrained-deadline tasks with fixed o↵sets

and deadlines. The fully-stretched master threads are assigned their own processors

by the real-time scheduler, while constrained-deadline threads are scheduled using

classical multiprocessor algorithms.

Chapter 2. Related Work 41

Master thread

deadlineoffset Parallel segment

Slack time

offset deadline

!31,2

Stretched master thread

!21,2

!31,2

!21,4

!31,4

thread migration

Intermediate
offset

Intermediate
deadline

Constrained-deadline thread

!31,4

!11,1 !11,2 !11,3 !11,4 !11,5

!11,1 !11,2 !21,2 !31,2 !11,3 !11,4 !21,4 !31,4 !11,5

(a) A Fork-Join task ⌧1.

Master thread

deadlineoffset Parallel segment

Slack time

offset deadline

!31,2

Stretched master thread

!21,2

!31,2

!21,4

!31,4

thread migration

Intermediate
offset

Intermediate
deadline

Constrained-deadline thread

!31,4

!11,1 !11,2 !11,3 !11,4 !11,5

!11,1 !11,2 !21,2 !31,2 !11,3 !11,4 !21,4 !31,4 !11,5

(b) The result of the stretching algorithm applied on ⌧1.

Figure 2.2: An example of stretching algorithm of Fork-Join task model.

Figure 2.2(b) shows an example of the stretching algorithm applied on the FJ task from Figure

2.2(a).

Lakshmanan et al. proposed to use partitioned preemptive Deadline Monotonic algorithm to

schedule the constrained-deadline parallel threads resulting from the stretching. They proved

that stretched task sets have a resource augmentation bound equal to 3.42 when FBB-FFD with

Deadline Monotonic is used. This implies that any FJ task set that is feasible on m unit-speed

processors can be scheduled after stretching on m processors that are 3.42 times faster when

scheduled using FBB-FFD2 [59] with DM.

The main disadvantage of the FJ stretching algorithm lies in the system overheads caused by

the stretching. The algorithm forces a thread from each segment of the stretched task to execute

on two processors. We proposed in [54] a modified version of the stretching algorithm which is

called the Segment Stretching algorithm. It aims at reducing thread migrations and preemptions

forced by the stretching algorithm and we proved that it has the same resource augmentation

bound of the original stretching algorithm.

The stretching algorithm is an interesting approach of scheduling FJ tasks. In Chapter 3, we

extend this algorithm to consider the Directed Acyclic Graph model which is more general than

2
FBB-FFD stands for Fisher Baruah Baker-First Fit Decreasing algorithm.

Chapter 2. Related Work 42

the FJ. Also, we proposed a modified algorithm which reduces the number of thread migrations

caused by the stretching algorithm.

Decomposition Algorithm for Multi-Threaded Segment Model

Saifullah et al. [108] studied the scheduling of synchronous implicit-deadline parallel tasks of

the Multi-Threaded Segment (MTS) model3 (which was extended later to DAG tasks in [109]).

They simplified the scheduling problem of parallel tasks by using a Decomposition algorithm

which assigns intermediate o↵sets and deadlines for each segment. These intermediate parame-

ters are used by real-time algorithms to schedule tasks after they are transformed into a set of

independent sequential subtasks. The schedulability analysis of decomposed tasks is based on

their densities, and segments are assigned intermediate deadlines which guarantee that the den-

sity of any segment in the decomposed task ⌧i is not greater than
2C

i

T
i

. Briefly, the Decomposition

algorithm is summarized as follows:

• The parallel segments of a MTS task ⌧i are divided into groups based on the number of

their threads w.r.t.a threshold ✓i =
C

i

2T
i

�L
i

: heavy segments and light segments.

• The task’s deadline is split into intermediate deadlines for all segments based on their

groups; whether they are all light segments, heavy segments or a mix of light and heavy

segments. As a result, each thread of each segment has enough slack time to execute.

– If all segments are light, then task deadline is split proportionally among all segments

according to the WCET of each thread.

– If all segments are heavy, then task deadline is split proportionally among all segments

based on their workload (the total execution time of each segment).

– If a task contains some heavy and light segments, then the period Ti of the task is

divided into two parts. A total of (Ti � Li/2) is split proportionally among heavy

segments according to the work of each segment, and the remaining Li/2 time units

are assigned to the light segments.

Figure 2.3 shows an example of the Decomposition algorithm applied to a MTS task which is

shown in Figure 2.3(a).

3
For more details about the model and notations, please refer to Section 1.3.4.

Chapter 2. Related Work 43

thread

Period Ti

Thread’s WCET

Critical Path Length Li

Slack

Segment

Period Ti

Assigned Slack

Segment’s
Intermediate

Deadline

Segment’s
Intermediate

Offset

(a) A Multi-Threaded Segment task.

thread

Period Ti

Thread’s WCET

Critical Path Length Li

Slack

Segment

Period Ti

Assigned Slack

Segment’s
Intermediate

Deadline

Segment’s
Intermediate

Offset

(b) The result of the Decomposition algorithm applied on the task.

Figure 2.3: An example of Decomposition algorithm of Multi-Threaded Segment task model
(from [109]).

Finally, the authors proved that the scheduling of the decomposed constrained-deadline tasks has

a resource augmentation bound equal to 4 in the case of preemptive GEDF scheduling algorithm,

and 4 plus a constant non-preemptive overhead for non-preemptive GEDF scheduling.

Optimizing the Number of Processors for Multi-Threaded Segment Scheduling

Following the same reasoning of the Decomposition algorithm, Nelissen et al. [93] modified the

parallel MTS model by proposing an online optimization algorithm that assigns intermediate

o↵sets and deadlines for segments. Unlike the traditional MTS model, the authors considered

a task model which consists of a sequence of parallel segments, and each segment consists of a

number of di↵erent threads with specific WCETs. The optimization algorithm is proved to be

optimal when the schedulability test is based on task densities. The intermediate deadlines are

assigned to segments in a way that minimizes the number of processors needed for scheduling,

by imposing the average density of the task to the maximum number of segments. As a result,

Chapter 2. Related Work 44

minimizing the density of segments leads to minimizing the number of processors needed to

schedule the task.

The authors provided some generalizations to the task model by applying the optimization algo-

rithm on the DAG model. However, their solution has an exponential complexity and requires

to test all possible segments of a graph in order to compute the optimized segment densities. In

[103], we proposed a Graph-to-Segment transformation which solves this problem and provides

a compatible transformation of DAGs to MTS model which maintains the optimality of the

optimization algorithm and reduces the complexity.

2.3.2.2 Direct Scheduling Approach

The used of indirect scheduling approaches through parallel model transformation requires as-

signing intermediate timing parameters to subtasks/threads of parallel tasks, which causes addi-

tional overhead and a substantial amount of pessimism. In this approach, reducing the execution

interval of a parallel task by dividing it into smaller intervals of threads seems to severely limit

the flexibility of the scheduling. A thread after transformation is forced to execute within an

execution interval limited by intermediate o↵set and deadline, while in reality, the thread can

execute outside this interval. Such problem a↵ects the schedulability of parallel tasks.

A Direct scheduling approach [8, 119] is used in the state-of-the-art to schedule parallel tasks

without transformation in order to adapt scheduling algorithms and analyses to take into con-

sideration dependencies and precedence constraints of tasks. In the remainder of this subsection,

we present the principle researches found in the state-of-the-art regarding the Direct scheduling

approach and we highlight their main contributions.

Worst-Case Response Time of Fork-Join Model

Axer et al. [10] provided a worst-case response time of FJ tasks with arbitrary deadlines when

partitioned preemptive fixed priority scheduling is used. The authors considered a task set that

consists of both traditional independent tasks and parallel FJ tasks that execute on multipro-

cessor systems. The worst-case response time of both tasks (independent and FJ) is calculated

based on the busy-period approach. The definition of busy-period of traditional independent

tasks (from Definition 1.1 on page 4) is modified to the case of FJ tasks as follows:

Chapter 2. Related Work 45

Definition 2.2 (Busy period of a FJ task [10]). A busy period of a FJ task is a time interval

in which all response times of the FJ task depend on the execution of at least one previous

activation in the same busy period, except for the very first activation of the task.

Global EDF Scheduling Analysis for Multi-Threaded Segment Model

In 2012 Andersson and Niz [6] studied the global EDF scheduling of sporadic constrained-

deadline tasks for the Multi-Threaded Segment model on multiprocessor systems. Global EDF

assigns priorities to jobs based on their absolute deadlines and all segments (including their

threads) inherit the same priority as their job. Hence, the scheduling does not depend on the

common approach of assigning intermediate o↵sets and deadlines of segments. The schedula-

bility analysis which led to EDF condition is based on system demand technique from [26, 34]

(Demand Bound Function and its refinements: Maximum and Forced-Forward Demand Bound).

Interference-Based Analysis for Multi-Threaded Segment Model

The concept of interference and problem window of the classical task model was introduced in

[11, 30] and interference bounding techniques in [17, 29]. They expressed the relation between

a given task and the interference from higher priority jobs that may block its execution. Chwa

et al. [44] extended the notion of interference to capture thread-level parallelism more accurately,

by considering the problem of global preemptive scheduling of sporadic synchronous MTS tasks

on a platform of m identical processors. As described earlier, the parallel model defines a task

as a sequence of segments with one or more synchronous threads.

Chwa et al. provided interference definitions and the notion of parallelism-awareness to take

into consideration the precedence constraints within segments of the tasks.

Definition 2.3 (Critical thread). A thread is said to be critical if it finishes last among all the

threads belonging to the same segment.

Based on this definition, the interference definition for a task can be modified to consider the

worst-case scenario in which the parallel task interferes on the critical thread.

Definition 2.4 (Critical Interference). Critical interference Ik(a, b) is the sum of all intervals

in which a critical thread from task ⌧k is ready for execution but cannot execute due to other

higher-priority threads in the time interval [a, b).

Chapter 2. Related Work 46

Due to the structure of parallel MTS tasks, the source of interference on a given thread is hard

to be identified. Hence, Chwa et al. presented a p-depth critical interference which represents

the behavior of parallel execution and allows to figure out exactly how many interfering threads

are executing simultaneously when ⌧i delays the execution of another task ⌧k.

Definition 2.5 (p-depth critical interference). p-depth critical interference Ii,k(p, a, b) of task

⌧i on task ⌧k during interval [a, b) is the cumulative length of all intervals in which (i) a critical

thread of ⌧k is ready to execute but does not, and (ii) exactly p threads of ⌧i are executing.

These interference definitions, which are more adapted to intra-task parallelism of the task

model, are used to derive e�cient global EDF schedulability conditions that are directly appli-

cable to synchronous parallel task models on multiprocessor systems.

New Multi-Thread Task Model

In 2011, Lupu and Goossens [86] presented a new model of the recurrent task model in which

a task consists of a sequence of independent threads. These threads share the same deadline

and each thread is a sequential process that requires a single processor. In this work, the

authors define two di↵erent classes of real-time schedulers for this model which are summarized

as follows:

• Hierarchical schedulers manage tasks with a task-level rule and use a second rule to sched-

ule threads within each task (thread-level rule).

• Global thread schedulers use a single scheduling rule to assign priorities to threads regard-

less of their tasks.

An exact schedulability condition is provided for each class of schedulers. The performance of

these schedulers is also compared with Gang scheduling.

Directed Acyclic Graph Model

In this subsection, we concentrate on the general model of parallel tasks which is the Directed

Acyclic Graphs (DAGs), and we present related work regarding multiprocessor scheduling prob-

lem. The DAG model is more general than the FJ and MTS tasks which are represented as a

sequence of segments. The precedence constraints and dependencies between subtasks of DAG

Chapter 2. Related Work 47

task define the execution flow of the DAG and complicates the scheduling process and analysis

of such tasks.

Baruah et al. [27] in 2012 introduced the problem of scheduling DAG tasks on multiprocessor

systems. The considered model is the sporadic arbitrary-deadline DAG which consists of a set

of dependent vertexes (subtasks or jobs as referred to in the original paper). All vertexes of a

DAG are released simultaneously and have to execute within a specified relative deadline w.r.t.

their release. The authors started by proving that the synchronous arrival sequence, in which

successive jobs are released periodically, is not the worst-case behavior of the sporadic DAG

task.

Since the scheduling problem of the recurrent task model is computationally intractable, e�cient

approximations can be provided as solutions. The authors analyzed EDF scheduling algorithm

and found that it has a resource augmentation bound of at most 2. The authors provided

su�cient polynomial and pseudo-polynomial EDF schedulability conditions which determine

whether a given task set is schedulable by EDF on a platform of m identical processor. The

polynomial EDF condition is proved to have a resource augmentation bound equal to 3 � 1

m .

It is worth mentioning here that the schedulability analysis provided in this paper used two

global timing characteristics of each DAG task which are its critical path length and its total

WCET. The internal structure of DAGs and the exact execution flow of their subtasks are not

considered in the analysis.

GEDF Multiprocessor Scheduling of DAG sets (from [81])

Subsequently, Li et al. [81] studied global preemptive scheduling of a task set of sporadic implicit-

deadline DAGs on platform of m identical processors. This is an extension of the problem pre-

sented in [27], which considered the scheduling of a single arbitrary-deadline DAG task. The

authors analyzed global EDF scheduling of such task sets and proved a resource augmentation

bound equal to 2�(1/m) for arbitrary-deadline DAGs. Moreover, the authors provided a capac-

ity augmentation bound for global EDF equal to 4� (2/m) which can serve as a schedulability

condition. It states that if a DAG set has a total utilization at most m/(4 � (2/m)) and the

critical path length of each DAG is not greater than 1/(4� (2/m)) its deadline, then it can be

scheduled on a machine with m processors under GEDF.

A su�cient global EDF schedulability condition is based on the following lemma which was

inspired from an observation given in [27]:

Chapter 2. Related Work 48

Lemma 2.6. (from [81]) If the total workload Aa
k on the ath job of DAG task ⌧k is bounded by

Aa
k  bmDk � (m� 1)Dk

then this job can meet its deadline on m identical processors with speed of b.

On a system of m processors of speed b, the proof of Lemma 2.6 is based on two straightforward

observations regarding the schedulability of DAGs:

• At each incomplete sub-step4 (at least one processor is idle), the remaining critical path

length for each unfinished job is decreased by 1.

• The total work F t done in an interval of length corresponding to t steps on m processors

of speed b, in which there are t⇤ incomplete sub-steps is defined by the relation:

F t � m(bt� t⇤) + t⇤

� bmt� (m� 1)t⇤

Furthermore, the total workload Aa
k on the ath job of DAG ⌧k (Jk,a) is calculated as follows:

Aa
k = Rk,a +

X

i

uin
k,a
i Di

where:

• nk,a
i is defined as the number of jobs of task ⌧i which are released after the release of job

Jk,a but have deadlines no later than the deadline of Jk,a.

• Rk,a is the total carry-in (jobs which are released before Jk,a but have deadlines later than

Jk,a’s deadline) work from every task ⌧i.

Rk,a 
X

i

ui↵
k,a
i +m.max

i
(↵k,a

i)

where ↵k,a
i is the number of steps between the absolute release time of Jk,a and the absolute

deadline of the carry-in job of task ⌧i.

4
Each time unit (step) is divided into sub-steps based on the speed of processors.

Chapter 2. Related Work 49

GEDF Multiprocessor Scheduling of DAG sets (from [36])

Bonifaci et al. [36] studied the same scheduling problem as in [81]. In this work, the authors

considered a sporadic DAG set on a platform of identical processors. Similarly, this work is an

extension to the research done in [27] and it considers the case of scheduling multiple DAGs.

The authors studied DAG scheduling in case of global preemptive EDF and DM scheduling

algorithms. They proved that global EDF has a resource augmentation bound equal to 2�(1/m)

and 3� (1/m) in the case of global DM. These bounds correspond to the ones obtained for the

traditional model of sporadic independent sequential tasks which was proved in [26, 35, 95] for

GEDF and [26] for GDM.

Moreover, The authors provided schedulability conditions with pseudo-polynomial time com-

plexity accompanied with simple polynomial time su�cient conditions to test global EDF and

DM schedulability.

Based on DAG schedulability analyses from [27, 36, 81], the internal structure of DAGs is not

considered. These researches use the critical path length and the total WCET of DAGs in

the analysis to represent a DAG task. However, we believe that DAG schedulability analysis

can be improved and more adapted to DAGs if more timing parameters about subtasks and

knowledge about their execution flow are included. In Chapter 4, we analyze this assumption

and we provide Direct scheduling analyses for DAGs when the scheduling is aware of the internal

structure of DAGs.

Chapter 3

Scheduling of Parallel Tasks using

Model Transformation

In this chapter, we discuss the scheduling of parallel real-time tasks on homogeneous multipro-

cessor systems using the Model Transformation approach. Generally, the scheduling process of

parallel tasks is not trivial and it is more complicated than multiprocessor scheduling of inde-

pendent sequential tasks because of internal dependencies and precedence constraints of parallel

tasks. The model transformation approach is a pre-step to the parallel scheduling process, and

it consists of converting a parallel task into a collection of independent sequential threads. The

objective of the Model Transformation is to facilitate the scheduling process of parallel tasks by

using common sequential scheduling algorithm for multiprocessor systems and by applying their

scheduling conditions and bounds directly to parallel tasks. Furthermore, the Model Transfor-

mation approach can be used for other purposes such as reducing overhead costs of the system

or reducing the number of processors required for the scheduling process which leads to energy

consumption reduction in the system.

This chapter is organized as follows. In Section 3.1, we provide a detailed introduction re-

garding the Model Transformation approach. In Section 3.2, we remind the reader of our task

model which is the Directed Acyclic Graphs (DAGs). We provide in Section 3.3 a stretching

algorithm for DAGs denoted by DAG-Str (DAG-Stretching) algorithm. We analyze the schedu-

lability of the DAG-Str algorithm with global preemptive scheduling algorithms for periodic

implicit-deadline DAG tasks on homogeneous multiprocessor systems. Furthermore, we provide

a resource augmentation bound analysis for global Earliest Deadline First (GEDF) scheduling

algorithm equal to 3+

p
5

2

for any stretched task set if n < '.m, where ' is the golden ratio, n

51

Chapter 3. DAG Tasks Scheduling using Model Transformation 52

is the number of DAGs in the set and m is the number of remaining processors in the system

after applying the stretching algorithm.

In Section 3.4, we propose a modified version of the DAG-Str algorithm which is denoted by the

Seg-Str (Segment Stretching) algorithm. This algorithm is based on the Model Transformation

approach and it aims at reducing the number of job migrations and preemptions resulting from

applying the DAG-Str algorithm. As in the case of the previous algorithm, we analyze the

performance of Seg-Str algorithm by proving that it has the same resource augmentation bound

as for the DAG-Str algorithm. Finally in Section 3.5, we support these performance analyses

by providing experimental simulation results, in which we compare the schedulability of DAG-

Str algorithm with another algorithm from the state-of-the-art which belongs to the Model

Transformation approach.

3.1 Introduction and Motivation

Based on the basic definition of the real-time task model, an independent periodic constrained-

deadline sequential task generates an infinite number of jobs. Each job is characterized by an

absolute o↵set, a WCET, an absolute deadline and a period. By using these timing parameters

and characteristics, a real-time scheduler can predict the demand of scheduled tasks and the

execution flow of each of their jobs at all times, which enables it to take adapted scheduling

decisions regarding the scheduled task set.

In the case of the parallel DAG model, a DAG task consists of a set of subtasks with precedence

constraints which define the execution order of these subtasks. When a DAG job is activated,

only its source subtasks are activated while the rest of its subtasks are in the ready state waiting

to be activated. A ready subtask is activated when all of its predecessor subtasks complete

their execution. Hence, the activation time of subtask jobs is dynamic based on the scheduling

decisions of the scheduler regarding their predecessors. As a result, the scheduling of DAG

tasks on multiprocessor systems is more di�cult compared to the scheduling of independent

sequential tasks. At any time instant in the execution interval of a DAG set, the scheduler does

not have all necessary information regarding the scheduling process nor the execution flow of

the subtasks, and it is only aware of the currently active subtasks of DAG tasks at a given time

instant, and it has no information about how the successor subtasks will be executed.

Chapter 3. DAG Tasks Scheduling using Model Transformation 53

Another reason causing the DAG scheduling di�culty is that subtasks are only characterized by

their WCET and they inherit the remaining timing parameters from their DAG, such as o↵set,

deadline and period. For example, a subtasks has no intermediate deadline. A DAG deadline

miss occurs whenever a subtask misses the deadline of the DAG. However, the global deadline

miss of the DAG may be avoided by the scheduler if the subtask has its own intermediate

deadline which is earlier than the DAG’s deadline.

In the remainder of this section, we propose a DAG stretching algorithm based on the model

transformation approach which is mainly used to simplify the DAG scheduling problem. Instead

of complicating the scheduling process with dependencies and structure-aware decisions, the

parallel task model is converted into the common independent sequential real-time task model.

According to this, parallel tasks are transformed into a collection of independent sequential

threads. The independence between threads is ensured by assigning them intermediate o↵sets

and deadlines on which the scheduling decisions are taken. As a result, the scheduling process

is simplified and it is considered as the common scheduling problem of independent threads on

multiprocessor systems which has been well studied. Common scheduling algorithms can be

used and their performance analyses can be directly applied to transformed threads.

The idea behind the transformation technique is to define extra timing parameters for subtasks

of parallel tasks to force them to execute independently. A parallel task is transformed into

a sequence of parallel segments characterized by an intermediate o↵set and an intermediate

deadline. Each segment contains a set of threads which are fragments of subtasks of the parallel

task. Subtasks are activated based on their intermediate o↵set and not at the end of their

predecessor subtasks. Threads of the transformed parallel task execute based on intermediate

timing parameters defined by the transformation. It is worth mentioning here that the Model

Transformation approach is a pre-step to the scheduling process which modifies the timing char-

acteristics of the task set, and can be associated to any scheduling algorithm for multiprocessor

systems.

The model transformation can be considered as a trivial approach. However, it su↵ers from a

basic disadvantage which is the loss of model generality due to the modification of the parallel

task model. As described above, the Model Transformation approach consists of adding more

timing parameters to the subtasks of DAG tasks. As a result, the general parallel DAG task

model is transformed into a less general sequential independent model, with extra restricted

local timing parameters.

Chapter 3. DAG Tasks Scheduling using Model Transformation 54

In this chapter, we start by proposing the DAG-Str algorithm which is based on the Model

Transformation approach to schedule periodic implicit-deadline DAG tasks on multiprocessor

systems. This transformation is an extension of the task stretching (Task-Str) algorithm pro-

posed by Lakshmanan et al. [77] (from Subsection 2.3.2) for the Fork-Join parallel task model

(from Subsection 1.3.4.1). The concept of DAG-Str algorithm is to execute parallel tasks as

sequentially as possible so as to avoid parallel executions of tasks. Briefly, the stretched parallel

task is converted into a fully-stretched master thread with utilization equal to 1 and a collection

of independent threads with intermediate o↵sets and deadlines, which will be explained in more

details in the remainder of this chapter.

Then, we analyze the performance of DAG-Str algorithm when global preemptive Earliest Dead-

line First (GEDF) scheduling algorithm is used. We provide a resource augmentation bound

for this scheduling algorithm so as to evaluate the performance of the DAG-Str algorithm.

3.2 Task Model and Notation

In this chapter, we consider the Directed Acyclic Graph (DAG) model of parallel tasks described

in Subsection 1.3.4. More precisely, we consider a task set ⌧ of n periodic DAGs that run on

a system of m identical unit-speed processors. The task set ⌧ is represented by {⌧
1

, ..., ⌧n}.
Each DAG task ⌧i, where 1  i  n, is a periodic implicit-deadline graph which consists of

a set of subtasks under precedence constraints that determine their execution flow. A DAG

task ⌧i is characterized by (ni, {1  j  ni|⌧i,j}, Gi, Di), where ni is the number of DAG’s

subtasks, the second parameter represents the set of subtasks of ⌧i, Gi is the set of directed

relations between these subtasks and Di is the relative deadline of ⌧i. Since each DAG task has

an implicit deadline, its period Ti is the same as its deadline (Ti = Di).

Let ⌧i,j denote the jth subtask of the set of subtasks forming the DAG task ⌧i, where 1  j  ni.

Each subtask ⌧i,j is a single-threaded sequential task which is characterized by a WCET Ci,j .

All subtasks share the same absolute deadline and period of their respective DAG. The total

WCET Ci of DAG ⌧i is defined as the sum of WCETs of its subtasks, i.e., Ci =
n
iX

j=1

Ci,j . Let

Ui denote the utilization of ⌧i where Ui =
Ci

Ti
, and �idenotes its density with �i =

Ci

min(Di, Ti)
.

For an implicit-deadline task, whose deadline is equal to its period, the density of the task is

the same as its utilization, while the density of a constrained-deadline task is �i =
Ci

Di
.

Chapter 3. DAG Tasks Scheduling using Model Transformation 55

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

System Bus

Core 2Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1 Processor 2

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

System
Memory

src src src src

Recurring !
(DAG)

Recurring !
branching

Multiframe !
& GMIndependent

!1,2

!1,1

!1,5

!1,4

!1,3

!1,7

!1,6

3

3

2

1

2

1

2

Figure 3.1: An example of a DAG task ⌧1 which consists of 7 subtasks. The number on
the upper right corner of each subtask represents its WCET and the arrows represent their

precedence constraints.

Based on the structure of DAG tasks, let ⌧master
i denote the critical path (or the master thread)

of DAG ⌧i which is defined as the longest sequential execution path in the DAG when it executes

on a virtual platform composed of an infinite number of processors. Its length Li is the minimum

response time of the DAG, which means that it needs at least Li time units to finish its execution

in the best case. A subtask that is part of the critical path is referred to as a critical subtask,

while non-critical subtasks are the ones executing in parallel with the critical ones.

Based on the execution flow of a DAG when it executes on infinite number of processors, it

can be described as a structure of multiple execution paths. Each path defines the sequential

execution flow of certain subtasks from a source to a sink. These paths intersect each others

and the non-critical subtasks from each path execute in parallel with the master thread ⌧master
i .

For example, Figure 3.2 (on page 59) shows the execution diagram of DAG ⌧
1

(from Figure 3.1)

when it executes on an infinite number of processors. In this example, ⌧
1

consists of 7 subtasks

and 6 execution paths: {{⌧
1,1, ⌧1,4, ⌧1,6} {⌧

1,1, ⌧1,4, ⌧1,7} {⌧
1,2, ⌧1,4, ⌧1,6} {⌧

1,2, ⌧1,4, ⌧1,7} {⌧
1,3, ⌧1,6}

{⌧
1,5, ⌧1,7}}. The master thread of ⌧

1

is either {⌧
1,1, ⌧1,4, ⌧1,6} or {⌧

1,2, ⌧1,4, ⌧1,6} with a length

L
1

= 6. Since both paths are identical w.r.t. their length, we consider the former to be the

master thread of the DAG arbitrarily. Thus, DAG task ⌧
1

needs at least 6 time units in order

to execute on unit-speed processors. Let Sli denote the positive slack time available to DAG ⌧i

when it is scheduled exclusively on an infinite number of processors without interference from

other tasks. Sli is given by:

Sli = Di � Li (3.1)

The slack time of the master thread of a DAG is the same as the DAG’s slack, since it is the

DAG’s longest path. Back to the previous example, if we assume that ⌧
1

has a deadline D
1

= 10,

Chapter 3. DAG Tasks Scheduling using Model Transformation 56

then its slack time is equal to Sl
1

= 4.

A DAG task is said to be feasible if subtasks of all of its jobs respect its deadline Di. For

any given DAG task ⌧i, there are two trivial necessary conditions regarding its scheduling. A

task set ⌧ is deemed unfeasible when scheduled using any scheduling algorithm on m unit-speed

processors if, at least, one of the following conditions is false:

• U(⌧)  m

• 8⌧i 2 ⌧, Li  Di

3.3 DAG Stretching (DAG-Str) Algorithm

Based on our DAG model, subtasks are not assigned their own timing parameters by the model

and they inherit the global parameters of their respective DAGs. During the scheduling process,

subtasks of a DAG task execute within the execution interval of the DAG (between the release

time and the absolute deadline of each DAG job), while the exact activation time of each subtask

is unknown prior to the scheduling process. However, the DAG scheduling can be simplified by

avoiding the internal parallelism of DAG tasks and assigning their subtasks intermediate o↵sets

and deadlines. Hereby, we propose a stretching algorithm for parallel DAG tasks based on the

model transformation approach.

The DAG stretching (DAG-Str) algorithm aims at converting parallel tasks into sequential

threads and getting rid of the parallel structure of the DAGs and the dependencies between

their subtasks. The parallel tasks are forced to execute as sequentially as possible. As for

the model transformation approach, the DAG-Str algorithm is a pre-step of the scheduling

process which is used to transform each DAG into a set of independent constrained-deadline

threads with at most one implicit-deadline fully-stretched master thread (its utilization is equal

to 100%). Each independent thread is assigned intermediate o↵set and deadline to ensure its

execution independence. After the stretching transformation, the scheduling of a DAG task is

done based on the intermediate timing parameters of threads using any real-time scheduling

algorithm, and a task is deemed feasible if all of its jobs respect their assigned intermediate

deadline. Before explaining the concept of our algorithm, we start by analyzing the DAG model

and by identifying its characteristics that led to the stretching algorithm. As stated earlier, the

DAG-Str algorithm is an extended version of a similar stretching algorithm for a special-case

Chapter 3. DAG Tasks Scheduling using Model Transformation 57

of parallel tasks for the Fork-Join model that we presented in detail in Subsection 2.3.2.1 on

page 39.

DAG Stretching Algorithm (DAG-Str)

For a periodic implicit-deadline DAG task ⌧i, the DAG-Str algorithm stretches the master

thread ⌧master
i of a DAG task to its deadline by filling the slack time of the DAG by fragments

of non-critical subtasks. As a result, each remaining non-critical subtask (if any) is divided into

one or more independent threads and they are forced to execute in parallel with the stretched

master thread within a fixed activation interval (between their intermediate o↵set and their

intermediate absolute deadline).

For each DAG task ⌧i 2 ⌧ , if ⌧i has a utilization less than or equal to 1 (Ci  Di), then it fits

completely on a single processor and the stretching algorithm transforms it into a single master

thread which contains all of its subtasks and forces them to execute sequentially in an order

that maintains their execution dependencies. Otherwise, if DAG ⌧i has a utilization greater

than 1 (Ci > Di), then the algorithm fully stretches the master thread of ⌧i up to its deadline

Di. Besides, the stretching algorithm generates a collection of independent constrained-deadline

sequential threads with intermediate o↵sets and deadlines which execute in parallel with the

fully-stretched master thread. The intermediate o↵sets and deadlines are important for the

scheduling process and also to maintain the precedence constraints of DAG ⌧i. Furthermore,

the generated fully-stretched master threads have utilization equal to 1, so, it is only logical

to assign them dedicated processors. The independent sequential threads are scheduled on the

remaining processors of the system using any partitioned or global multiprocessor scheduling

algorithm. In this work, we consider global preemptive EDF scheduling algorithm.

For clarity reasons, the reader is advised to refer to the example in Figures 3.2 and 3.3 in order to

have a better understanding of our DAG stretching algorithm. More details about the example

are provided at the end of this section.

3.3.1 The Multi-Threaded Segment (MTS) Representation

In order to perform our stretching algorithm and to apply it on DAG tasks, we propose to

transform every DAG in the task set into a Multi-Threaded Segment (MTS) representation.

This model transformation of DAGs considers the execution order of subtasks when they execute

on unlimited number of processors according to their precedence constraints. As described

Chapter 3. DAG Tasks Scheduling using Model Transformation 58

previously in Subsection 1.3.4.2 on page 22, a MTS task ⌧ i consists of a sequence of parallel

segments. Each segment consists of a number of parallel threads having the same WCET. Let

Si denote the set of parallel segments of ⌧ i, and si is its total number of segments. Each segment

Si,j , 1  j  si, consists of mi,j threads, and ⌧ki,j denotes the k
th thread of segment Si,j . Threads

which belong to the same segment are characterized by the same WCET value denoted by ci,j .

The number of threads and their WCETs vary from one segment to another, and each segment

contains at least one thread.

In this work, MTS task ⌧ i is not a new task but a representation form of the existing DAG

task ⌧i 2 ⌧ . This is done by considering that all subtasks of ⌧i are executed as soon as possible

on a virtual platform of unlimited number of processors. As a result, each subtask executes

under precedence constraints and does not su↵er from any interference from other subtasks in

the system. For a DAG task ⌧i, its source subtasks are activated at the activation time of

DAG ⌧i. Then, each subtask is activated as soon as its predecessors have completed their own

execution. A segment in the MTS task is defined whenever a subtask finishes its execution.

Thus, threads from the same segment have the same WCET. It is worth noticing that a subtask

may be divided into more than one thread which are executing in successive segments from its

MTS representation ⌧ i. Moreover, since the critical path of DAG ⌧i is the path with the longest

sequential WCET, then the relation between the critical path length Li and segments Si of ⌧i

is given by
X

8S
i,j

2S
i

ci,j = Li. The critical subtasks execute sequentially within the segments of

the task.

Example 3.1.

Figure 3.2 shows the MTS representation ⌧
1

of DAG ⌧
1

from Figure 3.1. Let DAG ⌧
1

be released

at time t = 0 and have a deadline D
1

= 10. Then, its source subtasks {⌧
1,1, ⌧1,2, ⌧1,3, ⌧1,5} are

activated at t = 0 as well. At t = 2, both subtasks ⌧
1,3 and ⌧

1,5 complete their execution and

the first segment S
1,1 is defined. Their successors (subtasks ⌧

1,6 and ⌧
1,7) have to wait for their

predecessor subtask ⌧
1,4 to finish its execution before they can start their own. At time t = 3,

subtasks ⌧
1,1 and ⌧

1,2 finish their execution and subtask ⌧
1,4 starts its own. Segment S

1,2 is then

defined. Finally, at time t = 4, subtasks ⌧
1,6 and ⌧

1,7 are activated, and segments S
1,3, S1,4 and

S
1,5 are defined at times 4, 5 and 6 respectively. The resulting MTS task ⌧

1

is represented as a

sequence of 5 segments. The number and the WCET of threads of each segment are identified

and shown in Figure 3.2. Subtask ⌧
1,1 is spread on multiple segments. It is divided into two

threads executing in segments S
1,1 and S

1,2.

Chapter 3. DAG Tasks Scheduling using Model Transformation 59

0 5

L1 = 6

10

Sl1 = 4

1050

L1 = 6 Sl1 = 4

!15 (2)

!16 (2)!11 (3)

!17 (1)

!14 (1)

!12 (3)

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

 f1,1 = (1/2)*3!
 = 3/2

 f1,5
= 0

 f1,3
= 0

 f1,4
= 1/2

 f1,2
= 1/2

f1 = Sl1 / (C1 - L1) !
 = 4/8 = 1/2

S11!

m11=4
S12!

m12=2
S15!

m15=1
S14!

m14=2
S13!

m13=1

!13 (2)

S13!
m13=1

S12!
m12=2

S15!
m15=1

S14!
m14=2

S11!
m11=4

!14 !16

!12

!15

!13

!11

!17

!11 !16

!12

C1 = 14!
D1 = T1 = 10

Figure 3.2: The Multi-Threaded Segment (MTS) representation ⌧1 of DAG task ⌧1 from
Figure 3.1.

Moreover, the MTS task ⌧ i shares the same deadline Di and period Ti of DAG ⌧i. Hence,

Equation (3.1) regarding the slack Sli of ⌧i remains correct for the MTS task ⌧ i. Also, the total

WCET Ci of the original DAG task ⌧i is the same for ⌧ i, but it can be represented di↵erently

based on the parameters of the MTS task ⌧ i as follows:

Ci =
s
iX

j=1

mi,j ⇥ ci,j

For a given DAG set ⌧ , the DAG-Str algorithm is applied to the MTS form ⌧ i of each DAG

⌧i 2 ⌧ . The algorithm is explained in more details.

3.3.2 The DAG-Str Algorithm

As stated earlier, the DAG-Str algorithm executes DAGs as sequentially as possible. By doing

so, the parallel structure of DAGs is removed and the dependencies between their subtasks are

replaced by intermediate o↵sets and deadlines. The stretching algorithm is done based on the

MTS representation ⌧ i rather than on the DAG structure of ⌧i. Hence, some threads of parallel

segments of ⌧ i are used to fill the slack Sli by adding them to the master thread of ⌧ i. The

remaining threads are assigned intermediate o↵sets and deadlines based on the position of their

segment w.r.t. the master thread. As a result, a subtask ⌧i,j of DAG ⌧i is said to be feasible if

the threads from its corresponding ⌧ i respect their intermediate deadlines.

Chapter 3. DAG Tasks Scheduling using Model Transformation 60
0 5

L1 = 6

10

Sl1 = 4

1050

L1 = 6 Sl1 = 4

!15 (2)

!16 (2)!11 (3)

!17 (1)

!14 (1)

!12 (3)

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

 f1,1 = (1/2)*3!
 = 3/2

 f1,5
= 0

 f1,3
= 0

 f1,4
= 1/2

 f1,2
= 1/2

f1 = Sl1 / (C1 - L1) !
 = 4/8 = 1/2

S11!

m11=4
S12!

m12=2
S15!

m15=1
S14!

m14=2
S13!

m13=1

!13 (2)

S13!
m13=1

S12!
m12=2

S15!
m15=1

S14!
m14=2

S11!
m11=4

!14 !16

!12

!15

!13

!11

!17

!11 !16

!12

C1 = 14!
D1 = T1 = 10

(a) The MTS representation ⌧
i

of task ⌧1 from Figure 3.1 showing the slack factors (f
i

and f
i,j

) derived using the stretching

algorithm.

5 100

L1 = 6

S1,3S1,2 S1,5S1,4S1,1

(1+1/2)1 = 3/2 (1+1/2)1 = 3/2(1+3/2)2 = 5

!11 !12

!15

Sl1 = 4

!13 !17!16!14 !16!12!11

!13

!17!12

(b) An example of the DAG-Str algorithm when applied MTS task ⌧1, showing the resulting the master thread and the

constrained-deadline threads.

Figure 3.3: Example of the DAG stretching algorithm applied on DAG ⌧1 from Figure 3.1.

The implicit-deadline DAG-Str algorithm is divided into two main cases, based on the timing

parameters of the parallel DAG ⌧i and its utilization Ui (the ratio between its total WCET Ci

and relative deadline Di):

• if Ui  1, then DAG ⌧i can be executed as a sequential task, because its total WCET Ci

is less than its deadline Di and it can be contained entirely within it. As a result, the

DAG-Str algorithm transforms subtasks of ⌧i into a single master thread ⌧master
i in which

all of the subtasks are forced to execute sequentially. In this case, the total WCET of the

Chapter 3. DAG Tasks Scheduling using Model Transformation 61

stretched master thread Cmaster
i is equal to Ci and it has the same relative deadline and

period of ⌧i. If Ui is equal to 1, then the master thread is fully-stretched up to its deadline

and the scheduler dedicates an entire processor for its execution. Otherwise, the master

thread is an independent periodic implicit-deadline threads which can be scheduled with

any multiprocessor scheduling algorithm.

It is worth mentioning that the stretching is done directly on the original DAG task ⌧i

and the use MTS representation ⌧ i is not necessary, because the transformation of a DAG

into a chain is trivial.

• if Ui > 1, then it is impossible for DAG ⌧i to be completely transformed into a single

master thread, since its total WCET Ci is larger than its deadline Di. Thus, the stretching

algorithm cannot avoid parallelism in this case. Applying the DAG-Str algorithm on ⌧ i

generates a fully-stretched master thread ⌧master
i in addition to a set b⌧i of constrained-

deadline threads with intermediate o↵sets and deadlines. These extra timing parameters

of each thread are important to keep the dependencies between the subtasks of the original

task, and prevent parallel execution between threads of the same subtask. As in the case

of the stretched master thread which has a utilization equal to 1, the scheduler assigns the

generated fully-stretched master thread to a dedicated processor for its execution, while

the constrained-deadline threads are scheduled independently on the available processors

of the system.

As stated earlier, the DAG-Str algorithm aims at stretching the critical path of task ⌧ i up to

its deadline and create a fully-stretched master thread. In order to do so, certain non-critical

threads from all segments of ⌧ i are used to fill the slack Sli of the task uniformly. To achieve

a uniform filling of the slack, fragments from these threads are added to the master thread. In

the case of parallel tasks with utilization greater than 1, the total WCET Ci of ⌧ i including its

critical path length Li definitely exceeds its deadline Di. The remaining amount of execution

time which can be used to fill the slack is equal to (Ci �Li). We define a unit factor fi of each

execution unit in (Ci � Li) that have to be added to the slack Sli as follows:

fi =
Sli

Ci � Li
=

Di � Li

Ci � Li
(3.2)

<
Di � Li

Di � Li
= 1 � since Ci > Di

Chapter 3. DAG Tasks Scheduling using Model Transformation 62

In order to clarify the meaning of factor fi, consider that each non-critical execution time unit

in task ⌧ i is divided into two parts. First part of length equal to fi is added to the master

thread ⌧master
i and (1 � fi) executes in parallel with ⌧master

i . The total execution time added

from non-critical threads to the master thread is equal to Sli. However, forcing each execution

unit in (Ci�Li) to be interrupted and migrated between processors is not practical, and might

lead to huge migration. So, the filling of the slack is based on the execution requirement of each

segment in the task rather than of the threads directly. We fill the slack with the maximum

number of entire threads from each segment. Thus, at most one thread from each segment will

be partially used to fill the slack. From the MTS representation ⌧ i, each segment Si,j 2 Si 2 ⌧ i

has mi,j threads in which one of them is a critical thread. Hence, the total WCET of non-critical

threads in segment Si,j is equal to (ci,j⇥(mi,j�1)). Based on the definition of fi (from Equation

(3.2)), we conclude that a total of (fi ⇥ ci,j(mi,j � 1)) time units from each segment Si,j 2 Si

will be added to the master thread.

Now, we want to identify how many threads of each segment Si,j are added to the master thread

based on the total execution time of the segment. We identify how many entire threads we can

add to the master thread since the threads of segment Si,j have equal WCETs. Let fi,j denote

the segment factor of Si,j which determines the number of threads to be added to the master

thread:

fi,j =
fi ⇥ ci,j(mi,j � 1)

ci,j

= fi ⇥ (mi,j � 1) (3.3)

According to Equation (3.3), each segment Si,j adds bfi,jc entire threads and a part of a thread of

length (fi,j � bfi,jc)ci,j to the master thread. As a result, the slack Sli of task ⌧ i is completely

filled and a fully-stretch master thread ⌧master
i with utilization equal to 1 is generated. We

conclude that each segment Si,j adds in total (1+fi,j) time units from its threads to the master

thread (including the critical thread), while the remaining threads of the segment execute in

parallel with the master thread. In order to maintain dependencies and precedence constraints

between subtasks of original DAG ⌧i, segments should execute sequentially and the threads of a

segment should finish their execution before the successor segment is activated. Since the master

thread is fully stretched, then it has to no slack and it cannot be delayed. The parallel threads

of a segment have execution window equal to the length of their threads in the master thread.

Chapter 3. DAG Tasks Scheduling using Model Transformation 63

Hence, each segment Si,j has an intermediate relative deadline Di,j calculated as follows:

Di,j = (1 + fi,j)⇥ ci,j (3.4)

From the definition of the MTS model and since segments of a task ⌧ i execute sequentially, the

activation time of a segment is equal to the finish time of its predecessor segment. At any time

t � 0, there is only one active segment from active job of each task ⌧ i 2 ⌧ . According to this,

we can define an intermediate o↵set Oi,j for each segment Si,j 2 ⌧ i based on the intermediate

relative deadlines of the segments, where:

8Si,j : j > 1 ! Oi,j =
j�1X

k=1

Di,k

and Oi,1 = 0 (Relative o↵set w.r.t. the o↵set of DAG ⌧i).

After applying the DAG-Str algorithm, a segment Si,j of ⌧ i is defined by:

• a constrained-deadline thread ⌧master
i,j which is part of the master thread ⌧master

i of ⌧ i, and

has a WCET equal to its relative deadline where Cmaster
i,j = Di,j .

• (mi,j�bfi,jc�2) independent remaining constrained-deadline threads with a WCET equal

to ci,j and a deadline Di,j .

• one remaining thread with WCET equal to (1+bfi,jc�fi,j)ci,j and a constrained-deadline

(1+bfi,jc)ci,j . The remaining WCET is added to the end of the master thread ⌧master
i,j (just

before the deadline of its segment) so as to fill its slack. We can notice that the remaining

thread has a shorter deadline than the other entire remaining threads from the same

segment. This is done so as to force the first part of the thread (which is a constrained-

deadline thread) to finish its execution before the start of the second fragment within

the master thread. As a result, both fragments of the divided thread are guaranteed to

execute sequentially.

For each segment Si,j , the total number of remaining threads in the segment (including the

partial thread), which execute in parallel with the master thread, is given by:

qi,j = mi,j � bfi,jc � 1 (3.5)

Chapter 3. DAG Tasks Scheduling using Model Transformation 64

Accordingly, qi,j independent threads from segment Si,j of task ⌧ i 2 ⌧ are scheduled using

any regular multiprocessor scheduling algorithm. While the fully-stretched master threads are

assigned to dedicated processors. After applying the DAG-Str algorithm on each task ⌧ i 2 ⌧ ,

each task generates at most one fully-stretched master thread. Hence, the total number of fully-

stretched master threads, and the number of their dedicated processors, cannot exceed n, which

is the total number of tasks in the original DAG set ⌧ . As a result, the constrained-deadline

tasks are scheduled on the m remaining processors of the system. The relation between the

remaining processors m and the total number of processors in the system m is given as follows:

m � m� n (3.6)

Algorithm 3.1 shows the DAG-Str algorithm with its steps and the generated threads after

stretching. Its input is the DAG task ⌧i to be stretched and it returns the generated master

thread ⌧master
i (fully-stretched or not) and the set of constrained-deadline threads b⌧i. Now, we

present an example of the stretching algorithm applied to DAG task ⌧
1

.

Example 3.2 (DAG Stretching Algorithm).

We consider the DAG ⌧
1

from Figure 3.1. The DAG-Str algorithm is summarized in three main

steps which are shown in Figures 3.2 and 3.3. We assume that task ⌧
1

is a periodic implicit-

deadline DAG with C
1

= 14 and a deadline D
1

= 10. Its utilization U
1

is equal to 1.4 which is

greater than 1, hence it cannot be completely transformed into a sequential thread and cannot be

executed on a single processor. As a result, it has to be represented by its MTS form ⌧
1

as shown

in Figure 3.2. The subtasks of ⌧
1

execute as soon as possible when we consider an execution

platform of infinite number of processors, and the only blocking e↵ect on a subtask is due to its

predecessors.

The MTS task ⌧
1

consists of 5 segments. Segment S
1,1 has 4 threads with c

1,1 = 2, while the

threads of other segments have WCET equal to 1. Segments S
1,2 and S

1,4 have two threads

and segments S
1,3 and S

1,5 have a single thread. The critical path of ⌧
1

is considered the

master thread ⌧master
1

of ⌧
1

, and its length L
1

, which is equal to 6, represents the sequential

execution time of segments in ⌧
1

. Based on Equation (3.1), the slack Sl
1

is equal to 4. The total

WCET of ⌧
1

is equal to 14 and the non-critical execution time (critical subtasks are excluded)

is equal to 8. According to Equation (3.2), the unit factor of ⌧
1

is equal to f
1

= 4

8

= 1

2

. From

Equation (3.3), factor f
1,j of segment S

1,j depends on the number of its non-critical threads,

where f
1,1 = 1

2

⇥ (4 � 1) = 3

2

, f
1,2 = f

1,4 = 1

2

and f
1,3 = f

1,5 = 0, as shown in Figure 3.3(a).

Chapter 3. DAG Tasks Scheduling using Model Transformation 65

Algorithm 3.1 DAG Stretching (DAG-Str) Algorithm

Input: ⌧i = (ni, {1  j  ni|⌧i,j}, Gi, Di)
Output: ⌧master

i , b⌧i
if Ci == Ti then . Convert DAG ⌧i into a fully-stretched sequential thread

for 8 ⌧i,j 2 ⌧i do
⌧master
i ⌧master

i [{⌧i,j : Ci,j}
end for

else
if Ci < Ti then . Convert DAG ⌧i into a single sequential thread

for 8 ⌧i,j 2 ⌧i do
b⌧i b⌧i [{⌧i,j : Ci,j}

end for
else

⌧ i DagToMTS(⌧i)
. Represent DAG task ⌧i as a multi-threaded segment task ⌧ i.

fi Sl
i

C
i

�L
i

for 8 Si,j 2 Si do
fi,j fi ⇥ (mi,j � 1)
qi,j bfi,jc+ 1
for k = 1 to qi,j do . qi,j threads of segment Si,j are added to the master thread

⌧master
i ⌧master

i [{⌧ki,j : ci,j}
end for
⌧master
i ⌧master

i [{⌧ (qi,j+1)

i,j : (fi,j � bfi,jc)⇥ ci,j}
⌧ tmp
i,j {⌧ (qi,j+1)

i,j : (1 + bfi,jc � fi,j)⇥ ci,j}
Dtmp

i,j (1 + bfi,jc)⇥ ci,j
if j == 1 then

Otmp
i,j Oi

else
Otmp

i,j Oi,(j�1)

+Di,(j�1)

end if
b⌧i b⌧i [⌧ tmp

i,j

for k = (qi,j + 2) to mi,j do
⌧ tmp
i,j {⌧ki,j : ci,j}
Dtmp

i,j (1 + fi,j)⇥ ci,j
if j == 1 then

Otmp
i,j Oi

else
Otmp

i,j Oi,(j�1)

+Di,(j�1)

end if
b⌧i b⌧i [⌧ tmp

i,j

end for
end for

end if
end if

(Omaster
i Oi

(Dmaster
i Di

return (⌧master
i , b⌧i)

Chapter 3. DAG Tasks Scheduling using Model Transformation 66

It is worth noticing that segments with a single thread have factors equal to zero, because they

contain a single critical thread that is already included in the master thread.

Based on the segment factor fi,j, we can identify how many threads to be added to the master

thread from each segment. As described earlier, (1 + fi,j) threads from segment Si,j are used to

fill the master thread. Figure 3.3(b) shows the stretching of task ⌧
1

and its final result. Two

entire threads and a half from segment S
1,1 are added to the master thread where each thread

has a WCET equal to 2. If we consider that the original DAG task ⌧
1

has no o↵set, then the

first segment S
1,1 has no o↵set and its sequential execution time after stretching defines its

intermediate deadline and it is calculated as D
1,1 = 5

2

⇥ 2 = 5. The third thread of segment

S
1,1 (denoted by ⌧

1,3 in Figure 3.3(b)) is divided into two parts of the same length, one is added

to the master thread ⌧master
1

and the other part is an independent constrained-deadline thread

with an o↵set O
1,3 = 0 and a relative deadline D

1,3 = 4. The fourth remaining thread of the

segment has a deadline equal to the deadline of the segment which is 5. The di↵erence between

both threads is that thread ⌧
1,3 has to finish earlier than the deadline of the segment so as to

give its other fragment (the one added to the master thread) enough time to execute. Fragments

from the same thread have to execute sequentially and never in parallel, which is guaranteed by

the assignment of an earlier relative deadline. By applying the same calculations for all of the

segments, we obtain the result in Figure 3.3(b). Segments S
1,2 and S

1,4 add 1

2

thread to the

master thread. This means that there is only one partial thread left to execute in parallel with

the master thread from each segment.

As shown in Figure 3.3(b), the DAG-Str algorithm generates a master thread ⌧master
1

with WCET

and deadline equal to 10, and 4 constrained-deadline threads grouped in set b⌧
1

as follows: b⌧
1

= {{⌧
1,3 : (0, 1, 4, 10)},{⌧

1,5 : (0, 2, 5, 10)},{⌧
1,2 : (5, 0.5, 1, 10)},{⌧

1,7 : (7.5, 0.5, 1, 10)}}, where

each thread is identified by its intermediate o↵set, WCET, intermediate deadline and period.

These threads are scheduled as independent constrained-deadline threads on m processors. In

this example, we consider that task set ⌧ contains a single DAG ⌧
1

which executes on a system

of 2 identical processors. Then the master thread occupies one processor for itself, and the other

is used for the scheduling of the parallel threads, then m = 1 � (2�1) (based on Equation (3.6)).

Lemma 3.1. If a stretched task set is schedulable using any scheduling algorithm on m proces-

sors, then the original DAG task set ⌧ (before stretching) is also schedulable.

Proof. As described above, the DAG-Str algorithm assigns intermediate o↵sets and deadlines for

threads of each DAG in ⌧ without changing their original o↵sets and deadlines. Intermediate

Chapter 3. DAG Tasks Scheduling using Model Transformation 67

o↵sets and deadlines maintain the precedence constraints of the original DAG, which means

that if the stretched task set is schedulable while respecting the intermediate deadlines of the

threads, then the original DAG task set ⌧ must be schedulable as well while respecting the

DAGs’ deadlines.

3.3.3 Resource Augmentation Bound Analysis

In this section, we provide a performance analysis to show the e↵ectiveness of the DAG-Str algo-

rithm by calculating its resource augmentation bound1 (speedup factor) when GEDF scheduling

algorithm is used. The performance of a scheduling algorithm is evaluated based on the cal-

culation of the required increase of processor speed in order to guarantee the schedulability

of feasible task sets. This performance metric is useful for comparing the performance of a

scheduling algorithm with other DAG scheduling approaches and with algorithms found in the

state-of-the-art.

Global Earliest Deadline First (GEDF) Scheduling Algorithm

We analyze the performance of DAG-Str algorithm of parallel tasks by calculating its resource

augmentation bound when preemptive GEDF is used to schedule the constrained-deadline

threads b⌧i generated from each stretched DAG ⌧i 2 ⌧ on m processors of the system, while the

fully-stretched master threads are assigned their own processors. GEDF is a common scheduling

algorithm in real-time systems, despite of its optimality loss when it is used on multiprocessor

systems.

Let b⌧ be the set of all constrained-deadline threads generated after applying the DAG-Str

algorithm on every task in ⌧i 2 ⌧ (fully-stretched master threads are excluded, and implicit-

deadline stretched master threads from tasks with utilization less than 1 are included). We

prove that GEDF scheduling of b⌧ when executing on m processors, has a resource augmentation

bound equal to 3+

p
5

2

for all tasks with n < ' ⇥m, where ' is the golden ratio whose value is

equal to 1+

p
5

2

, the remaining number of processors is denoted by m � m � n, where m is the

original number of processors in the system and n is the number of tasks in the set ⌧ . This

implies that if a task set b⌧ is feasible on m unit-speed processors, then it is schedulable using

GEDF on m processors of speed 3+

p
5

2

. For task sets that do not satisfy the condition n � '⇥m,

1
Check Resource Augmentation Bound Definition 1.3 on page 9

Chapter 3. DAG Tasks Scheduling using Model Transformation 68

a lower bound of speedup factor equal to 4 is available by using the decomposition algorithm

from [108, 109].

Our resource augmentation bound analysis is based on the following su�cient schedulability

condition of GEDF algorithm.

Theorem 3.2 (From [17]). Any sporadic constrained-deadline sequential task set ⌧ , with a total

density �sum(⌧) and a maximum density �max(⌧), is schedulable using preemptive GEDF policy

on m unit-speed processors if

�sum(⌧)  m� (m� 1)�max(⌧)

Theorem 3.3. Let b⌧ be a constrained-deadline task set of n parallel threads with n < '.m which

is feasible on m unit-speed processors. Then, b⌧ is schedulable using GEDF on m processors of

speed greater than or equal to 3+

p
5

2

, where ' = 1+

p
5

2

(the golden ratio).

Proof. Task set b⌧ is a set of independent constrained-deadline threads that is generated after

applying the DAG-Str algorithm. Hence, we can apply the scheduling condition from Theorem

3.2 and it is schedulable on the remaining processors m of the system if:

�sum(b⌧)  m� (m� 1)�max(b⌧)

We start by calculating the maximum thread density �max(b⌧) of all the threads in b⌧ . As stated

earlier, b⌧ consists of two types of threads: implicit-deadline stretched master threads from

DAG tasks with utilization less than 1 and a collection of constrained-deadline threads from

each DAG task with a utilization higher than 1. We consider both cases for calculating the

maximum thread density �max(b⌧):

• Case 1: an implicit-deadline DAG task ⌧i with Ui < 1, is completely transformed into

a single master thread ⌧master
i with the same timing parameters as the original DAG ⌧i.

This means that ⌧master
i has a WCET equal to Ci and a deadline and period equal to Di.

Its density �master
i = Ui, which is definitely less than 1 from our initial assumption. Thus,

�master
i < 1.

Chapter 3. DAG Tasks Scheduling using Model Transformation 69

• Case 2: an implicit-deadline DAG task ⌧i with Ui > 1 is transformed using the DAG-Str

algorithm into a fully-stretched master thread and a set of constrained-deadline threads

with intermediate o↵sets and deadlines. Based on the structure of multi-threaded segment

task ⌧ i, only one segment is active at every time instant t. Each segment Si,j 2 Si 2 ⌧ i,

with mi,j > 1, has at most two types of parallel threads, entire and partial threads. The

threads of segment Si,j (other than the one in the master thread) have a maximum density

�max
i,j of:

�max
i,j = max(�entirei,j , �partiali,j)

= max{ ci,j
(1 + fi,j)ci,j

,
(1 + bfi,jc � fi,j)ci,j

(1 + bfi,jc)ci,j }

= max{ 1

1 + fi,j
,

1� (fi,j � bfi,jc)
(1 + fi,j)� (fi,j � bfi,jc)}

=
1

1 + fi,j
 8 mi,j > 1 (3.7)

From Equation (3.7), the maximum density of threads of segment Si,j in ⌧ i depends on

the segment factor fi,j . From Equation (3.3), fi,j depends on the number of threads in

this segment. Hence, the segment with the smallest number of threads has the highest

density. We can conclude that the highest density of a thread in task ⌧ i belongs to the

segment with the smallest possible number of threads, where mi,j = 2.

�max
i =

1

1 + (fi ⇥ (2� 1))
! from Eq. (3.3)

=
1

1 + fi
(3.8)

From Equation (3.2), we can derive the following relation:

8fi � 0 ! �max
i =

1

1 + fi
and fi � Di � Li

Ci

1

1 + fi
 1

1 + D
i

�L
i

C
i

=
Ci

Ci +Di � Li
 1

(Since Li  Di).

When we consider both cases, the maximum density �max(b⌧) of all threads in b⌧ is:

�max(b⌧) = max
b⌧
i

2b⌧
{�master

i , �max
i }

 1 (3.9)

Chapter 3. DAG Tasks Scheduling using Model Transformation 70

It is worth noticing here that DAG tasks with utilization equal to 1 are not considered in the

previous cases, because the DAG-Str algorithm transforms them into fully-stretched master

threads that are assigned to specific processors, and they are not scheduled using GEDF algo-

rithm. Hence, they are not included in the resource augmentation bound of GEDF scheduling.

The total density �sum(b⌧) of thread set b⌧ is the sum of densities of all threads in b⌧ . At any

time instant t, there is a single active segment from each stretched DAG task whose utilization

is greater than 1, in addition to the stretched master thread from DAG tasks with utilization

less than 1. We calculate the density in the first case by considering the threads of the segment

with the highest density. Let �sumi be the sum of densities of such threads in a certain segment

Si,j in a task ⌧ i:

�sumi  1

1 + fi,j
⇥ (mi,j � 1� bfi,jc) �! from Eq. (3.5)

 mi,j � 1

fi ⇥ (mi,j � 1)

 1

fi

 Ci � Li

Di � Li
 Ci

Di � Li
�! from Eq. (3.2) (3.10)

Now, we consider the second case where DAG task ⌧i has a utilization less than 1 and is

transformed into a periodic implicit-deadline stretched master thread. The density of the task

is denoted by �master =
Ci

Di
 �sumi .

For thread set b⌧ , let �sum(b⌧) be the sum of densities of every DAG task in the original task set

⌧ :

�sum(b⌧) 
X

8U
i

>1

Ci

Di � Li
+

X

8U
i

<1

Ci

Di


X

⌧
i

2⌧

Ci

Di � Li
(3.11)

In order to calculate the resource augmentation bound, we consider that thread set b⌧ executes

on m processors with a minimum speed ⌫, where ⌫ > 1. Increasing the speed of processors

a↵ects the execution parameters of task ⌧i such as Ci and Li, while the relative deadline Di and

period Ti stay the same.

Chapter 3. DAG Tasks Scheduling using Model Transformation 71

The critical path length Li of any task ⌧i has a necessary feasibility condition:

8⌧i : 1  i  n �! Li  Di (3.12)

Otherwise, task ⌧i is not feasible on unit-speed processors.

On a processor that is ⌫ times faster, the critical path length L⌫
i is given by:

8⌧i : 1  i  n �! L⌫
i =

Li

⌫
 Di

⌫
(3.13)

The same notation is applied to the WCET C⌫
i of task ⌧i when it runs on processors ⌫ times

faster:

8⌧i : 1  i  n �! C⌫
i =

Ci

⌫
(3.14)

The total density of task set �sum,⌫ on speed-⌫ processors is:

�sum,⌫(b⌧) 
X

⌧
i

2⌧

C⌫
i

Di � L⌫
i

(3.15)

From Equation (3.13),

81  i  n �! L⌫
i 

Di

⌫
) (Di � L⌫

i) � Di(1� 1

⌫
)

Using this result,

�sum,⌫(b⌧) 
X

⌧
i

2⌧

Ci/⌫

Di(1� 1

⌫)

 1

⌫ � 1

X

⌧
i

2⌧

Ci

Di

 m

⌫ � 1

From Equation (3.9), the maximum density �max,⌫(b⌧) of task set b⌧ on speed-⌫ processors is:

�max,⌫(b⌧) = �max

⌫
 1

⌫
(3.16)

Chapter 3. DAG Tasks Scheduling using Model Transformation 72

Therefore, task set b⌧ is schedulable under global preemptive EDF on m speed-⌫ processors if:

m

⌫ � 1
 m+ n

⌫ � 1
 m� (m� 1)

1

⌫

m

⌫ � 1
+

n

⌫ � 1
 m� m

⌫
+

1

⌫
1

⌫ � 1
+

1

⌫
� 1

m⌫
 1

⌫ � 1
+

1

⌫
 1� n

(⌫ � 1)m
2⌫ � 1

⌫2 � ⌫
 1� n

m(⌫ � 1)

In order to have a positive value for the right hand side of the inequality, we consider the

following:

0 <
n

m(⌫ � 1)
< 1) m >

n

⌫ � 1

2⌫ � 1

⌫2 � ⌫
<1

0 <⌫2 � 3⌫ + 1

⌫ � 3 +
p
5

2
for n < '.m ,where ' =

1 +
p
5

2

where ' is the golden ratio.

This concludes the proof of the resource augmentation bound.

3.4 Segment Stretching (Seg-Str) Algorithm

Based on the DAG-Str algorithm, the stretching of the master thread of a DAG task is done

by filling its slack time with non-critical threads of the DAG. As a result, at most one thread

from each segment in the DAG is forced to be preempted and executes as independent thread.

It then continues its execution within the master thread. This technique ensures that threads

of all segments are used to fill the slack time of the DAG and independent constrained-deadline

threads are assigned a slack time. Until now, we considered that the cost of job preemption and

Chapter 3. DAG Tasks Scheduling using Model Transformation 73

migration between processors is negligible, and it does not add considerable overheads to the

system execution. Hence, we evaluate the schedulability performance of the DAG-Str algorithm

without considering the costs of migration and preemption.

In this section, we present the Seg-Str (Segment Stretching) algorithm which is a modified

version of the DAG-Str algorithm that reduces job migrations and preemptions caused by the

stretching algorithm. Briefly, the Seg-Str algorithm forces a single thread from each stretched

job to migrate between processors, which is less than the number of migrations forced by the

DAG-Str algorithm. First, we start by presenting the Seg-Str algorithm and by explaining it

in details using an example. Then, we compare the performance of both stretching algorithms

w.r.t. schedulability and number of migrations. Finally, we prove that the Seg-Str algorithm

has the same resource augmentation bound as the DAG-Str algorithm when global EDF is used.

3.4.1 Concept and Algorithm

In the case of DAG-Str algorithm, each segment Si,j from MTS task ⌧ i 2 ⌧ participates in the

master thread ⌧master
i with a sum of WCET equal to (1 + fi,j)ci,j . If segment factor fi,j is not

integer (i.e., fi,j > bfi,jc), then a thread from segment Si,j is divided into two fragments, the

first one executes sequentially within the master thread of the task, while the second fragment

executes independently as a constrained-deadline sequential thread.

The Seg-Str algorithm has the same objective of the DAG-Str algorithm. It aims at executing

parallel tasks as sequentially as possible by filling the slack of the DAG with threads from its

segments of its MTS form. It uses the unit and segment factors calculated earlier for DAG ⌧ i (fi

from Equation (3.2) and fi,j from Equation (3.3) respectively). However, the di↵erence between

both stretching algorithms lies in the slack filling step. In Seg-Str algorithm, only entire threads

are allowed to fill the slack except for a single thread which is divided into two threads to allow

a full stretching of the master thread.

Each segment Si,j 2 Si 2 ⌧ i participates in the master thread with (1 + bfi,jc) entire threads.

Let Crem
i denote the remaining non-critical WCET after the entire threads are used to fill the

slack time Sli, where:

Crem
i =

X

8S
i,j

2S
i

(fi,j � bfi,jc)ci,j (3.17)

From this formula, we conclude that Crem
i is less than the sum of sequential WCET of each

segment with mi,j greater than (1 + fi,j). Otherwise, there will be no remaining slack time

Chapter 3. DAG Tasks Scheduling using Model Transformation 74

needed to be filled. So, instead of distributing the Crem
i value on all of these segments fairly, as

in the case of the DAG-Str algorithm, the Seg-Str algorithm calculates the maximum number

of entire segments that can be added to the master thread and it identifies the segment from

which a thread will be divided into two fragments (if necessary). Let Si,x be the segment which

contains the divided thread that is used to fully stretch the master thread to its deadline. Let

xi be the thread factor where (xi ⇥ ci,x) time units are added to the master thread. These 2

values can be calculated using an iterative algorithm shown in Algorithm 3.2.

From each segment Si,j which is a predecessor of segment Si,x (i.e., j < x), an entire thread

is added to the master thread. Hence, the number of entire threads that execute within the

master thread is equal to (1+dfi,je). From Segment Si,x, the thread, whose index is (1+dfi,je),
is divided into two fragments, one executes independently and the other within the master

thread. Finally, successor segments of Si,x (whose indexes are lower than x) remain unchanged

and (1 + bfi,jc) entire threads are added to the master thread. In conclusion, one thread at

most from all segments of ⌧ i is forced to migrate between processors due to the unfair filling of

the slack time from segments.

Algorithm 3.2 Procedure to calculate xi and Si,x for the Segment Stretching (Seg-Str) Algo-
rithm
Input: ⌧ i
Output: xi, Si,x

Crem
i

X

8S
i,j

2S
i

(fi,j � bfi,jc)ci,j

for 8 Si,j 2 Si do
if mi,j > (1 + fi,j) then

if Crem
i < ci,j then
Si,x Si,j

xi Crem

i

c
i,j

break
end if

end if
Crem
i Crem

i � ci,j
end for
return (xi, Si,x)

Chapter 3. DAG Tasks Scheduling using Model Transformation 75

For any segment Si,j 2 Si, its local intermediate deadline Di,j depends on its execution position

w.r.t. segment Si,x. It is defined as follows:

Di,j =

8
>>>>><

>>>>>:

(dfi,je+ 1)ci,j , j < x

(dfi,je+ xi)ci,j , j = x

(dfi,je)ci,j , j > x

(3.18)

After applying the Seg-Str algorithm, a segment Si,j of ⌧ i consists of the following threads:

• a constrained-deadline thread ⌧master
i,j which is part of the master thread ⌧master

i with a

WCET ci,j equal to its relative deadline Di,j .

• ni,j independent constrained-deadline threads with a WCET ci,j and a relative deadline

Di,j , where ni,j is defined as follows:

ni,j =

8
><

>:

(mi,j � dfi,je � 1), j < x

(mi,j � dfi,je), j � x

(3.19)

• if segment Si,j = Si,x, then it has an extra independent constrained-deadline thread whose

WCET is equal to (1�xi)ci,j and its relative deadline is equal to dfi,jeci,j . As in the case

of DAG-Str algorithm, the deadline of the partial thread is shorter than the deadline of its

segment, so as to prevent the two fragments of the same thread from executing in parallel,

and force them to execute sequentially.

Example 3.3 (Segment Stretching Algorithm).

In the example of Figure 3.4, we compare the Seg-Str algorithm with the DAG-Str algorithm.

We consider a MTS task ⌧
1

which consists of 3 segments as shown in Figure 3.4(a). Segment

S
1,1 consists of 4 threads with c

1,1 = 1. The second segment S
1,2 has 3 threads of c

1,2 = 2 and

finally segment S
1,3 consists of 2 threads with c

1,3 = 1. Task ⌧
1

has an implicit-deadline equal to

9, a critical path length L
1

equal to 4 and a slack time Sl
1

equal to 5. We should mention here

that we considered a MTS task directly and not the DAG task. We can imagine that ⌧
1

is the

MTS representation form of a DAG task ⌧
1

with a total WCET C
1

equal to 12 and a deadline

equal to 9, and precedence constraints between subtasks translated into the MTS form in Figure

3.4(a). We ignored the exact structure of the DAG task since it does not a↵ect the stretching

algorithms.

Chapter 3. DAG Tasks Scheduling using Model Transformation 76

0 5 9

950

Sl1 = 5L1 = 4

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

S11!
m11=4

S12!
m12=3

S13!
m13=2

 f1,1 =!
15/8

 f1,3 =
5/8

 f1,2 = !
10/8

S13S11 S12

thread migration

(1 + df1,1e)c1,1 (xi + df1,2e)c1,2 df1,3e ⇤ c1,3

C1 = 12!
D1 = T1 = 9

(a) Multi-Threaded Segment (MTS) task ⌧1.

0 5 9

Sl1 = 5L1 = 4

S11 S12 S13

thread migration

thread migration

(1 + fi ,j)ci ,j

(b) DAG-Str algorithm.

0 5 9

950

Sl1 = 5L1 = 4

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

S11!

m11=4
S12!

m12=3
S13!

m13=2

 f1,1 =!
15/8

 f1,3 =
5/8

 f1,2 = !
10/8

S13S11 S12

thread migration

(1 + df1,1e)c1,1 (xi + df1,2e)c1,2 df1,3e ⇤ c1,3

C1 = 12!
D1 = T1 = 9

(c) Seg-Str algorithm.

Figure 3.4: Example of Seg-Str algorithm.

Chapter 3. DAG Tasks Scheduling using Model Transformation 77

Based on the timing parameters of task ⌧
1

, its non-critical WCET is equal to 8 and its unit

factor f
1

is equal to
5

8
. From Equation (3.3), the factor of each segment is calculated as:

f
1,1 =

15

8
, f

1,2 =
10

8
and f

1,3 =
5

8
. Starting by the DAG-Str algorithm, the result of our

stretching algorithm is shown in Figure 3.4(b). Based on the distribution factors of segments,

segment S
1,1 has 2 entire threads in the master thread in addition to a partial thread of WCET

equal to
7

8
. The remaining independent threads of this segment are two threads, the first has

a WCET equal to 1

8

and a deadline equal to 2, while the other has a WCET equal to 1 and a

deadline equal to 23

8

. As shown in the figure, a fragment of the first thread is forced to migrate

to execute within the master thread, this thread migration is shown by a directed arrow in the

figure. Similarly, segment S
1,2 adds two entire threads into the master thread in addition to 1

2

execution time unit which is part of a single remaining thread. This thread has a WCET equal

to 3

2

time units and a deadline equal to 4. Finally, segment S
1,3 generates a single independent

remaining thread with a WCET equal to 5

8

time units and a deadline equal to 1. From this

example, we can notice that each segment of task ⌧
1

has a partial remaining thread, and there

are 3 forced migrations of threads so as to fully stretch the master thread.

Figure 3.4(c) shows the result of applying the Seg-Str algorithm on the same task ⌧
1

. Based on

the distribution factor of each segment, the remaining non-critical WCET Crem
i is equal to 2

time units, and it is calculated as Crem
i = (7

8

+ 2 ⇥ 2

8

+ 5

8

) = 2 (refer to Equation (3.17)). It

is clear that this value is strictly less than the sequential execution time of segments which is

equal to (1 + 2 + 1) = 4. Instead of dividing the Crem
i on the three segments of ⌧

1

, we calculate

the values Si,x and xi that determine which segment contains a partial thread (if any). Starting

from the first segment S
1,1, it has c

1,1 = 1 which can be used entirely to fill the master thread.

Consequently, the remaining WCET Crem
i is updated to be equal to (2� 1) = 1. The number of

remaining threads n
1,1 is calculated from Equation (3.19), it is equal to n

1,1 = (4�d15
8

e�1 = 1).

Then we consider the second segment S
1,2 whose WCET c

1,2 is equal to 2. Segment S
1,2 cannot

be added entirely to the master thread because its sequential WCET is greater than the remaining

WCET Crem
i . Based on Algorithm 3.2, segment S

1,2 is considered as S
1,x and x

1

is calculated

as
Crem
1

c
1,2

=
1

2
. According to this, a thread from this segment is divided into two parts of the

same length, the first one is added to the end of the segment’s master thread ⌧master
1,2 with WCET

equal to 1

2

⇥ 2 = 1. The second half is an independent constrained-deadline thread with WCET

equal to (1� 1

2

)⇥2 = 1 and a deadline equal to (d10
8

e⇥2) = 4. The number of remaining threads

n
1,2 from this segment is equal to 3� d10

8

e = 1.

Chapter 3. DAG Tasks Scheduling using Model Transformation 78

Regarding the last segment, S
1,3 is a successor of segment S

1,x, hence there is no remaining

WCET (Crem
1

= 0). Only d5
8

e entire threads from this segment are added to its master thread

⌧master
1,3 . As shown in Figure 3.4(c), there is a single remaining independent thread with WCET

equal to c
1,3 = 1 and its deadline is equal to 1 as well.

From this example, we can notice how the Seg-Str algorithm succeeds in reducing the number

of forced migrations compared to the DAG-Str algorithm. As shown in Figure 3.4(b), there

are 3 thread migrations due to the DAG-Str algorithm, which is proportional to the number of

segments s
1

in the MTS task ⌧
1

. However, it is guaranteed that a single migration is forced

by applying the Seg-Str algorithm, and this is independent from the number of segments in the

task, as shown in Figure 3.4(c).

3.4.2 Resource Augmentation Bound Analysis

In this section, we analyze the performance of the Seg-Str algorithm by calculating its resource

augmentation bound (speedup factor). We prove that the modifications we have done to the

DAG-Str algorithm that led to the Seg-Str algorithm do not a↵ect its resource augmentation

bound analysis. In the case of global preemptive EDF (GEDF) scheduling algorithm on mul-

tiprocessor systems, the Seg-Str algorithm has a resource augmentation bound equal to 3+

p
5

2

under certain conditions as stated in Theorem 3.3 on page 68.

For a given DAG set and based on the concept of the Seg-Str algorithm, we can notice that the

generated fully-stretched master threads are identical to the ones generated by the DAG-Str

algorithm. Hence, the number of processors dedicated to these master threads remain the same,

and the number of available processors for the set b⌧ of independent periodic constrained-deadline

threads is equal to m (where m is defined in Equation (3.6)). The DAG tasks whose utilization

is less than 1 are transformed into a single sequential master thread as in the case of DAG-Str

algorithm.

The only di↵erence lies in the constrained-deadline threads that belong to b⌧ . The timing

characteristics of these threads change when they cease to migrate between processors. In the

remainder of this section, we prove that the timing changes do not a↵ect the upper bounds

of thread densities, in particular the maximum density of the threads �max(b⌧) and the total

density �sum(b⌧) of task set b⌧ , which lead to the same resource augmentation bound based on

GEDF schedulability condition from Theorem 3.2 on page 68.

Chapter 3. DAG Tasks Scheduling using Model Transformation 79

Lemma 3.4. For a given set b⌧ of independent constrained-deadline threads generated by Seg-Str

algorithm, the maximum thread density �max(b⌧) has the following upper bound:

�max(b⌧)  1

Proof. After applying the Seg-Str algorithm, the threads of set b⌧ are divided into two two

categories based on their corresponding DAG tasks:

• Case 1: if DAG task ⌧i has a utilization Ui less than 1, then it is completely stretched to

a single implicit-deadline master thread b⌧master
i . The density of this thread is �master

i =

Ui < 1.

• Case 2: if DAG task ⌧i has a utilization Ui greater than 1, then the density of its threads

depends on their corresponding segment and its relation with segment Si,x. Threads of any

segment Si,j , which is a predecessor of Si,x, have a density equal to
ci,j

(1 + dfi,je)ci,j . If seg-

ment Si,j is a successor of Si,x, then the density of its threads is equal to
ci,j

dfi,jeci,j . Finally,

segment Si,x has two types of threads, entire threads with density equal to
ci,j

(xi + dfi,je)ci,j ,

and a partial thread with density equal to
(1� xi)ci,j
dfi,jeci,j .

Based on these densities and knowing that (0  xi < 1), the maximum thread density �max(b⌧)

is:

�max(b⌧) = max(
1

(1 + dfi,je) ,
1

dfi,je ,
1

(xi + dfi,je) ,
(1� xi)

dfi,je)

 1

dfi,je  1

which includes the density bound calculated in Case 1, and the lemma is proved.

Lemma 3.5. For a given set b⌧ of independent constrained-deadline threads generated by the

Seg-Str algorithm, the total density �sum(b⌧) of thread set is:

�sum(b⌧) 
X

⌧
i

2⌧

Ci

Di � Li

Chapter 3. DAG Tasks Scheduling using Model Transformation 80

Proof. Based on the structure of the implicit-deadline Multi-Threaded Segment task, only one

of its segments is active at any time instant t, and the threads of a segment cannot start their

execution before the completion of their predecessor segments. Hence, the total density (�sumi)

of a MTS task ⌧ i cannot exceed the maximum density of its segments Si. From Lemma 3.4, the

maximum density of any thread in b⌧i cannot exceed 1

df
i,j

e . From Equation (3.19), the maximum

number of threads in any segment Si,j 2 ⌧ i cannot exceed (mi,j � dfi,je), which is a successor

segment of Si,x. According to this, the total density of ⌧ i is:

�sumi  mi,j � dfi,je
dfi,je

Since, dfi,je � 1 and dfi,je � fi,j , then,

�sumi  mi,j � 1

fi,j

 1

fi
 from Eq. (3.3)

 Ci

Di � Li

The total density of the set b⌧ is calculated as:

�sum(b⌧) 
X

8b⌧
i

2b⌧

Ci

Di � Li

which concludes the proof.

Based on these two lemmas, we prove that the Seg-Str algorithm has the same resource aug-

mentation bound as the DAG-Str algorithm when GEDF scheduling algorithm is used.

Theorem 3.6. When the Seg-Str algorithm is applied, if a constrained-deadline task set b⌧ of

parallel threads is feasible on m unit-speed processors, with n < ' ⇥m, where ' = 1+

p
5

2

(the

golden ratio) and n is the number of DAGs in task set ⌧ , then b⌧ is schedulable using GEDF on

m processors of speed at least 3+

p
5

2

.

Proof. The resource augmentation bound of global EDF scheduling algorithm is based on its

su�cient schedulability condition from Theorem 3.2. This condition depends on the number

of processors of the system, on the maximum thread density �max(b⌧) and on the total density

�sum(b⌧) of thread set b⌧ . Based on the Seg-Str algorithm, the number of processors m available

for b⌧ is the same as for the DAG-Str algorithm and it is shown in Equation (3.6).

Chapter 3. DAG Tasks Scheduling using Model Transformation 81

Regarding the maximum thread density and the total density of the set, these values have the

same upper bounds as the ones calculated in the case of the DAG-Str algorithm. By comparing

the result of Lemma 3.4 with the DAG-Str upper bound from Equation (3.9), we conclude

that both stretching algorithms have the same upper bound, since the maximum density of any

thread in b⌧ cannot exceed 1.

Similarly, both algorithms have an upper bound of the total density of the set which is equal to
X

8b⌧
i

2b⌧

Ci

Di � Li
, as shown in Lemma 3.5 and Equation (3.11).

By using these upper bounds and by following the same proof of Theorem 3.3, the Seg-Str

and the DAG-Str algorithms have the same resource augmentation bound, which concludes the

proof.

3.5 Simulation-Based Evaluation

In this section, we provide simulation-based evaluations for the Stretching algorithms used

for DAG scheduling. We support our theoretical analysis of resource augmentation bounds

of these algorithms by performing extensive simulations. We start by the DAG-Str algorithm

and we compare its performance with the Decomposition algorithm2 (DCMP) which belongs to

the Model Transformation approach of DAG scheduling. The simulation results proved that the

DAG-Str algorithm has better schedulability than the DCMP algorithm w.r.t. system utilization

and to the number of processors. Then, we evaluate the schedulability performance of the Seg-

Str algorithm w.r.t. the DAG-Str algorithm. The simulation results confirm our theoretical

analysis, and both stretching algorithms have relatively similar schedulability success rates.

In order to perform the simulation experiments, we use YARTISS, our real-time simulation

tool. The generation of DAG tasks is done randomly so as to guarantee the reliability of

the experimental results. In Chapter 5, we explain in detail YARTISS simulator and its task

generator classes. We use UUniFast-Discard algorithm [33] which fairly distributes the system

utilization on its tasks, to be used afterward to compute their timing parameters (WCET,

deadline and period). We also use the Hyper-period Limitation Technique [62] in the assignment

of task periods so as to limit the length of their hyper period. In these simulations, we considered

an execution interval of length equal to twice the length of the hyper period.

2
For more details, please refer to Subsection 2.3.2.2 on page 46.

Chapter 3. DAG Tasks Scheduling using Model Transformation 82

In this section, we considered global preemptive EDF scheduling algorithm which is used on

execution platforms of multiple identical processors. In Chapter 5, we perform more experiments

to evaluate the schedulability performance of our stretching algorithms compared to scheduling

algorithms using the Direct Scheduling approach3. Furthermore, we show simulation-based

evaluations of these algorithms when global Deadline Monotonic scheduling algorithm is used.

This scheduling algorithm belongs to the Fixed Task Priority family while EDF belongs to the

Fixed Job priority family.

3.5.1 DAG-Str Algorithm

In order to analyze the schedulability performance of the DAG-Str algorithm, we chose to

compare it through simulation with the Decomposition (DCMP) algorithm. Both algorithms

belong to the Model Transformation approach of DAG scheduling and they aim at avoiding

the inter-subtask dependencies within DAG tasks by converting the model into independent

sequential threads with intermediate timing parameters. As described earlier in Subsection

2.3.2.2, the DCMP algorithm distributes the slack time of a MTS task ⌧i on its segments in a

way that guarantees an upper bound of segment density equal to 2C
i

D
i

. Based on the slack time,

the DCMP algorithm assigns intermediate o↵sets and deadlines to threads of each segment in

the task.

In these simulation experiments, we consider execution platforms of m identical processors,

wherem = {2, 4, 8, 16}. We vary system utilization U(⌧) as a percentage of number of processors

m, where U(⌧) = {20%, 40%, ..., 100%} of m. For each system utilization, we generate 100,000

random DAG sets using YARTISS which are scheduled using GEDF algorithm.

DAG-Str Algorithm vs. DCMP Algorithm

The first simulation results are provided in Figure 3.5. They are obtained by varying two

scheduling parameters; the number of unit-speed processorsm on which DAG sets are executing,

and the system utilization where the maximum utilization of a task set is equal to m. Figure

3.5 shows the results between the DAG-Str algorithm and the DCMP algorithm. For a given

DAG set, both algorithms are applied first, then the scheduling simulation is performed on the

generated threads, based on their intermediate timing parameters. It is worth noticing that the

DCMP algorithm does not generate fully-stretched threads with utilization equal to 1, hence its

3
The Direct Scheduling approach of DAG scheduling is explained in Chapter 4.

Chapter 3. DAG Tasks Scheduling using Model Transformation 83

Figure 3.5: Comparison results of GEDF scheduling simulation between the DAG-Str algo-
rithm and the DCMP algorithm.

thread set executes on all m processors of the system. While the DAG-Str algorithm executes

on m processors (where m is less than or equal to m from Equation (3.6)). Figure 3.5 shows the

success rate of schedulable DAG sets with GEDF on m processors (from 2 to 16). The x-axis

of the figure represents the system utilization (its percentage w.r.t. the maximum utilization

which is equal to m). In order to simplify the reading of results, the schedulability of DAG-Str

algorithm is represented by solid curves in the figure and the schedulability of DCMP algorithm

by dashed curves. Furthermore, every number of processors m is represented by a symbol for

both scheduling algorithms. We chose a round symbol for m = 2, a triangle symbol for m = 4,

an inverted triangle symbol for m = 8 and a square symbol for m = 16.

Based on the results of our simulations, we notice that the performance of DAG-Str algorithm

is better than the DCMP algorithm for the scheduling of the DAG tasks, and the percentage of

schedulable stretched task sets are higher than the decomposed ones. In general, the percentage

of schedulable task sets decreases when the number of processors increases for both algorithms.

For example, when m = 2, more than 90% of stretched task sets are schedulable when system

utilization is equal to 80% and around 85% of decomposed task sets are schedulable for the same

utilization. However, when m = 16, task sets with utilization higher than or equal to 40%, the

schedulability percentage plummets. We can notice that the DAG-Str algorithm is less a↵ected

compared to the DCMP algorithm when the number of processors increases. The schedulability

gap between both algorithms increases with the number of processors in the system.

Chapter 3. DAG Tasks Scheduling using Model Transformation 84

Figure 3.6: Simulation results show the e↵ect of processor speed on the schedulability of the
DAG-Str algorithm.

The e↵ect of varying the speed of processors on DAG-Str schedulability

Here, we analyze the e↵ect of increasing the speed of processors on the schedulability of stretched

DAG tasks when DAG-Str algorithm is used. Based on the resource augmentation bound

of DAG-Str, the schedulability of stretched DAG tasks increases as a function of the speed

of processors, and feasible task sets become schedulable using GEDF when processor speed

⌫ > 3+

p
5

2

. In these experiments, we increased the speed of processors from ⌫ = 1 up to 4

by steps of 1, while varying the number of processors and system utilization as in the above

simulations.

The simulation results are shown in Figure 3.6. For each m from 2 to 8, we simulate GEDF

scheduling for task sets of maximum utilization equal to m. Based on simulation results from

Figure 3.5, task set of such utilization have the least success schedulability rates, and this

utilization value is considered as the worst case when processors are loaded. As shown in Figure

3.6, schedulability of stretched task sets increases when the speed of processors increases. In

the case of m = 2 and m = 4, a success rate of almost 100% is achieved when the speed of

processors ⌫ � 2, while we need a processor speed equal to 4 for m = 8. When ⌫ � 4, all

task sets become schedulable when DAG-Str algorithm is used. The speedup factor of DAG-Str

algorithm with GEDF is represented by a vertical line at t = 2.618 in the figure. After this

time instant, the schedulability rate of m  4 is equal to 100%. In the case of m = 8, the

schedulability is more than 70%, which can be explained by the necessary utilization condition

Chapter 3. DAG Tasks Scheduling using Model Transformation 85

(U(⌧)  m) of DAG tasks. As to be shown later in Example 4.5 (on page 113), there exist DAG

sets, whose utilization is equal to U(⌧) = m, that are not feasible on m unit-speed processors.

3.5.2 Seg-Str Algorithm vs. DAG-Str Algorithm

In this section, we compare the Seg-Str algorithm with the DAG-Str algorithm. In these simula-

tions, we aim at applying our Seg-Str algorithm on DAG tasks and compare their schedulability

with the DAG-Str algorithm while varying system utilization during simulation. We proved ear-

lier in this chapter than both stretching algorithms have the same resource augmentation bound.

Hereby, the simulation experiments can be an additional indication regarding the schedulability

performance of these algorithms.

We considered 4 identical processors with task set utilization varies from 0.025 to 0.975 times

the number of processors in steps of 0.025. For each utilization value we run 10,000 task sets

each of 16 parallel tasks with implicit deadline which leads to 4,000,000 task sets in total.

Then, we performed scheduling simulations for GEDF algorithm. The scheduling results are

shown in Table 3.1. We can notice, that both stretching algorithms are not comparable. In

other words, Seg-Str may successfully schedule task sets that are not schedulable by DAG-Str

algorithm, and vice versa. Also, the di↵erence in the number of scheduled task sets between

both algorithms is minor compared to the total number of generated task sets. For example,

the Seg-Str schedules more task sets than the DAG-Str for all system utilization Ui  0.350.

Otherwise, the DAG-Str algorithm performs better. In general, the schedulability of DAG-Str

algorithm is slightly better than the Seg-Str algorithm for more system utilization. These results

show that both algorithms have the same schedulability rate and performance, this complies

with the concept of the Seg-Str algorithm which is designed in the aim of reducing the scheduling

overheads due to migrations and preemptions of jobs without a↵ecting the schedulability success

rate of the algorithm.

Regarding execution overheads due to migrations and preemptions, we did not perform exper-

imental simulations in order to prove the out-performance of the Seg-Str algorithm over the

DAG-Str algorithm. Since, the design concept of the Seg-Str algorithm aims at reducing the

number of migrations. At most, one thread preemption was forced in the Seg-Str algorithm

from each stretched DAG. While a thread from each segment of stretched DAGs are forced to

preempt and migrate to master thread when the DAG-Str algorithm is applied.

Chapter 3. DAG Tasks Scheduling using Model Transformation 86

Ui DAG-Str Seg-Str Ui DAG-Str Seg-Str
0.050 10, 000 10, 000 0.550 9756 9741
0.100 10, 000 10, 000 0.600 9741 9724
0.150 9989 9997 0.650 9102 9071
0.200 9982 9990 0.700 8730 8716
0.250 9980 9988 0.750 8182 8160
0.300 9932 9949 0.800 7690 7615
0.350 9908 9913 0.850 6753 6719
0.400 9882 9880 0.900 5980 5883
0.450 9846 9832 0.950 5183 5126
0.500 9801 9794 1.000 4390 4389

Table 3.1: Scheduling comparison between DAG-Str algorithm and the Seg-Str algorithm.

3.6 Summary

In this chapter, we discussed the scheduling of parallel DAG tasks on multiprocessor systems

using the Model Transformation approach. We started by proposing the DAG Stretching (DAG-

Str) algorithm which is based on the Task Stretching (Task-Str) algorithm proposed by Laksh-

manan et al. [77]. The DAG-Str is more general than the Task-Str since it considers DAG tasks

instead of the parallel FJ tasks. We proposed to use the DAG-Str algorithm with the GEDF

scheduling algorithm and we provided a resource augmentation bound as a performance metric.

Then, we proposed the Segment Stretching (Seg-Str) algorithm which is a modified version

of the DAG-Str algorithm. The objective of this modification was to reduce the number of

thread migrations and preemptions, when compared to the DAG-Str algorithm. Finally, the

performance of the stretching algorithms had been evaluated using extensive simulations.

Chapter 4

Direct Scheduling Approach of

Parallel DAG Tasks

In this chapter we discuss another scheduling approach for parallel DAG tasks which is called the

Direct Scheduling. Unlike the Model Transformation approach1, Direct Scheduling approach

aims at scheduling parallel DAG tasks on multiprocessor systems using real-time scheduling

algorithm directly on DAGs without modifying their model or their timing characteristics. The

Model Transformation approach converts the parallel DAG model into a simplified independent

sequential model to avoid the internal dependencies within the parallel tasks. This transforma-

tion facilitates the scheduling process of parallel tasks at the expense of generality loss of the

DAG model.

In Direct Scheduling approach, the scheduling of parallel DAGs is done without any modifica-

tion of the model, and the scheduler can be aware of the intra-task parallelism of such tasks and

the precedence constraints that determine the execution order of their subtasks. Despite that

regular multiprocessor scheduling algorithms such as EDF and FP are originally designed for

independent sequential tasks and are not adapted for parallel tasks, they are still widely consid-

ered in many parallel scheduling researches such as [27, 36, 44, 81, 82]2. However, if knowledge

regarding internal execution structure of parallel tasks is not included in the scheduling process

and analyses, the proposed schedulability conditions and performance bounds can be deemed

pessimistic. To the best of our knowledge, recent researches on parallel tasks in general and on

1
For more details, refer to Chapter 3 “Scheduling of Parallel Tasks using Model Transformation”.

2
For more details regarding the about related works, please refer to Section 2.3 on page 31.

87

Chapter 4. Direct Scheduling of DAGs 88

DAG tasks in particular, concentrate mainly on the external structure of tasks rather than on

their internal structure.

In this chapter, we are interested in analyzing the importance of the internal structure of

parallel tasks when common scheduling algorithms are used to schedule them on multiprocessor

systems. Moreover, we focus on global preemptive scheduling of sporadic constrained-deadline

DAG tasks using EDF scheduling algorithm mainly (or any work conserving algorithm). We

consider a DAG model of parallel tasks which assigns global timing parameters to DAGs and

not to their subtasks. For example, each DAG task is assigned a relative deadline which is

also used by its subtasks. One of our contributions is to provide DAG scheduling analyses

which considers the execution order of subtasks due to the dependencies between them. In

order to achieve this, we add extra local timing parameters to subtasks which are derived from

the global parameters of their corresponding DAGs, so as to identify their execution order. In

Section 4.1, we define the following local parameters for each subtask in the system: the earliest

activation time (local o↵set), the latest possible finish time (local deadline) and release jitter.

These local timing parameters are di↵erent from the intermediate parameters assigned by the

stretching algorithms from the Model Transformation approach because local parameters tend

to define the maximum execution interval of each subtask based on its precedence constraints

and without imposing any external intermediate timing constraints.

Then in Section 4.2, we study the Direct Scheduling at DAG-Level, in which real-time algorithms

take scheduling decisions based on global timing parameters of DAGs. Also in this section, we

analyze GEDF schedulability condition from [81] of DAG tasks on multiprocessor systems, which

was provided originally by considering the external structure of DAG tasks. In this section, we

revise the schedulability analyses while taking into consideration the internal structure of DAGs

and the precedence constraints between their subtasks. As a result, we provide a more adapted

and tighter schedulability condition for DAG scheduling for any work conserving algorithm and

GEDF. The scheduling analyses are based on identifying upper bounds on interference and

workload of executing tasks.

In Section 4.3, we propose a Subtask-Level scheduling of DAGs in which real-time algorithms

take scheduling decisions based on the assigned local timing parameters of subtasks rather

than the global parameters of DAGs. To the best of our knowledge, Direct Scheduling at

Subtask-Level is a new approach that has not been used before in the scheduling of DAG tasks

on multiprocessor systems. As in the previous section, we provide interference and workload

analyses for this scheduling. Then, we provide schedulability conditions for any work conserving

Chapter 4. Direct Scheduling of DAGs 89

algorithm and GEDF. Furthermore, we argue the advantage of Subtask-Level scheduling on the

feasibility analysis of DAG tasks by adapting the necessary feasibility condition of processor

load which is more accurate for Subtask-Level scheduling rather than at DAG-Level.

Finally in Section 4.3.5, we provide simulation-based evaluations for the Direct Scheduling

approach to compare it with other DAG scheduling algorithms from the state-of-the-art. Later

in Chapter 5, we prove the incomparability of Direct scheduling approach at DAG-Level and

at Subtask-Level, and we perform more experiments to analyze their performance. Section 4.4

concludes this chapter and summarizes our contributions.

4.1 Defining Extra Timing Parameters of DAG Tasks

Parallel real-time tasks of DAG model have particular characteristics due to precedence con-

straints between their subtasks and their execution dependencies. In addition to choosing which

DAG job to execute on which processor at what time, the real-time scheduler has to choose the

execution order of subtasks based on their precedence constraints. This is the reason why DAG

scheduling on multiprocessor systems is much harder than the scheduling of independent se-

quential tasks. As described in Subsection 1.3.4, a DAG task3 has inter-task parallelism and

consists of a set of subtasks with precedence constraints to identify their execution flow. It is

clear that the scheduling of DAG tasks is a↵ected by dependencies between their subtasks and

their internal structure.

We suppose that each DAG task ⌧i is a sporadic constrained-deadline task which generates an

unlimited number of jobs with minimum inter-arrival time Ti between successive jobs. Let Jk
i

(respectively Ji) denote the kth job of DAG ⌧i (respectively any job of ⌧i when its index is

irrelevant). DAG job Jk
i is characterized by an absolute release time rki (respectively ri) and an

absolute deadline dki (respectively di). It is said to be ready at time t if ri  t, while a subtask

job Ji,j is said to be ready at time t if its DAG job Ji is ready and all its predecessor subtasks

have completed their execution at or before t. As explained earlier in Section 3.2, the default

DAG model defines a single timing parameter for each subtask ⌧i,j 2 ⌧i which is its WCET Ci,j .

The other timing parameters of a common real-time task model such as a relative deadline, a

period and an o↵set, are inherited from its DAG ⌧i and they are shared with all of its subtasks.

In other words, subtasks of the same DAG have to respect the global deadline Di and their job

3
In this chapter, we use the same notation described in Section 3.2 from Chapter 3 “Scheduling of Parallel

Tasks using Model Transformation”.

Chapter 4. Direct Scheduling of DAGs 90

invocations are released at least Ti time units apart. Hence, the scheduling of DAG tasks is

more challenging than the scheduling of independent sequential tasks.

In recent researches [27, 81], a DAG task ⌧i has been considered as a single entity characterized

by its total WCET Ci (which is the sum of WCET of all of its subtasks), its deadline Di,

its period Ti and its critical path length Li. This assumption avoids considering the internal

structure and the dependencies between subtasks in order to simplify the scheduling process of

DAGs. Although these external timing parameters are enough to provide scheduling analyses

for DAG tasks, we show that ignoring internal structure and inter-subtask parallelism leads to

pessimistic analytical results.

Example 4.1 (Importance of internal structure in DAGs schedulability). In Figure 4.1, we

provide an example to show the importance of internal structure for the scheduling process and

analysis of DAG tasks. In this example, we present two DAG tasks ⌧
1

and ⌧
2

which have identical

external structure. Both DAG tasks have the same period and deadline (T
1

= D
1

= T
2

= D
2

=

4) and the same total WCET C
1

= C
2

= 6. Furthermore, both DAG tasks have the same critical

path length (L
1

= L
2

= 4) which means that they have the same slack time (Sl
1

= Sl
2

= 0) as

well. Hence, a real-time scheduler or scheduling analysis based on these global timing parameters

will consider both DAGs as identical. This leads to a more pessimistic scheduling decisions and

analysis.

We show the internal structure of both DAGs in Figure 4.1. We consider that DAG ⌧
1

consists

of 3 subtasks each of WCET equal to 2 time units. The source subtask is ⌧
1,1 and its successors

are subtasks ⌧
1,2 and ⌧

1,3 which execute in parallel. While DAG ⌧
2

consists of the same number

and WCET of subtasks as in DAG ⌧
1

, but it has two source subtasks ⌧
2,1 and ⌧

2,2 and their

successor is subtask ⌧
2,3.

In this example, we compare quantity of work required by subtasks within a given time interval

between the external graph parameters to the internal ones. First, if we consider that jobs from

each DAG are activated at time t, and a study interval is defined as [t, t+ 4), then both DAGs

perform 6 time units each, whether we consider external or internal structure of DAGs, since the

length of the interval is equal to their relative deadline. However, if we reduce the study interval

to [t+2, t+4), then it is impossible to identify the exact amount of executed work in the case of

timing parameters based on external structure of DAGs. However, if we consider the internal

structure of DAGs, we can identify the performed work in the reduced interval more accurately.

In the case of DAG ⌧
1

, it is executed for 4 time units in interval [t + 2, t + 4), since subtasks

Chapter 4. Direct Scheduling of DAGs 91

2

!1,1

2

!1,2

2

!1,3

2

!2,1
2

!2,3
!2,2

2

!1,3

!1,2!1,1

!2,2

!2,3!2,1

t+4t+2t

Performed!
Workload

Figure 4.1: An example showing the importance of internal structure for scheduling DAGs
with identical external structure

⌧
1,2 and ⌧

1,3 are active in this interval. While DAG ⌧
2

performs only 2 time units within the

same study interval, because subtask ⌧
2,3 is the only active subtask in this time interval and it

is impossible for its predecessors to execute in this interval without causing a deadline miss.

From this example, we conclude that the use of internal structure of DAGs leads to more

accurate scheduling decisions and analysis, due to the added knowledge about the execution flow

of subtasks within DAG tasks and their precedence constraints. However, to use such knowledge

in real-time scheduling, it is necessary to define extra local timing parameters for subtasks to

express their precedence constraints. There is a di↵erence between these local parameters and

the intermediate parameters assigned by the Model Transformation algorithms such as the DAG-

Str and Seg-Str algorithm (from Chapter 3). In the latter case, the intermediate parameters

are imposed on subtasks and they are used to modify the task model to get rid of its internal

dependencies and insure independent execution. However, the local parameters from the Direct

Scheduling approach are used to represent the maximum execution interval of each subtask

based on its precedence constraints. Oppositely to the intermediate timing parameters assigned

to subtasks by the Model Transformation approach.

In the remainder of this section, we analyze the structure of DAG tasks and their subtasks.

We start by defining two main timing parameters for subtasks which are a local o↵set and a

relative deadline. These two parameters define the maximum execution interval of each subtask

w.r.t. the global parameters of its DAG. Then, we define a third timing parameter for each

Chapter 4. Direct Scheduling of DAGs 92

subtask which is called the maximum release jitter to determine the activation interval within

the execution interval of the subtask, i.e., the maximum delay of subtask activation based on

the finish time of its predecessor subtasks.

4.1.1 Local O↵set and Deadline for Subtasks

According to the DAG model, subtasks are characterized by their WCET and their execution

depends on the precedence constraints of their DAGs. A subtask is allowed to execute when all

of its predecessor subtasks have completed their own execution. Based on these characteristics,

we provide the following definitions:

Definition 4.1. A local o↵set Oi,j of subtask ⌧i,j 2 ⌧i is defined as the earliest possible release

time of the subtask at which it becomes ready relative to the activation time of its DAG ⌧i and

based on the WCET of its predecessor subtasks.

Additionally, the local o↵set Oi,j represents the length of the longest execution path from a

source subtask in DAG ⌧i to subtask ⌧i,j , when all of the subtasks in this path are activated as

soon as possible and execute up to their WCET. Based on this definition, subtask ⌧i,j cannot be

ready at any time t, where Oi  t < Oi,j , since its predecessor subtasks have not finished their

execution in this time interval when we consider their WCETs. Source subtasks of a DAG task

have no local o↵sets since they have no predecessor subtasks and they are activated directly

after the activation of their DAG task.

In order to calculate the local o↵set of a subtask, we consider that its DAG does not su↵er from

any external or internal blocking events which may delay the execution of its subtasks. The only

accepted source of blocking in this calculation is the delay due to the execution of predecessor

subtasks. Hence, we consider for the analysis the case where the DAG task executes on a system

of unlimited number of processors, where all subtasks are activated as soon as possible. In that

case, the response time of the DAG task is equal to its critical path length. For DAG task ⌧i,

the local o↵set Oi,j of subtask ⌧i,j 2 ⌧i is represented by the following equation:

Oi,j = max
8⌧

i,k

2Parents(⌧
i,j

)

(Oi,k + Ci,k) (4.1)

where all source subtasks of DAG ⌧i have no local o↵sets (equal to 0).

Chapter 4. Direct Scheduling of DAGs 93

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

14

!1,6

!1,5

!1,4

!1,2

!1,3

!1,1

Local Offset

The maximum release jitter of each
subtask which is its maximum slack
time due to internal interference only.

!1,1 !1,2 !1,6

!1,3 !1,4

!1,5

1 4 1

1

1 2

D1 = T1 = 8

DAG Scheduling on a Subtask Level!
Local Parameters

Local Deadline

(a) A DAG task ⌧1 consists of 6 subtasks and their prece-

dence constraints.

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

14

!1,6

!1,5

!1,4

!1,2

!1,3

!1,1

Local Offset

The maximum release jitter of each
subtask which is its maximum slack
time due to internal interference only.

!1,1 !1,2 !1,6

!1,3 !1,4

!1,5

1 4 1

1

1 2

D1 = T1 = 8

DAG Scheduling on a Subtask Level!
Local Parameters

Local Deadline
t=0 8

(b) The local timing parameters of each subtask in ⌧1.

Figure 4.2: An example showing the local timing parameters of subtasks in a DAG task.

We apply a straightforward depth-first search algorithm (Algorithm 4.1) to calculate the local

o↵set of each subtask of all DAGs in the set. The algorithm executes in linear time.

Algorithm 4.1 Local o↵set algorithm

Input: ⌧i = (ni, {1  j  ni|⌧i,j}, Gi, Di)
Output: Oi,j : 8⌧i,j 2 ⌧i . Oi,j is the local o↵set of subtask ⌧i,j
procedure local Offset(⌧i,j)

if ⌧i,j == isSourceSubtask(⌧i) then
return Oi

else
return max

⌧
i,k

2Parents(⌧
i,j

)

(local Offset(⌧i,k) + Ci,k)

end if
end procedure

Example 4.2 (Local o↵set assignment of subtasks). In Figure 4.2, we represent an implicit-

deadline DAG task ⌧
1

with D
1

= T
1

= 8. It consists of 6 subtasks with a total WCET C
1

= 10.

In Figure 4.2(a) we show the internal structure of the DAG task where each subtask is displayed

as a square associated with a number which denotes its WCET. We consider that DAG ⌧
1

has a

single source subtask ⌧
1,1 which is activated at the same activation time of ⌧

1

. In this example,

we consider a time reference t = 0, hence, the local o↵set of the source subtask is O
1,1 = 0.

Then, we calculate the local o↵set of each subtask ⌧
1,j, where 1 < j  6. Starting by the source

subtask ⌧
1,1, its children subtasks ⌧

1,2 and ⌧
1,3 are activated when ⌧

1,1 finishes its execution. Their

earliest possible activation time is equal to the WCET of ⌧
1,1 which is O

1,2 = O
1,3 = C

1,1 = 1.

If we suppose that the DAG is released at time t, then it is impossible for these subtasks to be

released earlier than (t + 1)4. Similarly, we calculate the local o↵set of subtasks ⌧
1,4 and ⌧

1,5

which are the children of subtask ⌧
1,3. They have to wait for the completion of all predecessor

4
In this thesis, we consider that jobs execute up to their WCET at all times.

Chapter 4. Direct Scheduling of DAGs 94

subtasks (⌧
1,1 and ⌧

1,3) before they are released. Hence, O
1,4 = O

1,5 = O
1,3 + C

1,3 = 2 (from

Equation (4.1)).

Finally, subtask ⌧
1,6 has 3 parent subtasks {⌧

1,2, ⌧1,4, ⌧1,5}, and it has to wait for their completion

before it can start its own. Based on Equation (4.1), the local o↵set of subtask ⌧
1,6 is calculated

as: O
1,6 = max((1 + 4), (2 + 2), (2 + 1)) = 5, which represents the longest execution path from

⌧
1,1 (included) to ⌧

1,6 (excluded).

We now define another important timing parameter for subtasks which is their local deadline.

Definition 4.2. A local deadline Di,j of subtask ⌧i,j is defined as the latest possible finish

time of ⌧i,j after its release, which takes into consideration the amount of work to be executed

by its successor subtasks when their WCETs are considered.

For each subtask ⌧i,j of DAG ⌧i, we calculate a local deadline Di,j by considering the longest

sequential execution path starting from its successors to any sink subtask in the DAG, where

each subtask in the path executes up to its WCET. As in the case of local o↵set, the local

deadline is calculated while considering the best execution scenario of subtasks in which we

assume that the system has an unlimited number of processors. In order to respect the global

deadline of DAG ⌧i, each subtask ⌧i,j should leave enough time for its successors. The local

deadline Di,j of subtask ⌧i,j is calculated as follows:

Di,j = min
8⌧

i,k

2Children(⌧
i,j

)

((Di,k +Oi,k)� Ci,k �Oi,j) (4.2)

where any sink subtask ⌧i,j of DAG ⌧i has a local deadline equal to (Di �Oi,j).

It is worth mentioning that the subtask’s local deadline is a relative value and the maximum

execution interval of subtask ⌧i,j is defined as [Oi,j , Oi,j +Di,j).

Observation 4.1. If subtask ⌧i,j misses its deadline ri,j +Di,j at time t (where t < ri+Di), then

DAG ⌧i will definitely miss its deadline as well, when subtasks execute up to their WCETs.

Proof. In order to calculate the local deadline of subtasks, we considered the scenario where the

system has unlimited number of processors which means that subtasks do not su↵er from any

external blocking events. The only source of blocking is due to execution dependencies between

subtasks of the same DAG. The local deadline of a subtask is defined as its latest possible finish

time, which leaves enough time for the execution of its successors. So, missing this deadline

Chapter 4. Direct Scheduling of DAGs 95

at some time t < ri +Di, means that the length of time interval [t, ri +Di) is not enough for

successor subtasks to execute even if the system has an unlimited number of processors, which

leads to a deadline miss of the DAG. Based on this observation, an early deadline miss can be

declared based on local deadlines of subtasks rather than waiting for the deadline miss of the

DAG.

In Algorithm 4.2, we show a straightforward recursive method based on the depth-first search

algorithm, that calculates the local deadline of each subtask in the DAG. This algorithm executes

in linear time.

Example 4.3 (Local deadline assignment of subtasks). Back to the example in Figure 4.2,

we calculate the local deadline D
1,j for each subtask ⌧

1,j in DAG ⌧
1

. We start by the sink

subtask ⌧
1,6 which has no successor subtask, so it can finish its execution at DAG deadline,

and its local relative deadline is equal to D
1,6 = (D

1

� O
1,6) = 3. Its predecessor subtasks are

{⌧
1,2, ⌧1,4, ⌧1,5}. These subtasks must have local relative deadlines that guarantee the schedula-

bility of ⌧
1,6 in the best case, and they have to finish their execution at time instant no later

than ((D
1,6 +O

1,6)� C
1,6 �O

1,j), where j 2 {2, 4, 5}. Hence, their local deadlines are equal to

D
1,2 = 6, D

1,4 = D
1,5 = 5.

Regarding subtask ⌧
1,3, it has two children subtasks (⌧

1,4 and ⌧
1,5). Similarly, local deadline D

1,3

is calculated as in Equation (4.2) where D
1,3 = min((D

1,4 +O
1,4 � C

1,4 �O
1,3), (D1,5 +O

1,5 �
C
1,5�O

1,3)) = min(4, 5) = 4. Same calculations are applied to the remaining subtask ⌧
1,1 which

has two children subtasks ⌧
1,2 and ⌧

1,3, and its local deadline D
1,1 is equal to 3.

The timing characteristics of a given DAG task are enriched by including local o↵sets and dead-

lines to its subtasks. A constrained-deadline subtask ⌧i,j 2 ⌧i is characterized by {Oi,j , Ci,j , Di,j , Ti,j}.
Where Ti,j is the period of the subtask which is equal to the period Ti of its DAG task ⌧i.

Algorithm 4.2 Local deadline algorithm

Input: ⌧i == (ni, {1  j  ni|⌧i,j}, Gi, Di) . Inputs: ⌧i is a graph task, ⌧i,j is a subtask in ⌧i
Output: Di,j : 8⌧i,j 2 ⌧i
procedure Local deadline(⌧i,j)

if ⌧i,j = isSinkSubtask(⌧i) then
return Di �Oi,j

else
return min

⌧
i,k

2Children(⌧
i,j

)

(local deadline(⌧i,k) + Oi,k - Ci,k- Oi,j)

end if
end procedure

Chapter 4. Direct Scheduling of DAGs 96

As stated earlier and from the definition of subtask parameters, the local o↵sets and deadlines

assigned to subtasks are di↵erent from the intermediate o↵sets and deadlines assigned to sub-

tasks using the algorithms from the Model Transformation approach. The latter parameters are

imposed so as to alter the task model and get rid of dependencies. While the local parameters

are used to identify the maximum execution interval of each subtask and to include knowledge

about the internal structure of DAGs for the scheduling process.

4.1.2 Local Release Jitter of Subtasks

Since we considered that local o↵sets and deadlines of subtasks are calculated based on the

best case execution scenario, in which all subtasks execute as soon as they are released with no

interference or delays, the maximum execution interval of each subtask ⌧i,j 2 ⌧i is defined as

[Oi,j , Oi,j + Di,j). However, the actual activation time of subtasks still depends on the finish

time of their predecessors, and subtasks have to respect the precedence constraints defined by

their DAG. For a given subtask ⌧i,j in DAG task ⌧i, it is released after Oi,j time units from

the release time of ⌧i, but if the execution of at least one predecessor subtask is delayed due to

an interference from higher priority tasks in the set, then the activation of subtask ⌧i,j will be

delayed until all predecessors finish their execution.

As a result, the actual activation time of a subtask ⌧i,j is dynamic and it reduces the length of its

maximum execution interval. The length of the activation interval is denoted as the maximum

release jitter bji,j and it is defined as follows:

Definition 4.3. A maximum release jitter bji,j of subtask ⌧i,j represents the length of the

maximum activation interval of ⌧i,j in which its job can be activated at any time instant.

The maximum release jitter of a subtask is characterized as the maximum di↵erence between

the earliest activation time (local o↵set) of a subtask and the latest finish time (local deadline)

of each of its predecessors.

bji,j = max
8⌧

i,k

2Parents(⌧
i,j

)

(Di,k � (Oi,j �Oi,k)) (4.3)

Based on Equation (4.3), we can identify a maximum activation interval for each subtask in the

DAG. Hence, the interval of release time ri,j of job Ji,j of subtask ⌧i,j is defined as follows:

Chapter 4. Direct Scheduling of DAGs 97

8Ji,j , ⌧i,j 2 ⌧i : ri,j 2 [Oi,j , Oi,j + bji,j]

It is worth noticing that the source subtasks of a DAG task does not have maximum release

jitters since they are activated by the activation of their DAG task and they have no predecessors.

Example 4.4 (Maximum release jitter of subtasks). Based on the example of Figure 4.2, Figure

4.2(b) shows the maximum release jitter bj
1,j of each subtask ⌧

1,j in DAG task ⌧
1

. Starting by the

source subtask ⌧
1,1, it is clear that it has no release jitter and bj

1,1 = 0. Regarding its children

subtasks (⌧
1,2 and ⌧

1,3), their maximum release jitter is calculated as bj
1,2 = (D

1,1 � (O
1,2 �

O
1,1)) = 2, for subtask ⌧

1,2, and bj
1,3 = bj

1,2 for ⌧
1,3.

The same calculations are applied to the other subtasks in the DAG. The release jitter of subtasks

⌧
1,4 and ⌧

1,5 is equal to bj
1,4 = bj

1,5 = 3, and bj
1,6 = 2 for subtask ⌧

1,6.

From Equation (4.3) and the example in Figure 4.2(b), we notice that the calculations of the

maximum release jitter of subtasks are pessimistic, since we consider that predecessor subtasks

execute as late as possible. The worst case execution scenario happens if we consider that

critical subtasks of any DAG (subtasks forming its critical path) are activated at the end of

their activation interval, hence, they will have no slack time. In the following sections, we provide

an optimization of the release jitter of subtasks based on the interference concept accounted for

in the schedulability analysis.

After defining the maximum release jitter, subtasks of a given DAG task are characterized by

a local o↵set, a WCET, a local deadline, a period and a maximum release jitter. This is an

enhancement to the original DAG task model which characterizes subtasks by their WCET only.

In the following sections, we use these local timing parameters so as to define and analyze the

Direct Scheduling approach at DAG-Level and at Subtask-Level.

4.2 Scheduling DAGs using Global Parameters (DAG-Level Schedul-

ing)

Scheduling DAG tasks based on their global timing parameters (DAG-Level Scheduling) is cat-

egorized as a Direct Scheduling approach of DAGs. According to DAG-Level scheduling, DAGs

are scheduled using regular real-time multiprocessor algorithms, while scheduling decisions are

Chapter 4. Direct Scheduling of DAGs 98

taken based on the global timing parameters of the DAGs, such as their period, deadline or

slack time. Accordingly, the internal structure of DAGs is not included in the decision-making

process, and we assume that subtasks inherit the priority of their DAG.

For example, in the case of DM algorithm from the FTP priority-assignment scheme, the priority

of DAG tasks is assigned based on their global relative deadline according to the task model,

where the DAG with the smallest relative deadline has the highest priority. Similarly in the

case of EDF algorithm, the DAG job, whose absolute deadline is the earliest, has the highest

priority.

Recently, the DAG-Level scheduling approach has been used in many research concerning DAG

scheduling (see Chapter (2) “Related Work”). However, we noticed that the schedulability

analyses are done at DAG level, based on the global parameters of DAGs. In this section,

we show the importance of internal structure of DAGs on the schedulability analysis of DAG-

Level approach. This is achieved by analyzing a DAG-Level schedulability condition of GEDF

scheduling algorithm from [81]. Then, we revisit the analysis by including extra information

regarding the internal structure of DAGs leading to an optimized schedulability condition. In

Section 4.3.5, we compare both conditions using simulation and we show how our condition

outperforms the one from [81].

As we can notice from the schedulability bounds and tests from [81], no knowledge of internal

structure of DAGs is required, the analysis depends on the global parameters of DAGs such

as its utilization and global deadline. Lemma 2.6 (on page 48) provides an upper bound on

the workload which is performed by a particular job of a DAG task in an interval equal to its

deadline, on a system of m processors of speed b. We show that the schedulability condition in

this lemma can be optimized if the knowledge regarding the internal structure of DAG is added.

In this section, we consider global EDF scheduling of sporadic DAGs on multiprocessor systems

at DAG-Level. We are interested in the schedulability analysis of these systems when internal

structure of DAGs is considered. Moreover, we provide interference and workload analyses of

DAG task scheduling. For a given DAG job, we aim at quantifying the total workload done

during an execution interval of length equal to its deadline. Usually, the performed workload

consists of the execution time of this job and the performed work from interfering jobs of higher

priorities in the set. In order to find an upper bound of workload, we identify the scenario which

generates the highest interference on a particular job, then we analyze the possible interference

on DAG tasks w.r.t. this scenario.

Chapter 4. Direct Scheduling of DAGs 99

Carry-in Job Carry-out JobBody Job

Interfered Job !i

diri

Carry-in job Body jobBody job

Interfered Job !k

ri1

dk

ri2 = di1

rk

ri3 = di2 di3

!i,3

!i,1 !i,2 !i,4

(1,3)

(1,3) (3,5)(0,2)

αi,1k

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

αi,2k

αi,3k

αi,4k

Figure 4.3: The di↵erent types of interfering jobs (carry-in, body and carry-out jobs).

4.2.1 Interference Analysis on DAGs

Based on the DAG model, each task ⌧i generates an unlimited number of jobs and each job is

denoted by Ji. Since we consider constrained-deadline DAGs in which the global deadline of a

DAG task cannot exceed its period, there is at most one active job from each DAG at any time

instant t. As a result, when a scheduling algorithm is used at DAG-Level, then interference on

job Ji is caused by higher priority jobs from other DAGs, and it is impossible for a precedent

job of DAG ⌧i to participate in the interference.

For a given job Ji of DAG ⌧i which is active in a fixed interval [ri, di), its execution can be

interrupted by three types of interfering jobs generated by the higher priority DAGs (as shown

in Figure 4.3):

• A body job is defined as any job that is released after the release time ri of Ji and has an

absolute deadline no later than the absolute deadline di of Ji. The interfering body job

executes completely within the interval [ri, di).

• A carry-in job is a job that is released before ri while its absolute deadline is in the interval

(ri, di].

• A carry-out interfering job is defined as the job whose release time is in the interval [ri, di)

and its absolute deadline is later than di.

It is worth noticing that there is at most one carry-in and carry-out jobs from each interfering

constrained-deadline DAG task, while there is no limitation on the number of body jobs (it might

be zero or more jobs within the interference interval based on its length w.r.t. the activation

interval of the interfering job).

In the case of EDF scheduling algorithm, in which priorities are assigned to jobs based on their

absolute deadlines, carry-out jobs have later absolute deadlines than interfering job Ji (from

Chapter 4. Direct Scheduling of DAGs 100

definition) and they are assigned lower priority by the scheduling algorithm. Hence, they cannot

interrupt the execution of Ji. Only carry-in and body jobs are considered in the analysis of this

scheduling algorithm.

4.2.1.1 The Worst Case Interference Scenario for DAG tasks

In Lemma 2.6 (on page 48), an upper bound on the total workload Aa
k performed on job Ja

k of

DAG ⌧k is calculated. Then it is used to identify the minimum processor speed b that guarantees

the GEDF schedulability of the task set. In this section, we optimize the computation of the

workload while considering the internal structure of the interfering jobs. In order to identify

an upper bound on workload, Bertogna et al. [32] characterized the worst-case job activation

scenario that generates the maximum interference. The maximum interference on a DAG

task ⌧k is defined as the longest cumulative time intervals in Dk in which any subtask of ⌧k is

ready to execute but blocked by higher priority DAG tasks in the system.

Observation 4.2. For any sporadic DAG task, the maximum total interference on a particular

job of DAG ⌧k in a time interval of length Dk occurs when the jobs of other interfering DAGs

are activated periodically.

Proof. The proof of this observation is straightforward. The interference of a DAG task ⌧i on

a particular job of another DAG ⌧k depends on the number of jobs that are activated within

the interference interval. Sporadic activation of real-time task ⌧i means that successive jobs

are separated by time intervals of length greater than or equal to Ti. In order to maximize

the number of jobs within a fixed time interval, we consider the minimum separation time

of successive jobs, which is after Ti time units and this is the definition of periodic real-time

tasks.

Therefore, to define the worst-case interference scenario on a particular task job from a sporadic

task set, we consider periodic activation of tasks in the set during scheduling analysis.

Lemma 4.4 (Extended from [32]). When GEDF scheduling algorithm successfully schedules a

DAG set, the interference of a DAG task ⌧i on a particular job of ⌧k in a time interval of length

Dk is maximized when the deadline of the last body job of ⌧i is the same as the deadline of ⌧k,

and the carry-in job of ⌧i executes just before its deadline.

Chapter 4. Direct Scheduling of DAGs 101

Carry-in Job Carry-out JobBody Job

Interfered Job !i

diri

Carry-in job Body jobBody job

Interfered Job !k

ri1

dk

ri2 = di1

rk

ri3 = di2 di3

Figure 4.4: The worst-case interference scenario of an interfering DAG task ⌧
i

on a job of
DAG ⌧

k

when GEDF scheduling algorithm is used.

Proof. The worst-case interference scenario for sequential tasks is described in [32]. It has

been proved that this activation scenario of jobs generates the maximum workload in the time

interval, as shown in Figure 4.4. By moving the interval backward or forward, the performed

workload can only decrease. In this lemma, the worst-case interference scenario is extended

to the parallel DAG model. Since we consider a DAG-Level scheduling in which scheduling

decisions are taken based on the global parameters of the DAGs. Hence, the scenario described

in [32] applies on DAG tasks.

Figure 4.4 shows the worst-case interference scenario generated by the jobs of interfering DAG ⌧i

on a particular job of DAG ⌧k. The length of the interference interval [rk, dk) is equal to DAG’s

deadline Dk. Hence, the interference bound can be analyzed while considering this activation

scenario. As explained in [32], all interfering jobs in the interval have higher priorities than

DAG ⌧k when GEDF scheduling algorithm is used. All body jobs execute completely within

the interference interval, while the carry-in job is forced to execute just before its deadline so as

to include the maximum amount of its execution time in the interference. Shifting the interval

backward or forward leads to a decrease of job interference.

Let J⇤
k denote the job of DAG ⌧k which is defined in the worst-case interference scenario from

Lemma 4.4 (and Figure 4.4). Job J⇤
k,j is the j

th subtask job from J⇤
k . Regarding the carry-in job

from the scenario described in Lemma 4.4. If a job of DAG ⌧i executes just before its absolute

deadline di (as in the case of carry-in jobs), then each subtask ⌧i,j 2 ⌧i will execute just before its

calculated local absolute deadline di,j . In the remainder of this section, we explain the di↵erent

types of interfering jobs in more detail and their performed workload. Then, we derive a GEDF

schedulability condition for DAG tasks which is aware of their internal structure.

Chapter 4. Direct Scheduling of DAGs 102

Body Job Interference

Based on the definition of an interfering body job, a DAG job Ji executes completely within the

interference interval and it contributes with its total execution time Ci to the interference on

J⇤
k . All subtasks of DAG ⌧i execute within the interval, and the internal structure of the DAG

does not a↵ect the total performed interference. Hence, the total interference of body DAG jobs

can be calculated using the Demand Bound Function (DBF) (from Definition 1.2 on page 5).

Lemma 4.5. The total body work on J⇤
k of DAG task ⌧k is the sum of the demand bound

function of all the DAGs in task set in a time interval of length Dk.

Proof. All subtasks of a body job execute completely in the interference interval and they

contribute in the body workload. Their precedence constraints and execution order have no

e↵ect on the amount of the total workload. Also, the DAG’s body jobs are defined as the jobs

whose arrival time and deadline are within the interference interval. As a result, we can use the

DBF to calculate the maximum workload done in this interval.

Let DBF i
k denote the DBF of a DAG task ⌧i on an interval equal to the relative deadline Dk

of DAG task ⌧k, which is calculated as follows:

DBF i
k =

✓�
Dk �Di

Ti

⌫
+ 1

◆
+

⇥
n
iX

j=1

Ci,j

where (x)+ = max(0, x).

The total workload of body jobs from all n interfering DAGs in ⌧ , on a job of DAG ⌧k is

calculated as follows:

DBFk =
nX

k=1

DBF i
k

Carry-in Job Interference

As stated earlier, the carry-in DAG job Ji on a job Jk from another DAG ⌧k is defined as the

job whose release time is earlier than the release of Jk and has an absolute deadline di in the

interval [rk, dk). For constrained-deadline tasks, there is at most one carry-in job from each

interfering DAG in the task set.

Chapter 4. Direct Scheduling of DAGs 103

Carry-in Job Carry-out JobBody Job

Interfered Job !i

diri

Carry-in job Body jobBody job

Interfered Job !k

ri1

dk

ri2 = di1

rk

ri3 = di2 di3

(0,2) (3,5)(1,3)

(1,3)

!i,4!i,2!i,1

!i,3

αi,1k

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

αi,2k

αi,3k

αi,4k

Figure 4.5: Carry-in interference of subtasks of DAG ⌧
i

on DAG ⌧
k

when GEDF is used. The
local parameters of each subtask ⌧

i,j

are represented as (O
i,j

, D
i,j

).

Let ↵i
k denote the length of the interference interval of carry-in DAG job Ji on DAG job Jk,

i.e., the length of the overlapping interval of parallel execution of both jobs. It is the interval

between the release time of job Jk and the absolute deadline of the interfering job Ji, where

↵i
k = di�rk. For independent sequential tasks, the carry-in interference can be easily identified,

but it is more complicated in the case of parallel DAG tasks. As shown in the example from

Figure 4.1 (on page 91), which explains the importance of the internal structure of DAG tasks

in the schedulability analysis, the execution order of subtasks and their precedence constraints

can be used to determine which subtasks to include in the carry-in interference. We can use

the assigned local timing parameters of subtasks (o↵sets and deadlines) to determine which of

them is active within the carry-in interference interval.

Let ↵i,j
k denote the carry-in interference interval of subtask ⌧i,j 2 ⌧i on job Jk. It is defined

as: ↵i,j
k = di,j � rk, where di,j is the absolute local deadline of subtask ⌧i,j . Figure 4.5 shows

an example of a DAG task ⌧i which has a deadline and period equal to 5 and consists of 4

subtasks. The figure shows the carry-in interference interval of each subtask in the job Ji when

it interferes with another DAG job Jk (its release time rk and absolute deadline dk are shown

in the figure). According to the example, subtask jobs of the carry-in job Ji are divided into

the following categories based on their interference:

• If subtask ⌧i,j has an absolute local deadline di,j earlier than the release time of Jk, then

it causes no carry-in interference, and ↵i,j
k has a negative value.

• If subtask ⌧i,j has a local o↵set which is later than the release time of job Jk, then it

contributes with its total execution time in the carry-in interference.

Chapter 4. Direct Scheduling of DAGs 104

• If subtask ⌧i,j is released earlier than the release time of Jk and it has an absolute deadline

in the interval of [ri, ri + ↵i
k), then it has a partial carry-in interference on job Jk which

is equal to ↵i,j
k .

Let ⇣ik denote the maximum carry-in interference of a job from DAG ⌧i on another job from

DAG ⌧k. We have:

⇣ik =
X

8⌧
i,j

2⌧
i

min
⇣
Ci,j ,max

⇣
0,↵i,j

k

⌘⌘
(4.4)

Lemma 4.6. When GEDF algorithm successfully schedules a set ⌧ of n DAG tasks, the maxi-

mum carry-in interference ⇣k on job J⇤
k from other DAGs in an interval of length equal to Dk

is at most:

⇣k =
nX

i=1

n
iX

j=1

min
⇣
Ci,j ,max

⇣
0,↵i,j

k

⌘⌘
(4.5)

Proof. The proof is based on the worst-case interference scenario from Lemma 4.4, in which the

worst carry-in interference of a DAG job on another happens when the carry-in interfering job

executes just before its absolute deadline. In this situation, each subtask job Ji,j of the carry-

in job Ji cannot perform more than its WCET that executes within the interference interval.

Hence, it cannot interfere with job J⇤
k within a time interval of length more than ↵i,j

k time units.

Since each subtask ⌧i,j 2 ⌧i 2 ⌧ is a sequential thread, its maximum workload is upper bounded

by its WCET Ci,j .

Schedulability Condition of GEDF based on DAG’s Internal Structure

Based on the interference analysis of carry-in and body jobs, we derive the following theorem:

Theorem 4.7. A set ⌧ of n DAG tasks is GEDF schedulable on m processors of speed b if:

8⌧k 2 ⌧,

nX

i=1

DBF i
k +

nX

i=1,i 6=k

⇣ik  bmDk � (m� 1)Dk

(4.6)

where ⇣ik is defined in Equation (4.4).

Chapter 4. Direct Scheduling of DAGs 105

Proof. Lemma 2.6[81] (on page 48) provides an upper bound on the total workload Aa
k of in-

terfering DAGs on job Ja
k in a time interval of length equal to Dk. In our interference analysis,

which is based on the internal structure of DAG tasks, we consider the total workload of inter-

fering jobs as the sum of body workload from Lemma 4.5 and carry-in workload from Lemma

4.6.

Based on this theorem and for each DAG task in the set, we find the minimum speed b of

processors that satisfies Equation (4.6). Then for all DAGs of the set, we consider the maximum

value of b that guarantees the schedulability of the task set for GEDF scheduling algorithm.

In order to avoid scheduling anomalies w.r.t. reduced execution time of jobs, we assume that

subtasks execute up to their WCET at all time. Otherwise, if a subtask executes for less than

its WCET, we consider that its processor is left idle in the interval between its finish time and

its WCET.

Later in this chapter we provide in Section 4.3.5 simulation-based evaluations to compare our

schedulability condition from Theorem 4.7 with the condition from [81] which is shown in Lemma

2.6.

4.2.2 Sustainability Analysis

In schedulability analysis, an important property is that the scheduling policy be stable to

“positive” changes of the task timing parameters. For example, if a task set with processor

utilization is schedulable according to a given scheduling policy, then it must be schedulable with

a smaller utilization on the same execution platform. Otherwise, we can state that this policy

is subject to scheduling anomalies. The sustainability w.r.t. positive variation in parameters

has been studied in the case of EDF scheduling on uniform multiprocessors in [20].

The notion of sustainability of scheduling policy can be also applied to schedulability test. The

common FP and EDF tests for uniprocessors have been examined in [18, 38]. Concerning the

multiprocessor case, both scheduling policies and the schedulability tests have been discussed in

[13] from the sustainability point of view. In particular, the GEDF scheduling policy was shown

to be sustainable w.r.t. smaller execution requirements and later arrival times (sporadic case).

However, sustainability of GEDF w.r.t. larger relative deadlines is not so straightforward. It

depends on the implementation of the GEDF scheduling policy. If the priorities of jobs are

computed using the priorities of tasks that generate these jobs (the specified priority), then

Chapter 4. Direct Scheduling of DAGs 106

π 1

π 2

r1 d1

d2d3
r3r2
0 5

0 5
(a) r1 = 0

π 1

0 5

0 5
π 2

r1 d1

r3

r2 d2

d3

(b) r1 = 2

π 1

0 5

0 5
π 2

r1 d1

r3

r2 d2

d3

(c) r1 = 1.4

Figure 4.6: An example of job collection generated by the sporadic {⌧1(3, 3), ⌧2(2, 4), ⌧3(2, 4)}
implicit-deadline task set where ⌧

i

is characterized by (C
i

, T
i

).

GEDF is trivially sustainable w.r.t. larger relative deadlines since a smaller actual deadline of

a job does not a↵ect the scheduling decisions. Otherwise, it is not obvious that this property is

guaranteed and it is safer to design the GEDF scheduler to compute job priorities according to

the specified priorities.

Sustainability of scheduling policy

In this subsection, we review the property of sustainability of GEDF scheduling policy in the

case of task sets composed of DAGs. Firstly, we give the definition of sustainability according

to a scheduling policy. Secondly, we discuss three observations related to the three types of

timing parameter relaxations.

Definition 4.8. (from [13]) Let A denote a scheduling policy. Let ⌧ denote any sporadic task

system that is A-schedulable. Let J denote a collection of jobs generated by ⌧ . Scheduling

policy A is said to be sustainable if and only if A meets all deadlines when scheduling any

collection of jobs obtained from J by changing the parameters of one or more individual jobs in

any, some, or all of the following ways: (i) decreased execution requirements; (ii) larger relative

deadlines; and (iii) later arrival times with the restriction that successive jobs of any task ⌧i 2 ⌧

arrive at least Ti time units apart.

According to this definition, we notice that GEDF is sustainable w.r.t. the three possible

relaxations of DAG job parameters.

In order to apply the observations from [13], we used the example given in Figure 4.6. This

example represents three di↵erent activation schemes that are generated by the same task set.

For the sake of simplicity, we considered a task model of simple sequential jobs instead of DAG

jobs.

Chapter 4. Direct Scheduling of DAGs 107

Decreased exe-
cution time

Larger relative
deadline

Later arrival
time

GEDF
scheduling
policy

sustainable sustainable
sustainable,
with specific
deadlines

GEDF schedu-
lability test
(Theorem 4.7)

not self-
sustainable

self-
sustainable

self-
sustainable

Table 4.1: Sustainability of GEDF scheduling policy and schedulability test from Theorem
4.7.

Observation 4.3. The GEDF scheduling policy is sustainable w.r.t. decreased execution require-

ments for any set of jobs that may be generated by a set of sporadic DAG.

Proof. As for Observation 1 in [13], this proof is based on the proof of predictability in [65, 66],

and it can be applied easily on a collection of DAG jobs by considering each subtask job as an

independent one.

We observe the sustainability of GEDF w.r.t. decreased execution requirement by means of

Definition 4.8. We consider a collection of jobs which have been generated by GEDF and with

known release times. If this collection can be accurately scheduled w.r.t. these release times, no

deadline is missed by decreasing execution requirements. In a more general case, online GEDF

can generate several collections of jobs from the same sporadic task set. The same job can have

di↵erent release times in several collections. We should consider jobs with release jitters if we

want to observe the sustainability at task set level. Unfortunately, it has been proved in [66]

that a preemptable, migratable and jittered release timed job scheduling is not predictable.

Observation 4.4. The GEDF scheduling policy is sustainable w.r.t. later arrival times for any

set of jobs that may be generated by a set of sporadic DAGs.

Proof. Let ⌧ denote a sporadic set of DAG tasks that is GEDF-schedulable. Let J 0 denote any

collection of jobs obtained from J by increasing the arrival times of one or more individual jobs

with the restriction that successive jobs of any task ⌧i 2 ⌧ arrive at least Ti time units apart.

The collection J 0 of jobs could also have been generated by ⌧ since it is GEDF-schedulable.

Hence, the observation follows.

According to Figure 4.6, the consequence could not be straightforward. In this example, we rep-

resent three jobs generated by a sporadic task set. In Figure 4.6(a) (respectively Figure 4.6(b)),

Chapter 4. Direct Scheduling of DAGs 108

job J
1

is released at time t = 0 (respectively at time t = 2) and all jobs meet their deadline.

However, in Figure 4.6(c), J
1

misses its deadline at time t = 4 since it is released at time t = 1.4

but no processor is available before time t = 2. In order to make it clear with the observation,

we recall in the proof that the sporadic task set has to be schedulable according to GEDF, thus

all possible release scenarios must be tested if schedulable.

Observation 4.5. The GEDF scheduling policy is sustainable w.r.t. larger relative deadlines for

any set of jobs that may be generated by a set of sporadic DAGs if the scheduling algorithm is

implemented by using the specified deadlines.

Proof. As explained in the section above, this observation is based on the implementation of

GEDF. If the scheduling algorithm uses a larger relative deadline to compute job priorities, it is

not clear that GEDF is sustainable w.r.t. deadline relaxations. But if the algorithm computes

the priorities by considering the relative deadline of tasks, no change in the scheduling behavior

will occur.

The sustainability of GEDF, w.r.t timing parameters, shown in Observation 4.3, 4.4 and 4.5,

is a good result. These observations are based on the fact that we considered a sporadic DAG

set (or task set in a more general way) as GEDF-schedulable. We now propose a su�cient

feasibility condition.

4.2.3 Schedulablity test

We have shown that GEDF is a sustainable scheduling policy for a sporadic DAG set. We now

consider the sustainability of the schedulability test proposed in Theorem 4.7 according to the

following definition.

Definition 4.9. (from [13]) Let A denote a scheduling policy, and F an A-schedulability test for

sporadic task systems. Let ⌧ denote any sporadic task system deemed to be A-schedulable by

F . Let J denote a collection of jobs generated by ⌧ . F is said to be a sustainable schedulability

test if and only if scheduling policy A meets all deadlines when scheduling any collection of jobs

obtained from J by changing the parameters of one or more individual jobs in any, some, or all

of the following ways: (i) decreased execution requirements; (ii) larger relative deadlines; and

(iii) later arrival times with the restriction that successive jobs of any task ⌧i 2 ⌧ arrive at least

Ti time units apart.

Chapter 4. Direct Scheduling of DAGs 109

Observation 4.6. The test proposed in Theorem 4.7 is sustainable for sporadic DAG w.r.t.

decreased execution requirements, larger relative deadlines and later arrival times.

Proof. A DAG set deemed schedulable by the test proposed in Theorem 4.7 is GEDF schedu-

lable. GEDF is a sustainable scheduling policy w.r.t. decreased execution requirements, larger

relative deadlines and later arrival times. The observation follows.

In addition to the sustainability of our GEDF DAG schedulability test, we studied the self-

sustainability of our test.

Definition 4.10. (from [13]) A schedulability test is self-sust-ainable if all task systems with

“better” (less constraining) parameters than a task system deemed to be schedulable by the

test are also deemed schedulable by the test.

In this case, the task set is not only required to remain schedulable under various parameter

relaxations, but it is required to be verifiably schedulable by the same test.

Observation 4.7. GEDF DAG schedulability test from Theorem 4.7 is self-sustainable w.r.t.

decreased execution requirements.

Proof. In Equation (4.6), decreasing execution requirements can only decrease the left side of

the inequality since only DBF and ⇣ki values depend on the WCET values. The inequality

remains valid and the observation follows.

Observation 4.8. GEDF DAG schedulability test from Theorem 4.7 is self-sustainable w.r.t.

later arrival times.

Proof. In Equation (4.6), later arrival times can only decrease the left side of the inequality since

only DBF values depend on the period values. The inequality remains valid and the observation

follows.

Observation 4.9. GEDF DAG schedulability test from Theorem 4.7 is not self-sustainable w.r.t.

larger relative deadlines.

Proof. We assume a system with only one unit-speed processor. From Equation (4.6), we obtain:

nX

i=1

DBF i
k +

nX

i=1,i 6=k

⇣ik  Dk

Chapter 4. Direct Scheduling of DAGs 110

We recall that ⇣ik is defined by the following expression:

X

⌧
i,j

2⌧
i

min (Ci,j ,max (0, di,j � rk)) (4.7)

Let us assume that in Equation (4.7), the “min” value is given by max(0, di,j � rk). Then

we can assume that there is d0i,j > di,j such that max(0, d0i,j � rk) > max(0, di,j � rk) but

max(0, d0i,j � rk)  Ci,j . The deadline d0i,j > di,j implies a larger carry-in interference of a job

of ⌧i on a job of ⌧k which can miss its deadline.

Unfortunately, our proposed schedulability test for GEDF is not self-sustainable w.r.t. larger

relative deadlines. These results can be explained because the test is based on the analysis of

the schedule on a study window of size corresponding to the DAG’s deadline.

4.3 Scheduling DAGs using Local Parameters (Subtask-Level

Scheduling)

In this section, we present a new scheduling approach for DAG tasks on multiprocessor sys-

tems which is the Subtask-Level Scheduling. As in any Direct Scheduling approach, DAG tasks

are scheduled using common real-time multiprocessor algorithms, however, the scheduling de-

cisions are taken based on the timing parameters of subtasks rather than global parameters of

DAGs. Since subtasks in our DAG model are defined by WCET and precedence constraints, the

Subtask-Level Scheduling uses the assigned local timing parameters (from Section 4.1) which

are local o↵sets, local relative deadlines and release jitters.

This section is divided as follows: Subsection 4.3.2 provides an interference analysis of any

multiprocessor work-conserving scheduling algorithm at a subtask level. Then we extend it to

a workload analysis which serves as an upper bound on interference in Subsection 4.3.3. We

provide a workload schedulability condition for GEDF scheduling algorithm in Subsection 4.3.4.

Finally in Subsection 4.3.5, we compare the di↵erent DAG scheduling approaches by using ex-

tensive simulation. We compare DAG-Level scheduling with Subtask-Level and we also compare

them with other conditions based on Direct Scheduling of DAGs which are found in the state

of the art.

Chapter 4. Direct Scheduling of DAGs 111

(a) DAG set consists of 2 implicit-deadline DAGs. (b) Sub-Level scheduling when GEDF algo-

rithm is used.

Figure 4.7: Example of Subtask-Level Scheduling of DAG tasks.

An example of Subtask-Level Scheduling

The concept of Subtask-Level scheduling is straightforward. After assigning local timing param-

eters to subtasks, a scheduling algorithm is used to schedule them based on these parameters.

Hence, subtasks of the same DAG task can be assigned specific priorities according to their local

parameters, unlike DAG-Level scheduling which assigns the same priority to all subtasks of the

same DAG. For example, in the case of GEDF scheduling algorithm, a subtask is activated

whenever its predecessors terminate their execution, and the subtask job with the earliest local

absolute deadline is assigned the highest priority.

An example of Subtask-Level approach with GEDF scheduling algorithm is shown in Figure

4.7. The DAG set is shown in Figure 4.7(a). It consists of 2 periodic implicit-deadline DAG

tasks. The timing parameters of each subtask are shown as a quadruple which consists of an

o↵set, a WCET, a relative deadline and a period. The DAG-Level parameters of subtasks are

shown on the left side of the figure, while the assigned local parameters of subtasks are shown

on the right hand side. Based on Subtask-Level scheduling, subtask jobs are assigned priorities

based on their absolute deadlines as shown in Figure 4.7(b). At time t = 0, both DAG tasks are

activated and jobs of subtasks ⌧
1,1 and ⌧

1,2 as assigned higher priority than the job of subtask

⌧
2,1, because their absolute local deadline at t = 1 is earlier than the absolute deadline of ⌧

2,1

at time t = 3. However, if DAG-Level scheduling is applied, then all subtask jobs of DAG ⌧
1

will be assigned a priority lower than DAG job of ⌧
2

at time t = 0, since the absolute deadline

of ⌧
1

is at t = 6.

Chapter 4. Direct Scheduling of DAGs 112

4.3.1 Advantage of Subtask-Level Scheduling

Here, we provide an example showing how Subtask-Level scheduling can be suitable for DAG

tasks since it takes into consideration their internal structure. We consider the processor load

feasibility condition which is a common necessary condition for multiprocessor task sets. The

processor load of a task set ⌧ is defined as the maximum value of total demand bound function

(DBF) (from Definition 1.2 on page 5) of all tasks in ⌧ within an interval of [0, t) divided by its

length t.

load(⌧) = max
8t

0

BB@

X

8⌧
i

2⌧
max(0, DBF i(t))

t

1

CCA (4.8)

where DBF i(t) is defined in Equation (1.2).

The necessary feasibility condition [19] based on processor load states that a task set cannot be

schedulable on m identical processors using any scheduling algorithm if the execution demand

of the task set exceeds the system’s capacity within any interval:

load(⌧)  m

At a subtask level, let DBF i,j denote the demand bound function from jobs of subtask ⌧i,j of

executing DAG ⌧i 2 ⌧ in an interval [0, t). Subtasks are assigned local o↵sets based on their

precedence constraints and the execution order of their predecessors. We define DBF i,j as

follows:

DBF i,j(t) =

✓�
t�Oi,j �Di,j

Ti,j

⌫
+ 1

◆
+

⇥ Ci,j (4.9)

where x+ = max(0, x).

In time interval [0, t), we suppose that each DAG task ⌧i 2 ⌧ is activated at time t = 0. The

assigned local o↵set Oi,j of subtask ⌧i,j represents the minimum delay between the activation

time ri of its DAG job Ji and the activation time ri,j of subtask job Ji,j . Hence, a job of subtask

⌧i,j is activated after at least Oi,j time units of the release time of its DAG job, and in a time

interval [0, t), subtask ⌧i,j is activated in [Oi,j , t).

Chapter 4. Direct Scheduling of DAGs 113

We modify the processor load by using the local timing parameters of subtasks and the DBF

at subtask level (from Equation (4.9)). The necessary condition of processor load is defined as

follows:

load(⌧) = max
8t

0

BBB@

X

8⌧
i

2⌧

X

8⌧
i,j

2⌧
i

max(0, DBF i,j(t))

t

1

CCCA
 m (4.10)

We believe that this necessary feasibility condition of processor load is more adapted to DAG

tasks, since the DBF is calculated based on the execution requirements of subtasks rather than

their DAGs. We provide an example to prove the correctness of this assumption.

Example 4.5 (Necessary condition of processor load at Subtask-Level).

In Figure 4.8, we present an example to show the di↵erence between the necessary condition of

processor load at DAG-Level and at Subtask-Level. Figure 4.8(a) shows the DAG set ⌧ which

consists of 2 periodic implicit-deadline DAGs (⌧
1

and ⌧
2

). The figure shows the structure of

DAG tasks and the local timing parameters of their subtasks. DAG ⌧
1

has a deadline and a

period equal to 10. It consists of 4 subtasks (⌧
1,1, ⌧1,2, ⌧1,3, ⌧1,4) where subtasks have a WCET

equal to 2 except for subtask ⌧
1,4 whose WCET is equal to 6. DAG ⌧

2

consists of 4 subtasks

which have identical WCETs equal to 1 and has a deadline and a period equal to 5.

Based on the necessary multiprocessor feasibility condition of system utilization which determines

the minimum number of processors on which a task set may be schedulable (from Equation (1.1)

on page 5), we consider that DAG task ⌧ (whose utilization is equal to 2) is executing on a

platform of 2 homogeneous unit-speed processors (m = 2). By assuming synchronous activation

of DAG set at time t = 0, we can notice that ⌧ is not schedulable by any global preemptive

scheduling algorithm on 2 processors, as shown in Figure 4.8(b). In order for the DAG set to

be feasible, DAG ⌧
1

must execute without delaying any of its subtasks, because it has no slack

time and its critical path length L
1

is equal to it relative deadline (L
1

= D
1

= 10). In the case

of synchronous activation, the first job of DAG ⌧
2

is activated within time interval [0, 5) and

it executes for 5 time units within this interval. Based on the structure of both DAGs and the

scheduling proposed in Figure 4.8(b), the DAG set needs to execute 11 time units within time

interval [0, 5) to meet all deadlines of the jobs. We can conclude that the DAG set is not feasible

on a system of 2 unit-speed processors.

Chapter 4. Direct Scheduling of DAGs 114

(a) DAG set ⌧ . (b) DAG set ⌧ is not schedulable on a platform of 2 pro-

cessors.

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

19

0

0.5

1

1.5

2

2.5

time t

Load(!) Unfeasible Load

 2 4 6 8 10 12 14 16 18 20

Lo
ad

(!
)

0

0.5

1

1.5

2

2.5

time t

Load(!) Unfeasible Load

 2 4 6 8 10 12 14 16 18 20

The load analysis is more accurate on a subtask-level than on a DAG-level.

Advantage of Subtask-level Scheduling

(c) Processor load of DAG-Level scheduling.

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

19

0

0.5

1

1.5

2

2.5

time t

Load(!) Unfeasible Load

 2 4 6 8 10 12 14 16 18 20

Lo
ad

(!
)

0

0.5

1

1.5

2

2.5

time t

Load(!) Unfeasible Load

 2 4 6 8 10 12 14 16 18 20

The load analysis is more accurate on a subtask-level than on a DAG-level.

Advantage of Subtask-level Scheduling

(d) Processor load of Subtask-Level Scheduling.

Figure 4.8: Processor load analysis of DAG-Level vs. Subtask-Level Scheduling.

t 1 2 3 4 5 6 7 8 9 10

load(⌧) 0.025 0.025 0.025 0.025 0.8 0.667 0.57 0.5 0.44 2

t 11 12 13 14 15 16 17 18 19 20

load(⌧) 1.818 1.667 1.538 1.43 1.6 1.5 1.41 1.33 1.26 2

Table 4.2: Processor load of DAG set ⌧ from Figure 4.8 at DAG-Level Scheduling.

t 1 2 3 4 5 6 7 8 9 10

load(⌧) 0.02 1 1 2.25 2 1.667 1.43 1.375 1.44 2

t 11 12 13 14 15 16 17 18 19 20

load(⌧) 1.82 1.83 1.77 2.07 2 1.875 1.765 1.72 1.74 2

Table 4.3: Processor load of DAG set ⌧ from Figure 4.8 at Subtask-Level Scheduling.

Since the necessary feasibility condition of task set utilization failed in identifying the infeasibility

of the DAG set, we want to test the necessary condition of processor load at DAG-Level and at

Subtask-Level and verify whether they can detect the infeasibility of the system or not. Starting

by the DAG-Level scheduling, the global parameters of DAG tasks are used to calculate the

processor load at DAG-Level (from Equation (4.8)) in di↵erent time intervals. The processor

load for all time intervals [0, t), where 1  t  20. The results are shown in Table 4.2, and they

are represented graphically in Figure 4.8(c). We can notice that processor load at DAG-Level

Chapter 4. Direct Scheduling of DAGs 115

never exceeds 2 for all time intervals, which is a contradiction with the scheduling example in

Figure 4.8(c) that proves the infeasibility of the DAG set. Hence, the necessary condition of

processor load at DAG-Level fails in identifying the exact execution requirement of DAG set in

time interval [0, 5).

For Subtask-Level Scheduling, we calculate processor load of the DAG set based on Equation

(4.3) which calculates the DBF of subtasks by using their assigned local timing parameters (the

quadruple from Figure 4.8(a)). Table 4.3 and Figure 4.8(c) show the processor load at Subtask-

Level for time intervals [0, t) where 1  t  20. According to these results, the processor load at

Subtask-Level is equal to 2.25 at time interval [0, 5) (respectively, 2.07 at time interval [0, 15)).

We detect that DAG set ⌧ performs a total amount of execution time at specific time intervals

that requires more than 2 processors. As a result, the feasibility condition of processor load at

Subtask-Level states that ⌧ needs at least 3 processors to execute on, which detects the infeasibility

of ⌧ on 2 processors as shown in Figure 4.8(b).

4.3.2 Interference Analysis

In this section, we provide an interference analysis for any work conserving algorithm for the

Subtask-Level Scheduling of DAG tasks. The interference on a subtask ⌧k,h from DAG ⌧k in a

specific interval [a, b) is defined as follows:

Definition 4.11. Ik,h(a, b) is the length of all intervals where subtask ⌧k,h is ready to execute

but blocked by higher priority subtasks in time interval [a, b).

Definition 4.12. Ii,jk,h(a, b) is the length of all intervals where subtask ⌧k,h is ready to execute

but blocked by subtask ⌧i,j which has higher priority in time interval [a, b).

In the case of sequential independent real-time tasks, the interference that a task can su↵er

in a specific time interval is the sum of interference of all other tasks (in the same interval)

divided by the number of processors5. Our DAG model defines subtasks as real-time threads

that execute sequentially. Hence, the same interference relation Ik,h(a, b) and Ii,jk,h(a, b) can be

applied as follows:

Ik,h(a, b) =
1

m
⇥

X

8⌧
i,j

2⌧
i

2⌧
Ii,jk,h(a, b) (4.11)

5
From Lemma (3) in [30].

Chapter 4. Direct Scheduling of DAGs 116

As stated earlier, subtasks of the same DAG may be assigned specific priorities by scheduling

algorithms at Subtask-Level, based on their local timing parameters. However, we consider

that predecessor subtasks of a given subtask ⌧k,h have implicitly higher priorities, because the

execution of any jobs of ⌧k,h is blocked until its predecessors jobs complete their own. Hence,

successor subtasks of ⌧k,h have lower priorities. The sibling subtasks of ⌧k,h, which execute

independently and in parallel, are assigned specific priorities by the scheduling algorithm. In

addition to the interference from other DAG tasks in the set, the interference on a subtask ⌧k,h

is divided into two sources: internal interference and external interference.

Let Iek,h(a, b) denote the external interference from higher priority subtasks of DAG tasks other

than ⌧k in the set in time interval [a, b). These external subtasks have no precedence constraints

or execution dependencies with subtask ⌧k,h. The interference can be defined as follows:

Iek,h(a, b) =
1

m
⇥

X

i 6=k,8⌧
i,j

2⌧
i

2⌧
Ii,jk,h(a, b) (4.12)

where some or all of the subtasks of DAG task ⌧i (other than ⌧k) can interfere with ⌧k,h based

on their priorities.

Let Iik,h(a, b) denote the internal interference on subtask ⌧k,h from other subtasks in ⌧k in time

interval [a, b). Since we consider constrained-deadline DAG tasks and that subtasks of a given

DAG share the same period of their DAG, one job at most from each subtask contributes in

the internal interference. The internal interference depends on the type of interfering subtasks

which are divided into categories based on their execution dependencies with subtask ⌧k,h:

• A predecessor subtask ⌧k,x 2 Pred(⌧k,h): this subtask delays the activation time of ⌧k,h,

but once subtask ⌧k,x completes its execution, there will be no further e↵ect of ⌧k,x on

⌧k,h.

• A sibling subtask ⌧k,x 2 Sibling(⌧k,h): for a specific job of subtask ⌧k,h, their sibling

subtasks can interfere once with its execution, based on the priorities assigned to them by

the scheduling algorithm.

• A successor subtask ⌧k,x 2 Succ(⌧k,h): this subtask cannot interfere with subtask ⌧k,h,

because both subtasks cannot execute in parallel, and subtask ⌧k,x starts its execution

after ⌧k,h completes its own. According to this, Ik,xk,h(a, b) = 0,

• Subtask ⌧k,h has no interference since we consider constrained-deadline DAG tasks, in

which only one job from each DAG task is activate at any time t. Hence, Ik,hk,h (a, b) = 0.

Chapter 4. Direct Scheduling of DAGs 117

Based on the above definitions, the internal interference Iik,h(a, b) on subtask ⌧k,h is defined as:

Iik,h(a, b) =
1

m
⇥

X

8⌧
k,i

62succ(⌧
k,h

);i 6=h

Ik,ik,h(a, b) (4.13)

Let J⇤
k,h be the job of subtask ⌧k,h which su↵ers from maximum interference, and let Ik,h(r⇤k,h, d

⇤
k,h)

denote the worst-case interference for subtask job J⇤
k,h of ⌧k,h in its activation interval [r⇤k,h, d

⇤
k,h).

For the sake of clarity, we use bIk,h to denote the maximum interference on subtask ⌧k,h, where

bIk,h = Ik,h(r⇤k,h, d
⇤
k,h).

Lemma 4.13. A DAG set ⌧ of sporadic constrained-deadline DAGs is schedulable on m identical

unit-speed processors, for any work conserving algorithm if:

8⌧k,h 2 ⌧k 2 ⌧

bIk,h = bIek,h + bIik,h  (Dk,h � Ck,h) (4.14)

Proof. The proof of this lemma is straightforward. The interference on a subtask job comes

from its two main sources: internal and external interference. In order for any subtask job to

be schedulable, its execution window (between its activation time and deadline) should be long

enough to execute its execution requirement plus the interference from higher priority subtasks

in the system.

Interference from Predecessor Subtasks

In Section 4.1.2, we assigned a maximum release jitter for each subtask in the DAG. Based on

Definition 4.3 (on page 96), the maximum release jitter bjk,h represents the maximum length

of the time interval in which any job of subtask ⌧k,h can be activated due to its precedence

constraints and the execution dependencies of its predecessor jobs. If we consider that all

predecessors of ⌧k,h have executed as late as possible, then subtask job J⇤
k,h cannot be delayed

more than bjk,h time units after its release time r⇤k,h. If we consider that job J⇤
k,h has a release

jitter jk,h  bjk,h, then we can exclude predecessor subtasks from the interference calculation in

Equation (4.14), and Lemma 4.13 can be modified as follows:

Chapter 4. Direct Scheduling of DAGs 118

� � �� �� ��

!k,h

rk dkdk,h

Ok,h

jk,h

Dk,h

Dk,h-Ck,h-jk,h

� � �� �� ��

� � �� �� ��

!k,i

!k,h
rk dk

Ck,i

Ck,h

jk,h

j’k,h

Ik,h

dk,i

dk,h

^

^

Figure 4.9: The interference window on subtask ⌧
k,h

excluding the interference from its pre-
decessor subtasks.

Lemma 4.14. A DAG set ⌧ is schedulable on m identical unit-speed processors using any work

conserving algorithm, if:

8⌧k,h 2 ⌧k 2 ⌧

bIek,h + bIik,h  (Dk,h � Ck,h � bjk,h)  (Dk,h � Ck,h � jk,h) (4.15)

where

bIik,h =
1

m
⇥

X

8⌧
k,i

2sibling(⌧
k,h

)

Ik,ik,h(a, b)

Proof. As shown in Figure 4.9 and based on the definition of the maximum release jitter in

Definition 4.3, if all predecessor jobs complete their execution just before their local deadlines,

then any job of subtask ⌧k,h will be activated no later than t = (rk+Ok,h+bjk,h). In the interval

[t, dk,h), predecessors will have no further interference, and only sibling subtasks of ⌧k,h will

interfere with ⌧k,h. If subtask ⌧k,h is feasible, the total interference on any of its jobs should not

exceed its slack time (Dk,h � Ck,h � bjk,h). However, if we consider the actual release jitter jk,h

which is less than or equal to its maximum value bjk,h, then the slack time of the job will be

increased and we will have a better feasibility condition.

As mentioned earlier, the maximum release jitter bjk,h of subtask ⌧k,h in interference analysis

is too pessimistic, because it considers that predecessor subtasks execute as late as possible

(just before their absolute deadlines). As a result, the upper bound on interference used in

Lemma 4.14 is always zero for any critical subtask ⌧k,h since their maximum release jitter

bjk,h = Dk,h � Ck,h, and they have no slack time.

As shown in Figure 4.10, it is possible to optimize the release jitter of subtask ⌧k,h to calculate

its finish time when we consider the maximum interference on any parent subtask ⌧k,i. Any job

Chapter 4. Direct Scheduling of DAGs 119

� � �� �� ��

!k,h

rk dkdk,h

Ok,h

jk,h

Dk,h

Dk,h-Ck,h-jk,h

� � �� �� ��

� � �� �� ��

!k,i

!k,h
rk dk

Ck,i

Ck,h

jk,h

j’k,h

Ik,h

dk,i

dk,h

^

^
� � �� �� ��

!k,h

rk dkdk,h

Ok,h

jk,h

Dk,h

Dk,h-Ck,h-jk,h

� � �� �� ��

� � �� �� ��

!k,i

!k,h
rk dk

Ck,i

Ck,h

jk,h

j’k,h

Ik,h

dk,i

dk,h

fk,i

^

Figure 4.10: The optimized release jitter of subtask ⌧
k,h

which has a sole parent ⌧
k,i

.

of subtask ⌧k,i has a response time equal to (bIk,i +Ck,i) when any work conserving algorithm is

used, and its latest finish time f⇤
k,i can be defined as:

f⇤
k,i = Ck,i + bIk,i  Dk,i

The finish time fk,i of any job of a schedulable subtask ⌧k,i should not be greater than its local

deadline Dk,i. Otherwise, a deadline miss will occur.

By using the finish time of each parent subtask of ⌧k,h, we can calculate its optimized release

jitter j0k,h, which is defined as follows:

j0k,h = max
8⌧

k,i

2parents(⌧
k,h

)

(f⇤
k,i � (Ok,h �Ok,i))

= max
8⌧

k,i

2parents(⌧
k,h

)

(Ck,i + bIk,i � (Ok,h �Ok,i)) (4.16)

 bjk,h

Corollary 4.15. A DAG set ⌧ is schedulable on m identical unit-speed processors using any

work conserving algorithm, if:

8⌧k,h 2 ⌧k 2 ⌧ bIek,h + bIik,h  (Dk,h � Ck,h � j0k,h)

where

bIik,h =
1

m
⇥

X

8⌧
k,i

2sibling(⌧
k,h

)

Ik,ik,h(a, b) (4.17)

Chapter 4. Direct Scheduling of DAGs 120

As a result, the use of the optimized release jitter of a subtask instead of its maximum re-

lease jitter improves our feasibility condition by considering a more accurate upper bound on

interference.

4.3.3 Workload Analysis for Work Conserving Algorithms

In global multiprocessor systems, the problem of quantifying the exact interference (not the

maximum interference) of a task on another one is a challenging problem when compared to

uniprocessor systems, because jobs can execute on any processor of the system and it is hard to

determine which specific job blocks the execution of another and for how many time units. The

same problem can be applied to the interference analysis of DAG tasks at Subtask-Level, which

we used in the schedulability condition of Corollary 4.15. However, calculating the workload

of an interfering task in a given interval is much easier than its exact interference, but at the

expense of pessimism. So, it is possible to use it as an upper bound on interference subtasks

within the same interfering interval. It is based on the fact that the interference of a subtask on

a lower priority subtask in a fixed interval cannot exceed its workload during the same interval.

Let Wi,j(a, b) be the amount of work performed by the jobs of subtask ⌧i,j in time interval [a, b),

then:

Ii,jk,h(a, b) Wi,j(a, b)

In the remainder of this subsection, we provide workload analysis of interfering subtasks on any

job of subtask ⌧k,h in a time interval of length equal to its local deadline Dk,h. As stated earlier

in the interference section, the workload analysis has two main sources: internal workload from

sibling subtasks and external workload from subtasks from other DAGs in the set.

Workload Analysis from Sibling Subtasks

A sibling subtask ⌧k,i of ⌧k,h is a subtask that belongs to the same DAG task ⌧k and it can

execute in parallel with ⌧k,h. Moreover, subtask ⌧k,i has no precedence relations with ⌧k,h and

it is not among its predecessor or successor subtasks.

For a given subtask, at most one job from each sibling subtask can interfere with any of its jobs,

because these jobs share the same period and the release time of their DAG job is considered as

their activation reference. In other words, one job from each sibling subtask of ⌧k,h is released

in the interval [rk +Ok,h, rk +Ok,h +Dk,h]. For any work conserving algorithm, the maximum

Chapter 4. Direct Scheduling of DAGs 121

internal interference bIik,ik,h of a subtask ⌧k,i on its sibling ⌧k,h is calculated by identifying the

length of the maximum interference interval Lk,i
k,h of ⌧k,i on ⌧k,h. It is defined as the length of

the longest interval in which subtasks ⌧k,h and ⌧k,i can execute in parallel. It can be calculated

as follows:

Lk,i
k,h = min(Dk,i, Dk,h)�max(Ok,i, Ok,h) (4.18)

For the sake of clarity, we denote by Dk,h the relative deadline of subtask ⌧k,h from the release

time of the DAG task, where Dk,h = Ok,h + Dk,h. Hence, the sibling interference interval is

defined as [max(Ok,i, Ok,h),max(Ok,i, Ok,h) + Lk,i
k,h). In the example from Figure 4.2 (on page

93), sibling subtasks ⌧
1,2 and ⌧

1,3 from DAG ⌧
1

have an interference interval [1, 5) whose length

is equal to L1,2
1,3 = 4.

Lemma 4.16. The maximum internal interference bIik,ik,h of subtask ⌧k,i on a job of its sibling

subtask ⌧k,h is upper bounded as follows:

bIik,ik,h  min(Ck,i, L
k,i
k,h) =

cWik,i

where Lk,i
k,h is defined in Equation (4.18).

Proof. Based on the definition of the interference interval Lk,i
k,h, the maximum possible workload

of subtask ⌧k,i in the interval happens when ⌧k,i executes as long as possible in the interference

interval. However, a subtask job cannot execute more than its WCET in a given time interval,

then the performed work within the interval is the minimum between its WCET Ck,i and the

length of the interference interval Lk,i
k,h.

Workload Analysis for External Subtasks

For any work conserving algorithm, Bertogna et al. [32] identified the worst-case activation

scenario of interfering jobs in a fixed interval (a, b) which generates the maximum possible

workload. They considered a task model of independent constrained-deadline sequential tasks

on multiprocessor systems. As shown in Figure 4.11, this scenario is defined when the carry-in

job of an interfering task starts its execution at the beginning of the interference interval, and

when it executes just before its deadline. The successive body jobs and at most one carry-out

job execute as soon as possible until the end of the interval. This scenario is proved in [32] to

generate the maximum workload in the interval.

Chapter 4. Direct Scheduling of DAGs 122

Carry-in Carry-outBody Job

Interference Interval

!i,2

!i,1

!i,3

!i,1

!i,2

!i,3

r*k,h d*k,h

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1 !i,1

!i,2!i,2

!i,3 !i,3

Scenario (1), Workload = 8

Scenario (2), Workload = 9t t+6 t+12

Figure 4.11: The densest possible packing of jobs in an interference interval for traditional
task using any work conserving algorithm (from [32]).

We apply the same scenario on DAG tasks so as to calculate the performed workload of an

interfering external subtask on another particular subtask ⌧k,h in the system. This is possible

because interfering subtask jobs do not belong to the same DAG ⌧k and their execution is

independent from ⌧k,h. In order to calculate the upper bound on interference from external

subtasks on job J⇤
k,h, we assume that all interfering subtask jobs from the same DAG (8⌧i,j 2 ⌧i

where i 6= k) are activated based on the worst-case activation scenario from Figure 4.11. As

shown in the example from Figure 4.12, a DAG task ⌧i consists of 3 subtasks with relative

deadline Di = 6 and a period Ti = 8. Subtask ⌧i,1 is the source subtask of the DAG and

subtasks ⌧i,2 and ⌧i,3 are its successors. The local timing parameters of subtasks are shown in

Inset 4.12(a) in which each subtask ⌧i,j is characterized as (Oi,j , Ci,j , Di,j , Ti,j). Inset 4.12(b)

shows our considered worst-case activation scenario of subtask jobs in the interference interval

[r⇤k,h, d
⇤
k,h). All carry-in jobs of subtasks start their execution at time t = r⇤k,h while successive

body jobs execute as soon as possible.

Using this worst-case activation scenario of subtask jobs is used to identify an upper bound on

performed workload in the interference interval, although it is pessimistic. Because interfering

subtasks from the same DAG task have precedence constraints that define their execution order

and dependencies. For example, subtask ⌧i,1 from Figure 4.12(b) cannot execute in parallel

with its successor subtasks ⌧i,2 and ⌧i,3. However, identifying the worst-case activation scenario

of jobs, which is adapted to DAG tasks and which takes into consideration the precedence

constraints between their subtasks, is not trivial. The example in Figure 4.12 describes the

problem di�culty.

Example 4.6 (Workload of external subtasks).

We consider the DAG task ⌧i from Figure 4.12(a). According to the precedence constraints

between its subtasks, the actual activation scenario of their jobs cannot be as shown in Figure

4.12(b), because subtask ⌧i,1 cannot execute in parallel with subtasks ⌧i,2 and ⌧i,3. In Figures

4.12(c), 4.12(d) and 4.12(e), we show the actual activation scenario of subtask jobs based on

Chapter 4. Direct Scheduling of DAGs 123

Carry-in Carry-outBody Job

Interference Interval

!i,2

!i,1

!i,3

!i,1

!i,2

!i,3

r*k,h d*k,h

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

3

!i,1

2

!i,2

2
!i,3

!i,1 !i,1

!i,2!i,2

!i,3 !i,3

Scenario (1), Workload = 8

Scenario (2), Workload = 9t t+6 t+12

(a) A DAG task ⌧
i

which consists

of 3 subtasks.

Carry-in Carry-outBody Job

Interference Interval

!i,2

!i,1

!i,3

!i,1

!i,2

!i,3

Carry-in job

Interfered Job !k

r*k,h d*k,h

ri2 = di1

rk ri3 = di2

di3

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

(b) The worst-case workload activation scenario for subtask jobs of ⌧
i

for

any work conserving scheduling algorithm.

L = 3

!i,2

!i,1

!i,3

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1

!i,2

!i,3

!i,2

!i,1

!i,3

L = 3

L = 3

(c) First possible activation scenario

of subtasks of ⌧
i

. Total performed

workload is equal to 3.

L = 3

!i,2

!i,1

!i,3

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1

!i,2

!i,3

!i,2

!i,1

!i,3

L = 3

L = 3

(d) Second possible activation sce-

nario of subtasks of ⌧
i

. Total per-

formed workload is equal to 4.

L = 3

!i,2

!i,1

!i,3

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1

!i,2

!i,3

!i,2

!i,1

!i,3

L = 3

L = 3

(e) Third possible activation sce-

nario of subtasks of ⌧
i

. Total per-

formed workload is equal to 5.

Figure 4.12: An example of workload analysis of external subtasks.

their precedence constraints. Moreover, we consider an interference interval of length equal to

3 which we shift forward and backward based on the local o↵set and deadline of each subtask in

⌧i as shown in the Figures. As a result, we can identify the maximum workload of subtask jobs

in the interference interval.

First scenario (from Figure 4.12(c)) considers that subtask ⌧i,1 starts at the beginning of the

interference interval. The length of the interval is equal to the WCET of ⌧i,1, then its successors

are activated after the end of the interval. The total performed workload in this interval is

equal to Ci,1 = 3. The second scenario is shown in Figure 4.12(d), in which we consider that

the interference interval begins at the release time of subtasks ⌧i,2 and ⌧i,3, and subtask ⌧i,1

terminates its execution before the beginning of the interval. The total workload is equal to 4

which is the sum of their WCET. However, both scenarios are not the one that generates the

maximum workload. We notice in Figure 4.12(e) that if the interference interval begins during

the execution of subtask ⌧i,1 (1 time unit before its deadline di,1) and it ends at the absolute local

deadline of subtask jobs ⌧i,2 and ⌧i,3,then the total performed workload is equal to 5.

We conclude that the activation scenario of interfering DAG ⌧i in an interval of length 3 at

Subtask-Level, that generated the maximum workload, does not comply with the worst-case

activation scenario from Figure 4.11 when it is applied on each subtask individually. Hence,

to calculate the maximum workload of external subtasks from the same DAG task, either we

Chapter 4. Direct Scheduling of DAGs 124

have to test all possible placements of interference interval and analyze their workload w.r.t.

the release time of subtask jobs, or we consider an upper bound on workload as shown in Figure

4.12(b). The latter option is easier to be calculated despite of its pessimism.

Lemma 4.17. The external interference bIei,jk,h of subtask ⌧i,j on subtask ⌧k,h in a time interval

whose length is equal to the relative deadline Dk,h of ⌧k,h, is bounded by:

bIei,jk,h  Ni,j(Dk,h)Ci,j+ (4.19)

min (Ci,j , Dk,h +Di,j � Ci,j �Ni,j(Dk,h)Ti,j)

where

Ni,j(Dk,h) =

�
Dk,h +Di,j � Ci,j

Ti,j

⌫

Proof. This lemma is a generalization of the one in [32] which considers independent sequential

tasks. The maximum workload of an external interfering subtask ⌧i,j on subtask ⌧k,h is generated

based on the worst-case activation scenario described in [32] and shown in Figure 4.11. The

amount of workload is based on the number of interfering jobs Ni,j which are entirely within the

interference interval in addition to the carry-out job which executes at the end of the interval

and may contribute partially to the interference (represented by the min operation in Equation

(4.19)). More details about these equations can be found in [32].

A schedulability condition for DAG tasks using any work conserving algorithm on m identical

processors, is provided by the following theorem:

Theorem 4.18. A DAG set ⌧ is schedulable on m identical processors using any work conserv-

ing algorithm if:

8⌧k,h 2 ⌧k 2 ⌧
X

⌧
k,i

2sibling(k,h)

min(bIik,ik,h, Dk,h � Ck,h � j0k,h) +
X

⌧
i,j

; i 6=k

min(bIei,jk,h, Dk,h � Ck,h � j0k,h)

 m(Dk,h � Ck,h � j0k,h)

where bIik,ik,h (respectively bIei,jk,h) is provided in Lemma 4.16 (respectively Lemma 4.17).

Proof. By knowing that the interference of a subtask on another one in a given time interval can

never exceed the workload of this subtask in the same interval, we transform the interference

Chapter 4. Direct Scheduling of DAGs 125

schedulability bound on subtask ⌧k,h, which was described in Corollary 4.15 into a workload

bound on schedulability of the same subtask. However, the internal and external interference

are based on their respective workload calculations which are provided in Lemmas 4.16 and

4.17.

The schedulability condition described in Theorem 4.18 can be used to optimize the release

jitter of each subtask. For each successor subtask, its release jitter can be calculated based on

its finish time which is derived from the maximum workload. If this new release jitter is greater

than its default value (which is the maximum release jitter), then the new value is discarded

and the default release jitter is not modified.

4.3.4 Global Earliest Deadline First Scheduling Algorithm

In this subsection, we extend the workload analysis of work conserving algorithm to consider

the case of GEDF scheduling algorithm, which assigns ready subtask jobs priorities based on

their absolute local deadlines. The subtask job whose absolute local deadline is the earliest

has the highest priority. Similarly to previous analyses, we provide the workload of internal

subtasks such as predecessor and sibling subtasks, then workload of external subtasks. This

analysis leads to a GEDF schedulability condition.

Internal Interference from Predecessor Subtasks

In Corollary 4.15 (on page 119), we provided an interference upper bound for internal subtasks

(predecessors and successors) in the case of work conserving algorithm. For internal interference

on ⌧k,h when GEDF is used, the upper bound considers that the interference from predecessor

subtasks is included within the release jitter jk,h of the subtask. Also, predecessor subtasks have

higher priorities than their successors because of their dependencies. However, the optimized

release jitter from Equation (4.16) (on page 119) depends on the total interference imposed on

predecessor subtasks from internal and external interfering subtasks, and this depends on the

scheduling algorithm.

Chapter 4. Direct Scheduling of DAGs 126

Internal Interference from Sibling Subtasks

In the case of work conserving algorithm, we considered that all jobs of sibling subtasks, which

execute in parallel with a given job of subtask ⌧k,h, may have interference on it. So, in order to

calculate an upper bound on workload, we assume that all subtasks participate in the workload

within the interference interval. However, this bound can be optimized in the case of GEDF,

since only sibling jobs with absolute deadlines no later than dk,h can participate in the interfer-

ence. While sibling jobs with later absolute deadlines are assigned lower priorities than Jk,h by

GEDF. We can notice that GEDF algorithm can assign priorities to sibling subtask jobs based

on their relative local deadlines, because these jobs share the same activation reference. In other

words, each subtask job Jk,i 2 sibling(⌧k,h) is activated Ok,i time units after the release time rk

of its DAG job Jk. Hence, we can conclude that subtask job Jk,h has higher priority than job

Jk,i if D0
k,h = (Ok,h +Dk,h)  D0

k,i.

Corollary 4.19. If subtask ⌧k,i is a sibling subtask of ⌧k,h and its local relative deadline D0
k,i is

not later than D0
k,h, then its worst-case internal interference bIik,ik,h on a job J⇤

k,h of subtask ⌧k,h

is defined as:

bIik,ik,h  cWik,i

where cWik,i is provided in Lemma 4.16 (on page 121).

Interference from External Subtasks

As stated earlier in Lemma 4.4 (on page 100), Bertogna et al. [32] identified the activation

scenario of interfering jobs which generates the maximum workload in a given interval for GEDF.

As shown in Figure 4.4, the scenario is defined when the last body job of an interfering task

has its deadline at the end of the interference interval and all body jobs execute as soon as

possible, while carry-in jobs execute just before their deadline. In the case of DAG tasks and

as shown earlier for work conserving algorithms in the example in Figure 4.12, it is not obvious

which interfering subtask in each DAG generates the maximum workload when the worst-

case activation scenario is applied. Due to precedence constraints between external interfering

subtasks from the same DAG, any subtask can be the reference of the interference interval (its

local deadline determines the end of the interval) while the remaining subtasks execute based on

their precedence constraints within the interval. Hence, it is necessary to calculate the workload

Chapter 4. Direct Scheduling of DAGs 127

Carry-in Carry-outBody Job

Interference Interval

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1 !i,1

!i,2!i,2

!i,3 !i,3

Scenario (1), L = 9, Workload = 8

Scenario (2), L = 9, Workload = 9

!i,J !i,J

!i,X2!i,X2

!i,X1!i,X1

L’ = L = 10

L’ = 9

L’ = 4

Di ,j � Di ,x1

Di ,x1 = 3

Di ,x2 = 6

Ti � (Di ,x2 � Di ,j)

Figure 4.13: The workload performed by external subtasks of ⌧
i

when subtask ⌧
i,j

is the
reference interval.

of each reference subtask and consider the maximum value as the worst-case workload of the

interfering DAG. For a concrete example, please refer to Example 4.7.

In order to calculate the workload of an external interfering subtask in a given time interval

for a given activation scenario, we have to calculate how many of its jobs execute within the

interval. Figure 4.13 shows an example of the workload performed by interfering DAG ⌧i on

a subtask job from another DAG in an interference interval of length L. If we consider that

subtask ⌧i,j is the reference subtask in the activation scenario, then the interference interval

ends at the local absolute deadline of the subtask. As shown in Figure 4.13, subtask ⌧i,j has

a body job which executes completely in the interval and a carry-in job that executes 2 time

units within the interference interval. The workload Wi,j of subtask ⌧i,j , which has a WCET

Ci,j and a period Ti, in interference interval of length L is calculated as the sum of the WCET

of body jobs and carry-in job, as shown in the following equation:

Wi,j(L) =

�
L

Ti

⌫
Ci,j +min

✓
Ci,j , L�

�
L

Ti

⌫
Ti

◆
(4.20)

For any subtask ⌧i,x1 2 ⌧i which has a local deadline Di,x1
6 that is earlier than deadline Di,j of

subtask ⌧i,j , its last body job in the interference interval has a local absolute deadline (Di,j �
Di,x1) time units before the end of the interval. Any job of this subtask, whose absolute

deadline is later than the end of the interference interval, is not considered in the workload

analysis because the interfering job is assigned a lower priority by GEDF. In order to apply the

same activation scenario of workload on ⌧i,x1, the length of the interference interval is reduced

6
For any subtask ⌧

i,x1, Di,x1 = O
i,x1 +D

i,x1.

Chapter 4. Direct Scheduling of DAGs 128

to be L0 = L� (Di,j �Di,x1). From Equation (4.20), the workload Wi,x1(L0) of subtask ⌧i,x1 is

calculated based on the modified interference interval.

For any subtask ⌧i,x2 2 ⌧i which has a local deadline Di,x1 that is later than the deadline Di,j

of subtask ⌧i,j , the interference interval must be modified so as to apply the activation scenario.

As shown in Figure 4.13, such subtask has a carry-out job that has an absolute deadline outside

the interference interval and cannot participate in the workload. The last body job of ⌧i,x2 (first

predecessor of its carry-out job) has an absolute deadline Ti � (Di,x2 � Di,j) time units from

the end of the original interference interval. Hence, the length of the interference interval is

modified to be equal to L0 = L� (Ti� (Di,x2�Di,j)). Similarly to the previous case, Equation

(4.20) can be used to calculate the workload Wi,x2(L0) of subtask ⌧i,x2 when the interference

interval is reduced.

Lemma 4.20. When GEDF scheduling algorithm is used, the maximum workload of a DAG

task ⌧i on a job of subtask ⌧k,h, where i 6= k, in a time interval of length L, is calculated as

follows:

Wei(L) = max
8⌧

i,j

2⌧
i

0

@
X

8⌧
i,x

2⌧
i

✓�
L0

Ti

⌫
Ci,x +min(Ci,x, L

0 �
�
L0

Ti

⌫
⇤ Ti)

◆1

A (4.21)

where L0 = max
�
L+ [Di,x �Di,j]� ↵ ⇤ Ti, 0

�

↵ =

8
><

>:

0, if (Di,j) � (Di,x)

1, otherwise

Proof. In order to calculate the maximum workload of interfering DAG task ⌧i on a subtask job

from another DAG task ⌧k, we must apply the worst-case activation scenario on each subtask

from the interfering DAG by considering the maximum workload. For each scenario, the sub-

tasks execute based on their precedence constraints with the reference subtask of the scenario,

and the workload is calculated based on the length of the considered interference interval. Equa-

tion (4.21) groups the three types of subtasks which are described above in Figure 4.13. The ↵

parameter is defined to get rid of carry-out jobs from subtasks with local deadlines outside the

interference interval.

Chapter 4. Direct Scheduling of DAGs 129

Carry-in Carry-outBody Job

Interference Interval

!i,2

!i,1

!i,3

!i,1

!i,2

!i,3

r*k,h d*k,h

Di = 6, Ti = 8 !i,1 (0,3,4,8)

!i,2 (1,2,3,8) !i,3 (1,2,3,8)

αi,2

αi,1

αi,3

αi,4

rk dkdiri

!i,1

 !i,2

!i,4

!i,3

Carry-in Job of !i

!i,1

3

!i,2

2

!i,3

2

!i,1 !i,1

!i,2!i,2

!i,3 !i,3

Scenario (1), Workload = 8

Scenario (2), Workload = 9t t+6 t+12

Figure 4.14: An example of workload analysis of external subtasks using GEDF scheduling
algorithm.

Example 4.7 (Maximum workload of external subtasks).

Figure 4.14 explains how to calculate the maximum workload of subtasks from an interfering

DAG ⌧i in an interval of length equal to L = 9. DAG task ⌧i is presented earlier in Figure 4.12(a)

(on page 123) and it consists of 3 subtasks in which two of them are identical w.r.t. their local

timing parameters. We identify two activation scenarios of workload: first, the reference subtask

is ⌧i,1, then we consider subtask ⌧i,2 (or ⌧i,3) to be the reference subtask.

Scenario 1: the interference interval is defined as [t+3, t+12), and it ends at the deadline of

subtask job of ⌧i,1. This subtask has a carry-in and a body job in the interval. Based on Equation

(4.21), subtask ⌧i,1 has a workload equal to 4. While subtasks ⌧i,2 and ⌧i,3 have carry-in jobs in

the interval whose absolute deadline is at time (t+6) and carry-out jobs whose absolute deadline

is at time (t+14). The carry-out jobs are not considered in the workload since they are assigned

lower priorities by GEDF. The total workload of subtasks ⌧i,2 and ⌧i,3 is equal to 4 when we

consider an interference interval of length L0 = 3. As a result, the maximum workload of this

scenario is equal to 8.

Scenario 2: the interfering interval is defined as [t + 5, t + 14), and it ends at the deadline

of subtasks ⌧i,2 and ⌧i,3. These subtasks are considered as the reference subtasks and they have

2 body jobs in the interval. Based on Equation (4.21), the workload of these subtasks is equal

to 8. Concerning subtask ⌧i,1, its last body job in the interval has a deadline at time (t + 9),

which is 2 time units earlier than the end of the interference interval. We modify the interval

to [t+5, t+9) whose length L0 = 7. Based on Equation (4.21), the total workload of the subtask

is generated from its body job and it is equal to 3. As a result, the maximum workload of this

scenario is equal to 9.

Chapter 4. Direct Scheduling of DAGs 130

Conclusion: the maximum workload of the interfering DAG ⌧i in a time interval of length 9

is equal to 9 from Scenario 2.

Corollary 4.21. A DAG set ⌧ is GEDF schedulable on m identical processors if:

8⌧k,h 2⌧k 2 ⌧
X

⌧
k,i

2sibling
k,h

min(bIik,ik,h, Dk,h � Ck,h � j0k,h) +
X

⌧
i

; i 6=k

min (Wei(Dk,h), Dk,h � Ck,h � j0k,h)

 m(Dk,h � Ck,h � j0k,h)

where bIik,ik,h is defined in Lemma 4.19 (on page 126).

4.3.5 Simulation-Based Evaluation

In this subsection, we provide simulation results to analyze the performance of our DAG schedul-

ing approaches and schedulability conditions when compared to other researches from the state-

of-the-art. We start by analyzing the performance of internal structure GEDF schedulability

condition at DAG-Level from Section 4.2 (on page 97). Then, we evaluate DAG scheduling

approach at Subtask-Level for GEDF algorithm from Section 4.3. More details about our

simulation tool and experimental results are provided in Chapter 5, where we compare the per-

formance of DAG scheduling when Model Transformation and Direct Scheduling approaches are

used.

Workload Analysis of DAG-Level Scheduling

In Theorem 4.7 (on page 104), we have presented a DAG-Level GEDF schedulability bound

based on the maximum workload performed on a DAG task during a time interval equal to

its relative deadline. This condition can be used to compute the processor speed (denoted by

b in Theorem 4.7) that guarantees the schedulability of the task set. As mentioned earlier,

for a particular task set, the speed of processors can be found by solving the inequality of

Equation (4.6) for each DAG task. The minimum processor speed among all tasks is the speed

that guarantees the schedulability of the system using GEDF.

We use simulation to evaluate the performance of our GEDF schedulability condition. Then, we

compared the processor speed, obtained with our approach ,to the speed from [81] which proved

Chapter 4. Direct Scheduling of DAGs 131

(a) Total task set utilization of 2. (b) Total task set utilization of 4.

Figure 4.15: Simulation results analyzing the GEDF schedulability condition at DAG-Level.

a speed b � 4 � 2

m for GEDF scheduling algorithm without considering the internal structure

of DAGs.

In our experiments, we considered that each DAG set consists of 50 periodic DAGs. We simulate

periodic DAGs instead of sporadic DAGs because periodic activation of tasks generates the worst

interference on a particular task based on the worst-case scenario. For each utilization from 1

to 4, we generate 1 million DAG sets to be simulated on m identical processors, where m is the

smallest integer that is greater than system utilization U of task set ⌧ (m = dUe).

First, we analyze the GEDF schedulability condition in Theorem 4.7. For the sake of clarity, let

Sched-Qam denote our schedulability condition and Sched-Li be the condition from [81]. The

simulation results for various utilization are shown in Figure 4.15. For a large range of task set

utilization (more than 80% of the generated sets), task sets are schedulable using Sched-Qam on

m processors with a lower speed than Sched-Li. We obtain a maximum gain is equal to 30% when

m = 2, while the gain is between 10% and 40% when m = 4. We can notice that Sched-Qam

calculates processor speed while considering a pessimistic worst-case workload scenario. Hence,

high utilization task sets (> 80%) require higher speed processors when compared to Sched-Li.

For such task sets, we can use the bound from Sched-Li as an upper bound on workload so as

to find the minimum processor speed that guarantees the schedulability of GEDF. As a result,

all task sets are scheduled using GEDF on m processors with speed  4� 2

m .

The results of the experimental simulations prove the importance of including the internal

structure in the scheduling analysis of DAG tasks. On the average, our Sched-Qam condition has

better performance than Sched-Li, and it schedules task sets on the same number of processors

but with lower speed.

Chapter 4. Direct Scheduling of DAGs 132

U BMS OWN U BMS OWN
0.2 950 992 0.5 790 833
0.4 771 866 1 151 306
0.6 525 668 1.5 10 45
0.8 261 442 2 2 20
1 115 200 2.5 1 6
1.2 36 71 3 0 1
1.4 13 34 3.5 0 0
1.6 3 12 4 0 0
1.8 2 8 4.5 0 1
2 4 5 5 0 0
2.2 1 1 5.5 0 0
2.4 0 0 6 0 0
2.6 0 0 6.5 0 0
2.8 1 1 7 0 0
3 0 0 7.5 0 0
3.2 0 0 8 0 0
3.4 0 0
3.6 0 0
3.8 0 0

0

250

500

750

1000
Schedulability (m = 4)

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 ta
sk

se
ts

System Utilization (0-4)

BMS
OWN

0

225

450

675

900

0.5 2.5 4.5 6.5

Schedulability (m = 8)

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 ta
sk

se
ts

System Utilization

BMS
OWN

0.2 !
System Utilization (0.2 - 4)

4

U BMS OWN U BMS OWN
0.2 950 992 0.5 790 833
0.4 771 866 1 151 306
0.6 525 668 1.5 10 45
0.8 261 442 2 2 20
1 115 200 2.5 1 6
1.2 36 71 3 0 1
1.4 13 34 3.5 0 0
1.6 3 12 4 0 0
1.8 2 8 4.5 0 1
2 4 5 5 0 0
2.2 1 1 5.5 0 0
2.4 0 0 6 0 0
2.6 0 0 6.5 0 0
2.8 1 1 7 0 0
3 0 0 7.5 0 0
3.2 0 0 8 0 0
3.4 0 0
3.6 0 0
3.8 0 0

0

250

500

750

1000
Schedulability (m = 4)

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 ta
sk

se
ts

System Utilization (0-4)

BMS
OWN

0

225

450

675

900

0.5 2.5 4.5 6.5

Schedulability (m = 8)

Nu
m

be
r o

f S
ch

ed
ul

ab
le

 ta
sk

se
ts

System Utilization

BMS
OWN

System Utilization (0.5 - 8)

Figure 4.16: Simulation results analyzing the GEDF schedulability condition at Subtask-
Level.

Workload Analysis of Subtask-Level Scheduling

In this subsection, we evaluate the performance of GEDF scheduling algorithm at Subtask-

Level and the schedulability condition from Corollary 4.21 (on page 130). To the best of our

knowledge, there is no Subtask-Level scheduling algorithms for DAGs in the state-of-the-art.

Hence, we compare the schedulability of our approach with schedulability condition at DAG-

Level. Bonifaci et al. in [36] provided a GEDF schedulability condition for DAG sets on m

identical processors which is summarized in the following theorem:

Theorem 4.22 (from [36]). A DAG set ⌧ is EDF-schedulable on m unit-processors if:

8⌧k 2 ⌧ , Lk  Dk
0

@
X

i:T
i

D
k

Ci

Ti
+

X

i:T
i

>D
k

Ci

Dk

1

A  (m+ 1/2)

3

Based on this theorem, the schedulability condition of DAG tasks depends on critical path

length, total WCET, deadline and period. The structure of the subtasks is not included in

the condition. Theorem 4.21 provides GEDF schedulability condition using the Subtask-Level

approach. The simulation results are provided in Figure 4.16.

We generate a large number of random DAG sets, and we apply both GEDF-schedulability

condition on the sets of utilization from 0 to 8. As shown in Figure 4.16, our own schedulability

condition, which is denoted by OWN, performs better than the condition from [36], which is

denoted by BMS. For each system utilization, our condition schedules more DAG sets than the

Chapter 4. Direct Scheduling of DAGs 133

BMS test. The simulation results prove the importance of the internal structure of DAG tasks

in the schedulability analysis.

4.4 Summary

In this chapter, we discussed the scheduling of parallel DAG tasks on multiprocessor systems

using the Direct Scheduling approach. Our contributions of this chapter show the importance

of the internal structure of DAGs and the execution order of subtasks in the scheduling process

and analysis. We started by analyzing the subtasks and we added extra local timing parameters

for each subtask based on global parameters of their DAGs and their precedence constraints.

These parameters do not modify the DAG model but they are useful in adapting scheduling

analysis for this model. We proved the usefulness of the internal structure of DAGs when we

modified the necessary feasibility condition of processor load to consider local timing parameters

of subtasks. As a result, the condition at Subtask-Level is adapted to DAG tasks.

Then, we presented a DAG-Level analysis for GEDF scheduling algorithm. Based on this

approach, global parameters of DAGs are used in the scheduling process. In this work, we used

the local parameters of subtasks in the schedulability analysis. Moreover, we provided a new

DAG scheduling approach at Subtask-Level, in which we used the local timing parameters of

subtasks in the scheduling process. As a result, a real-time scheduler becomes able to take

scheduling decisions based on these parameters rather than the global parameters of the DAGs.

We provided interference and workload analyses of DAGs which led to a schedulability condition

for any work conserving algorithm and for GEDF scheduling algorithm in particular.

Finally, we provided simulation-based evaluations for Direct Scheduling approaches: at DAG-

Level and at Subtask-Level. Mainly, we compared our GEDF schedulability conditions with

the ones we found in the state-of-the-art, such as [81] and [36]. Simulation results showed the

benefit of our schedulability conditions which considered internal structure of DAGs in their

analyses.

Chapter 5

Experimental Analysis of DAG Task

Scheduling

In this chapter, we aim at comparing both DAG scheduling approaches: the DAG stretch-

ing algorithm from the Model Transformation (from Chapter 3) and the Direct Scheduling at

Subtask-Level and at DAG-Level (from Chapter 4). In Section 5.1, we provide some DAG

scheduling examples so as to prove that these approaches are not comparable, i.e., there exist

task sets that are schedulable using one scheduling approach and not schedulable by the other

one, and vice versa.

Due to the incomparability of DAG scheduling approaches, we use extensive simulations to

analyze and compare their performance to schedule random DAG tasks on multiprocessor sys-

tems. In Section 5.2, we describe our real-time simulation tool YARTISS, and we explain the

di↵erent methods and techniques that we used to generate random DAG tasks w.r.t. timing

parameters, internal structure and dependencies. This is important for performance evaluations

of scheduling approaches based on the inter-subtask parallelism of DAGs. Finally in Section 5.3,

we present simulation results when DAG-tasks are scheduled using the scheduling approaches

with global multiprocessor algorithms. In this section, we consider two common scheduling

algorithms: EDF algorithm from the Fixed-Job Priority (FJP) assignment family, and DM

algorithm from the Fixed-Task Priority (FTP) assignment family.

135

Chapter 5. Analysis of DAG task Scheduling 136

5.1 Incomparability of DAG Scheduling Approaches

Proving the incomparability of di↵erent scheduling approaches is important to show that both

methods are acceptable for DAG scheduling and no one dominates the other. In this section,

we provide four scheduling examples to prove the incomparability of the scheduling approaches

presented in Chapters 3 and 4. Subsection 5.1.1 analyzes the DAG-Str algorithm with the

Model Transformation approach, which is compared to the Direct Scheduling at DAG-Level.

It contains two scheduling examples in which Example 1 is in favor of the DAG-Str algorithm,

while Example 2 is in favor of the Direct Scheduling. In Subsection 5.1.2, we compare the two

scheduling methods of the Direct Scheduling approach which are the DAG-Level and Subtask-

Level scheduling. It contains two scheduling examples: Example 3 is in favor of DAG-Level

scheduling in which scheduling decisions are taken based on global parameters of DAGs, and

Example 4 is in favor of Subtask-Level scheduling in which scheduling decisions are taken based

on local parameters of subtasks. In the scheduling examples, we consider two execution forms of

DAG tasks based on the scheduling approach. The parallel execution form refers to the default

execution scenario of a DAG, in which subtasks are activated as soon as their predecessors

terminate their execution without considering any resource limitations. While the stretched

execution form represents the sequential execution of subtasks after applying the DAG-Str

algorithm.

In these examples, we consider global preemptive scheduling of periodic implicit-deadline DAGs

on a platform of identical unit-speed processors, with DM and EDF scheduling algorithms. We

consider synchronous activation scenario of task sets, in which the first jobs of tasks in the set

are activated at the same time (t = 0 in the examples). We choose specific task sets in which

the priority assignment of jobs is the same with EDF and DM during their hyper-period.

5.1.1 DAG Stretching Algorithm vs. Direct Scheduling

This subsection contains two examples, the first one shows that there exists a DAG set that

is schedulable on multiprocessor systems using the DAG-Str algorithm from the Model Trans-

formation approach, but it is not schedulable under the Direct Scheduling. As a reminder, the

Model Transformation approach through stretching, forces DAG tasks to execute as sequentially

as possible, then any multiprocessor scheduling algorithm can be applied afterward. While in

Chapter 5. Analysis of DAG task Scheduling 137

⌧ 1,1 ⌧ 1,2 ⌧ 1,5

L
1

= 4 D
1

� L
1

= 2

⌧ 1,3

⌧ 1,4

0 6

(a) DAG task ⌧1 (parallel execution

form).

⌧ 1,1 ⌧ 1,2 ⌧ 1,3 ⌧ 1,5

Stretched master thread

⌧ 1,4

0 6

(b) DAG task ⌧1 (stretched execution

form).

⌧ 2,1

L
2

= 6 1

0 7

0

(c) DAG task ⌧2 (parallel and stretched

execution forms).

⌧ 1,1 ⌧ 1,2 ⌧ 1,5 ⌧ 1,1

⌧ 1,3⌧ 2,1 ⌧ 2,1
x

⌧ 1,4

0 2 4 6 8

(d) EDF & DM scheduling of DAG set showing a dead-

line miss when Direct Scheduling is used.

⌧ 1,1 ⌧ 1,2 ⌧ 1,3 ⌧ 1,5

⌧ 1,4

⌧ 2,1

0 2 4 8

(e) A successful EDF & DM scheduling when DAG-Str

algorithm is used.

Figure 5.1: An example of scheduling incomparability in favor of DAG-Str when compared
to Direct Scheduling.

the Direct Scheduling approach, we consider a DAG-Level scheduling in which scheduling algo-

rithms are applied on DAG tasks based on their global parameters (such as DAG’s deadline)

without modifying the task model.

Example 5.1 (DAG Stretching algorithm can outperform Direct Scheduling at DAG-Level

(Figure 5.1)).

Task Set: In this example, we consider a DAG set ⌧ that consists of two periodic implicit-

deadline DAG tasks, where ⌧ = {⌧
1

, ⌧
2

}. DAG ⌧
1

has 5 subtasks with a total WCET equal to 8

and a deadline equal to 6. The timing parameters of subtasks and the structure of DAG ⌧
1

are

shown in Inset 5.1(a). It has a critical path length equal to 4 and a slack time equal to 2. Inset

5.1(a) shows its parallel form in which subtasks ⌧
1,2, ⌧1,3 and ⌧

1,4 execute in parallel, while Inset

5.1(b) shows the stretched structure of DAG ⌧
1

. When DAG-Str algorithm is applied, the master

thread of the DAG is stretched up to its deadline by forcing subtask ⌧
1,3 to execute sequentially

after subtask ⌧
1,2 within the master thread. Subtask ⌧

1,4 executes in parallel with an o↵set equal

to 1 and a local relative deadline equal to 4.

DAG task ⌧
2

is shown in Inset 5.1(c). It consists of a single subtask ⌧
2,1 which has a WCET equal

to 6 and a deadline equal to 7. Since DAG ⌧
2

is a sequential task, there is no di↵erence between

its parallel and stretched execution forms. The utilization of the DAG set U(⌧) = 8

6

+ 6

7

= 2.19

Chapter 5. Analysis of DAG task Scheduling 138

which means that it needs a platform of at least 3 unit-speed processors to execute on. In this

example, we consider a platform of 3 processors.

Priority Assignment: If GDM scheduling algorithm is considered, then jobs of DAG ⌧
1

are

assigned a higher priority than jobs of DAG ⌧
2

because ⌧
1

has a shorter relative deadline. In

the case of GEDF, if we consider a synchronous scenario in which DAGs are released at time

t = 0, then the first job of task ⌧
1

has an absolute deadline at t = 6 while the first job of ⌧
2

has

an absolute deadline at t = 7. Hence, GEDF assigns the first job of ⌧
1

a higher priority than

the job of ⌧
2

. According to this priority assignment, jobs active in the time interval [0, 7) have

the same priorities according to GEDF and GDM.

Direct Scheduling Approach: The considered scheduling is done based on the parallel

execution form of DAGs while considering priority assignment of GEDF and GDM. As shown

in Inset 5.1(d), the first job of ⌧
1

executes without being interrupted since it has the highest

priority. Its parallel subtasks {⌧
1,2, ⌧1,3, ⌧1,4} occupy the 3 processors of the system for 2 time

units in time interval [1, 3). As a result, the execution of the first job of ⌧
2

is interrupted and it

is delayed for 2 time units. Since its slack is equal to 1 time unit, a deadline miss occurs.

Model Transformation Approach: Inset 5.1(e) shows the scheduling of the same DAG set

when the DAG-Str algorithm is used. Based on the structure of stretched DAG ⌧
1

from Inset

5.1(b), each job needs 2 unit-speed processors to execute successfully at all times, because the

stretching algorithm forces subtask ⌧
1,4 to execute sequentially within the master thread. For any

given scheduling algorithm, the DAG set is schedulable on a system of 3 processors. DAG task

⌧
1

occupies 2 processors and the remaining processor is dedicated to the sequential DAG task ⌧
2

.

Conclusion: In the case of preemptive GEDF and GDM scheduling algorithms, there exists

a DAG set that is schedulable on a multiprocessor system when the DAG-Str algorithm from

the Model Transformation approach is used, while Direct Scheduling approach fails to schedule

the same task set.

Example 5.2 (Direct Scheduling at DAG-Level can outperform DAG Stretching algorithm

(Figure 5.2)).

Task Set: In this example, we consider a DAG set ⌧ that consists of two periodic implicit-

deadline DAG tasks {⌧
1

, ⌧
2

}. DAG task ⌧
1

has a deadline equal to 6, it consists of 8 subtasks

and a total WCET equal to 10. The WCET of subtasks and the internal structure of the DAG

are shown in Inset 5.2(a). The critical path length of DAG ⌧
1

is equal to 6 which is the same

as its relative deadline. Thus, the DAG has no slack time and cannot be stretched. In order to

Chapter 5. Analysis of DAG task Scheduling 139

⌧ 1,1 ⌧ 1,2 ⌧ 1,5 ⌧ 1,6

L
1

= 6

⌧ 1,3 ⌧ 1,7

⌧ 1,4 ⌧ 1,8

(a) DAG task ⌧1 (parallel and stretched

forms).

⌧ 2,1 ⌧ 2,2

L
2

= 2 1

⌧ 2,3

0 3

(b) DAG task ⌧2 (parallel execu-

tion form).

⌧ 2,1 ⌧ 2,2

master thread

⌧ 2,3

0 3

(c) DAG task ⌧2 (stretched exe-

cution form).

⌧ 1,1 ⌧ 1,2 ⌧ 1,5 ⌧ 1,6

⌧ 2,1 ⌧ 2,2 ⌧ 1,3 ⌧ 2,1 ⌧ 2,2 ⌧ 1,7

⌧ 2,3 ⌧ 1,4 ⌧ 2,3 ⌧ 1,8

0 2 4

(d) A successful EDF and DM scheduling of task

set in case of Direct Scheduling.

⌧ 1,1 ⌧ 1,2 ⌧ 1,3 ⌧ 1,5 ⌧ 1,6
x

⌧ 2,1 ⌧ 2,2 ⌧ 2,3 ⌧ 2,1 ⌧ 2,2 ⌧ 2,3 ⌧ 1,7

⌧ 1,4 ⌧ 1,8

0 2 4

(e) EDF and DM scheduling with a deadline

miss when DAG-Str is used.

Figure 5.2: An example of DAG scheduling incomparability in favor of Direct Scheduling
when compared to DAG-Str algorithm.

avoid a deadline miss, its subtasks must execute without any delay or interruption. DAG task

⌧
2

consists of 3 subtasks, in which subtask ⌧
2,1 is the source subtask of the DAG and subtasks

{⌧
2,2, ⌧2,3} are its successors, as shown in Inset 5.2(b). The default execution behavior of these

subtasks is that both subtasks ⌧
2,2 and ⌧

2,3 execute in parallel. However, since DAG task ⌧
2

has a slack time equal to 1 time unit and its utilization is less than 1, then DAG-Str algorithm

transforms DAG ⌧
2

into a sequential task in which all of its subtasks execute sequentially. The

stretched form of DAG ⌧
2

is shown in Inset 5.2(c).

The total utilization of the DAG set is equal to U(⌧) = (10
6

+ 1) = 2.66. Hence, the task set

requires an execution platform of at least 3 processors to be feasible.

Priority Assignment: with GDM scheduling, jobs of DAG ⌧
2

are assigned a higher priority

than jobs of DAG ⌧
1

because ⌧
2

has a shorter relative deadline. In the case of GEDF, if we

consider a synchronous scenario in which DAGs are released at time t = 0, the first job of task

⌧
2

has an absolute deadline at t = 3 while the first job of ⌧
1

has an absolute deadline at t = 6.

As a result, GEDF assigns the job of DAG ⌧
2

a higher priority. Regarding the second job of

DAG ⌧
2

, its absolute deadline is equal to the deadline of the first job of DAG ⌧
1

, hence, priorities

are assigned arbitrarily. In this example, we consider that the DAG with the shortest relative

Chapter 5. Analysis of DAG task Scheduling 140

deadline is assigned higher priority as tie breaking rule. According to this priority assignment,

DAG jobs have the same priorities according to GEDF and GDM scheduling algorithms.

Direct Scheduling Approach: In Inset 5.2(d), we consider the global preemptive scheduling

of the DAG set on a system of 3 identical processors using the Direct scheduling approach. First

DAG jobs are activated at time t = 0 and the job of DAG ⌧
2

has the highest priority. Subtask

⌧
2,1 executes in interval [0, 1) and its successors ⌧

2,2 and ⌧
2,3 execute in parallel and occupy two

processors of the system in [1, 2). Similarly, the second job of DAG ⌧
2

executes in parallel in

time interval [3, 5). According to this scheduling, the first job of DAG task ⌧
1

executes without

interruption and all of its subtasks execute without any delay. As shown in Inset 5.2(d), the

synchronous DAG set is schedulable using GDM and GEDF scheduling algorithms.

Model Transformation Approach: When DAG-Str algorithm is used, subtasks of DAG ⌧
2

are forced to execute sequentially as a sequential thread even if there are available processors

in the system for the subtasks to execute in parallel. The first job of ⌧
2

has a higher priority

according to GDM and GEDF, then it occupies a single processor by itself in time interval [0, 3),

as shown in Inset 5.2(e). As a result, subtasks of the first job of DAG ⌧
1

are blocked in this

time interval and one of them (subtask ⌧
1,3 in the example) is delayed for 1 time unit and is

forced to execute in time interval [3, 4) instead of [2, 3). DAG task ⌧
1

has no slack time, then a

deadline miss happens as shown in the figure.

Conclusion: In the case of preemptive GEDF and GDM scheduling algorithms, there exists

a DAG set that is schedulable on a multiprocessor system with the Direct Scheduling approach,

while it is unschedulable with the DAG stretching algorithm. Based on Examples 5.1 and 5.2,

both scheduling approaches are not comparable and no one dominates the other.

5.1.2 Direct Scheduling: DAG-Level vs. Subtask-Level

In this subsection, we compare the Direct Scheduling of DAG tasks on homogeneous multipro-

cessor systems at DAG and Subtask levels. As described in Chapter 4, the di↵erence between

these scheduling approaches is the timing parameters of DAGs and their subtasks which are

used by the real-time scheduler. Here, we prove using scheduling examples that both Direct

Scheduling approaches are not comparable and that there is no dominance relationship between

them. As in the previous subsection, we consider GDM and GEDF scheduling algorithms to

schedule DAG tasks.

Chapter 5. Analysis of DAG task Scheduling 141

⌧ 2,1

L
2

= 3

⌧ 1,2

⌧ 1,1 ⌧ 1,3

L
1

= 5 1 DAG-Level

⌧
1,1 = (0, 1, 6, 6)

⌧
1,2 = (0, 1, 6, 6)

⌧
1,3 = (0, 4, 6, 6)

⌧
2,1 = (0, 3, 3, 3)

Subtask-Level

⌧
1,1 = (0, 1, 2, 6)

⌧
1,2 = (0, 1, 2, 6)

⌧
1,3 = (1, 4, 5, 6)

⌧
2,1 = (0, 3, 3, 3)

(a) DAG tasks ⌧1 and ⌧2 (with global and local parameters).

⌧ 2,1 ⌧ 2,1

⌧ 1,1 ⌧ 1,2 ⌧ 1,3

0 2 4

(b) A successful GEDF and GDM scheduling of task set

at DAG-Level.

d
1,1

d
1,2 d

2,1 d
1,3

⌧ 1,2 ⌧ 2,1

⌧ 1,1 ⌧ 1,3

x

0 2 4

(c) GEDF and GDM scheduling fails at Subtask-Level.

Figure 5.3: An example of DAG scheduling incomparability in favor of DAG-Level scheduling
when compared to Subtask-Level scheduling.

Example 5.3 (DAG-Level scheduling can outperform Subtask-Level Scheduling (Figure 5.3)).

Task Set: In this example, we consider a DAG set ⌧ that consists of two periodic implicit-

deadline DAG tasks {⌧
1

, ⌧
2

}. DAG task ⌧
1

has a deadline equal to 6 and consists of 3 subtasks

whose total WCET is equal to 6. The critical path length of DAG ⌧
1

is equal to 5 and its slack

time is equal to 1 time unit. Subtask ⌧
1,1 and ⌧

1,2 are source subtasks and subtask ⌧
1,3 is their

successor. DAG task ⌧
2

consists of a single subtask with a WCET equal to 3 which is the same

as its deadline. The internal structure of the DAGs is shown in Inset 5.3(a).

The total utilization of the DAG set is equal to U(⌧) = (6
6

+ 3

3

) = 2. Hence, the DAG set

requires an execution platform of at least 2 processors to be feasible. The global and local timing

parameters of subtasks of each DAG in the set are shown in Inset 5.3(a). A subtask ⌧i,j 2 ⌧i

is characterized by an o↵set, a WCET, a relative deadline and a period which are represented

respectively by a quadruple (Oi,j , Ci,j , Di,j , Ti,j)1. At DAG-Level, each subtask inherits the o↵set,

deadline and period of its respective DAG task and is characterized by a specific WCET.

1
Local timing parameters of subtasks are described in details in Section 4.1 (on page 89).

Chapter 5. Analysis of DAG task Scheduling 142

DAG-Level Scheduling Approach: We consider a global preemptive scheduling of syn-

chronous DAG set on a platform which consists of 2 unit-speed processors. If DM scheduling

algorithm is considered, then jobs of DAG ⌧
2

are assigned a higher priority than jobs of DAG

⌧
1

because ⌧
2

has a shorter relative deadline. This priority is inherited by the subtasks, i.e.,

subtask ⌧
2,1 has higher priority than subtasks ⌧

1,1, ⌧1,2 and ⌧
1,3. The same priority assignment

is applied on the first job of DAGs in the case of EDF. When DAGs are released at time t = 0,

then the first job of ⌧
2

has an absolute deadline at t = 3 and it has a higher priority than the

first job of ⌧
1

whose absolute deadline is at time t = 6. We assume that the second job of ⌧
2

has

higher priority with an absolute deadline at t = 6 (ties are broken arbitrarily).

Inset 5.3(b) shows the scheduling of this DAG set on 2 processors. According to the priority

assignment, the first job of task ⌧
2

executes in time interval [0, 3) without any interruption

from the other active jobs. While subtasks ⌧
1,1 and ⌧

1,2 are forced to execute sequentially in

time interval [0, 2) due to their priorities. According to this scheduling, both DAGs execute

sequentially without any deadline miss.

Subtask-Level Scheduling Approach: At Subtask-Level scheduling, local timing parameters

are assigned to subtasks and they are shown in Inset 5.3(a). Subtasks of the same DAG may be

assigned di↵erent priorities based on their local parameters. In the case of DM, subtasks ⌧
1,1 and

⌧
1,2 are assigned the highest priorities since they have the smallest relative deadline. Subtask

⌧
2,1 is assigned a lower priority and ⌧

1,3 has the lowest priority. The same priority assignment

is applied in the case of EDF to the first job of DAGs when they are released at time t = 0.

In Inset 5.3(c), subtasks ⌧
1,1 and ⌧

1,2 execute as soon as they are released (at t = 0) and they

occupy both processors of the system in time interval [0, 1). According to this, the first job of

subtask ⌧
2,1 is blocked and its execution starts at t = 1 which leads to a deadline miss.

Conclusion: In the case of preemptive GEDF and GDM scheduling algorithms, there exists

a DAG set that is schedulable on a multiprocessor system when it is scheduled at DAG-Level,

while it is unschedulable on the same platform using Subtask-Level scheduling.

Example 5.4 (Subtask-Level scheduling can outperform DAG-Level Scheduling (Figure 5.4)).

Task Set: In this example, we consider a DAG set ⌧ that consists of two periodic implicit-

deadline DAG tasks {⌧
1

, ⌧
2

}. DAG task ⌧
1

has a deadline equal to 6, and consists of 3 subtasks

and a total WCET equal to 7. The critical path length of DAG ⌧
1

is equal to 6, hence the

DAG has no slack time. Subtask ⌧
1,1 and ⌧

1,2 are the source subtasks and subtask ⌧
1,3 is their

Chapter 5. Analysis of DAG task Scheduling 143

⌧ 2,1

L
2

= 2 1

⌧ 1,2

⌧ 1,1 ⌧ 1,3

L
1

= 6
DAG-Level

⌧
1,1 = (0, 1, 6, 6)

⌧
1,2 = (0, 1, 6, 6)

⌧
1,3 = (0, 5, 6, 6)

⌧
2,1 = (0, 2, 3, 3)

Subtask-Level

⌧
1,1 = (0, 1, 1, 6)

⌧
1,2 = (0, 1, 1, 6)

⌧
1,3 = (1, 5, 5, 6)

⌧
2,1 = (0, 2, 3, 3)

(a) DAG task ⌧1 and ⌧2 (with global and local parameters).

⌧ 2,1 ⌧ 2,1

⌧ 1,1 ⌧ 1,2 ⌧ 1,3

x

0 2 4

(b) GEDF and GDM scheduling with a deadline miss

when DAG-Level scheduling is used.

d
1,1

d
1,2 d

2,1 d
1,3

⌧ 1,2 ⌧ 2,1 ⌧ 2,1

⌧ 1,1 ⌧ 1,3

0 2 4

(c) A successful GEDF and GDM scheduling of DAG

set when Subtask-Level scheduling is used.

Figure 5.4: An example of DAG scheduling incomparability in favor of Subtask-Level schedul-
ing when compared to DAG-Level.

successor. DAG task ⌧
2

consists of a single subtask with a WCET equal to 2 and a deadline

equal to 3. The internal structure of the DAGs in the set is represented in Inset 5.4(a).

The total utilization of the DAG set is equal to U(⌧) = (7
6

+ 2

3

) = 1.83. Hence, the set requires an

execution platform of at least 2 processors to be feasible. The global and local timing parameters

of subtasks of each DAG in the set are shown in the figure. As described in Example 3, a subtask

⌧i,j is characterized by a quadruple (Oi,j , Ci,j , Di,j , Ti,j).

DAG-Level Scheduling Approach: We consider a global preemptive scheduling of syn-

chronous DAG set on a system which consists of 2 unit-speed processors. If GDM scheduling

algorithm is considered, then jobs of DAG ⌧
2

are assigned a higher priority than jobs of DAG

⌧
1

because ⌧
2

has a shorter relative deadline. This is applied on all subtasks of the DAG, i.e.,

subtask ⌧
2,1 has higher priority than {⌧

1,1, ⌧1,2, ⌧1,3}. The same priority assignment is applied

on the first job of DAGs when GEDF is used. When DAGs are released at time t = 0, then the

first job of ⌧
2

has an absolute deadline at t = 3 and has a higher priority than the first job of

⌧
1

whose absolute deadline is at time t = 6. We assume that the second job of ⌧
2

has higher

priority with absolute deadline at t = 6 arbitrarily.

Chapter 5. Analysis of DAG task Scheduling 144

Inset 5.4(b) shows the scheduling of this DAG set on 2 processors. According to the assigned

priorities, the first job of DAG ⌧
2

executes in time interval [0, 2) without any interruption from

other jobs, while subtasks ⌧
1,1 and ⌧

1,2 are forced to execute sequentially in time interval [0, 2).

According to this scheduling, subtask ⌧
1,3 starts its execution at time t = 2 and cannot complete

it before its deadline at time t = 6, which leads to a deadline miss.

Subtask-Level Scheduling Approach: The local parameters which are used in Subtask-Level

scheduling are shown in Inset 5.4(a). In the case of GDM, subtasks ⌧
1,1 and ⌧

1,2 are assigned the

highest priorities since they have the smallest relative deadline value of 1. Then subtask ⌧
2,1 has

a lower priority and finally ⌧
1,3 is assigned the lowest priority. The same priority assignment

is applied in the case of GEDF on the first jobs of DAGs if they are released at time t = 0.

As shown in Inset 5.4(c), subtasks ⌧
1,1 and ⌧

1,2 execute as soon as they are released and they

occupy both processors of the system in time interval [0, 1). Accordingly, jobs of subtask ⌧
2,1

execute in time interval [1, 3) and [3, 5) and subtask ⌧
1,3 executes in parallel on the other processor

of the system in time interval [1, 6). Hence, DAG task is scheduled successfully on 2 processors

using Subtask-Level scheduling.

Conclusion: In the case of preemptive GEDF and GDM scheduling algorithms, there exists a

DAG set that is schedulable on a multiprocessor system when Subtask-Level scheduling is used,

but it is unschedulable when DAG-Level approach is used. We conclude from Examples 5.3 and

5.4 that both scheduling approaches are not comparable and no one dominates the other.

5.2 Simulation-Based Evaluation

Based on the previous scheduling examples, we concluded that the provided DAG scheduling

approaches are not comparable, and it is not clear which approach outperforms the other. In

order to evaluate their schedulability performance, we compare them through extensive simu-

lations of randomly-generated DAG tasks on multiple processors. The use of simulation-based

evaluations is common in real-time analysis to give an indication on the performance of the

algorithms. Simulation is used to check whether a set of tasks respects its temporal constraints

when a specific algorithm is used, or to evaluate the e�ciency of a new approach when compared

with other algorithms from the state of the art.

In real-time systems, there are many simulation tools that vary in their characteristics and

features, such as MAST [70], Cheddar [110, 111], STORM [118] and FORTAS [47]. However,

Chapter 5. Analysis of DAG task Scheduling 145

many factors led researchers to implement their own simulation tools without depending on

existing ones, such as the lack of a standard simulator, the di�culty of extending an existing

tool to include new features and models and the lack of documentation. Moreover, our work

required the implementation of specific real-time tasks of the DAG model.

In this section, we present YARTISS [39] which is a free open-source simulation tool written

in Java for real-time multiprocessor scheduling. Similarly to other simulation tools, YARTISS

is designed to simulate the scheduling of real-time algorithms and evaluate their performance.

However, we focused during its design on providing a generic simulation tool and an easy-to-use

modular design in which new modules can be easily added without the need to decompress,

edit nor recompile existing parts. YARTISS can be used to simulate the execution of large

scale data sets of di↵erent task models on multiprocessor platforms and show the scheduling

results visually within the simulator. Moreover, many task models are already implemented in

YARTISS including the DAGmodel with its associated scheduling algorithms and schedulability

test. YARTISS provides energy-aware simulations of task sets in which energy consumption is

one of the scheduling parameters of the tasks.

In Subsection 5.2.1, we start by providing a development history of YARTISS, and we introduce

its previous versions that led to its development. Then in Subsection 5.2.2, we briefly describe

the main features of the simulator while concentrating on the implementation of the DAG model

and its scheduling simulation. Finally in Section 5.3, we present simulation-based evaluations of

DAG scheduling approaches and we compare and evaluate their performance with GEDF and

GDM scheduling algorithms.

5.2.1 Simulation Tool: YARTISS

YARTISS is a fourth simulation tool developed by our real-time research team at University

of Paris-Est Marne-la-Vallée during the last few years. Each one of these tools was built for

a specific purpose at that time and required a long period of time to be developed. In this

subsection, we briefly present the development history of these tools and we show their features,

functionality and even their limitations that led to the development of YARTISS. We gained

experience from these previous developments to present a generic simulation tool that can be

used in the future by other researchers.

Our first version of a real-time simulator was called RTSS [88] which was developed between

2005 and 2008. RTSS was initially developed to test some scheduling algorithms on uniprocessor

Chapter 5. Analysis of DAG task Scheduling 146

systems in order to handle temporal fault tolerance, such as preemptive FP, EDF and DOV ER

[76] algorithms. It was extended to include sporadic tasks with Polling and Deferrable task

servers and their algorithms [89, 90]. RTSS su↵ered from some problems: some modifications

had been done based on certain assumptions and special execution behaviors without proper

documentation. Also, RTSS was not easily extendable, i.e., modifying a class in the simula-

tor results a↵ected the execution of other classes. Moreover, although the tool was initially

programmed in Java, bash scripts were regularly used to launch the simulation process and to

generate readable files as outputs.

Between 2008 and 2011, RTMSim [52], which stands for Real-Time Multiprocessor Simulator,

was developed based on RTSS. As the name indicates, RTMSim targeted multiprocessor simu-

lations of restricted migration [53] scheduling. The decision of designing a new simulator was

taken because of the poor documentation of RTSS. However, the core of RTSS was included in

RTMSim but many implementations of scheduling algorithms were lost.

Third try was made in early 2011. RTSS v2 [88] was developed as a rebuild of RTSS so as to

handle energy consuming tasks and energy-harvesting systems [42]. Unfortunately, RTSS v2

su↵ered from the same problems of the original tool RTSS such as the poor documentation and

the lack of modularity and usability features which are necessary for large scale simulations.

Moreover, RTSS v2 targeted uniprocessor systems and the extension towards multiprocessors

was not trivial.

Based on all of these development experiences, YARTISS was designed as a generic modular tool

that can be extended easily to include new models and algorithms. By default, it included dif-

ferent features such as generic task models (for both independent and dependent tasks), generic

multiprocessor execution platforms and even scheduling simulation with energy constraints.

Another important feature in YARTISS is the friendliness of its user interface which can be

used to generate large data sets, launch the simulation process and produce scheduling results

as readable files. In the following subsection, we provide a description of the main features of

YARTISS followed by a comparison of DAG scheduling approaches.

5.2.2 Simulation Features and Functionality

YARTISS is designed to provide two main features that are necessary for real-time simulation.

The first is the scheduling simulation of a given task set when a scheduling algorithm is used.

Chapter 5. Analysis of DAG task Scheduling 147

The second feature is the comparison of several scheduling algorithms (policies)2 on a large scale

and when di↵erent scheduling scenarios are considered. However, both features require a third

important feature which is the generator of task sets that are used for simulation and they have

to be random for reliability reasons.

In the remainder of this subsection, we list the main features of YARTISS, and we describe

briefly their implementation and functionality.

Single Task set Simulation

This is a basic function which simulates the scheduling of a given task set when it executes

on multiprocessor systems with a specific scheduling algorithm. The task set can be loaded as

an Extensible Markup Language (XML) file into the simulator either through the Graphical

User Interface (GUI) or by using task set generators. The simulation can be configured and

launched using the GUI, then scheduling results are shown on the di↵erent views of YARTISS.

The simulation parameters include the task set characteristics, the number of processors, the

scheduling algorithm and the energy profile. Figure 5.5 shows the GUI of the simulator and its

principle views: the scheduling diagram based on the available processors of the platform on

the top-left side, and the time diagram of each task in the set on the bottom-left side.

2
Both terms are used interchangeably in this subsection.

Figure 5.5: The multiprocessor view of YARTISS simulation tool.

Chapter 5. Analysis of DAG task Scheduling 148

By default, YARTISS considered global preemptive scheduling of tasks on homogeneous unit-

speed multiprocessor systems. However, the extension to partitioned scheduling and/or non-

preemptive scheduling can be easily done by adding their respective modules and classes in

YARTISS.

Uniprocessor/Multiprocessor Platforms

Unlike previous simulation tools (RTSS and RTSS v2), YARTISS is designed to support mul-

tiprocessor scheduling, in which the number and type of processors are entered as simulation

parameters. Uniprocessor systems, in which the number of processors is equal to 1, can be

considered as a special case of multiprocessor systems. Task set generators are developed to

be compatible with multiprocessor scheduling and they are randomly generated with system

utilization greater than 1. Furthermore, each processor has a type which determines its speed

(execution rate) as in the case of uniform or heterogeneous systems.

Energy Profile

YARTISS is designed to simulate energy production and consumption in real-time systems with

di↵erent energy profiles. This feature, which is not common in regular real-time scheduling

simulators, allows the user to model an energy harvester (such as a battery or a capacitor) with

limited or unlimited capacity. A renewable energy source can be also modeled using a charging

function.

Task Models and Generators

YARTISS o↵ers an open architecture to facilitate the integration of di↵erent task models. Its

current version contains two models, the first one is the independent sequential task model [85]

with energy parameters. As described in Section 1.1.1 on page 3, each task ⌧i is characterized

by its WCET Ci, its period Ti and its relative deadline Di, in addition to Ei which denotes its

worst case energy consumption. The second model is the DAG task model which belongs to the

dependent parallel task models. As described earlier in Section 1.3.4 on page 19, a graph task

is characterized by a set of single-threaded subtasks with precedence constraints.

Performing large-scale scheduling simulations requires a large data set of tasks. In order to

avoid biased results and ensure credibility, task sets should be randomly generated and their

Chapter 5. Analysis of DAG task Scheduling 149

Algorithm 5.1 The UUniFast Algorithm (from [33])

Input: U(⌧), n
Output: vectU . An array of utilization of each task ⌧i in the set ⌧ .
sumU = U(⌧)
for i = 1 : n� 1 do

nextSumU = sumU ⇥ rand(1/(n�i))

vectU(i) = sumU � nextSumU
sumU = nextSumU

end for
vectU(n) = SumU

timing parameters should be varied. YARTISS provides the ability to choose a task set generator

which defines the various timing parameters of tasks and whether they are periodic/sporadic and

implicit/constrained/arbitrary deadline tasks. The default generator in YARTISS is based on

the UUniFast-Discard algorithm [33] adapted to energy constraints and parallel tasks (utilization

is greater than 1) coupled with a hyper-period limitation technique [62].

We start by explaining the generation of independent sequential tasks. For a given task set ⌧ , the

generator has two input parameters, the system utilization U(⌧) and the number of tasks in the

set denoted by n. The UUnifast-Discard algorithm uniformly distributes system utilization on

all the tasks of the set with O(n) complexity. As shown in Algorithm 5.1, the UUniFast-Discard

algorithm generates an array of n random task utilization, in which each element represents a

task utilization Ui of ⌧i 2 ⌧ , where 0 < Ui  1 (sequential tasks) and
Pn

i=1

Ui  U(⌧).

After defining the task utilization, which is equal to Ui =
C

i

T
i

, the timing parameters of each

task ⌧i (WCET and period) can be derived based on the utilization. However, the period

parameter is chosen based on a hyper-period limitation technique. It is known that a periodic

task set repeats its task arrival pattern after an interval called the hyper period, which is equal

to the Least Common Multiple (LCM) of task periods. For synchronous task sets (respectively

asynchronous) with static scheduler, their schedulability is determined by verifying the response

time of each job on a period of length equal to the hyper period (respectively slightly greater

than the hyper period) [61]. For dynamic schedulers (synchronous or asynchronous), the period

may go up to twice the hyper period [79]. Hence, the value of LCM is a↵ected by the increase of

task periods in the set. In order to limit the length of the hyper period during task generation

in YARTISS, which results in a reduction in the simulation interval, we use the hyper-period

limitation technique from [62]. The idea of the technique is to generate n periods {T
1

, T
2

, ..., Tn}
for each task in the set in a way to bound their resulting LCM. The algorithm uses a matrix M
representing primes and their probabilistic distribution. A period is calculated as the multiple

Chapter 5. Analysis of DAG task Scheduling 150

of random number from each line in the matrix. For example, if we consider a matrix M which

consists of 5 primes (2, 3, 5, 7, 11), its structure and probabilistic distribution are provided as

follows:

M =

0

BBBBBBBBB@

1 2 2 4 4 4 8 16 16

1 3 3 9 9 9 27

1 5 5 25 25 25

1 1 7 7 7 49

1 1 1 11 11

1

CCCCCCCCCA

The largest period, that can be possibly generated from M, is equal to (16⇥27⇥25⇥49⇥11 =

5821200), which represents the largest possible hyper period of the task set. Hence, by choosing

the primes values of the matrix, we can limit the maximum hyper period of the generated task

set, and respectively, the simulation interval.

Based on the UUniFast-Discard and the hyper-period limitation algorithms, the utilization and

period of each task are derived. Based on these values, the relative deadline and WCET are

randomly calculated. The deadline Di is derived based on the type of generated task sets. In

the case of implicit-deadlines, we consider that Di = Ti. While the deadline of constrained-

deadline tasks is less than or equal to the period, where Di  Ti. There is no relation between

the deadline and the period in the case of arbitrary-deadline tasks. Finally, the WCET Ci of

task ⌧i is calculated based on the utilization and period and it is strictly less than the deadline

of the task (1  Ci  Di).

As stated earlier, YARTISS is an energy-aware simulator in which task sets can be feasible

regarding energy constraints as well as timing constraints. An extra parameter can be assigned

to tasks to represent their energy consumption during execution, which is the Worst-Case Energy

Consumption (WCEC) using UUniFast-Discard algorithm. YARTISS presents the generated

data sets in XML files. An example of such files is shown in Listing 5.1 which contains a data set

of a single task set (tag <tasks>) of two tasks (tag <task>). The timing parameters of each

task are coded into the XML file. In YARTISS, there exist XML writer and reader classes which

are responsible for encoding generated task sets in XML format and extract timing parameters

from files to construct task sets.

The DAG task generator is more challenging than the one of the independent sequential tasks.

Inter-subtask parallelism and dependencies between subtasks complicate the generation process.

In our DAG model, subtasks are defined as sequential threads and their basic timing parameters

Chapter 5. Analysis of DAG task Scheduling 151

<?xml version=”1.0” encoding=”UTF�8”?>
<dataset>

<policy name=”PFPASAP” nbParams=”0”/>
<simulation endValue=”100” nbProc=”1”/>
<energyProfile E0=”0” Emax=”50” Emin=”0” pr=”3”/>
<tasks nbTasks=”2” type=”Fixed Priority”>

<task dead l ine=”3” f i r s t R e l e a s e=”0” per iod=”8” p r i o r i t y=”1” type=”
simple” wcec=”10” wcet=”2”/>
<task dead l ine=”9” f i r s t R e l e a s e=”0” per iod=”10” p r i o r i t y=”2” type=”
simple” wcec=”3” wcet=”3”/>

</tasks>
</dataset>

Listing 5.1: An example of XML code representing an independent sequential task set

are similar to the ones defined in the previous generated model. However, their precedence

constraints are randomly generated to determine the execution structure of the DAG. The DAG

generator uses the same generation techniques and algorithms of the independent sequential

model which determine the utilization and period of each DAG. Based on the total system

utilization and the number of tasks in the set, each DAG ⌧i is assigned a utilization Ui which

can be greater than 1 since it is a parallel task, and the total WCET Ci, the relative deadline

Di and the period Ti of the DAGs are defined randomly. WCET and precedence constraints of

subtasks are defined based on the following parameters:

• Maximum number of subtasks (MAX SUBTASKS): it is defined for each DAG set as an

upper bound on the number of subtasks in the DAG. This value is important to determine

the size of DAGs which a↵ects the probability of its inter-subtask parallelism. Generally,

DAG tasks, whose number of subtasks is large, tend to have more internal parallelism and

more precedence constraints between their subtasks than smaller DAGs.

Additionally, the minimum number of subtasks (MIN SUBTASKS) is calculated so as to

ensure a feasible generation of DAGs. Its value is calculated when we consider that

each subtask ⌧i,j in DAG ⌧i has a WCET Ci,j equal to its relative deadline Di, which is

the maximum execution time that can be assigned to any subtask so as to be feasible.

Then, the MIN SUBTASKS is equal to

⇠
Ci

Di

⇡
. For each DAG task ⌧i in the set, its number

of subtasks ni is equal to rand(MIN SUBTASKS, MAX SUBTASKS). If random generation of

subtask timing parameters leads to MIN SUBTASKS greater than MAX SUBTASKS, then the

generation process is repeated until this relation becomes true.

• The WCET Ci,j of each subtask ⌧i,j is calculated using the UUniFast-Discard algorithm,

where the total WCET Ci of the DAG and the number of subtasks ni are its inputs. We

Chapter 5. Analysis of DAG task Scheduling 152

bound the value of Ci,j of each subtask to ensure system feasibility by using the following

Cmax
i,j and Cmin

i,j bounds:

– Any sequential subtask of DAG ⌧i cannot exceed the deadline of the DAG. Hence,

Cmax
i,j = Di.

– The minimum WCET Cmin
i,j of subtask ⌧i,j is calculated when each subtask ⌧i,k in the

DAG, which is not assigned a WCET yet, is considered to have a WCET Ci,k equal

to Cmax
i,k . This bound is necessary to ensure the feasibility of generated subtasks. For

example, let us consider a DAG task ⌧i with the following timing parameters: a total

WCET Ci = 6, a relative deadline Di = 4 and two subtasks {⌧i,1, ⌧i,2}. If subtask

⌧i,1 is assigned a WCET equal to Ci,1 = 1, then the remaining WCET available for

subtask ⌧i,2 is equal to 5 which is greater than the deadline of the DAG and the

subtask is not feasible on a unit-speed processor. Hence, Cmin
i,1 has to be at least

(6� 4) = 2 time units to ensure feasibility.

• The probability factor of directed relations ⇢ between subtasks, where 0 < ⇢ < 1.

If ⇢ is close to 0, then the probability of creating a directed relation between any two

subtasks in the DAG is large. This probability is reduced when ⇢ moves closer to 1. In

order to get rid of cyclic dependencies between subtasks, we use a triangular matrix R
whose entries of ones and zeros are randomly generated based on the probability factor

⇢. For each DAG task ⌧i, R is a square matrix of size ni and all of its entries under the

main diagonal are zeros. We consider that the main diagonal entries are zeros so that a

subtask does not have a precedence relation with itself. The remaining entries represent

the precedence relations between subtasks and they are either zeros or ones. For DAG ⌧i,

if entry Rj,k = 1, then we create a precedence relation from subtask ⌧i,j to ⌧i,k. If it is

zero, then there is no relation between these two subtasks. An example of the triangular

matrix R of a DAG ⌧i of 4 subtasks is considered as follows:

R =

0

BBBBBB@

⌧i,1 ⌧i,2 ⌧i,3 ⌧i,4

⌧i,1 0 1 1 0

⌧i,2 0 0 0 1

⌧i,3 0 0 0 1

⌧i,4 0 0 0 0

1

CCCCCCA

Chapter 5. Analysis of DAG task Scheduling 153

<?xml version=”1.0” encoding=”UTF�8”?>
. . .
<tasks nbTasks=”1” type=”Fixed Priority”>

<task dead l ine=”10” f i r s t R e l e a s e=”0” nbSubtasks=”2” per iod=”10”
p r i o r i t y=”1” type=”graph” wcee=”0” wcet=”5”>

<subtask ch i l d r en=”1” dead l ine=”10” f i r s t R e l e a s e=”0” index=”0”
l o c a lDead l i n e=”7” nbProc=”1” parents=”” per iod=”10” p r i o r i t y=”1” type=”
subtask” wcet=”2”/>

<subtask ch i l d r en=”�1” dead l ine=”10” f i r s t R e l e a s e=”2” index=”1”
l o c a lDead l i n e=”10” nbProc=”1” parents=”0” per iod=”10” p r i o r i t y=”1” type
=”subtask” wcet=”3”/>
</task>

</tasks>

Listing 5.2: An example of an XML file describing the DAG Tasks

In this example, subtask ⌧i,1 has two successors ⌧i,2 and ⌧i,3 since R
1,2 = R

1,3 = 1, while

there is no directed relations between subtask ⌧i,1 and subtask ⌧i,4. Similarly, subtask ⌧i,4

is the successor of subtasks ⌧i,2 and ⌧i,3.

Using these parameters, DAG sets are randomly generated and each DAG task is assigned a

WCET, a period, a relative deadline and a set of random subtasks with precedence constraints.

As in the case of the sequential task set generator, each DAG set can be encoded with an XML

file so as to be used repeatedly in the simulation of di↵erent scheduling algorithms. An example

of a DAG XML file is shown in Listing 5.2, which represents a data set of a single task set

(tag <tasks>) which contains a single DAG task (tag <task>). This DAG consists of two

subtasks (tag <subtask>), in which the first subtask is a parent of the second one (represented

by attributes parents and children). The subtask tag has other attributes such the WCET,

deadline, first release time so as to represent their timing parameters.

Scheduling Algorithms and Schedulability tests

The main purpose of a real-time simulator is to compare the performance and e�ciency of

di↵erent scheduling algorithms. During the design of YARTISS, great attention was paid to

make it as generic as possible so as to facilitate the integration of new scheduling algorithms.

The addition of new scheduling algorithms to YARTISS follows the UML scheme described in

Figure 5.6. The scheduling algorithm (policy) mainly depends on its corresponding taskset

class which contains the necessary functions for priority assignment of the policy. In the case

of GEDF scheduling policy for example, we added a new class called the GlobalEDFTaskset

which extends the ITaskSet interface. Then, another class for the scheduling policy called

Chapter 5. Analysis of DAG task Scheduling 154

Figure 5.6: A UML diagram describing the addition of a new scheduling policy.

GlobalEDFGraphPolicy was implemented to extend the ISchedulingPolicy interface. This

class has the sorted taskset class as input and is mainly responsible for choosing the m highest-

priority active jobs to be executed in the system, where m is the number of processors. Selected

jobs are assigned to processors with a desired scheduling characteristic, such as global or parti-

tioned scheduling.

The same principle is applied in the case of schedulability tests, which are defined as schedulabil-

ity conditions that determine the schedulability of a given task set when an algorithm is used.

Usually, schedulability tests do not require simulating the scheduling of tasks in the system.

The schedulability conditions are applied on generated task sets and the results are represented

visually by a text file or a curve to show whether each task set is schedulable or not. The

schedulability tests can be used as a performance indication of di↵erent real-time scheduling

algorithms. YARTISS is designed to facilitate the addition of new schedulability tests, similar

to the addition of scheduling algorithms.

Chapter 5. Analysis of DAG task Scheduling 155

5.3 Simulation Results of DAG Scheduling Approaches

In this section, we describe the schedulability results of simulation experiments conducted to

compare the performance of DAG scheduling approaches, which are the DAG Stretching algo-

rithm, the Direct scheduling at DAG-Level and at Subtask-Level. We use YARTISS to generate

large data sets of random DAGs and to simulate their scheduling during one hyper period in

the synchronous scenario. We consider two preemptive algorithm to schedule DAG tasks, after

applying the scheduling approaches, which are the GEDF and GDM algorithms. Simulation

results are respectively shown in Subsections 5.3.1 and 5.3.2.

In order to generate random DAG tasks with various internal structure characteristics, we

consider a probability factor ⇢ that varies from 0.1 to 0.9 in steps of 0.1 which a↵ects the

internal parallelism of DAGs. We also consider a MAX SUBTASKS value that varies from 5 to

12 in steps of 1 which a↵ects the size of the DAGs. Based on these parameters and for a

given execution platform of m identical processors, where m 2 {2, 4, 8, 16}, we consider task set

utilization that varies from 0.2 to 1.0 times the number of processors in steps of 0.2. For each

utilization value, we generate 50, 000 DAG sets each of 10 periodic implicit-deadline DAG tasks.

We schedule the generated data sets by varying the DAG scheduling approaches and algo-

rithms. Then, we study simulation results to analyze the e↵ect of the following variations on

the schedulability of DAG tasks:

• The number of processors in the system.

• The size of DAG tasks.

• The probability of internal parallelism of DAG tasks.

We analyze these variations in the case of GEDF and GDM scheduling algorithms. Since

these two algorithms belong to di↵erent priority assignment families, we compare their e↵ect

on the scheduling approaches. We identify through simulation results the compatible priority

assignment for parallel or sequential form of execution for DAG tasks.

Chapter 5. Analysis of DAG task Scheduling 156

(a) DAG-Str algorithm, ⇢ = 0.1, MAX SUBTASKS = 5. (b) DAG-Level Sched. ⇢ = 0.1, MAX SUBTASKS = 5.

(c) Subtask-Level Sched. ⇢ = 0.1, MAX SUBTASKS = 5. (d) All algorithms, ⇢ = 0.1, MAX SUBTASKS = 5.

Figure 5.7: E↵ects of the number of processors on the performance of DAG scheduling ap-
proaches when GEDF is used.

5.3.1 Simulation Results for GEDF Scheduling Algorithm

The e↵ect of the number of processors on DAG schedulability

In this experiment, we scheduled DAG sets using the three scheduling approaches with pre-

emptive GEDF scheduling algorithm while concentrating on varying the number of processors

in the system. The other simulation parameters regarding the structure of DAGs are fixed for

each simulation sets.

The simulation results of di↵erent scheduling approaches are shown in Figure 5.7 which consists

of 4 insets. The x-axis in the Figure denotes the percentage of task set utilization w.r.t. the

number of processors in the system, while the y-axis denotes the percentage of schedulable

task sets. The e↵ect of varying the number of processors on the schedulability of DAGs was

independent from the other simulation parameters. Hence, we show the simulation results

when the probability factor ⇢ is equal to 0.1 (high probability of internal parallelism) and MAX -

SUBTASKS is equal to 5. The same remarks and conclusions can be extended to other scenarios

and variations.

Chapter 5. Analysis of DAG task Scheduling 157

In general, we notice that the performance of all DAG scheduling approaches decreases when

the number of processors of the system is increased. However, the performance of the DAG-

Str algorithm is more a↵ected by varying the number of processors than the direct scheduling

approaches (at DAG-Level and Subtask-Level). Inset 5.7(a) shows the simulation results when

DAG-Str is used. For m = 2, we notice that the schedulability percentage of stretched DAG

sets is almost 100% for an utilization up to 80%. The schedulability percentage drops to around

50% for an utilization equal to 100%. However, the schedulability performance degrades when

the number of processors is increased. When m = 16, less than 50% of task sets are schedulable

when their utilization is greater than 40% of the number of processors.

Direct Scheduling approaches at DAG and subtask levels behave in the same manner but with

better schedulability, as shown in Insets 5.7(b) and 5.7(c). The simulation results show that

DAG-Level scheduling successfully schedules more than 60% of DAG sets whose utilization is no

more than 80% of the number of processors, for any number of processors. The schedulability

percentage drops to around 50% of schedulable DAG sets when Subtask-Level scheduling is used.

As shown in Inset 5.7(d), the performance of all scheduling approaches is relatively similar when

the number of processors is small (although the DAG-Str algorithm has the best performance).

However, when we consider m = 16, there is a big di↵erence in performance between the

DAG-Str algorithm and the Direct scheduling. In conclusion, when GEDF is used to schedule

DAG tasks on execution platforms of large number of processors, it is better to consider Direct

scheduling approaches rather than DAG-Str algorithm for large number of processors.

The e↵ect of the size of DAGs on DAG schedulability

Figure 5.8 shows the simulation results of scheduling approaches as a function of the number

of processors. We consider that MAX SUBTASKS varies from 5 to 12 while the other simulation

parameters are fixed. In these experiments, we choose an average number of processors equal

to 8 and we analyze the simulation results based on the minimum and maximum probability of

internal parallelism of DAG tasks (⇢ = 0.1 and ⇢ = 0.9 respectively).

Generally, we notice that when the size of DAGs is increased, the schedulability performance

decreases with di↵erent rates based on the considered scheduling approach. In Inset 5.8(a)

where ⇢ = 0.1, the performance of DAG-Level scheduling (solid lines in the figure) degrades

when the size of DAGs is increased, but it is better than the schedulability of Subtask-Level

(dashed lines). When ⇢ = 0.9 in Inset 5.8(b), the schedulability of Direct scheduling approach

is similar to both DAG and subtask levels and it is not a↵ected by the variation of DAG size.

Chapter 5. Analysis of DAG task Scheduling 158

(a) Direct Scheduling. ⇢ = 0.1, m = 8. (b) Direct Scheduling. ⇢ = 0.9, m = 8.

(c) DAG-Str algorithm. ⇢ = 0.1, m = 8. (d) DAG-Str algorithm. ⇢ = 0.9, m = 8.

Figure 5.8: The e↵ect of size of DAG tasks on the performance of DAG scheduling approaches
when GEDF is used.

In both cases, Direct scheduling approach successfully schedules more than 40% of DAG sets

whose utilization is less than or equal to 80% of the number of processors.

Unfortunately, the performance of the DAG-Str algorithm degrades more than the Direct

Scheduling approach when DAG sizes are increased. As shown in Insets 5.8(c) and 5.8(d),

the DAG-Str algorithm schedules more DAG sets of small size. When MAX SUBTASKS is equal

to 5, more than 30% of DAG sets, whose utilization is not greater than 80%, are schedulable.

The schedulability percentage drops to around 10% of the same DAG sets when MAX SUBTASKS

is equal to 12. Moreover, we notice that the performance of DAG-Str algorithm is not much

a↵ected by the level of internal parallelism of DAG tasks which is represented by the probability

factor ⇢.

The e↵ect of internal parallelism of DAGs on schedulability

In this subsection, we analyze the e↵ect of parallelism probability on the schedulability of

DAGs using di↵erent scheduling approaches. We present simulation results after varying the

probability factor ⇢ from 0.1 to 0.9 in steps of 0.1. When ⇢ is close to zero, DAG tasks are more

Chapter 5. Analysis of DAG task Scheduling 159

(a) DAG-Str algorithm, MAX SUBTASKS = 12, m = 8. (b) Direct Scheduling, MAX SUBTASKS = 12, m = 8.

(c) DAG-Level Sched. MAX SUBTASKS = 12, m = 8. (d) Subtask-Level Sched. MAX SUBTASKS = 12, m = 8.

Figure 5.9: The e↵ect of probability of internal parallelism on the performance of DAG
scheduling approaches when GEDF is used.

likely to have many dependencies between their subtasks, while a factor close to 1 means that

subtasks tend to execute independently within their DAGs. In this experiment set, we choose

execution platforms with number processors equal to 8 and large DAG tasks with MAX SUBTASKS

equal to 12. The simulation results are shown in Figure 5.9.

As shown in Inset 5.9(a), the performance of DAG-Str algorithm is not a↵ected by the ⇢ factor.

This can be explained by the scheduling of stretched DAG tasks transformed into independent

sequential threads without considering the internal parallelism. Similarly, the performance of

Direct Scheduling approach on a subtask-level is not much a↵ected as shown in Inset 5.9(d).

However, the performance of DAG-Level scheduling improves when the probability of internal

dependencies increases. As shown in Inset 5.9(c), around 50% of DAG tasks with utilization less

than 80% are schedulable when parallelism parameter ⇢ = 0.9. The percentage of schedulable

DAG sets raises up to more than 70% of schedulable DAG tasks with the same utilization when

⇢ = 0.1.

In Inset 5.9(b), we compare the performance of Direct Scheduling approach at DAG-Level and

Chapter 5. Analysis of DAG task Scheduling 160

Subtask-Level. The simulation results show that DAG-Level scheduling has better performance

than Subtask-Level scheduling specially when the probability of internal dependencies is high

(⇢ = 0.1). However, when the probability drops to 0.9, then the performance of both approaches

is close, although that DAG-Level is slightly better.

Conclusion:

Based on the simulation results, we conclude that Direct Scheduling approach performs better

than DAG-Str algorithm when preemptive GEDF algorithm is used. Also, DAG-Level schedul-

ing has better schedulability than Direct Scheduling at Subtask-Level.

5.3.2 Simulation Results for GDM Scheduling Algorithm

In this subsection, we study the performance of priority assignment on the scheduling algorithm

used for the DAG-scheduling approaches. We present simulation results of preemptive GDM

scheduling algorithm and we compare the performance of DAG-Str algorithm and the Direct

Scheduling approach at DAG-Level, by varying the number of processors in the system, the size

of DAG tasks and the probability of inter-subtask parallelism.

The e↵ect of the number of processors on DAG schedulability

Figure 5.10 shows simulation results which compare the DAG-Str algorithm (solid lines) and

DAG-Level scheduling (dashes lines) when changing the number of processors in the systems.

In general, the schedulability rates of both algorithms decrease with the increase of number of

processors in the system. Also, we notice that the schedulability of both algorithms is almost

identical when m = 2. However, DAG-Str algorithm performs better than DAG-Level schedul-

ing when the execution platform consists of larger number of processors. This indicates that

GDM is more compatible with DAG-Str algorithm and performs better than GEDF scheduling

algorithm.

Moreover, we notice that changing the size of DAGs (MAX SUBTASKS) does not a↵ect the schedu-

lability of DAG scheduling approaches. For example, the schedulability performance of ap-

proaches in Inset 5.10(a), where MAX SUBTASKS is equal to 5, is almost identical to the results

when MAX SUBTASKS is increased to 9 in Inset 5.10(b). The size of DAG tasks does not seem

to a↵ect much the schedulability performance of algorithms. However, when ⇢ factor is equal

to 0.1, the scheduling approaches has better schedulability on large number of processors when

compared to the case where ⇢ is equal to 0.9.

Chapter 5. Analysis of DAG task Scheduling 161

(a) ⇢ = 0.1, MAX SUBTASKS = 5. (b) ⇢ = 0.1, MAX SUBTASKS = 9.

(c) ⇢ = 0.9, MAX SUBTASKS = 5. (d) ⇢ = 0.9, MAX SUBTASKS = 9.

Figure 5.10: Simulation results comparing the performance of DAG-Str algorithm and DAG-
Level scheduling while varying the number of processors in the system.

Simulation analysis for DAG-Level scheduling

In the case of Direct Scheduling approach at DAG-Level, the schedulability performance is

better for high probability of parallelism (⇢ = 0.1) rather than for low probability, as shown in

Figure 5.12. However, the performance degrades more in the case of DAG tasks with large size,

where MAX SUBTASKS is equal to 12.

Insets 5.12(a) and 5.12(b) show the degradation of schedulability performance of Direct schedul-

ing approach when we vary the number of processors in the system. Similarly, the schedulability

rates degrade more in the case of low probability of internal parallelism.

Simulation analysis for DAG-Str algorithm

As shown in Inset 5.13(a), the schedulability of DAG-Str algorithm is not a↵ected by the change

of probability of parallelism in DAG tasks when their sizes are relatively small. However,

when DAG-Str is applied on DAGs with larger sizes, where MAX SUBTASKS is equal to 12, the

Chapter 5. Analysis of DAG task Scheduling 162

(a) m = 16, MAX SUBTASKS = 5. (b) m = 16, MAX SUBTASKS = 12.

Figure 5.11: Simulation results comparing the schedulability performance of DAG-Level
scheduling while varying the probability of internal parallelism.

(a) ⇢ = 0.1, MAX SUBTASKS = 12. (b) ⇢ = 0.9, MAX SUBTASKS = 12.

Figure 5.12: Simulation results comparing the schedulability performance of DAG-Level
scheduling while varying the number of processors in the system.

schedulability gap increases when the number of processors is increased, as shown in Inset

5.13(b).

Similarly to the simulation results of DAG-Level scheduling, the performance of the DAG-Str

algorithm on DAG tasks with probability factor ⇢ is equal to 0.1, is better than the ones with

low probability, as shown in Insets 5.14(a) and 5.14(b).

5.4 Summary

In this chapter, we presented scheduling examples of di↵erent DAG approaches to prove their in-

comparability. We compared DAG-Str algorithm from the Model Transformation approach with

Direct Scheduling at DAG-Level. Then, we compared DAG-Level and Subtask-Level scheduling

from the Direct Scheduling approach. Due to this incomparability, we performed extensive sim-

ulations so as to study and analyze their schedulability performance. We presented YARTISS,

Chapter 5. Analysis of DAG task Scheduling 163

(a) m = 16, MAX SUBTASKS = 5. (b) m = 16, MAX SUBTASKS = 12.

Figure 5.13: Simulation results comparing the schedulability performance of DAG-Str algo-
rithm while varying the probability of internal parallelism.

(a) ⇢ = 0.1, MAX SUBTASKS = 12. (b) ⇢ = 0.9, MAX SUBTASKS = 12.

Figure 5.14: Simulation results comparing the schedulability performance of DAG-Str algo-
rithm while varying the number of processors in the system.

which is a generic real-time simulation tool for multiprocessor systems that contains parallel

DAG task generator. In order to ensure reliability of our simulation results, we generated a

large number of DAG sets that vary in size and in the probability of internal parallelism.

The simulation results are provided when global preemptive EDF and DM scheduling algorithms

are used while varying the number of processors of the systems. We analyzed these results in the

di↵erent scheduling scenarios and approaches. In general, we concluded that Direct Scheduling

approach is more compatible with GEDF scheduling algorithm, while DAG-Str algorithm is

compatible with GDM.

Chapter 6

Conclusion and Perspectives

Hard real-time scheduling has been studied thoroughly for many years and it is still an in-

teresting problem. On uniprocessor systems, the main objective of a real-time scheduler is to

determine a feasible allocation of task sets on their execution platform without any deadline miss.

Due to some physical constraints, manufacturers tend nowadays to enhance the performance of

execution platforms by increasing the number of their processing units, and multiprocessor sys-

tems recently became an acceptable choice in industrial applications. However, multiprocessor

scheduling problem is more challenging than uniprocessors since it concerns with optimizing the

utilization of several processors during scheduling.

Moreover, parallel task models are of growing importance. They are introduced as a development

of software design which takes advantage of multiprocessor architecture. Many parallel task

models have been introduced in real-time systems. In this thesis, we are interested in the Multi-

threaded model, in which a parallel task consists of a number of threads that execute either in

parallel or sequentially based on the decisions of the real-time scheduler. The Directed Acyclic

Graph (DAG) is an example of such model in which a DAG task consists of a set of subtasks

that execute under precedence constraints. Managing the internal dependencies of DAG tasks

adds another di�culty to the multiprocessor real-time scheduling problem.

6.1 List of Contributions

In this thesis, we are interested in the global preemptive scheduling problem of real-time DAG

tasks on multiprocessor systems, and we aim at answering the following question:

165

Chapter 6. Conclusion and Perspectives 166

How DAG tasks can be scheduled on multiprocessor real-time systems? Should they

be directly scheduled on multiprocessor systems while considering their internal de-

pendencies? Or is it better to avoid this parallel model and transform DAGs into

independent sequential forms that are easier to schedule?

To this end, we provided the following contributions:

Model Transformation Approach: DAG Stretching Algorithm

In Chapter 3, we provided a DAG Stretching (DAG-Str) algorithm based on the Model Transfor-

mation approach for periodic implicit-deadline DAG tasks. In this algorithm, the parallel DAG

model is converted into independent sequential tasks so as to avoid the internal dependencies

during the scheduling process. Briefly, DAG tasks are transformed into a collection of inde-

pendent sequential threads, and each thread is assigned an intermediate o↵set and deadline to

ensure its independent execution. The real-time scheduling is done based on these intermediate

parameters using any common multiprocessor scheduling algorithm.

In order to analyze the schedulability performance of the DAG-Str algorithm, we proved that

preemptive GEDF scheduling algorithm has a resource augmentation bound of 3+

p
5

2

for any

stretched task set of n < '.m, where ' is the golden ratio, n is the number of DAGs in the

set and m is the number of the available processors in the system after stretching. Recently,

the value has been proved to be the resource augmentation bound of GEDF when it is used to

schedule DAG tasks directly[82].

Additionally, we proposed a modified version of the DAG-Str algorithm which is called the

Segment Stretching (Seg-Str) algorithm. It aims at reducing the number of job migration and

preemption resulting from the stretching process when compared to the DAG-Str algorithm.

We analyzed the performance of the Seg-Str algorithm and we proved that it has the same

resource augmentation bound as for the DAG-Str algorithm.

Direct Scheduling Approach at DAG-Level

In Chapter 4, we analyzed the importance of the internal structure of DAG tasks when common

scheduling algorithms are used to schedule them on multiprocessor systems. Moreover, we con-

sidered sporadic constrained-deadline DAG tasks that are scheduled on multiprocessor systems

with any work conserving algorithm in general, and mainly with GEDF. Our scheduling analyses

are done based on the internal dependencies that determine the execution of subtasks. In order

Chapter 6. Conclusion and Perspectives 167

to achieve this, we added extra timing parameters to subtasks which are derived from the global

parameters of their DAGs, such as local o↵set, local relative deadline and release jitter. These

timing parameters are di↵erent from intermediate parameters assigned by the Model Transfor-

mation approach, because local parameters tend to define the maximum execution interval of

each subtask based on its precedence constraints without imposing any external intermediate

parameters.

We studied the scheduling of DAG tasks at DAG-Level, in which real-time algorithms schedule

DAGs based on their global timing parameters. This approach is common in real-time researches

regarding DAG scheduling but they mainly concentrate on timing parameters of DAGs such as

their total WCET, critical path length and slack time. However, we provided scheduling analyses

which take into consideration the internal structure of DAGs and the precedence constraints

between subtasks. We provided an adapted schedulability condition for DAG scheduling for

GEDF algorithm. The scheduling analyses are based on identifying upper bounds of interference

and workload of DAG tasks.

Direct Scheduling Approach at Subtask-Level

Moreover in Chapter 4, we proposed a Subtask-Level scheduling of DAGs in which real-time

algorithms schedule DAGs based on assigned local parameters of subtasks rather than on global

parameters of DAGs. We argued the advantage of Subtask-Level scheduling on feasibility anal-

ysis of DAG tasks by adapting the necessary feasibility condition based on the load function.

We provided a modification to the condition, at Subtask-Level, that is more accurate. Then, we

provided interference and workload analyses for this scheduling, and schedulability conditions

for any work conserving algorithm and for GEDF.

Simulation tool: YARTISS

We started Chapter 5 by proving the incomparability of DAG scheduling approaches which

were presented in the previous chapters. This was done by presenting scheduling examples to

show that a given DAG set is successfully scheduled by one approach and not by the other, and

vice versa. Due to this incomparability, we compared the performance of the DAG scheduling

approaches using extensive simulations. We simulated the global preemptive scheduling of

random DAG sets on homogeneous multiprocessor systems when EDF and DM scheduling

algorithms are used.

Chapter 6. Conclusion and Perspectives 168

In order to perform the simulation experiments, we presented YARTISS, which is a free open-

source simulation tool written in Java for real-time multiprocessor scheduling. During its design,

we focused on providing a generic simulation tool and an easy-to-use modular design which can

be easily used and extended by fellow researchers. YARTISS can be used to simulate the

execution of large scale data sets of di↵erent task models on multiprocessor platforms and to

show the scheduling results visually within the simulator. We included the DAG model within

the simulator and we designed a DAG generator that is able to produce many variations to the

structure of DAGs, including the size of tasks (by changing the number of their subtasks) and

the probability of internal dependencies between subtasks.

6.2 Future Work and Perspectives

Scheduling parallel real-time tasks on multiprocessor systems is an interesting problem, and we

believe that there are many open problems and aspects that need to be studied and analyzed.

Here, we provide our main perspectives of future work:

Real-time DAG scheduling on soft real-time systems

Usually, applications in hard real-time systems are critical in a way that deadline misses are not

acceptable. Until now, their domains are limited and dependent on certain reliable scheduling

algorithms and platforms. The switching into more advanced platforms could happen but slowly

due to potential execution risks. However, soft real-time application, such as multimedia and

communication services, are diverse. The main objective of soft real-time scheduler is to reduce

the response time of such applications and it can tolerate certain deadline miss rate. The use of

parallelism in soft real-time applications can be useful so as to improve their tardiness bounds

when compared to sequential design. For example, the execution of a real-time video processing

application can be executed in parallel on multiprocessor systems so as to improve its response

time while taking advantage of the available processors in the system.

Hence, we believe that studying the scheduling problem of parallel real-time tasks on multipro-

cessor systems is an interesting problem. Similarly to sequential model, soft real-time scheduling

of DAG tasks on multiprocessor systems can be analyzed and tardiness bounds for scheduling

algorithms can be provided. Towards this perspective, we already started investigating this

scheduling problem in [97]. We provided experimental evaluations of tardiness bounds of DAG

Stretching algorithm and Direct Scheduling approaches for GEDF. The simulation results are

Chapter 6. Conclusion and Perspectives 169

(a) Average tardiness for GEDF scheduling algorithm while

varying the system utilization (U) and the number of tasks

(n).

(b) Average tardiness for GEDF scheduling algorithm while

the varying system utilization (U).

Figure 6.1: Simulation results showing tardiness bounds of DAG scheduling approaches.

shown in Figure 6.1 while varying the utilization of DAGs (High or Low) and the size of DAG

sets (3 or 10 DAGs per set).

A more general DAG model with multi-threaded subtasks

In this thesis, we considered a parallel model of DAG tasks in which subtasks are dependent

sequential threads with precedence constraints. In a previous work [101, 102], we explored

the possibility of considering a DAG model that is more general, in which subtasks consist of

multiple-threads. We provided two algorithms to determine the execution order of threads and

whether they should execute in parallel or sequentially based on the structure of DAGs. We

considered a moldable parallel scheduling in which the real-time scheduler determines the level

of parallelism of subtasks before the beginning of the scheduling. We believe that generalizing

the DAG model is an interesting open problem, in which more schedulability analysis can be

provided. Furthermore, rigid and gang scheduling approaches for this parallel model can be

considered.

Résumé de la thèse en français

171

Ordonnancement Temps Réel de

Graphes de Tâches Parallèles sur

Systèmes Multiprocesseurs

Dans cette thèse, nous étudions l’ordonnancement temps réel de graphes de tâches parallèles

sur plateformes multiprocesseurs. Le manuscrit est organisé de la manière suivante :

Introduction Générale

Systèmes Temps Réel

En informatique, un système temps réel est un système qui exige une exécution correcte de ses

tâches dans des délais imposés. Les di↵érents domaines d’applications de ce type de système

sont dans les transports, le multimédia et les systèmes de communication.

Les systèmes temps réel sont divisés en deux catégories en fonction de la criticité de leurs

tâches : temps réel strict (dur) et temps réel souple. Dans un système temps réel dur, toutes

les échéances doivent être respectées pour éviter des conséquences catastrophiques. Pour un

système temps réel souple, le dépassement de certaines contraintes temporelles réduit la qualité

du service fourni par l’application.

Nous supposons qu’un système temps réel ⌧ est constitué de n tâches où ⌧ = {⌧
1

, ⌧
2

, . . . , ⌧n}.
Chaque tâche correspond à l’exécution d’un ensemble d’instructions (travail) qui se répète. Dans

le modèle de tâches temps réel classique, une tâche ⌧i est caractérisée par :

173

Résumé de la thèse en français 174

• Durée d’exécution Ci : c’est la durée d’exécution dans le pire cas (la plus longue durée)

pendant laquelle un travail de ⌧i peut s’exécuter. Il est important de considérer cette

durée du pire cas pour garantir l’ordonnancement.

• Période Ti : c’est la durée entre les di↵érents travaux de la même tâche. Pour une tâche

périodique, la période est constante. Pour une tâche sporadique, la période représente la

durée minimale entre deux instances.

• Échéance relative Di : c’est la durée pendant laquelle la tâche doit s’exécuter. Si Di = Ti,

une tâche est dite à échéance implicite, si Di  Ti, une tâche est dite à échéance contrainte,

elle est dite à échéance arbitraire si Di n’est pas contrainte par Ti.

• Instant d’activation (o↵set) Oi : c’est le décalage de la date d’activation du premier travail

de la tâche par rapport à une origine des temps (t = 0).

Nous notons J j
i le jième travail de la tâche ⌧i et il est caractérisé par deux paramètres : un

instant d’activation rji et une échéance absolue dji . La figure 6.2 représente les caractéristiques

temporelles de la tâche ⌧i. L’utilisation Ui est le quotient Ci/Ti et l’utilisation U(⌧) du système

est définie par la somme
Pn

i=1

Ui.

Plateformes Multiprocesseurs

Dans cette thèse, nous considérons des systèmes temps réel multiprocesseurs dont les plateformes

sont constituées de plus d’une unité d’exécution. L’ordonnancement multiprocesseurs n’est pas

une simple généralisation du cas monoprocesseur, la problématique d’ordonnancement devient

plus complexe. La responsabilité de l’ordonnanceur multiprocesseurs est de choisir, à chaque

instant, les tâches devant s’exécuter sur les processeurs en respectant leurs contraintes tem-

porelles. Pour un système multiprocesseurs, un ensemble de tâches ne peut pas être ordonnancé

si son utilisation est supérieure au nombre de processeurs.

!21,2 !21,4

!31,2 !31,4

rij0

Offset Oi

dij

Job Jij Job Jij+1

Period Ti
Deadline Di

WCET Ci

Task
"i

time

Job Jij-1

!11,1

!21,1

!y11,1

Deadline

Deadline

!11,2

!y21,2

!11,x

!21,x

!y31,x

!11,2!11,1 !11,3 !11,4 !11,x

Figure 6.2: Modèle de tâches indépendantes séquentielles.

Résumé de la thèse en français 175

Blocked

Running

Ready

interrupted resumed

event

waiting for !
an event

activated

RT!
Scheduler

System Bus

Core 2Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1 Processor 2

L1 Cache

Core 1

L2 Cache

L1 Cache

Core 2

System
Memory

src src src src

Recurring !
(DAG)

Recurring !
branching

Multiframe !
& GMIndependent

!1,2

!1,1

!1,5

!1,4

!1,3

!1,7

!1,6

3

3

2

1

2

1

2

Figure 6.3: Un exemple d’une tâche du modèle DAG.

Applications Parallèles le modèle de graphe

Récemment, l’utilisation d’architectures multiprocesseurs a fortement augmenté dans les systèmes

industriels. De ce fait, le nombre d’applications parallèles va également fortement progresser.

Nous intéressons aux contraintes temps réel pour ces applications parallèles.

Dans cette thèse, nous considérons un modèle général de tâche parallèle représenté par un graphe

orienté acyclique (ou les DAG). Dans ce modèle, un graphe ⌧i est composé d’un ensemble de

sous-tâches dépendantes. Les dépendances sont exprimées par des relations de précédence. Le

graphe ⌧i est caractérisé par ({⌧i,j |1  j  ni}, Gi, Oi, Di, Ti), où le premier paramètre représente

l’ensemble des ni sous-tâches de ⌧i. Chaque sous-tâche ⌧i,j , où 1  j  ni, est caractérisée par

sa durée d’exécution dans le pire cas Ci,j . Le paramètre Gi est l’ensemble des relations entre

les sous-tâches, Oi est l’instant d’activation du graphe, Di est son échéance relative et Ti est sa

période. On notera que les sous-tâche partagent la même période et la même échéance.

Dans un graphe ⌧i, une relation de précédence entre deux sous-tâches ⌧i,j et ⌧i,k signifie que

le dernier commence son exécution quand ⌧i,j se termine. Le délai critique du graphe (critical

path length) Li représente la longueur du plus long chemin dans le graphe (chemin critique).

Une sous-tâche dans le graphe sera activée à la date de terminaison de ses prédécesseurs. Donc,

l’ordre d’exécution des sous-tâches est dynamique, les sous-tâches pouvant s’exécuter en par-

allèle ou en séquence par rapport aux décisions de l’ordonnanceur. Dans la figure 6.3, nous

montrons l’exemple d’un graphe ⌧i composé de sept sous-tâches. Les relations de précédence

sont représentées par des flèches. Le chemin critique du graphe se compose de ⌧
1,1 (ou ⌧

1,2), ⌧1,4

et ⌧
1,6 (ou ⌧

1,7).

Résumé de la thèse en français 176

Nous proposons deux méthodes pour ordonnancer ce graphe en tenant compte des contraintes

de précédence : une transformation de modèle et l’ordonnancement direct.

Ordonnancement des Graphes par Transformation de modèle

La méthode de transformation de modèle est utilisée dans l’état de l’art pour l’ordonnan-

cement des tâches parallèles sur les systèmes multiprocesseurs, comme dans [77, 108]. Cette

méthode simplifie l’ordonnancement des graphes en transformant le modèle parallèle en un

modèle séquentiel de sous-tâches indépendantes afin de supprimer les dépendances internes. Les

tâches ainsi transformées pourront être traitées par un algorithme d’ordonnancement standard.

Dans cette thèse, nous nous intéressons à l’ordonnancement des graphes périodiques à échéance

implicite et nous proposons deux algorithmes de transformations (DAG-Str et Seg-Str) pour

forcer l’exécution séquentielle des sous-tâches.

Algorithme DAG-Str

L’algorithme DAG-Str (DAG-Stretching) vise à forcer une exécution séquentielle des graphes.

Il consiste à étirer le chemin critique de chaque graphe ⌧i jusqu’à son échéance et à créer un

thread (fil d’exécution) séquentiel d’utilisation égale à 1. Une tâche d’utilisation inférieure ou

égale à 1 sera transformée en un seul thread séquentiel. Par contre, si la tâche a une utilisation

supérieure à 1, elle est transformée en une séquence de segments Si. Chaque segment Si,j est

composé de threads non-critiques indépendants a qui sont a↵ectés des o↵sets et des échéances

relatives locales. Nous présentons dans la figure 6.4(b) un exemple montrant l’algorithme DAG-

Str appliqué au graphe ⌧
1

de la figure 6.4(a). En utilisant l’algorithme DAG-Str, le graphe ⌧
1

est transformé en un thread principal de pire coût d’exécution et échéance relative égaux à 9

plus 3 segments s’exécutant en séquence. La durée d’exécution de chaque segment est utilisée

pour a↵ecter des o↵sets et échéances relatives à ces threads indépendants. Par exemple, un

thread du segment S
1,1 a un coût d’exécution égal à 1 et une échéance égale à 3. Par contre,

l’autre thread a une échéance plus courte (égale à 2) pour éviter une exécution parallèle avec sa

deuxième partie qui s’exécute dans le thread principal.

Dans cette thèse, nous utilisons l’algorithme d’ordonnancement Global EDF pour ordonnancer

les threads indépendants générés après transformation par DAG-Str. Nous proposons une anal-

yse d’ordonnançabilité pour calculer le facteur d’expansion (speedup) dans le cas d’ordonnancement

Résumé de la thèse en français 177

0 5 9

950

Sl1 = 5L1 = 4

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

S11!
m11=4

S12!
m12=3

S13!
m13=2

 f1,1 =!
15/8

 f1,3 =
5/8

 f1,2 = !
10/8

S13S11 S12

thread migration

(1 + df1,1e)c1,1 (xi + df1,2e)c1,2 df1,3e ⇤ c1,3

C1 = 12!
D1 = T1 = 9

(a) Un exemple d’un DAG ⌧1.

0 5 9

Sl1 = 5L1 = 4

S11 S12 S13

thread migration

thread migration

(1 + fi ,j)ci ,j

(b) L’algorithme DAG-Str.

Figure 6.4: La méthode de transformation du modèle.

EDF. Nous prouvons que l’algorithme EDF avec DAG-Str a un facteur d’expansion égal à 3+

p
5

2

pour tous les ensemble de tâches transformées n < ' ⇥m, où n est le nombre de tâches dans

l’ensemble, m est le nombre des processeurs disponibles après la transformation et ' le nombre

d’or (valant exactement 1+

p
5

2

). Récemment dans [82], le même facteur a été prouvé dans le cas

des tâches DAG sans transformation avec l’algorithme d’ordonnancement Global EDF. Donc,

l’algorithme DAG-Str simplifie l’ordonnancement des DAGs sans perde de performance et il ne

nécessite pas d’un ordonnanceur Global EDF adapté a la prise en compte des dépendances.

Résumé de la thèse en français 178

Algorithme Seg-Str

Nous proposons l’algorithme SEG-Str (Segment-Stretching) qui est une version modifiée de

l’algorithme de transformation de modèle (DAG-Str) visant à réduire le nombre de migrations

et préemptions des threads résultants de la transformation. La di↵érence entre l’algorithme

Seg-Str et l’algorithme DAG-Str est que ce dernier fait migrer un thread de chaque segment

vers le thread principal, tandis que l’algorithme Seg-Str force un seul thread de tous les segments

à migrer.

Dans la figure 6.5, nous montrons le résultat de l’algorithme Seg-Str quand il est appliqué au

graphe ⌧
1

de la figure 6.4(a). Nous avons montré dans la figure 6.4(b) que la transformation en

utilisant l’algorithme DAG-Str du graphe ⌧
1

a généré 3 migrations de thread. Dans le cas de

l’algorithme Seg-Str, le thread principale est rempli par des threads entiers de segments, comme

le thread du segment S
1,1. Par conséquence, un thread au plus migrera dans le thread principal

(le thread du segment S
1,2).

0 5 9

950

Sl1 = 5L1 = 4

!1,7

!1,4

!1,5

!1,6

!1,2

!1,1

!1,3

2

2

1

2

1

3

3

S11!

m11=4
S12!

m12=3
S13!

m13=2

 f1,1 =!
15/8

 f1,3 =
5/8

 f1,2 = !
10/8

S13S11 S12

thread migration

(1 + df1,1e)c1,1 (xi + df1,2e)c1,2 df1,3e ⇤ c1,3

C1 = 12!
D1 = T1 = 9

Figure 6.5: Seg-Str algorithm.

Nous montrons que l’algorithme Seg-Str a le même facteur d’expansion (speedup) que l’algorithme

DAG-Str. Il o↵re les mêmes performances avec moins de migrations.

Ordonnancement Direct des Graphes

Nous nous intéressons à l’ordonnancement des graphes sporadiques à échéance contrainte. La

méthode d’ordonnancement direct conserve les caractéristiques générales des graphes et con-

sidère que l’ordonnanceur prendra en compte les contraintes de précédence pour décider qu’un

tâche est prête à être exécuter. Par conséquent, nous pouvons utiliser des algorithmes temps

Résumé de la thèse en français 179

réel standards pour l’ordonnancement des graphes. Les algorithmes EDF et Deadline Mono-

tonic (DM) initialement proposés pour des tâches séquentielles indépendantes sont largement

utilisés dans de nombreuses recherches d’ordonnancement de graphes de tâches parallèles tels

que [27, 36, 44, 81, 82]. Toutefois, ces recherches ne considèrent que la structure externe des

graphes pour l’ordonnancement et l’analyse d’ordonnançabilité. Les paramètres considérés sont

le coût d’exécution total des sous-tâches, l’échéance, la période et la longueur du chemin cri-

tique pour le graphe. Dans cette thèse, nous montrons l’importance de la structure interne

des graphes sur l’ordonnancement et l’analyse comme les relations entre les sous-tâches et ces

coût d’exécutions. Nous proposons donc des algorithmes simples pour définir les paramètres

temporels locaux des sous-tâches, comme les échéances, les périodes et les gigues d’activation.

L’a↵ectation des priorités pourra être faite au niveau d’une tâche (graphe), dans ce cas toutes

les sous-tâches du graphe ont la même priorité. L’a↵ectation des priorités pourra être faite au

niveau des sous-tâches et dans ce cas les sous-tâches ont leur propre priorité. L’analyse sera

toujours e↵ectuée au niveau des sous-tâches en considérant les paramètres locaux. L’analyse

est basé sur le calcul de la charge maximale des tâches ou des sous-tâches (workload). La con-

naissance de la structure interne d’un graphe permettra, lors de l’analyse, une estimation plus

précise du workload.

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

14

!1,6

!1,5

!1,4

!1,2

!1,3

!1,1

Local Offset

The maximum release jitter of each
subtask which is its maximum slack
time due to internal interference only.

!1,1 !1,2 !1,6

!1,3 !1,4

!1,5

1 4 1

1

1 2

D1 = T1 = 8

DAG Scheduling on a Subtask Level!
Local Parameters

Local Deadline

(a) Un graphe ⌧1 qui se compose de 6 sous-tâches.

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor Systems at a Subtask Level - Qamhieh et al.

14

!1,6

!1,5

!1,4

!1,2

!1,3

!1,1

Local Offset

The maximum release jitter of each
subtask which is its maximum slack
time due to internal interference only.

!1,1 !1,2 !1,6

!1,3 !1,4

!1,5

1 4 1

1

1 2

D1 = T1 = 8

DAG Scheduling on a Subtask Level!
Local Parameters

Local Deadline
t=0 8

(b) Les paramètres temporels locales de chaque sous-

tâche dans ⌧1.

Figure 6.6: Les paramètres temporels locales des sous-tâches.

Dans la figure 6.6, nous montrons l’a↵ectation des paramètres locaux aux sous-tâches de graphe

⌧
1

qui contient 6 sous-tâches. La structure de la tâche et le coût d’exécution de ses sous-tâches

sont présentés dans la figure 6.6(a). Dans la figure 6.6(b), chaque sous-tâche ⌧i,j est caractérisée

par trois paramètres : un o↵set local Oi,j qui détermine le premier instant d’activation de la

sous-tâche par rapport à l’activation de son graphe (o↵set au plus tôt), une échéance locale Di,j

qui détermine le dernier instant d’exécution autorisé pour la sous-tâche (échéance au plus tard)

Résumé de la thèse en français 180

pour permettre l’exécution du plus long successeur et une gigue d’activation ji,j qui détermine la

longueur de l’intervalle d’activation de la sous-tâche. Par exemple, la sous-tâche ⌧
1,1 a un o↵set

local égal à 0, une échéance locale égale à 3 et une gigue d’activation égale à 0. Ces paramètres

locaux sont di↵érents des paramètres intermédiaires attribués par les algorithmes de la méthode

de transformation de modèle. Les paramètres locaux définissent l’intervalle maximal d’exécution

de chaque sous-tâche.

Nous proposons une analyse d’ordonnançabilité au niveau des graphes sur multiprocesseurs

quand l’algorithme EDF est utilisé. L’ordonnanceur EDF a↵ecte des priorités aux graphes par

rapport aux échéances des graphes, mais l’analyse d’ordonnançabilité se base sur les paramètres

locaux. Nous proposons un test d’ordonnancabilité pour EDF au niveau des graphes en calculant

l’interférence entre les sous-tâches.

Ensuite, nous proposons un ordonnancement EDF des graphes au niveau des sous-tâches, dans

lequel l’algorithme d’ordonnancement prend des décisions par rapport aux paramètres locaux

(paramètres temporel des sous-tâches) plutôt que par rapport aux paramètres des graphes. Dans

le cas d’EDF, l’algorithme attribue des priorités di↵érentes pour les sous-tâches par rapport aux

échéances locales. L’ordonnancement direct au niveau des sous-tâches est une nouvelle approche

qui n’avait pas été utilisée dans le domaine de l’ordonnancement temps réel des graphes. Nous

montrons que la condition nécessaire de faisabilité par rapport à la charge du processeur est

plus précise lorsque l’on considère l’ordonnancement des graphes au niveau des sous-tâches.

Nous fournissons l’analyse d’interférences pour l’ordonnancement EDF au niveau des sous-tâches

comme dans le cas d’ordonnancement direct au niveau des graphes.

Résultats Expérimentaux

Dans cette partie nous montrons que les deux méthodes d’ordonnancement de graphes ne

sont pas comparables du point de vue de l’ordonnançabilité. C’est à dire qu’aucune des deux

méthodes ne domine l’autre. Toutefois, nous fournissons des résultats de simulation pour com-

parer leur comportement en moyenne en utilisant les algorithmes d’ordonnancement globaux

EDF et DM. Nous avons développé un logiciel nommé YARTISS pour générer des graphes

aléatoires et réaliser des simulations d’ordonnancement en multiprocesseurs.

Résumé de la thèse en français 181

Incomparabilité des méthodes d’ordonnancement de graphes

Nous comparons l’algorithme DAG-Str (transformation de modèle) et l’ordonnancement di-

rect au niveau des graphes et au niveau des sous-tâches. Nous fournissons quatre exemples

d’ordonnancement afin de prouver que ces méthodes ne sont pas comparables. C’est à dire

qu’il existe des ensembles de graphes qui sont ordonnançable en utilisant une méthode et non

ordonnançable par l’autre, et vice versa.

Les deux premiers exemples d’ordonnancement permet de comparer l’algorithme DAG-Str avec

l’ordonnancement direct au niveau des graphes. Les deux autres exemples permet de com-

parer l’ordonnancement direct au niveau des graphes et au niveau des sous-tâches. Dans tous

les exemples, nous considérons l’ordonnancement préemptif global des graphes périodiques à

échéances implicites et activation synchrone sur une plate-forme multiprocesseurs.

Simulateur temps réel : YARTISS

En raison de l’incomparabilité des méthodes d’ordonnancement des graphes, nous utilisons des

simulations pour comparer leurs performances en moyenne.Nous avons développé un outil de

simulation temps réel (YARTISS) contenant un générateur aléatoire de graphes. Nous générons

les paramètres temporels et les structures internes des graphes (dépendances). Pour comparer

les di↵érentes méthodes étudiées, nous avons simulé l’ordonnancement des graphes en faisant

varier trois paramètres : le nombre de processeurs dans le système, la taille des graphes en

fonction du nombre de sous-tâches et le parallélisme interne des graphes grâce aux relations de

précédence.

Résultats de simulation

Les simulations e↵ectués montre que l’ordonnancement direct des graphes donne des meilleurs

résultats avec l’algorithme d’ordonnancement EDF (figure 6.7(a)). Pour sa part, la méthode de

transformation de modèle (algorithme DAG-Str) donne des meilleurs résultats avec l’algorithme

DM (figure 6.7(b)). Nous montrons les résultats des simulations dans la figure 6.7. L’augmenta-

tion du nombre de processeurs (passage à l’échelle) est mieux supportée par l’algorithme DAG-

Str en ordonnancement DM. Par contre, l’ordonnancement direct supporte le passage à l’échelle

Résumé de la thèse en français 182

(a) Les résultats de simulations de l’algorithme EDF. (b) Les résultats de simulations de l’algorithme DM.

Figure 6.7: Les résultats de simulations.

indi↵éremment de l’ordonnancement.

Appendix A

DAG TASK Generator in YARTISS

Simulator

1 /⇤⇤
2 ⇤ Real�time task o f Directed Acyc l i c Graph (DAG) model . A DAG task

3 ⇤ c o n s i s t s o f a s e t o f r ea l�time subtasks with precedence c on s t r a i n t s

4 ⇤ which determine the execut ion f low o f i t s subtasks .

5 ⇤ @author Manar Qamhieh

6 ⇤/
7 public class GraphTask extends Per iodicTask implements ITaskElement {
8 private ArrayList<SubTask> subtasks ;

9 public GraphTask (long f i r s t r e l e a s e , long wcee , long per iod , long

deadl ine ,

10 int p r i o r i t y , ArrayList<SubTask> subtasks ,

11 IEnergyConsumptionProf i le p) {
12 super (f i r s t r e l e a s e , getTotolWcet (subtasks) , wcee , per iod , dead l ine

, p r i o r i t y , p) ;

13 this . subtasks = subtasks ;

14 }
15 public GraphTask (GraphTask graphTask) {
16 this (graphTask . g e tO f f s e t () , graphTask . getWcee () , graphTask .

getPer iod () , graphTask . getDeadl ine () , graphTask . g e tP r i o r i t y () ,

graphTask . getSubtasks () , graphTask . getEnergyConsumptionProf i le ()) ;

17 }
18

19 /⇤⇤

183

Appendix A. DAG TASK Generator in YARTISS Simulator 184

20 ⇤ Gets the t o t a l worst�case execut ion time (WCET) o f a graph ,

21 ⇤ which i s the sum of execut ion time o f i t s subtasks .

22 ⇤ @param subtasks the s e t o f subtasks o f the graph

23 ⇤ @return t o t a l WCET of a graph

24 ⇤/
25 private stat ic long getTotolWcet (ArrayList<SubTask> subtasks) {
26 long wcets = 0 ;

27 for (SubTask subTask : subtasks) {
28 wcets += subTask . getWcet () ;

29 }
30 return wcets ;

31 }
32

33 /⇤⇤
34 ⇤ Gets the subtasks o f the graph

35 ⇤ @return l i s t o f subtasks

36 ⇤/
37 public ArrayList<SubTask> getSubtasks () {
38 return subtasks ;

39 }
40

41 /⇤⇤
42 ⇤ Gets the source subtask / s which are the subtask with p r ed e c e s s o r s .

43 ⇤ Each graph has at l e a s t one source subtask .

44 ⇤ @return l i s t o f source subtasks

45 ⇤/
46 public ArrayList<SubTask> getSourceSubtasks () {
47 ArrayList<SubTask> source = new ArrayList<SubTask>() ;

48 for (SubTask subtask : subtasks) {
49 i f (subtask . getParentTasks () . isEmpty ())

50 source . add (subtask) ;

51 }
52 return source ;

53 }
54

55 /⇤⇤
56 ⇤ Gets the s ink subtask / s o f a graph which are the subtasks with no

57 ⇤ s u c c e s s o r s . Each graph has at l e a s t one s ink subtask .

Appendix A. DAG TASK Generator in YARTISS Simulator 185

58 ⇤ @return a l i s t o f s ink subtasks

59 ⇤/
60 public ArrayList<SubTask> getS inkSubtasks () {
61 ArrayList<SubTask> s ink = new ArrayList<SubTask>() ;

62 for (SubTask subtask : subtasks) {
63 i f (subtask . getChi ldrenTasks () . isEmpty ())

64 s ink . add (subtask) ;

65 }
66 return s ink ;

67 }
68

69 /⇤⇤
70 ⇤ Removes a subtask from the graph and i t s cor re spond ing r e l a t i o n s

71 ⇤ with the remaining subtasks .

72 ⇤ @param subtask the subtask to be removed

73 ⇤/
74 public void removeSubtask (SubTask subtask) {
75 for (SubTask ch i l d : subtask . getChi ldrenTasks ()) {
76 removeEdge (subtask , c h i l d) ;

77 }
78 for (SubTask parent : subtask . getParentTasks ()) {
79 removeEdge (parent , subtask) ;

80 }
81 subtasks . remove (subtask) ;

82 }
83

84 /⇤⇤
85 ⇤ Adds a subtask to the graph .

86 ⇤ @param subtask subtask to be added

87 ⇤/
88 public void addSubtask (SubTask subtask) {
89 subtask . s e t Index (subtasks) ;

90 subtasks . add (subtask) ;

91 }
92

93 /⇤⇤
94 ⇤ Adds a d i r e c t ed edge between two subtasks in the graph

95 ⇤ @param parent p r ede c e s s o r subtask

Appendix A. DAG TASK Generator in YARTISS Simulator 186

96 ⇤ @param ch i l d su c c e s s o r subtask

97 ⇤/
98 public void addEdge (SubTask parent , SubTask ch i l d) {
99 i f (! parent . getChi ldrenTasks () . conta in s (c h i l d))

100 parent . getChi ldrenTasks () . add (ch i l d) ;

101 i f (! c h i l d . getParentTasks () . conta in s (parent))

102 ch i l d . getParentTasks () . add (parent) ;

103 }
104

105 /⇤⇤
106 ⇤ Removes a d i r e c t ed edge between two subtasks in the graph

107 ⇤ @param parent p r ede c e s s o r subtask

108 ⇤ @param ch i l d su c c e s s o r subtask

109 ⇤/
110 public void removeEdge (SubTask parent , SubTask ch i l d) {
111 i f (parent . getChi ldrenTasks () . conta in s (c h i l d))

112 parent . getChi ldrenTasks () . remove (ch i l d) ;

113 i f (c h i l d . getParentTasks () . conta in s (parent))

114 ch i l d . getParentTasks () . remove (parent) ;

115 }
116

117 /⇤⇤
118 ⇤ Ver i fy i f an edge can be c rea ted between 2 subtasks in a graph . An

119 ⇤ edge can ’ t be c rea ted i f 2 subtasks share the same parent .

120 ⇤ @param parentSub predec e s s o r subtask

121 ⇤ @param chi ldSub su c c e s s o r subtask

122 ⇤ @return true i f the edge can be created , f a l s e o therw i se

123 ⇤/
124 public boolean canAddEdge (SubTask parentSub , SubTask chi ldSub) {
125 boolean addEdge = true ;

126 for (SubTask parent : parentSub . getParentTasks ()) {
127 i f (chi ldSub . getParentTasks () . conta in s (parent))

128 addEdge = fa l se ;

129 }
130 long cp l = chi ldSub . getWcet () + getPathLength (parentSub) ;

131 i f (cp l > getDeadl ine ()) {
132 addEdge = fa l se ;

133 }

Appendix A. DAG TASK Generator in YARTISS Simulator 187

134 return addEdge ;

135 }
136

137 /⇤⇤
138 ⇤ Recurs ive func t i on c a l c u l a t e s the l ength o f the l ong e s t path from

139 ⇤ the source o f the graph to the SubTask ’ subtask ’

140 ⇤ @param subtask a g iven subtask in the graph

141 ⇤ @return the l ength o f the path

142 ⇤/
143 private long getPathLength (SubTask subtask) {
144 long cp l = 0 ;

145 for (SubTask sub : subtask . getParentTasks ()) {
146 long tmp = getPathLength (sub) ;

147 i f (tmp > cp l)

148 cp l = tmp ;

149 }
150 return cp l + subtask . getWcet () ;

151 }
152

153 /⇤⇤
154 ⇤ Ca l cu l a t e s the l ength o f the c r i t i c a l path o f the graph , which i s

155 ⇤ the l ong e s t path from a source to a s ink subtask . Accordingly ,

156 ⇤ the e a r l i e s t and l a t e s t r e l e a s e time and dead l ine are c a l c u l a t ed

157 ⇤ f o r each subtask .

158 ⇤/
159 public void c a l c u l a t eC r i t i c a lP a t h () {
160 i n i t i a l i z eG r aph () ;

161 for (SubTask sourceSubtask : getSourceSubtasks ()) {
162 sourceSubtask . s e tEa r l i e s tF in i shT ime (sourceSubtask . getWcet ()) ;

163 ca l cu l a t eEa r l i e s tT ime (sourceSubtask) ;

164 }
165 for (SubTask s inSubtask : getS inkSubtasks ()) {
166 s inSubtask . se tLates tF in i sheTime (getDeadl ine ()) ;

167 ca l cu la teLate s tT ime (s inSubtask) ;

168 }
169 for (SubTask sub : subtasks) {
170 sub . s e tF i r s tRe l e a s e ((sub . ge tEar l i e s tF in i shT ime () � sub . getWcet

())) ;

Appendix A. DAG TASK Generator in YARTISS Simulator 188

171 sub . se tLates tF in i sheTime (sub . getLatestFin i shTime ()

172 � sub . g e tO f f s e t ()) ;

173 }
174 }
175

176 /⇤⇤
177 ⇤ A func t i on f o r DAGs with p a r a l l e l subtasks , i . e . , a subtask i s

178 ⇤ a s e t o f threads that can execute in p a r a l l e l or s e q u e n t i a l l y .

179 ⇤ This func t i on p a r a l l e l i z e s a graph to the maximum

180 ⇤ based on c r i t i c a l path l ength (nece s sa ry f e a s i b i l i t y cond i t i on) .

181 ⇤/
182 public void pa ra l l e l i z eGraph () {
183 boolean r epeat ;

184 do {
185 c a l c u l a t eC r i t i c a lP a t h () ;

186 repeat = pa r a l l e l i z e S ub t a s k s () ;

187 } while (r epeat) ;

188 }
189

190 /⇤⇤
191 ⇤ I n i t i a l i z e s the f i r s t r e l e a s e and dead l ine o f the subtasks o f the

192 ⇤ graph .

193 ⇤/
194 private void i n i t i a l i z eG r aph () {
195 for (SubTask subTask : subtasks) {
196 subTask . s e tEa r l i e s tF in i shT ime (0) ;

197 subTask . se tLates tF in i sheTime (0) ;

198 }
199 }
200

201 /⇤⇤
202 ⇤ Ca l cu l a t e s the e a r l i e s t r e l e a s e time o f a subtask based on the

203 ⇤ depth� f i r s t a lgor i thm . This i s a r e c u r s i v e func t i on used to

204 ⇤ t r a v e r s e the subtasks o f the graph from source to s ink , in order

205 ⇤ to f i nd the c r i t i c a l path o f a graph .

206 ⇤ @param subtask a g iven subtask in the graph

207 ⇤/
208 private void c a l cu l a t eEa r l i e s tT ime (SubTask subtask) {

Appendix A. DAG TASK Generator in YARTISS Simulator 189

209 long ea r l i e s tT ime ;

210 i f (subtask . i sS inkSubtask ())

211 return ;

212 for (SubTask ch i l d : subtask . getChi ldrenTasks ()) {
213 ea r l i e s tT ime = subtask . ge tEar l i e s tF in i shT ime () + ch i l d . getWcet

() ;

214 i f (c h i l d . g e tEar l i e s tF in i shT ime () < ea r l i e s tT ime)

215 ch i l d . s e tEa r l i e s tF in i shT ime (ea r l i e s tT ime) ;

216 ca l cu l a t eEa r l i e s tT ime (ch i l d) ;

217 }
218 }
219

220 /⇤⇤
221 ⇤ Ca l cu l a t e s the l a t e s t dead l ine o f a subtask based on the depth�
222 ⇤ f i r s t a lgor i thm . This i s a r e c u r s i v e func t i on t r a v e r s e s the graph

223 ⇤ from s ink to source , in order to f i nd the c r i t i c a l path o f a graph .

224 ⇤ @param subtask a g iven subtask in the graph

225 ⇤/
226 private void ca l cu la teLate s tT ime (SubTask subTask) {
227 long l a te s tTime ;

228 i f (subTask . i sSourceSubtask ())

229 return ;

230 for (SubTask parent : subTask . getParentTasks ()) {
231 lates tTime = subTask . getLatestFin i shTime () � subTask . getWcet ()

;

232 i f (parent . getLatestFin i shTime () == 0

233 | | parent . getLatestFin i shTime () > l a te s tTime)

234 parent . s e tLates tF in i sheTime (lates tTime) ;

235 ca l cu la teLate s tT ime (parent) ;

236 }
237 }
238

239 /⇤⇤
240 ⇤ Pr in t s the l o c a l parameters o f subtasks .

241 ⇤/
242 public void p r i n tC r i t i c a l I n f o () {
243 for (SubTask subTask : subtasks) {
244 System . out . p r i n t l n (” [” + subTask . ge t Id () + ”] : wcet= ”

Appendix A. DAG TASK Generator in YARTISS Simulator 190

245 + subTask . getWcet () + ” ”

246 + subTask . ge tEar l i e s tF in i shT ime () + ”/”

247 + subTask . getLatestFin i shTime () + ” ��� nbProc : ”

248 + subTask . getNumOfProc ()) ;

249 }
250 }
251

252 /⇤⇤
253 ⇤ A func t i on f o r DAGs with p a r a l l e l subtasks , i . e . , a subtask i s

254 ⇤ de f ined as a s e t o f threads that can execute in p a r a l l e l or

255 ⇤ s e q u e n t i a l l y . This func t i on p a r a l l e l i z e s subtasks to the maximum.

256 ⇤ @return True i f a graph i s p a r a l l e l i z a b l e , Fa l se o therw i se .

257 ⇤/
258 private boolean pa r a l l e l i z e S ub t a s k s () {
259 boolean p a r a l l e l i z e d = fa l se ;

260 CopyOnWriteArrayList<SubTask> modList = new CopyOnWriteArrayList<

SubTask>() ;

261 modList . addAll (subtasks) ;

262 for (SubTask subTask : modList) {
263 i f (subTask . i sC r i t i c a lTa s k () && subTask . getNumOfProc () > 1) {
264 p a r a l l e l i z e d = true ;

265 for (int i = 0 ; i < subTask . getNumOfProc () ; i++) {
266 SubTask tmpSub = (SubTask) Schedulab leFactory .

newInstance (” subtask ” , subTask . g e tO f f s e t () , subTask . getWcet () /subTask .

getNumOfProc () , subTask . getWcee () , subTask . getPer iod () , subTask .

getDeadl ine () , subTask . g e tP r i o r i t y () , 1) ;

267 tmpSub . se t Index (modList) ;

268 modList . add (tmpSub) ;

269 for (SubTask parent : subTask . getParentTasks ()) {
270 parent . getChi ldrenTasks () . remove (subTask) ;

271 addEdge (parent , tmpSub) ;

272 }
273 for (SubTask ch i l d : subTask . getChi ldrenTasks ()) {
274 ch i l d . getParentTasks () . remove (subTask) ;

275 addEdge (tmpSub , c h i l d) ;

276 }
277 }
278 modList . remove (subTask) ;

Appendix A. DAG TASK Generator in YARTISS Simulator 191

279 }
280 }
281 subtasks . c l e a r () ;

282 subtasks . addAll (modList) ;

283 return p a r a l l e l i z e d ;

284 }
285

286 /⇤⇤
287 ⇤ Pr in t s the t iming parameters o f a graph .

288 ⇤ @return the l o c a l parameters o f the graph as a s t r i n g .

289 ⇤/
290 public St r ing toS t r i ng () {
291 return ” [” + get Id () + ”] wcet : ” + getTotolWcet (subtasks)

292 + ”\ t nbSubTasks :\ t ” + subtasks . s i z e () + ”\ td ead l i n e : \ t ”
293 + getDeadl ine () + ” \ tpe r i od :\ t ” + getPer iod () ;

294 }
295

296 /⇤⇤
297 ⇤ Pr in t s the t iming parameters o f the graph and i t s subtasks .

298 ⇤/
299 public void printGraph () {
300 St r ing s t r = this . t oS t r i ng () + ”\n” ;
301 for (SubTask sub : subtasks) {
302 s t r += ”\ t Subtask ” + sub + ”\n” ;
303 }
304 System . out . p r i n t l n (s t r) ;

305 }
306

307 @Override

308 public ITask cloneTask () {
309 return new GraphTask (this) ;

310 }
311

312 /⇤⇤
313 ⇤ An ’ accept ’ f unc t i on f o r the v i s i t a b l e element

314 ⇤/
315 @Override

316 public void accept (ITaskElementVis i tor v i s i t o r) {

Appendix A. DAG TASK Generator in YARTISS Simulator 192

317 v i s i t o r . vis i tGraphTask (this) ;

318 }
319

320 @Override

321 public St r ing getType () {
322 return ”graph” ;

323 }
324

325 @Override

326 public Job a c t i v a t e (long time) {
327 Job j = null ;

328 for (SubTask subtask : getSubtasks ()) {
329 j = subtask . a c t i v a t e (time) ;

330 }
331 return j ;

332 }
333

334 @Override

335 public long getMaxTardiness () {
336 long max = 0 ;

337 for (SubTask subtask : getSubtasks ()) {
338 i f (subtask . getMaxTardiness () > max)

339 max = subtask . getMaxTardiness () ;

340 }
341 return max ;

342 }
343

344 /⇤⇤
345 ⇤ Transforms the graph task in to a multi�Threaded Segment (MTS) task ,

346 ⇤ which c o n s i s t s o f a sequence o f p a r a l l e l segments each c o n s i s t s

347 ⇤ o f i d e n t i c a l threads .

348 ⇤ @return transformed task o f a MTS model .

349 ⇤/
350

351 public ArrayList<Para l l e lSegmentIn fo> transformToMTS () {
352 c a l c u l a t eC r i t i c a lP a t h () ;

353 ArrayList<Para l l e lSegmentIn fo> psL i s t = new ArrayList<

Para l l e lSegmentIn fo >() ;

Appendix A. DAG TASK Generator in YARTISS Simulator 193

354 int count ;

355 long index = 0 , s e gO f f s e t ;

356 boolean i sOver = fa l se ;

357

358 while (! i sOver) {
359 count = 0 ;

360 /⇤
361 minOffset i s the minimum o f f s e t g r e a t e r than index . I t s

362 d e f au l t va lue i s the dead l ine o f the graph .

363 ⇤/
364 s e gO f f s e t = getDead l ine () ;

365 for (SubTask s t : subtasks) {
366 i f (index >= st . g e tO f f s e t ()

367 && index < (s t . g e tEar l i e s tF in i shT ime ())) {
368 count++;

369 i f (s t . g e tEar l i e s tF in i shT ime () < s e gO f f s e t)

370 s e gO f f s e t = s t . g e tEar l i e s tF in i shT ime () ;

371 }
372 }
373 i f (count != 0) {
374 p sL i s t . add (new Para l l e lSegment In fo (count , (s e gO f f s e t �

index) , index)) ;

375 index = s egO f f s e t ;

376 } else {
377 isOver = true ;

378 }
379 }
380 return psL i s t ;

381 }
382

383 /⇤⇤
384 ⇤ St r e t che s the graph task to execute as s e q u e n t i a l l y as p o s s i b l e .

385 ⇤ The s t r e t c h i n g i s done by trans forming the graph in to a MTS task

386 ⇤ f i r s t .

387 ⇤ @return The master s t r e t ched thread with u t i l i z a t i o n <= 1 (based

388 ⇤ on the u t i l i z a t i o n o f s t r e t ched graph) and the r e s u l t i n g

389 ⇤ const ra ined�dead l ine ta sk s .

390 ⇤/

Appendix A. DAG TASK Generator in YARTISS Simulator 194

391

392 public ArrayList<SubTask> stretchGraph () {
393 ArrayList<SubTask> l i s t = new ArrayList<SubTask>() ;

394 i f (getWcet () <= getDead l ine ()) {
395 l i s t . add (new SubTask (g e tO f f s e t () , getWcet () , getWcee () ,

getPer iod () , getDeadl ine () , g e tP r i o r i t y () , 1 ,

getEnergyConsumptionProf i le ())) ;

396 } else {
397 ArrayList<Para l l e lSegmentIn fo> ps In fo = transformToMTS () ;

398 int i = 1 ;

399 long seqWCET = 0 ;

400 boolean i sOver = fa l se ;

401 long s l a ck = getDeadl ine () ;

402 while (getDeadl ine () == getSeqWCETParaSegs (psInfo , i)) {
403 i++;

404 s l a ck = 0 ;

405 }
406 int f u l l y S t r e t c h ed = i � 1 ;

407 i f (s l a ck != 0) {
408 do {
409 i f (s l a ck < seqWCET)

410 isOver = true ;

411 else i f (s l a ck == 0) {
412 isOver = true ;

413 f u l l y S t r e t c h e d++;

414 } else {
415 s l a ck �= seqWCET;

416 i++;

417 }
418 } while (! i sOver) ;

419 }
420 for (int j = 0 ; j < f u l l y S t r e t c h ed ; j++) {
421 l i s t . add (new SubTask (g e tO f f s e t () , getDead l ine () , getWcee ()

, getPer iod () , getDeadl ine () , g e tP r i o r i t y () , 1 ,

getEnergyConsumptionProf i le ())) ;

422 }
423 int count , ext ra = 0 ;

424 long currentS lack , nex tOf f s e t = ps In fo . get (0) . g e tO f f s e t () ;

Appendix A. DAG TASK Generator in YARTISS Simulator 195

425 double wcetDist = ((double) s l a ck) / seqWCET;

426 i f (s l a ck != 0) {
427 /⇤
428 St r e t ch ing i s app l i ed . Add r e s u l t i n g f u l l y�s t r e t ched
429 thread to l i s t b e f o r e per forming the s t r e t c h i n g .

430 ⇤/
431 l i s t . add (new SubTask (g e tO f f s e t () , getDead l ine () , getWcee ()

, getPer iod () , getDeadl ine () , g e tP r i o r i t y () , 1 ,

getEnergyConsumptionProf i le ())) ;

432 }
433 for (Para l l e lSegment In fo p s i : p s In f o) {
434 count = i ;

435 cur r en tS l ack = 0 ;

436 i f (i <= ps i . getThreadCount ()) {
437 i f (s l a ck != 0) {
438 count++;

439 extra = 0 ;

440 long wcetToFull = (long) Math . c e i l (wcetDist

441 ⇤ p s i . getThreadWCET()) ;

442 i f (wcetToFull > s l a ck)

443 wcetToFull = s l a ck ;

444 long remWCET = ps i . getThreadWCET() � wcetToFull ;

445 i f (remWCET != 0) {
446 SubTask subtask = new SubTask (nextOf f se t ,

remWCET, getWcee () , getPer iod () , (p s i . getThreadWCET() ⇤ (i � 1)) ,

g e tP r i o r i t y () , 1 , getEnergyConsumptionProf i le ()) ;

447 for (SubTask sub : l i s t) {
448 i f (sub . getDead l ine () <= subtask . g e tO f f s e t

())

449 subtask . addParentTask (sub) ;

450 }
451 l i s t . add (subtask) ;

452 }
453 cur r en tS l ack = wcetToFull ;

454 s l a ck �= wcetToFull ;

455 } else {
456 extra = 0 ;

457 cur r en tS l ack = 0 ;

Appendix A. DAG TASK Generator in YARTISS Simulator 196

458 }
459 long segDeadl ine = ps i . getThreadWCET() ⇤ (i � 1 +

extra)

460 + cur r en tS lack ;

461 for (int c = count ; c <= ps i . getThreadCount () ; c++) {
462 SubTask s t = new SubTask (nextOf f se t , p s i .

getThreadWCET() , getWcee () , getPer iod () , segDeadl ine , g e tP r i o r i t y () , 1 ,

getEnergyConsumptionProf i le ()) ;

463 for (SubTask sub : l i s t) {
464 i f (sub . getDeadl ine () <= st . g e tO f f s e t ())

465 s t . addParentTask (sub) ;

466 }
467 l i s t . add (s t) ;

468 }
469 nex tOf f s e t += segDeadl ine ;

470 } else {
471 nex tOf f s e t += ps i . getThreadWCET() ⇤ (i � 1) ;

472 }
473 }
474 }
475 return l i s t ;

476 }
477

478 /⇤⇤
479 ⇤ Ca l cu l a t e s the s e qu en t i a l l ength o f WCET of p a r a l l e l segments at

480 ⇤ l e v e l i (whi l e c on s i d e r i ng the segments with number o f threads

481 ⇤ g r e a t e r than i) .

482 ⇤ @param ps In fo l i s t o f p a r a l l e l segments which form the MTS task

483 ⇤ @param i the p a r a l l e l l e v e l

484 ⇤ @return s e qu en t i a l l ength o f WCET of MTS task at l e v e l i

485 ⇤/
486 private long getSeqWCETParaSegs (ArrayList<Para l l e lSegmentIn fo> psInfo ,

int i) {
487 long seqWCET = 0 ;

488 for (Para l l e lSegment In fo p s i : p s In f o) {
489 i f (p s i . getThreadCount () >= i)

490 seqWCET += ps i . getThreadWCET() ;

491 }

Appendix A. DAG TASK Generator in YARTISS Simulator 197

492 return seqWCET;

493 }
494 }
495

496

497 /⇤⇤
498 ⇤ GraphTaskGenerator i s a c l a s s that extends AbstractTaskGenerator and

499 ⇤ gene ra t e s new in s t anc e o f graph task . A Graph task c o n s i s t s o f a s e t o f

500 ⇤ subtasks and random d i r e c t ed r e l a t i o n s .

501 ⇤ @author Manar Qamhieh

502 ⇤/
503

504 public class GraphTaskGenerator extends AbstractTaskGenerator {
505 private stat ic f ina l int MAX SUBTASKS = 10 ;

506 private long s t a r t ;

507 private long wcet ;

508 private long dead l ine ;

509 private long per iod ;

510 private int p r i o r i t y ;

511 private GraphTask graph ;

512 private int MAXPROC;

513 private double edges = 0 . 4 ;

514

515 @Override

516 protected ITask generate (long s ta r t , long wcet , long per iod , long

deadl ine ,

517 int p r i o r i t y , int maxProc) {
518 this . s t a r t = s t a r t ;

519 this . wcet = wcet ;

520 this . d ead l ine = dead l ine ;

521 this . pe r iod = per iod ;

522 this .MAXPROC = maxProc ;

523 this . p r i o r i t y = p r i o r i t y ;

524 ArrayList<SubTask> subtasks = new ArrayList<SubTask>() ;

525 subtasks = generateSubtasks () ;

526 graph = (GraphTask) Schedulab leFactory . newInstance (”graph” , s t a r t ,

527 per iod , dead l ine , p r i o r i t y , subtasks , null) ;

528 gene ra t eD i r e c t edRe l a t i on s (graph) ;

Appendix A. DAG TASK Generator in YARTISS Simulator 198

529 graph . c a l c u l a t eC r i t i c a lPa t h () ;

530 return graph ;

531 }
532

533 /⇤⇤
534 ⇤ Gets the p r obab i l i t y o f c r e a t i n g edges between subtasks in the

535 ⇤ generated graph

536 ⇤ @return the p r obab i l i t y o f edge c r e a t i on

537 ⇤/
538 public double getEdgeFrequency () {
539 return edges ;

540 }
541

542 public int getMaxSubtaskCount () {
543 return MAX SUBTASKS;

544 }
545

546 /⇤⇤
547 ⇤ Creates random edges between subtasks us ing a t r i a n g l e matrix to

548 ⇤ ensure a c y c l i c r e l a t i o n s

549 ⇤ @param graph input graph task with a s e t o f subtasks

550 ⇤/
551 private void gene ra t eD i r e c t edRe l a t i on s (GraphTask graph) {
552 int n = graph . getSubtasks () . s i z e () ;

553 int [] [] matrix = new int [n] [n] ;

554 /⇤
555 ⇤ F i l l the t r i a n g l e matrix randomly by ze ro s (no edges) and ones

556 ⇤ (edges) based on the p r obab i l i t y o f edge c r e a t i on

557 ⇤/
558 for (int i = 0 ; i < n ; i++) {
559 for (int j = (i + 1) ; j < n ; j++) {
560 double randVal = (double) random . next Int () / In t eg e r .

MAXVALUE;

561 i f (randVal < edges)

562 matrix [i] [j] = 0 ;

563 else

564 matrix [i] [j] = 1 ;

565 i f (matrix [i] [j] == 1) {

Appendix A. DAG TASK Generator in YARTISS Simulator 199

566 /⇤ check and remove any edge redundanc ies between

subtasks ⇤/
567 for (int k = 0 ; k < matrix . l ength ; k++) {
568 i f (matrix [k] [i] == 1 && matrix [k] [j] == 1) {
569 matrix [k] [j] = 0 ;

570 }
571 }
572 }
573 }
574 }
575

576 /⇤ c r e a t e edges between subtasks based on the t r i a n g l e matrix ⇤/
577 for (int i = 0 ; i < matrix . l ength ; i++) {
578 for (int j = 0 ; j < matrix . l ength ; j++) {
579 i f (matrix [i] [j] == 1) {
580 i f (graph . canAddEdge (graph . getSubtasks () . get (i) , graph

581 . getSubtasks () . get (j))) {
582 graph . addEdge (graph . getSubtasks () . get (i) , graph

583 . getSubtasks () . get (j)) ;

584 }
585 }
586 }
587 }
588 }
589

590 /⇤⇤
591 ⇤ Generates a s e t o f subtasks with uniformed random d i s t r i b u t i o n o f

592 ⇤ WCET of graph task and number o f subtasks

593 ⇤ @return a s e t o f generated rea l�time subtasks

594 ⇤/
595 private ArrayList<SubTask> generateSubtasks () {
596 boolean d i s ca rd ;

597 ArrayList<SubTask> l i s t = new ArrayList<SubTask>() ;

598 do {
599 l i s t . c l e a r () ;

600 d i s ca rd = fa l se ;

601 /⇤ The generated subtasks should r e sp e c t the nece s sa ry

602 f e a s i b i l i t y cond i t i on o f graphs regard ing t h e i r number and WCET.

Appendix A. DAG TASK Generator in YARTISS Simulator 200

603 The s e qu en t i a l worst�case execut ion behavior o f subtasks should

604 not exceed i t s dead l ine . ⇤/
605 int numOfSubtasks ;

606 int minNumSubtasks = (int) Math . c e i l ((double) wcet / dead l ine)

;

607 i f (minNumSubtasks >= MAX SUBTASKS)

608 numOfSubtasks = minNumSubtasks ;

609 else

610 numOfSubtasks = next Int (minNumSubtasks , MAX SUBTASKS) ;

611 /⇤ WCET execut ion time o f a subtask should be at l e a s t 1 time

un i t ⇤/
612 i f (wcet <= numOfSubtasks)

613 numOfSubtasks = minNumSubtasks ;

614 i f (numOfSubtasks == 1) {
615 SubTask subTask = (SubTask) Schedulab leFactory . newInstance

616 (” subtask ” , s t a r t , wcet , 0 , per iod , dead l ine ,

617 p r i o r i t y , 1 , null) ;

618 subTask . s e t Index (l i s t) ;

619 l i s t . add (subTask) ;

620 i f (subTask . g e tU t i l i z a t i o n () < 1)

621 return l i s t ;

622 } else {
623 /⇤ uniform d i s t r i b u t i o n o f WCET when subtasks > 1 ⇤/
624 long sumWCET = wcet ;

625 long subWCET;

626 long maxSub = dead l ine ;

627 long minSub = 0 ;

628 double rand ;

629 for (int i = 1 ; i < numOfSubtasks ; i++) {
630 minSub = sumWCET � (maxSub ⇤ (numOfSubtasks � i)) ;

631 /⇤ WCET of any subtasks should be at l e a s t 1 un i t ⇤/
632 i f (sumWCET == 1)

633 break ;

634 do {
635 do {
636 rand = random . nextDouble () ;

637 } while (rand == 0) ;

638 double tmp = sumWCET

Appendix A. DAG TASK Generator in YARTISS Simulator 201

639 ⇤ Math . pow(rand ,

640 ((double) 1 / (numOfSubtasks � i))

) ;

641 i f (tmp < 1)

642 tmp++;

643 subWCET = sumWCET � (long) Math . f l o o r (tmp) ;

644 } while (subWCET == 0 | | subWCET > maxSub

645 | | subWCET < minSub) ;

646 }
647 SubTask subTask = (SubTask) Schedulab leFactory . newInstance

(

648 ” subtask ” , s t a r t , sumWCET, 0 , per iod , dead l ine ,

649 p r i o r i t y , 1 , null) ;

650

651 subTask . s e t Index (l i s t) ;

652 l i s t . add (subTask) ;

653 }
654 for (SubTask subTask : l i s t) {
655 i f (subTask . g e tU t i l i z a t i o n () > 1) {
656 d i s ca rd = true ;

657 break ;

658 }
659 }
660 } while (d i s ca rd) ;

661 return l i s t ;

662 }
663 }

Appendix B

Subtasks in YARTISS Simulator

1 /⇤⇤
2 ⇤ Real�time subtask f o r the graph model . Mainly , subtasks share a l o t o f

3 ⇤ t iming f e a t u r e s o f the c l a s s i c a l s e qu en t i a l r ea l�time ta sk s . However ,

4 ⇤ they conta in ext ra in fo rmat ion regard ing in t e r�subtask dependenc ies .

5 ⇤ @author Manar Qamhieh

6 ⇤/
7 public class SubTask extends Per iodicTask {
8 private ArrayList<SubTask> parentSubtasks ;

9 private ArrayList<SubTask> ch i ld r enSubtasks ;

10 private long e a r l i e s tF in i s hT ime ;

11 private long l a t e s tF in i shTime ;

12 private int nbProc ;

13 private List<Integer> i n d i c e s ;

14 private long graphLaxity ;

15 private long j i t t e r = 0 , modJitter = 0 ;

16

17 public SubTask (long l o c a lO f f s e t , long wcet , long wcee , long per iod ,

long deadl ine , int p r i o r i t y , int nbProc , IEnergyConsumptionProf i le p) {
18 super (l o c a lO f f s e t , wcet , wcee , per iod , dead l ine , p r i o r i t y , p) ;

19 this . nbProc = nbProc ;

20 parentSubtasks = new ArrayList<SubTask>() ;

21 ch i ld r enSubtask s = new ArrayList<SubTask>() ;

22 i n d i c e s = new ArrayList<Integer >() ;

23 }
24

25 public SubTask (SubTask subtask) {
203

Appendix B. Subtasks in YARTISS Simulator 204

26 this (subtask . g e tO f f s e t () , subtask . getWcet () , subtask . getWcee () ,

subtask . getPer iod () , subtask . getDead l ine () , subtask . g e tP r i o r i t y () ,

subtask . getNumOfProc () , subtask . getEnergyConsumptionProf i le ()) ;

27 setMessage (subtask . getMessage ()) ;

28 }
29

30 /⇤⇤
31 ⇤ Sets the index o f a subtask in the graph accord ing to the index o f

32 ⇤ the l a s t subtask in the l i s t .

33 ⇤ @param l i s t l i s t o f a l l subtasks

34 ⇤/
35 public void se t Index (ArrayList<SubTask> l i s t) {
36 i f (l i s t . isEmpty ())

37 s e t I d (0) ;

38 else

39 s e t I d (l i s t . get (l i s t . s i z e () � 1) . ge t Id () + 1) ;

40 }
41

42 public void se t Index (CopyOnWriteArrayList<SubTask> l i s t) {
43 s e t I d (l i s t . get (l i s t . s i z e () � 1) . ge t Id () + 1) ;

44 }
45

46 /⇤⇤
47 ⇤ Gets the parent subtasks o f the subtask

48 ⇤ @return parent subtasks

49 ⇤/
50 public ArrayList<SubTask> getParentSubtasks () {
51 return parentSubtasks ;

52 }
53

54 /⇤⇤
55 ⇤ Sets the parent subtasks o f the subtask

56 ⇤ @param parents parent subtasks

57 ⇤/
58 public void setParentSubtasks (ArrayList<SubTask> parents) {
59 for (SubTask subTask : parents) {
60 this . parentSubtasks . add (subTask) ;

61 }

Appendix B. Subtasks in YARTISS Simulator 205

62 }
63

64 /⇤⇤
65 ⇤ Gets the ch i l d r en subtasks o f the subtask

66 ⇤ @return ch i l d r en subtasks

67 ⇤/
68 public ArrayList<SubTask> getChi ldrenSubtasks () {
69 return ch i ld r enSubtasks ;

70 }
71

72 /⇤⇤
73 ⇤ Sets the ch i l d r en subtasks o f the subtask

74 ⇤ @param ch i l d r en ch i l d r en subtasks

75 ⇤/
76 public void se tChi ldrenTasks (ArrayList<SubTask> ch i l d r en) {
77 this . ch i l d r enSubtask s = ch i l d r en ;

78 }
79

80 /⇤⇤
81 ⇤ Adds a ’ c h i l d ’ subtask as a su c c e s s o r to the cur rent subtask

82 ⇤ @param ch i l d su c c e s s o r subtask

83 ⇤/
84 public void addChildTask (SubTask ch i l d) {
85 ch i ld r enSubtask s . add (ch i l d) ;

86 ch i l d . getParentSubtasks () . add (this) ;

87 }
88

89 /⇤⇤
90 ⇤ Adds a ’ parent ’ subtask as a p r edec e s s o r o f the cur rent subtask

91 ⇤ @param parent p r ede c e s s o r subtask

92 ⇤/
93 public void addParentTask (SubTask parent) {
94 parentSubtasks . add (parent) ;

95 parent . getChi ldrenSubtasks () . add (this) ;

96 }
97

98 /⇤⇤
99 ⇤ Gets the e a r l i e s t time o f a subtask to f i n i s h i t s execut ion

Appendix B. Subtasks in YARTISS Simulator 206

100 ⇤ @return e a r l i e s t execut ion time

101 ⇤/
102 public long ge tEar l i e s tF in i shT ime () {
103 return e a r l i e s tF in i s hT ime ;

104 }
105

106 /⇤⇤
107 ⇤ Sets the e a r l i e s t time o f a subtask to f i n i s h i t s execut ion

108 ⇤ @param time e a r l i e s t execut ion time

109 ⇤/
110 public void s e tEa r l i e s tF in i shT ime (long time) {
111 this . e a r l i e s tF in i s hT ime = time ;

112 }
113

114 /⇤⇤
115 ⇤ Gets the l a t e s t time o f a subtask to f i n i s h i t s execut ion

116 ⇤ @return l a t e s t execut ion time

117 ⇤/
118 public long getLatestFin i shTime () {
119 return l a t e s tF in i shTime ;

120 }
121

122 /⇤⇤
123 ⇤ Sets the l a t e s t time o f a subtask to f i n i s h i t s execut ion

124 ⇤ @param time l a t e s t execut ion time

125 ⇤/
126 public void se tLates tF in i sheTime (long time) {
127 this . l a t e s tF in i shTime = time ;

128 }
129

130 /⇤⇤
131 ⇤ Gets the number o f p r o c e s s o r s on which a subtask can execute

132 ⇤ @return number o f p r o c e s s o r s

133 ⇤/
134 public int getNumOfProc () {
135 return nbProc ;

136 }
137

Appendix B. Subtasks in YARTISS Simulator 207

138 /⇤⇤
139 ⇤ Sets the number o f p r o c e s s o r s on which a subtask can execute

140 ⇤ @param numOfProc number o f p r o c e s s o r s

141 ⇤/
142 public void setNumOfProc (int nbProc) {
143 this . nbProc = nbProc ;

144 }
145

146 /⇤⇤
147 ⇤ Ve r i f i e s i f the subtask i s one o f c r i t i c a l path subtasks

148 ⇤ @return true i f i t i s c r i t i c a l subtask , f a l s e o therw i se

149 ⇤/
150 public boolean i sC r i t i c a lTa s k () {
151 i f (e a r l i e s tF in i s hT ime == late s tF in i shTime)

152 return true ;

153 else

154 return fa l se ;

155 }
156

157 /⇤⇤
158 ⇤ Checks i f the subtask i s the s t a r t i n g subtask o f the graph , which

159 ⇤ i s the only subtask in the graph which has no parents .

160 ⇤ @return true i f i t i s the s t a r t i n g o f a graph , f a l s e o the rw i se

161 ⇤/
162 public boolean i sSourceSubtask () {
163 return parentSubtasks . isEmpty () ;

164 }
165

166 /⇤⇤
167 ⇤ Checks i f the subtask i s the ending subtask o f the graph , which

168 ⇤ i s the only subtask in the graph which has no ch i l d r en .

169 ⇤ @return true i f i t i s the ending o f a graph , f a l s e o therw i se

170 ⇤/
171 public boolean i sS inkSubtask () {
172 return ch i ld r enSubtasks . isEmpty () ;

173 }
174

175 public St r ing toS t r i ng () {

Appendix B. Subtasks in YARTISS Simulator 208

176 return ” [” + get Id () + ”] wcet :\ t ” + getWcet () + ”\ t o f f s e t :\ t ”+

ge tO f f s e t () + ”\ t l a t e s tDead l i n e :\ t ” + getLatestFin i shTime () + ” \
td ead l i n e :\ t ” + getDead l ine () + ”\ t r e l e a s e J i t t e r :\ t ” +

g e tRe l e a s e J i t t e r () ;

177 }
178

179 public void accept (ITaskElementVis i tor v i s i t o r) {
180 v i s i t o r . v i s i tSubTask (this) ;

181 }
182

183 @Override

184 public ITask cloneTask () {
185 return new SubTask (this) ;

186 }
187

188 public void s e tCh i l d r en Ind i c e s (S t r ing [] i n d i c e s) {
189 i f (i n d i c e s == null)

190 this . i n d i c e s = null ;

191 for (S t r ing ch i l d I d : i n d i c e s) {
192 this . i n d i c e s . add (In t eg e r . pa r s e In t (c h i l d I d)) ;

193 }
194 }
195

196 public List<Integer> ge tCh i l d r en Ind i c e s () {
197 return i n d i c e s ;

198 }
199

200 /⇤⇤
201 ⇤ Laxity o f a subtask i s the d i f f e r e n c e between the f i n i s h time o f

202 ⇤ t h i s subtask a f t e r c a l c u l a t i n g the c r i t i c a l path .

203 ⇤/
204 @Override

205 public long getLax i ty () {
206 long l a x i t y = getLatestFin i shTime () � g e tO f f s e t () �

getRemainingCost () ;

207 i f (l a t e s tF in i shTime == 0 | | l a x i t y < 0)

208 throw new I l l ega lArgumentExcept ion (

Appendix B. Subtasks in YARTISS Simulator 209

209 ” C r i t i c a l path should be c a l c u l a t ed be f o r e us ing

f i n i s h time”) ;

210 return l a x i t y ;

211 }
212

213 /⇤⇤
214 ⇤ @return the l a x i t y o f the graph to which t h i s subtask be longs

215 ⇤/
216 public long getGraphLaxity () {
217 return graphLaxity ;

218 }
219

220 /⇤⇤
221 ⇤ @param graphLaxity the graph ’ s l a x i t y to s e t

222 ⇤/
223 public void setGraphLaxity (long graphLaxity) {
224 this . graphLaxity = graphLaxity ;

225 }
226

227 @Override

228 public long getNextAbsoluteDeadl ine (long time) {
229 long cur rentPer iod = (time � g e tO f f s e t ()) / getPer iod () ;

230 return cur rentPer iod ⇤ getPer iod () + getLatestFin i shTime () ;

231 }
232

233 /⇤⇤
234 ⇤ Gets the r e l e a s e j i t t e r o f the cur rent subtasks , i . e . , the l ength

235 ⇤ o f the a c t i v a t i o n i n t e r v a l based on i t s precedence c on s t r a i n t s .

236 ⇤ @return the r e l e a s e j i t t e r o f the subtask

237 ⇤/
238 public long g e tRe l e a s e J i t t e r () {
239 i f (this . i sSourceSubtask ())

240 return 0 ;

241 i f (this . j i t t e r == 0)

242 c a l c u l a t eR e l e a s e J i t t e r () ;

243 return this . j i t t e r ;

244 }
245

Appendix B. Subtasks in YARTISS Simulator 210

246 /⇤⇤
247 ⇤ Ca l cu l a t e s the r e l e a s e j i t t e r o f the cur rent subtask based on i t s

248 ⇤ l o c a l t iming parameters and i t s precedence c on s t r a i n t s .

249 ⇤/
250 private void c a l c u l a t eR e l e a s e J i t t e r () {
251 this . j i t t e r = 0 ;

252 for (SubTask parent : getParentSubtasks ()) {
253 long tmp = parent . getLatestFin i shTime () � g e tO f f s e t () ;

254 i f (tmp > this . j i t t e r)

255 this . j i t t e r = tmp ;

256 }
257 }
258

259 public long g e tMod i f i e dJ i t t e r () {
260 return modJitter ;

261 }
262

263 public void s e tMod i f i e d J i t t e r (long j i t t e r) {
264 this . modJitter = j i t t e r ;

265 }
266

267 /⇤⇤
268 ⇤ Checks i f subtask ” pos s ib l ePred ” i s a p r edec e s s o r o f the cur rent

269 ⇤ subtask or not .

270 ⇤ @param pos s ib l ePred the v e r i f i e d subtask

271 ⇤ @return True i f po s s ib l ePred i s a predece s sor , Fa l se o therw i se

272 ⇤/
273 public boolean i sP r ed e c e s s o r (SubTask pos s ib l ePred) {
274 i f (this . getParentSubtasks () . conta in s (po s s ib l ePred))

275 return true ;

276 for (SubTask parent : this . getParentSubtasks ()) {
277 i f (parent . i sP r ed e c e s s o r (po s s ib l ePred))

278 return true ;

279 }
280 return fa l se ;

281 }
282

283 /⇤⇤

Appendix B. Subtasks in YARTISS Simulator 211

284 ⇤ Checks i f subtask ” po s s i b l eSuc c ” i s a su c c e s s o r o f the cur rent

285 ⇤ subtask or not .

286 ⇤ @param pos s i b l eSucc the v e r i f i e d subtask

287 ⇤ @return True i f po s s i b l eSuc c i s a succe s so r , Fa l se o therw i se .

288 ⇤/
289 public boolean i s S u c c e s s o r (SubTask po s s i b l eSuc c) {
290 i f (this . ge tChi ldrenSubtasks () . conta in s (po s s i b l eSuc c))

291 return true ;

292 for (SubTask ch i l d : this . ge tChi ldrenSubtasks ()) {
293 i f (c h i l d . i s S u c c e s s o r (po s s i b l eSucc))

294 return true ;

295 }
296 return fa l se ;

297 }
298

299 public long getNextLocalDeadl ine (long time , boolean nextPer iod) {
300 i f (time < g e tO f f s e t ())

301 return g e tO f f s e t () + getLatestFin i shTime () ;

302 long cur rentPer iod = (time � g e tO f f s e t ()) / getPer iod () ;

303 i f (nextPer iod && getRemainingCost () == 0)

304 cur rentPer iod++;

305 return g e tO f f s e t () + currentPer iod ⇤ getPer iod ()

306 + getLatestFin i shTime () ;

307 }
308 }

Author’s publication list

Journals and Reviews

ACR’14

M. Qamhieh and S. Midonnet. Simulation-Based Evaluations of DAG

Scheduling in Hard Real-time Multiprocessor Systems. Applied Com-

puting Review, 14(4):27–39, 2014

International Conference Papers

RTNS’14

M. Qamhieh, L. George, and S. Midonnet. A Stretching Algorithm for

Parallel Real-time DAG Tasks on Multiprocessor Systems. In Proceed-

ings of the 22Nd International Conference on Real-Time Networks and

Systems, RTNS ’14, pages 13:13–13:22. ACM, 2014

RACS’14

M. Qamhieh and S. Midonnet. An Experimental Analysis of DAG

Scheduling Methods in Hard Real-Time Multiprocessor Systems. In

Proceedings of the 2014 Conference on Research in Adaptive and Con-

vergent Systems, pages 284–290. ACM, 2014

ADA’14

M. Qamhieh and S. Midonnet. Schedulability Analysis for Directed

Acyclic Graphs on Multiprocessor Systems at a Subtask Level. In Pro-

ceedings of the 19th International Conference on Reliable Software Tech-

nologies, Ada-Europe, 2014

RTNS’13

M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet. Global EDF

Scheduling of Directed Acyclic Graphs on Multiprocessor Systems. In

Proceedings of the 21st International Conference on Real-Time Networks

and Systems, RTNS ’13, pages 287–296. ACM, 2013

213

Appendix B. Subtasks in YARTISS Simulator 214

Workshop and WIP1 Papers

JSSPP’14

M. Qamhieh and S. Midonnet. Experimental Analysis of the Tardiness

of Parallel Tasks in Soft Real-time Systems. In 18th Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP), JSSPP, 2014

PETARS’12

M. Qamhieh, S. Midonnet, and L. George. Graph-to-Segment Transfor-

mation Technique minimizing the number of processors for Real-time

Multiprocessor Systems. In Workshop on Power, Energy, and Tempera-

ture Aware Real-time Systems (PETARS), page 6pp, San Juan, Peurto

Rico, Dec. 2012

ECRTS’12-WiP

M. Qamhieh, S. Midonnet, and L. George. Dynamic Scheduling Algo-

rithm for Parallel Real-time Graph Tasks. SIGBED Rev., 9(4):25–28,

Nov. 2012. ISSN 1551-3688

WATERS’12

Y. Chandarli, F. Fauberteau, M. Damien, S. Midonnet, and

M. Qamhieh. YARTISS: A Tool to Visualize, Test, Compare and Eval-

uate Real-Time Scheduling Algorithms. In Proceedings of the 3rd Inter-

national Workshop on Analysis Tools and Methodologies for Embedded

and Real-time Systems (WATERS), 2012

RTAS’12-WiP

M. Qamhieh, S. Midonnet, and L. George. A Parallelizing Algorithm

for Real-Time Tasks of Directed Acyclic Graphs Model. In The 18th

IEEE Real-Time and Embedded Technology and Applications Sympo-

sium Work-in-Progress (WiP) Proceedings, pages 45–48, Beijing, Chine,

Apr. 2012

JRWRTC’11

M. Qamhieh, F. Fauberteau, and S. Midonnet. Performance Analysis for

Segment Stretch Transformation of Parallel Real-time Tasks. In Proceed-

ings of the 2th Junior Researcher Workshop on Real-Time Computing

(JRWRTC), page 4pp, Nantes, France, Sept. 2011

ECRTS’11-WiP

F. Fauberteau, S. Midonnet, and M. Qamhieh. Partitioned Scheduling

of Parallel Real-time Tasks on Multiprocessor Systems. SIGBED Rev.,

8(3):28–31, Sept. 2011

1
Work In Progress

Appendix B. Subtasks in YARTISS Simulator 215

Technical Reports

Tech’14

Y. Chandarli, M. Qamhieh, F. Fauberteau, and M. Damien. YARTISS:

A Generic, Modular and Energy-Aware Scheduling Simulator for Real-

Time Multiprocessor Systems. Technical report, UPE LIGM ESIEE,

2014

Bibliography

[1] OpenMP Application Program Interface version 3.1. http://www.openmp.org/mp-

documents/OpenMP3.1.pdf. (Cited on pages 22 and 39.)

[2] K. Agrawal, C. Gill, J. Li, M. Mahadevan, D. Ferry, and C. Lu. A Real-time Scheduling Service

for Parallel Tasks. In Proceedings of the 19th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), RTAS, pages 261–272. IEEE Computer Society, 2013. (Cited on

page 39.)

[3] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing

capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS

’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM. doi: 10.1145/1465482.1465560.

(Cited on page 17.)

[4] J. H. Anderson and A. Srinivasan. Early-Release Fair Scheduling. In Proceedings of the 12th

Euromicro Conference on Real-time Systems (ECRTS), pages 35–43. IEEE Computer Society,

June 2000. (Cited on page 30.)

[5] J. H. Anderson and A. Srinivasan. Mixed Pfair/ERfair Scheduling of Asynchronous Periodic Tasks.

In Proceedings of the 13th Euromicro Conference on Real-Time Systems, pages 76–85, 2001. doi:

10.1109/EMRTS.2001.934004. (Cited on page 30.)

[6] B. Andersson and D. D. Niz. Analyzing Global-EDF for Multiprocessor Scheduling of Parallel

Tasks. In Proceedings of the 16th International Conference On Principles Of DIstributed Systems

(OPODIS), pages 16–30, 2012. (Cited on page 45.)

[7] B. Andersson, S. K. Baruah, and J. Jonsson. Static-Priority Scheduling on Multiprocessors. In

Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS), pages 193–202, Dec 2001.

doi: 10.1109/REAL.2001.990610. (Cited on pages 29 and 30.)

[8] N. C. Audsley. Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary

Start Times. Technical Report YCS 164, University of York, Department of Computer Science,

York, UK, Dec. 1991. (Cited on pages 28 and 44.)

217

Bibliography 218

[9] N. C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Information Processing

Letters, 79(May 1999):39–44, 2001. (Cited on page 28.)

[10] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig. Response-Time Analysis

of Parallel Fork-Join Workloads with Real-Time Constraints. In Proceedings of the 25th Euromicro

Conference on Real-Time Systems (ECRTS), pages 215–224, July 2013. doi: 10.1109/ECRTS.

2013.31. (Cited on pages 44 and 45.)

[11] T. P. Baker. Multiprocessor EDF and Deadline Monotonic Schedulability Analysis. In Proceedings

of the 24th IEEE Real-Time Systems Symposium (RTSS), pages 120–129. IEEE Computer Society,

Dec. 2003. (Cited on page 45.)

[12] T. P. Baker. An Analysis of EDF Schedulability on a Multiprocessor. IEEE Transactions on Parallel

and Distributed Systems, 16(8):760–768, Aug 2005. ISSN 1045-9219. doi: 10.1109/TPDS.2005.88.

(Cited on page 30.)

[13] T. P. Baker and S. K. Baruah. Sustainable Multiprocessor Scheduling of Sporadic Task Systems.

In 21st Euromicro Conference on Real-Time Systems, pages 141–150. Ieee, July 2009. (Cited on

pages 105, 106, 107, 108, and 109.)

[14] S. K. Baruah. Feasibility analysis of recurring branching tasks. In Proceedings of the 10th Euromicro

Workshop on Real-Time Systems, 1998, pages 138–145, 1998. (Cited on page 19.)

[15] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time

Systems, 24(1):93–128, 2003. (Cited on page 19.)

[16] S. K. Baruah. Optimal Utilization Bounds for the Fixed-Priority Scheduling of Periodic Task

Systems on Identical Multiprocessors. IEEE Transactions on Computers, 53(6):781–784, June

2004. (Cited on page 30.)

[17] S. K. Baruah. Techniques for Multiprocessor Global Schedulability Analysis. In Proceedings of the

28th IEEE International Real-Time Systems Symposium (RTSS), pages 119–128. Ieee, Dec. 2007.

(Cited on pages 45 and 68.)

[18] S. K. Baruah and A. Burns. Sustainable scheduling analysis. In Proceedings of the 27th IEEE Real-

Time Systems Symposium (RTSS), pages 159–168. IEEE Computer Society, Dec. 2006. (Cited on

pages 9 and 105.)

[19] S. K. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic task systems.

In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International, pages 9 pp.–329,

Dec 2005. doi: 10.1109/RTSS.2005.40. (Cited on page 112.)

[20] S. K. Baruah and J. Goossens. Rate-monotonic scheduling on uniform multiprocessors. In Pro-

ceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS), pages

360–366. IEEE Computer Society, May 2003. (Cited on page 105.)

Bibliography 219

[21] S. K. Baruah, A. K.-L. Mok, and L. E. Rosier. Preemptively Scheduling Hard-Real-Time Sporadic

Tasks on One Processor. In Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS),

pages 182–190. IEEE Computer Society, Dec. 1990. (Cited on page 5.)

[22] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Complexity Concerning the Pre-

emptive Scheduling of Periodic Real-Time tasks on one processor. Real-Time Systems, 2(4):301–

324, Nov. 1990. (Cited on page 5.)

[23] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast Scheduling of Periodic Tasks on Multiple

Resources. In Proceedings of the 9th International Parallel Processing Symposium (IPPS), pages

280–288. IEEE Computer Society 1995, Apr. 1995. (Cited on page 30.)

[24] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate Progress: A Notion

of Fairness in Resource Allocation. Algorithmica, 15(6):600–625, June 1996. (Cited on page 30.)

[25] S. K. Baruah, D. Chen, S. Gorinsky, and A. K.-L. Mok. Generalized Multiframe Tasks. Real-Time

Systems, 17(1):5–22, July 1999. (Cited on page 18.)

[26] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Improved Multiprocessor

Global Schedulability Analysis. Real-Time Systems, 46(1):3–24, Sept. 2010. (Cited on pages 45

and 49.)

[27] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese. A Generalized

Parallel Task Model for Recurrent Real-time Processes. In Proceedings of the 33rd IEEE Real-Time

Systems Symposium (RTSS), pages 63–72. IEEE Computer Society, Dec. 2012. (Cited on pages 47,

49, 87, 90, and 179.)

[28] M. Bertogna. Real-time Scheduling Analysis for Multiprocessor Platforms. PhD thesis, Scuola

Superiore Sant’Anna, 2007. (Cited on page 30.)

[29] M. Bertogna and M. Cirinei. Response-Time Analysis for Globally Scheduled Symmetric Multipro-

cessor Platforms. In Proceedings of the 28th IEEE International Real-Time Systems Symposium,

pages 149–160. Ieee, Dec. 2007. (Cited on page 45.)

[30] M. Bertogna, M. Cirinei, and G. Lipari. Improved Schedulability Analysis of EDF on Multiproces-

sor Platforms. In Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS),

pages 209–218, July 2005. doi: 10.1109/ECRTS.2005.18. (Cited on pages 45 and 115.)

[31] M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability Tests for Real-time Task Sets Scheduled

by Deadline Monotonic on Multiprocessors. In Proceedings of the 9th International Conference on

Principles of Distributed Systems, OPODIS’05, pages 306–321, Berlin, Heidelberg, 2006. Springer-

Verlag. ISBN 3-540-36321-1, 978-3-540-36321-7. doi: 10.1007/11795490 24. (Cited on page 29.)

Bibliography 220

[32] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability Analysis of Global Scheduling Algorithms on

Multiprocessor Platforms. IEEE Transactions on Parallel and Distributed Systems, 20(4):553–566,

2009. (Cited on pages 100, 101, 121, 122, 124, and 126.)

[33] E. Bini and G. C. Buttazzo. Measuring the Performance of Schedulability Tests. Real-Time

Systems, 30(1-2):129–154, May 2005. (Cited on pages 81 and 149.)

[34] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A Constant-Approximate Feasibility Test for

Multiprocessor Real-Time Scheduling. In Proceedings of the 16th Annual European Symposium on

Algorithms (ESA), volume 5193/2008, pages 210–221. Springer, Sept. 2008. (Cited on page 45.)

[35] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A Constant-Approximate Feasibility Test

for Multiprocessor Real-Time Scheduling. Algorithmica, 62(3-4):1034–1049, 2012. ISSN 0178-4617.

doi: 10.1007/s00453-011-9497-2. (Cited on page 49.)

[36] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibility Analysis in the Spo-

radic DAG Task Model. In Proceedings of the 25th Euromicro Conference on Real-Time Systems

(ECRTS), pages 225–233, July 2013. doi: 10.1109/ECRTS.2013.32. (Cited on pages 49, 87, 132,

133, and 179.)

[37] W. J. Bouknight, S. Denenberg, D. McIntyre, J. M. Randall, A. Sameh, and D. Slotnick. The

Illiac IV system. In Proceedings of the IEEE, 60(4):369–388, April 1972. ISSN 0018-9219. doi:

10.1109/PROC.1972.8647. (Cited on page 29.)

[38] A. Burns and S. K. Baruah. Sustainability in real-time scheduling. Journal of Computing Science

and Engineering (JCSE), 2(1):74–97, Mar. 2008. (Cited on page 105.)

[39] Y. Chandarli, F. Fauberteau, M. Damien, S. Midonnet, and M. Qamhieh. YARTISS: A Tool to

Visualize, Test, Compare and Evaluate Real-Time Scheduling Algorithms. In Proceedings of the 3rd

International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems

(WATERS), 2012. (Cited on page 145.)

[40] Y. Chandarli, M. Qamhieh, F. Fauberteau, and M. Damien. YARTISS: A Generic, Modular and

Energy-Aware Scheduling Simulator for Real-Time Multiprocessor Systems. Technical report, UPE

LIGM ESIEE, 2014. (Not cited.)

[41] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic Scheduling of Real-time Tasks Under

Precedence Constraints. Real-Time Systems, 2(3):181–194, Sept. 1990. ISSN 0922-6443. doi:

10.1007/BF00365326. (Cited on page 36.)

[42] M. Chetto, D. Masson, and S. Midonnet. Fixed Priority Scheduling Strategies for Ambient Energy-

Harvesting Embedded Systems. In Proceedings of the IEEE/ACM International Conference on

Green Computing and Communications (GreenCom), pages 50–55. IEEE Computer Society / ACM

Computer Press, Aug. 2011. (Cited on page 146.)

Bibliography 221

[43] H. Cho, B. Ravindran, and D. Jensen. An Optimal Real-Time Scheduling Algorithm for Multipro-

cessors. In Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS), pages 101–110.

IEEE Computer Society, Dec. 2006. (Cited on page 30.)

[44] H. S. Chwa, J. Lee, K.-m. Phan, A. Easwaran, and I. Shin. Global EDF Schedulability Analysis

for Synchronous Parallel Tasks on Multicore Platforms. In Proceedings of the 25th euromicro

Conference on Real-Time Systems (ECRTS), pages 25–34, 2013. (Cited on pages 45, 46, 87,

and 179.)

[45] S. Collette, L. Cucu, and J. Goossens. Algorithm and Complexity for the Global Scheduling of

Sporadic Tasks on Multiprocessors with Work-Limited Parallelism. In Proceedings of the 15th

International Conference on Real-Time and Network systems (RTNS), 2007. (Cited on page 38.)

[46] S. Collette, L. Cucu, and J. Goossens. Integrating Job Parallelism in Real-Time Scheduling Theory.

Information Processing Letters, 106:180–187, 2008. (Cited on page 38.)

[47] P. Courbin and L. George. FORTAS : Framework fOr Real-Time Analysis and Simulation. In

Proceedings of 2nd International Workshop on Analysis Tools and Methodologies for Embedded

and Real-Time Systems (WATERS), pages 21–26, July 2011. (Cited on page 144.)

[48] R. I. Davis and A. Burns. A Survey of Hard Real-time Scheduling Algorithms and Schedulability

Analysis Techniques for Multiprocessor Systems. ACM Computing surveys, pages 1 – 44, 2011.

(Cited on page 31.)

[49] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc. Design of ion-implanted

mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,

Oct 1974. ISSN 0018-9200. doi: 10.1109/JSSC.1974.1050511. (Cited on page 11.)

[50] M. L. Dertouzos. Control Robotics: The Procedural Control of Physical Processes. In J. L.

Rosenfeld, editor, Information Processing, pages 807–813, Stockholm, Sweden, Aug. 1974. North-

Holland, American Elsevier. (Cited on page 31.)

[51] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem. Operations Research, 26(1):

127–140, 1978. (Cited on pages 15 and 29.)

[52] F. Fauberteau. RTMSIM. http://rtmsim.triaxx.org/. (Cited on page 146.)

[53] F. Fauberteau, S. Midonnet, and L. George. Laxity-Based Restricted-Migration Scheduling. In

Z. Mammeri, editor, Proceedings of the 16th IEEE International Conference on Emerging Tech-

nologies and Factory Automation (ETFA), pages 1–8. IEEE Computer Society, Sept. 2011. (Cited

on page 146.)

[54] F. Fauberteau, S. Midonnet, and M. Qamhieh. Partitioned Scheduling of Parallel Real-time Tasks

on Multiprocessor Systems. SIGBED Rev., 8(3):28–31, Sept. 2011. (Cited on page 41.)

http://rtmsim.triaxx.org/

Bibliography 222

[55] D. G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems. IBM TJ Watson

Research Center, 1994. (Cited on page 37.)

[56] D. G. Feitelson. Packing Schemes for Gang Scheduling. In D. G. Feitelson and L. Rudolph,

editors, Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture Notes in Computer

Science, pages 89–110. Springer Berlin Heidelberg, 1996. ISBN 978-3-540-61864-5. doi: 10.1007/

BFb0022289. (Not cited.)

[57] D. G. Feitelson and L. Rudolph. Parallel Job Scheduling: Issues and Approaches. In Job Scheduling

Strategies for Parallel Processing, pages 1–18. Springer, 1995. (Cited on page 37.)

[58] N. W. Fisher. The multiprocessor real-time scheduling of general task systems. PhD thesis, Uni-

versity of North Carolina, 2007. (Cited on page 16.)

[59] N. W. Fisher, S. K. Baruah, and T. P. Baker. The Partitioned Scheduling of Sporadic Tasks

According to Static-Priorities. In Proceedings of the 18th Euromicro Conference on Real-time

Systems (ECRTS), pages 118–127. IEEE Computer Society, July 2006. (Cited on page 41.)

[60] J. Goossens and V. Berten. Gang FTP Scheduling of Periodic and Parallel Rigid Real-time Tasks.

In Proceedings of the 18th Real-Time and Network Systems (RTNS), pages 189–196. IRIT Press,

Nov. 2010. (Cited on pages 37 and 38.)

[61] J. Goossens and R. Devillers. The Non-Optimality of the Monotonic Priority Assignmentsfor Hard

Real-Time O↵set Free Systems. Real-Time Systems, 13(2):107–126, Sept. 1997. ISSN 0922-6443.

doi: 10.1023/A:1007980022314. (Cited on page 149.)

[62] J. Goossens and C. Macq. Limitation of the Hyper-Period in Real-Time Periodic Task Set Gen-

eration. In Proceedings of the 9th International Conference on Real-Time Systems (RTS), pages

133–148, Mar. 2001. (Cited on pages 81 and 149.)

[63] J. Goossens, S. Funk, and S. K. Baruah. Priority-Driven Scheduling of Periodic Task Systems on

Multiprocessors. Journal of Real-Time Systems, 25(2-3):187–205, Sept. 2003. ISSN 0922-6443. doi:

10.1023/A:1025120124771. (Cited on page 30.)

[64] V. R. Group. Embedded software and tools market intelligence service. In Multicore Components

and Tools, volume 5, 2011. (Cited on page 13.)

[65] R. Ha. Validating timing constraints in multiprocessor and distributed real-time systems. PhD

thesis, University of Illinois, Dept. of Computer Science, Urbana-Champaign, IL, USA, 1995. (Cited

on page 107.)

[66] R. Ha and J. Liu. Validating timing constraints in multiprocessor and distributed real-time systems.

In 14th International Conference on Distributed Computing Systems, pages 162–171. IEEE Comput.

Soc. Press, 1994. (Cited on pages 25 and 107.)

Bibliography 223

[67] C.-C. Han and K.-J. Lin. Scheduling Parallelizable Jobs on Multiprocessors. In Proceedings of

Real-Time Systems Symposium (RTSS), pages 59–67, 1989. (Cited on page 37.)

[68] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Fixed Priority Scheduling Periodic Tasks

with Varying Execution Priority. In Proceedings of the 12th IEEE Real-Time Systems Sympo-

sium (RTSS), pages 116–128, 1991. (Cited on pages 32, 33, and 34.)

[69] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing Analysis for Fixed Priority Scheduling

of Hard Real-Time Systems. In IEEE Transactions on Software Engineering, pages 13–28, 1994.

(Cited on page 32.)

[70] M. G. Harbour, J. J. G. Garćıa, J. C. P. Gutiérrez, and J. M. D. Moyano. MAST: Modeling and

Analysis Suite for Real-Time Applications. In Proceedings of the 13th Euromicro Conference on

Real-Time Systems, 2001. (Cited on page 144.)

[71] P. Jayachandran and T. Abdelzaher. A Delay Composition Theorem for Real-Time Pipelines. In

Proceedings of the 19th Euromicro Conference on Real-Time Systems (ECRTS), pages 29–38, 2007.

(Cited on page 36.)

[72] P. Jayachandran and T. Abdelzaher. Transforming Distributed Acyclic Systems into Equivalent

Uniprocessors under Preemptive and Non-Preemptive Scheduling. In Proceedings of the 20th Eu-

romicro Conference on Real-Time Systems (ECRTS), pages 233–242, 2008. (Cited on pages 35

and 36.)

[73] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance [scheduling problems]. In

Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 214–221,

1995. (Cited on page 9.)

[74] S. Kato and Y. Ishikawa. Gang EDF Scheduling of Parallel Task Systems. In Proceedings of the

30th IEEE Real-Time Systems Symposium (RTSS), pages 459–468, Dec 2009. doi: 10.1109/RTSS.

2009.42. (Cited on pages 37 and 38.)

[75] A. Khemka and R. K. Shyamasundar. An Optimal Multiprocessor Real-Time Scheduling Algo-

rithm. Journal of Parallel and Distributed Computing, 43:37–45, 1997. (Cited on page 30.)

[76] G. Koren and D. Shasha. Dover: An Optimal On-Line Scheduling Algorithm for Overloaded

Uniprocessor Real-Time Systems. Society for Industrial and Applied Mathematics Journal, 24(2):

318–339, Apr. 1995. ISSN 0097-5397. (Cited on page 146.)

[77] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar. Scheduling Parallel Real-Time Tasks on Multi-

core Processors. In Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS), pages

259–268. IEEE Computer Society, 2010. (Cited on pages 23, 39, 40, 41, 54, 86, and 176.)

Bibliography 224

[78] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines. In

Proceedings of the 11th IEEE Real-Time Systems Symposium, pages 201–209, Dec 1990. doi:

10.1109/REAL.1990.128748. (Cited on pages 4 and 28.)

[79] J. Y.-T. Leung and M. Merrill. A Note on Preemptive Scheduling of Periodic, Real-time Tasks.

Information Processing Letters, 11(3):115 – 118, 1980. ISSN 0020-0190. doi: http://dx.doi.org/10.

1016/0020-0190(80)90123-4. (Cited on page 149.)

[80] J. Y.-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Periodic,

Real-Time Tasks. Performance Evaluation, 2(4):237–250, Dec. 1982. (Cited on page 28.)

[81] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of Global EDF for Parallel Tasks. In Euromicro

Conference on Real-Time Systems (ECRTS), number 314, 2013. (Cited on pages 47, 48, 49, 87,

88, 90, 98, 105, 130, 131, 133, and 179.)

[82] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Analysis of Federated and Global

Scheduling for Parallel Real-Time Tasks. In Proceedings of the 26th Euromicro Conference on

Real-Time Systems (ECRTS), 2014. (Cited on pages 24, 87, 166, 177, and 179.)

[83] C. L. Liu. Scheduling Algorithms for Hard Real-Time Programming of a Single Processor. JPL

Space Programs Summary 37-60, II:31–37, 1969. (Cited on page 31.)

[84] C. L. Liu. Scheduling Algorithms for Multiprocessors in a Hard Real-time Environment. JPL Space

Programs Summary 37-60, II:28–31, 1969. (Cited on page 29.)

[85] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment. Journal of the ACM, 20(1):46–61, Jan. 1973. ISSN 0004-5411. doi: 10.1145/321738.

321743. (Cited on pages 3, 18, 27, 28, 31, and 148.)

[86] I. Lupu and J. Goossens. Scheduling of Hard Real-Time Multi-Thread Periodic Tasks. In Pro-

ceedings of the 19th International Conference on Real-Time and Network Systems (RTNS), pages

35–44, 2011. (Cited on page 46.)

[87] T. Machines. Inc. The Connection Machine CM-5 Technical Summary. Thinking Machines Cor-

poration, 1991. (Cited on page 38.)

[88] D. Masson. RTSS v1 and v2. https://svnigm.univ-mlv.fr/projects/rtsimulator/. (Cited

on pages 145 and 146.)

[89] D. Masson and S. Midonnet. Userland Approximate Slack Stealer with Low Time Complexity. In

G. C. Buttazzo and P. Minet, editors, Proceedings of the 16th Real-Time and Network Systems

(RTNS), pages 29–38, Oct. 2008. (Cited on page 146.)

https://svnigm.univ-mlv.fr/projects/rtsimulator/

Bibliography 225

[90] D. Masson and S. Midonnet. Handling non-periodic events in real-time java systems. In M. T.

Higuera-Toledano and A. J. Wellings, editors, Distributed, Embedded and Real-time Java Systems,

pages 45–77. Springer US, 2012. ISBN 978-1-4419-8158-5. (Cited on page 146.)

[91] A. Mok and D. Chen. A multiframe model for real-time tasks. In Real-Time Systems Symposium,

1996., 17th IEEE, pages 22–29, Dec 1996. doi: 10.1109/REAL.1996.563696. (Cited on page 18.)

[92] G. E. Moore. Cramming more components onto integrated circuits. Electronics Magazine, 38(8):

114, 1965. (Cited on page 11.)

[93] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques Optimizing the Number of

Processors to Schedule Multi-threaded Tasks. In Proceedings of the 24th Euromicro Conference on

Real-Time Systems (ECRTS), pages 321–330, July 2012. doi: 10.1109/ECRTS.2012.37. (Cited on

page 43.)

[94] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic. U-EDF: An Unfair But Optimal

Multiprocessor Scheduling Algorithm for Sporadic Tasks. In Proceedings of the 24th Euromicro

Conference on Real-Time Systems (ECRTS), pages 13–23, July 2012. doi: 10.1109/ECRTS.2012.

36. (Cited on page 31.)

[95] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal Time-critical Scheduling via Resource

Augmentation (Extended Abstract). In Proceedings of the 29th Annual ACM Symposium on Theory

of Computing, STOC, pages 140–149, New York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi:

10.1145/258533.258570. (Cited on pages 15 and 49.)

[96] M. Qamhieh and S. Midonnet. Schedulability Analysis for Directed Acyclic Graphs on Multipro-

cessor Systems at a Subtask Level. In Proceedings of the 19th International Conference on Reliable

Software Technologies, Ada-Europe, 2014. (Not cited.)

[97] M. Qamhieh and S. Midonnet. Experimental Analysis of the Tardiness of Parallel Tasks in Soft

Real-time Systems. In 18th Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),

JSSPP, 2014. (Cited on page 168.)

[98] M. Qamhieh and S. Midonnet. An Experimental Analysis of DAG Scheduling Methods in Hard

Real-Time Multiprocessor Systems. In Proceedings of the 2014 Conference on Research in Adaptive

and Convergent Systems, pages 284–290. ACM, 2014. (Not cited.)

[99] M. Qamhieh and S. Midonnet. Simulation-Based Evaluations of DAG Scheduling in Hard Real-time

Multiprocessor Systems. Applied Computing Review, 14(4):27–39, 2014. (Not cited.)

[100] M. Qamhieh, F. Fauberteau, and S. Midonnet. Performance Analysis for Segment Stretch Trans-

formation of Parallel Real-time Tasks. In Proceedings of the 2th Junior Researcher Workshop on

Real-Time Computing (JRWRTC), page 4pp, Nantes, France, Sept. 2011. (Not cited.)

Bibliography 226

[101] M. Qamhieh, S. Midonnet, and L. George. A Parallelizing Algorithm for Real-Time Tasks of

Directed Acyclic Graphs Model. In The 18th IEEE Real-Time and Embedded Technology and

Applications Symposium Work-in-Progress (WiP) Proceedings, pages 45–48, Beijing, Chine, Apr.

2012. (Cited on page 169.)

[102] M. Qamhieh, S. Midonnet, and L. George. Dynamic Scheduling Algorithm for Parallel Real-time

Graph Tasks. SIGBED Rev., 9(4):25–28, Nov. 2012. ISSN 1551-3688. (Cited on page 169.)

[103] M. Qamhieh, S. Midonnet, and L. George. Graph-to-Segment Transformation Technique mini-

mizing the number of processors for Real-time Multiprocessor Systems. In Workshop on Power,

Energy, and Temperature Aware Real-time Systems (PETARS), page 6pp, San Juan, Peurto Rico,

Dec. 2012. (Cited on page 44.)

[104] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet. Global EDF Scheduling of Directed

Acyclic Graphs on Multiprocessor Systems. In Proceedings of the 21st International Conference on

Real-Time Networks and Systems, RTNS ’13, pages 287–296. ACM, 2013. (Not cited.)

[105] M. Qamhieh, L. George, and S. Midonnet. A Stretching Algorithm for Parallel Real-time DAG

Tasks on Multiprocessor Systems. In Proceedings of the 22Nd International Conference on Real-

Time Networks and Systems, RTNS ’14, pages 13:13–13:22. ACM, 2014. (Not cited.)

[106] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. RUN: Optimal Multiprocessor Real-Time

Scheduling via Reduction to Uniprocessor. In Proceedings of the 32nd IEEE Real-Time Systems

Symposium (RTSS), pages 104–115. IEEE, Nov. 2011. (Cited on page 30.)

[107] M. Richard, P. Richard, E. Grolleau, and F. Cottet. Contraintes de Precedences et Ordonnancement

Monoprocesseur. The 10 RTS Embedded Systems, pages 121–138, 2002. (Cited on pages 34 and 35.)

[108] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core Real-Time Scheduling for Generalized

Parallel Task Models. In Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS),

pages 217–226, 2011. (Cited on pages 42, 68, and 176.)

[109] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill. Parallel Real-Time Scheduling of

DAGs. IEEE Transactions on Parallel and Distributed Systems, 99(PrePrints):1, 2014. ISSN 1045-

9219. doi: http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.2297919. (Cited on pages 42,

43, and 68.)

[110] F. Singho↵, J. Legrand, L. Nana, and L. Marcé. Cheddar : a Flexible Real-Time Scheduling

Framework. ACM SIGAda Ada Letters, 24(4):1–8, Dec. 2004. (Cited on page 144.)

[111] F. Singho↵, A. Plantec, P. Dissaux, and J. Legrand. Investigating the Usability of Real-time

Scheduling Theory with the Cheddar Project. Real-Time Systems, 43(3):259–295, 2009. (Cited on

page 144.)

[112] A. Srinivasan and S. K. Baruah. Deadline-based Scheduling of Periodic Task Systems on Mul-

tiprocessors. Information Processing Letters, 84(2):93–98, 2002. ISSN 0020-0190. doi: http:

//dx.doi.org/10.1016/S0020-0190(02)00231-4. (Cited on page 30.)

[113] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The Digraph Real-Time Task Model. In Proceedings of

the 17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages

71–80, April 2011. doi: 10.1109/RTAS.2011.15. (Cited on pages 31 and 37.)

[114] M. Stigge, P. Ekberg, N. Guan, and W. Yi. On the Tractability of Digraph-Based Task Models.

In Proceedings of the 23rd Euromicro Conference on Real-Time Systems (ECRTS), pages 162–171,

July 2011. doi: 10.1109/ECRTS.2011.23. (Cited on page 37.)

[115] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-

ceedings of the London Mathematical Society, 2(42):230–265, 1936. (Cited on page 10.)

[116] J. D. Ullman. NP-Complete Scheduling Problems. Journal of Computer and System Sciences, 10

(3):384–393, June 1975. ISSN 0022-0000. doi: 10.1016/S0022-0000(75)80008-0. (Cited on page 37.)

[117] S. H. Unger. A Computer Oriented toward Spatial Problems. In Proceedings of the IRE, 46(10):

1744–1750, Oct 1958. ISSN 0096-8390. doi: 10.1109/JRPROC.1958.286755. (Cited on page 28.)

[118] R. Urunuela, A.-M. Déplanche, and Y. Trinquet. STORM: a Simulation Tool for Real-time Multi-

processor Scheduling Evaluation. Workshop of GDR SOC SIP, page 1, 2009. (Cited on page 144.)

[119] H. Zeng and M. Di Natale. Using Max-Plus Algebra to Improve the Analysis of Non-cyclic Task

Models. In Proceedings of the 25th Euromicro Conference on Real-Time Systems (ECRTS), pages

205–214, July 2013. doi: 10.1109/ECRTS.2013.30. (Cited on pages 19 and 44.)

[120] H. X. Zhao, S. Midonnet, and L. George. Worst-Case Response Time Analysis of Sporadic Graph

Tasks with Fixed Priority Scheduling on a Uniprocessor. In Proceedings of Embedded and Real-Time

Computing Systems and Applications (RTCSA), 2005. (Cited on page 35.)

[121] H.-X. Zhao, L. George, and S. Midonnet. Worst-Case Response Time Analysis of Sporadic Graph

Tasks with EDF Scheduling on a Uniprocessor. In Proceedings of the 12th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications, 2006., pages 271–

278, 2006. (Cited on page 35.)

[122] D. Zhu, D. Mosse, and R. Melhem. Multiple-Resource Periodic Scheduling Problem: how much

fairness is necessary? In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS),

pages 142–151. IEEE Computer Society, Dec. 2003. (Cited on page 30.)

Scheduling of Parallel Real-time DAG Tasks
on Multiprocessor Systems

By Manar Qamhieh

Abstract: We study the problem of real-time scheduling of parallel Di-

rected Acyclic Graph (DAG) tasks on homogeneous multiprocessor sys-

tems. In this model, a DAG task consists of a set of subtasks that execute

under precedence constraints. At all times, the real-time scheduler is re-

sponsible for determining how subtasks execute, either sequentially or in

parallel, based on the available processors of the system.

We propose two DAG scheduling approaches to determine the execution

form of DAG tasks. The first approach is the DAG Stretching algorithm,

from the Model Transformation approach, which forces DAG tasks to

execute as sequentially as possible.

The second approach is the Direct Scheduling, which aims at scheduling

DAG tasks while respecting their internal dependencies and maintaining

the parallel form of DAGs. We provide real-time schedulability analyses

for Direct Scheduling at DAG-Level and at Subtask-Level.

Keywords: Hard Real-time Scheduling, Multiprocessor Systems, Par-

allel Applications, Inter-Subtask Parallelism, Global Preemptive Schedul-

ing, Earliest Deadline First Scheduling Algorithm.

	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 General Introduction
	1.1 Real-time Systems
	1.1.1 Real-time Task Model
	1.1.2 Real-time Scheduling
	1.1.3 Real-time Algorithms

	1.2 Development of Computer Processors
	1.2.1 History of Processor Development
	1.2.2 Uniprocessor Systems
	1.2.3 Multiprocessor Systems
	1.2.4 Real-time Multiprocessor Systems

	1.3 Parallel Applications
	1.3.1 Parallelism in Uniprocessor Systems
	1.3.2 Parallelism in Real-time Systems
	1.3.3 General Parallel Real-time Task Models
	1.3.4 Directed Acyclic Graph (DAG)
	1.3.4.1 Special Parallel Model: Fork-Join Tasks
	1.3.4.2 Special Parallel Model: Multi-Threaded Segment Tasks

	1.4 Problem Description and Contributions

	2 Related Work
	2.1 Real-time Scheduling of Uniprocessor Systems
	2.2 Real-time Scheduling of Multiprocessor Systems
	2.3 Parallel Real-time Scheduling
	2.3.1 Parallel Scheduling on Uniprocessor Systems
	2.3.2 Parallel Scheduling on Multiprocessor Systems
	2.3.2.1 Model Transformation Scheduling Approach
	2.3.2.2 Direct Scheduling Approach

	3 Scheduling of Parallel Tasks using Model Transformation
	3.1 Introduction and Motivation
	3.2 Task Model and Notation
	3.3 DAG Stretching (DAG-Str) Algorithm
	3.3.1 The Multi-Threaded Segment (MTS) Representation
	3.3.2 The DAG-Str Algorithm
	3.3.3 Resource Augmentation Bound Analysis

	3.4 Segment Stretching (Seg-Str) Algorithm
	3.4.1 Concept and Algorithm
	3.4.2 Resource Augmentation Bound Analysis

	3.5 Simulation-Based Evaluation
	3.5.1 DAG-Str Algorithm
	3.5.2 Seg-Str Algorithm vs. DAG-Str Algorithm

	3.6 Summary

	4 Direct Scheduling Approach of Parallel DAG Tasks
	4.1 Defining Extra Timing Parameters of DAG Tasks
	4.1.1 Local Offset and Deadline for Subtasks
	4.1.2 Local Release Jitter of Subtasks

	4.2 Scheduling DAGs using Global Parameters
	4.2.1 Interference Analysis on DAGs
	4.2.1.1 The Worst Case Interference Scenario for DAG tasks

	4.2.2 Sustainability Analysis
	4.2.3 Schedulablity test

	4.3 Scheduling DAGs using Local Parameters
	4.3.1 Advantage of Subtask-Level Scheduling
	4.3.2 Interference Analysis
	4.3.3 Workload Analysis for Work Conserving Algorithms
	4.3.4 Global Earliest Deadline First Scheduling Algorithm
	4.3.5 Simulation-Based Evaluation

	4.4 Summary

	5 Experimental Analysis of DAG Task Scheduling
	5.1 Incomparability of DAG Scheduling Approaches
	5.1.1 DAG Stretching Algorithm vs. Direct Scheduling
	5.1.2 Direct Scheduling: DAG-Level vs. Subtask-Level

	5.2 Simulation-Based Evaluation
	5.2.1 Simulation Tool: YARTISS
	5.2.2 Simulation Features and Functionality

	5.3 Simulation Results of DAG Scheduling Approaches
	5.3.1 Simulation Results for GEDF Scheduling Algorithm
	5.3.2 Simulation Results for GDM Scheduling Algorithm

	5.4 Summary

	6 Conclusion and Perspectives
	6.1 List of Contributions
	6.2 Future Work and Perspectives

	A DAG TASK Generator in YARTISS Simulator
	B Subtasks in YARTISS Simulator
	Bibliography

