Functional programming
Lecture 05 — Foldable and friends

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

May 14, 2023

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel


mailto:stephane.vialette@univ-eiffel.fr

Semigroup



In mathematics, a Semigroup is a set together with an associative
operator that combines two elements from the set.



In mathematics, a Semigroup is a set together with an associative

operator that combines two elements from the set.

Commutative monoid

The set of positive integers N ={1,2,...} is a semigroup under
addition.



In mathematics, a Semigroup is a set together with an associative

operator that combines two elements from the set.

Free semigroup

The set of all finite strings over some fixed alphabet £ forms a
semigroup with string concatenation as the operation. The
semigroup is called the free semigroup over X.



In Haskell, the notion of a semigroup is captured by the following
built-in class declaration (in Prelude since GHC 8.4).

type Semigroup :: * -> Constraint

class Semigroup a where
(<>) 1t a->a->a
GHC.Base.sconcat :: GHC.Base.NonEmpty a -> a
GHC.Base.stimes :: Integral b => b -> a -> a

{-# MINIMAL (<>) #-}

The binary operation <> must be associative :

(x <> y) <> z==x< (y <> 2)



e (<>) :: a->a ->a

An associative binary operation.

e sconcat :: GHC.Base.NonEmpty a -> a
Take a nonempty list of type a and apply the <> operation to
all of them to get a single result.

e stimes :: Integral b => b -> a -> a
Given a number x and a value of type a, combine x numbers

of the value a by repeatedly applying <>.



Prototypical example

instance Semigroup [a] where
(<>) = (++)

A> [1,2,3,4] <> [5,6,7,8]
[1,2,3,4,5,6,7,8]

A> [1,2,3,4] ++ [5,6,7,8]
[1,2,3,4,5,6,7,8]

A > Data.Semigroup.stimes 3 "a"

"gaa"

A > Data.List.replicate 3 'a'

"aaa"



Monoids



In mathematics, a monoid is a set together with an associative
operator that combines two elements from the set, and an identity
element for the operator.



In mathematics, a monoid is a set together with an associative
operator that combines two elements from the set, and an identity
element for the operator.

Commutative monoid

The set of natural numbers N ={0,1,2,...} is a commutative
monoid under addition (identity element 0) or multiplication
(identity element 1).



In mathematics, a monoid is a set together with an associative
operator that combines two elements from the set, and an identity
element for the operator.

Free monoid

The set of all finite strings over some fixed alphabet £ forms a
monoid with string concatenation as the operation. The empty
string serves as the identity element. This monoid is denoted X*
and is called the free monoid over X.



In Haskell, the notion of a monoid is captured by the following

built-in class declaration.

type Monoid :: * -> Constraint
class Semigroup a => Monoid a where

mempty :: a

mappend :: a —> a —> a
mappend = (<>)

mconcat :: [a] -> a

mconcat = foldr mappend mempty

{-# MINIMAL mempty #-}

Identity laws

x <> mempty

mempty <> x



Trivial monoids

e Lists.

e Sum (Sum).

Product (Product).

Logical and (And).

Logical or (Any).



Prototypical example

The prototypical and perhaps most important example is lists,
which form a monoid under concatenation.

instance Semigroup [al] where
(<>) = (++)

instance Monoid [a] where

mempty = []

10



Prototypical example

The prototypical and perhaps most important example is lists,
which form a monoid under concatenation.

instance Semigroup [al] where
(<>) = (++)

instance Monoid [a] where

mempty = []

A > mempty :: [Int]
J

A> [1,2,3,4] “mappend” []
[1,2,3,4]

A> [] “mappend” [1,2,3,4]
[1,2,3,4]
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Prototypical example

The prototypical and perhaps most important example is lists,
which form a monoid under concatenation.

instance Semigroup [al] where

(<>) = (++)

instance Monoid [a] where

mempty = []

A> [1,2,3,4] “mappend” [5,6,7,8]
(1,2,3,4,5,6,7,8]

A > mconcat [[1,2],[3,4,5],[6,7,8,91]
[1,2,3,4,5,6,7,8,9]

A > mconcat [[1,2],I[1,I[3,4,5],[1,[1,[6,7,8,91]
(1,2,3,4,5,6,7,8,9]
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Monoid under Addition.

newtype Sum a = Sum { getSum :: a }
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Monoid under Addition.
newtype Sum a = Sum { getSum :: a }

instance Num a => Semigroup (Sum a) where
x <>y = Sum (getSum x + getSum y)
-— (<>) = coerce ((+) :: a -> a -> a)

instance Monoid (Sum a) where

mempty = Sum O
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Monoid under Addition.

newtype Sum a = Sum { getSum :: a }
A> Sum 1 <> Sum 2 <> Sum 3 <> Sum 4
Sum {getSum = 10}

A> getSum $ Sum 1 <> Sum 2 <> Sum 3 <> Sum 4
10

A > mconcat . map Sum $ [1,2,3,4]
Sum {getSum = 10}

A > getSum . mconcat . map Sum $ [1,2,3,4]
10

11



Monoid under multiplication.

newtype Product a = Product { getProduct :: a }
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Monoid under multiplication.
newtype Product a = Product { getProduct :: a }

instance Num a => Semigroup (Product a) where
-= (<>) = coerce ((*¥) :: a -> a -> a)

x <> y = Product (getProduct x * getProduct y)

instance Monoid (Product a) where

mempty = Product 1
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Product

Monoid under multiplication.
newtype Product a = Product { getProduct :: a }
A > Product 1 <> Product 2 <> Product 3 <> Product 4

Product {getProduct = 24}

A > getProduct $ Product 1 <> Product 2 <> Product 3 <> Product 4
24

A > mconcat . map Product $ [1,2,3,4]
Product {getProduct = 24}

A > getProduct . mconcat . map Product $ [1,2,3,4]
24
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IIiEiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under disjunction (| |).

newtype Any = Any { getAny :: Bool }
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IIiHiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under disjunction (| |).
newtype Any = Any { getAny :: Bool }

instance Semigroup Any where
x <>y = Any (getAny x || getAny y)
-= (<>) = coerce (/)

instance Monoid (Any a) where

mempty = Any False
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IIiHiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under disjunction (| |).
newtype Any = Any { getAny :: Bool }
A > Any True <> mempty <> Any False

Any {getAny = True}

A > getAny $ Any True <> mempty <> Any False

True

A > getAny (Any False <> mempty <> Any False)
False

A > getAny $ mconcat (map (\x -> Any (even x)) [2,4,6,7,8])
True
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IIiEiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under conjunction (&&).

newtype All = All { getAll :: Bool }
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IIiHiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under conjunction (&&).
newtype All = All { getAll :: Bool }

instance Semigroup All where
x <>y = All (getAll x && getAll y)
-= (<>) = coerce (&)

instance Monoid (All a) where

mempty = All True
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IIiHiHHEHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Boolean monoid under conjunction (&&).
newtype All = All { getAll :: Bool }

A > All True <> mempty <> All False
A1l {getAll = False}

A > getAll $ All True <> mempty <> All False
False

A > getAll $ All True <> mempty <> All True

True

A > getAll $ mconcat (map (\x -> All (even x)) [2,4,6,7,8])
False

14



IIHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Maybe monoid returning the leftmost non-Nothing value.

newtype First a = First { getFirst :: Maybe a }
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IIHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Maybe monoid returning the leftmost non-Nothing value.
newtype First a = First { getFirst :: Maybe a }

instance Semigroup (First a) where
First Nothing <> b = b
a <> _=a

instance Monoid (First a) where

mempty = First Nothing
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Maybe monoid returning the leftmost non-Nothing value.

newtype First a = First { getFirst :: Maybe a }

A > First (Just 'A') <> First Nothing <> First (Just 'B')
First {getFirst = Just 'A'}

A > getFirst $§ First (Just 'A') <> First Nothing <> First (Just 'B')
Just 'A'

A > First Nothing <> First Nothing <> First Nothing
First {getFirst = Nothing}

A > getFirst $ First Nothing <> First Nothing <> First Nothing
Nothing
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IIHHHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Maybe monoid returning the rightmost non-Nothing value.

newtype Last a = Last { getLast :: Maybe a }
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IIHHHiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Maybe monoid returning the rightmost non-Nothing value.
newtype Last a = Last { getLast :: Maybe a }

instance Semigroup (Last a) where
a <> Last Nothing
_<>b

a
b

instance Monoid (First a) where

mempty = Last Nothing

16



Maybe monoid returning the rightmost non-Nothing value.

newtype Last a = Last { getLast :: Maybe a }

A > Last (Just 'A') <> Last Nothing <> Last (Just 'B')
Last {getLast = Just 'B'}

A > getlast $ Last (Just 'A') <> Last Nothing <> Last (Just 'B')
Just 'B'

A > Last Nothing <> Last Nothing <> Last Nothing
Last {getLast = Nothing}

A > getlast $ Last Nothing <> Last Nothing <> Last Nothing
Nothing
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Foldable
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Motivating example

One of the primary applications of monoids in Haskell is to
combine all the values in a data structure to give a single value

fold :: Monoid a => [a] -> a
fold [1
fold (x:xs) = x “mappend” fold xs

mempty

e fold provides a simple means of folding up a list using a
monoid.

e fold bahaves in the same was as mconcat from the Monoid
class (but is definced using explicit recursion rather than using
foldr).
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Another otivating example

data Tree a = Leaf a | Node (Tree a) (Tree a)

fold :: Monoid a => Tree a -> a
fold (Leaf x) = x
fold (Node tl tr) = fold tl “mappend” fold tr

A > fold (Leaf [1])
[1]

A > fold (Node (Leaf [1]) (Leaf [2]))
[1,2]

A > fold (Leaf (Just [1]1))
Just [1]

A > fold (Node (Leaf (Just [1])) (Leaf (Just [2])))
Just [1,2]
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Foldable

e The idea of folding up the values in data structure using a
monoid isn't specific to types such as lists and binary trees,
but can be abstracted to a range of parameterized types.

e In Haskell, this concept is captured by the class Foldable
defined in Data.Foldable.
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Foldable

type Foldable :: (* -> %) -> Constraint
class Foldable t where
fold :: Monoid m => t m -> m
foldMap :: Monoid m => (a > m) -> t a -> m

foldr :: (a ->b ->b) ->b >t a->b
foldl :: (b->a ->b) =>b ->t a->b
toList :: t a -> [a]

null :: t a -> Bool

length :: t a -> Int

elem :: Eq a => a -> t a —-> Bool
maximum :: Ord a => t a -> a

minimum :: Ord a => t a -> a

sum :: Num a => t a -> a

product :: Num a => t a -> a

21
{-# MINIMAL foldMap | foldr #-}



Turning lists to foldables

instance Foldable [] where
-= fold [] = mempty
-- fold (z:xzs) = x “mappend” fold zs

foldMap _ [] = mempty
foldMap f (x:xs) f x “mappend” foldMap f xs

foldr _ acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)
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Turning lists to foldables

A> fold [[1],[2],[3],[4]]
[1,2,3,4]

A > foldMap (\x -> [x]) [1,2,3,4]
[1,2,3,4]

A > foldMap (replicate 1) [1,2,3,4]
[1,2,3,4]

A > foldMap (replicate 2) [1,2,3,4]
[1,1,2,2,3,3,4,4]

22



Turning lists to foldables

A > foldMap Sum [1,2,3,4]
Sum {getSum = 10}

A > getSum $ foldMap Sum [1,2,3,4]
10

A > foldMap Product [1,2,3,4]
Product {getProduct = 24}

A > getProduct $ foldMap Product [1,2,3,4]
24
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Turning trees to foldables

data Tree a = Leaf a | Node (Tree a) (Tree a)

deriving Show

instance Foldable Tree where
-= foldMap :: Momoid a => Tree a —-> a
foldMap f (Leaf x) =f x
foldMap f (Node 1t rt)

foldMap f 1t “mappend”
foldMap f rt

-= foldr :: (a => b ->b) => b -> Tree a -> b
foldr f acc (Leaf x)
foldr f acc (Node 1t rt)

f x acc
foldr f (foldr f acc rt) 1t
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Turning trees to foldables

A> t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))

A> foldr (+) 0 t
10

A> foldr (x) 1 t
24

A> sum t
10

A > product t
24

A> foldr (:) [1 t
[1,2,3,4]
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Turning trees to foldables

A> t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))

A> null t
False

A > length t
4

A > minimum t
1

A > maximum t
4

A> 3 “elem” t

True

A> 5 “elem” t
False
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Generic functions

average :: [Int] -> Int

average xs = sum xs ~div~ length xs

sum and length are not specific to lists but can be used with any
foldable type :

average :: Foldable t => t Int -> Int

average xs = sum xs div’ length xs
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Generic functions

average :: [Int] -> Int

average xs = sum xs ~div~ length xs

sum and length are not specific to lists but can be used with any

foldable type :

average :: Foldable t => t Int -> Int

average xs = sum xs div’ length xs

As such, average can now be be applied to both lists and trees.

A > average [1,2,3,4]
2

A > average (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4)))
2
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Generic functions

In a similar way, Data.Foldable provides generic versions of a num-
ber of familiar functions that operate on lists of logical vlues :

and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All

or :: Foldable t => t Bool -> Bool
or : getAny . foldMap Any

all :: Foldable t => (a -> Bool) -> t a —> Bool
all p = getAll . foldMap (All . p)

any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny . foldMap (Any . p)
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Generic functions

A > and [True,False,True]

False

A > and [True,True,True]

True

A > and (Node (Node (Leaf True) (Leaf False)) (Leaf True))
False

A > and (Node (Node (Leaf True) (Leaf True)) (Leaf True))
True
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Generic functions

A > or [True,False,True]

True

A > or [False,False,False]

False

A > or (Node (Node (Leaf True) (Leaf False)) (Leaf True))

True

A > or (Node (Node (Leaf False) (Leaf False)) (Leaf False))
False

25



Generic functions

A > all even [1,2,3,4]
False

A> all (< 5) [1,2,3,4]
True

A > all even (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))
False

A> all (< 5) (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))
True
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Generic functions

A > any even [1,2,3,4]
True

A> any (> 5) [1,2,3,4]
False

A > any even (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))
True

A> any (> 5) (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))
False
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