
Functional programming

Lecture 05 — Foldable and friends

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

May 14, 2023

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Semigroup

1

Semigroup

In mathematics, a Semigroup is a set together with an associative

operator that combines two elements from the set.

2

Semigroup

In mathematics, a Semigroup is a set together with an associative

operator that combines two elements from the set.

Commutative monoid

The set of positive integers N = {1, 2, . . . } is a semigroup under

addition.

2

Semigroup

In mathematics, a Semigroup is a set together with an associative

operator that combines two elements from the set.

Free semigroup

The set of all finite strings over some fixed alphabet Σ forms a

semigroup with string concatenation as the operation. The

semigroup is called the free semigroup over Σ.

2

Monoid

In Haskell, the notion of a semigroup is captured by the following

built-in class declaration (in Prelude since GHC 8.4).

type Semigroup :: * -> Constraint

class Semigroup a where

(<>) :: a -> a -> a

GHC.Base.sconcat :: GHC.Base.NonEmpty a -> a

GHC.Base.stimes :: Integral b => b -> a -> a

{-# MINIMAL (<>) #-}

The binary operation <> must be associative :

(x <> y) <> z == x <> (y <> z)

3

Methods

• (<>) :: a -> a -> a

An associative binary operation.

• sconcat :: GHC.Base.NonEmpty a -> a

Take a nonempty list of type a and apply the <> operation to

all of them to get a single result.

• stimes :: Integral b => b -> a -> a

Given a number x and a value of type a, combine x numbers

of the value a by repeatedly applying <>.

4

Prototypical example

instance Semigroup [a] where

(<>) = (++)

λ > [1,2,3,4] <> [5,6,7,8]

[1,2,3,4,5,6,7,8]

λ > [1,2,3,4] ++ [5,6,7,8]

[1,2,3,4,5,6,7,8]

λ > Data.Semigroup.stimes 3 "a"

"aaa"

λ > Data.List.replicate 3 'a'

"aaa"

5

Monoids

6

Monoid

In mathematics, a monoid is a set together with an associative

operator that combines two elements from the set, and an identity

element for the operator.

7

Monoid

In mathematics, a monoid is a set together with an associative

operator that combines two elements from the set, and an identity

element for the operator.

Commutative monoid

The set of natural numbers N = {0, 1, 2, . . . } is a commutative

monoid under addition (identity element 0) or multiplication

(identity element 1).

7

Monoid

In mathematics, a monoid is a set together with an associative

operator that combines two elements from the set, and an identity

element for the operator.

Free monoid

The set of all finite strings over some fixed alphabet Σ forms a

monoid with string concatenation as the operation. The empty

string serves as the identity element. This monoid is denoted Σ∗

and is called the free monoid over Σ.

7

Monoid

In Haskell, the notion of a monoid is captured by the following

built-in class declaration.

type Monoid :: * -> Constraint

class Semigroup a => Monoid a where

mempty :: a

mappend :: a -> a -> a

mappend = (<>)

mconcat :: [a] -> a

mconcat = foldr mappend mempty

{-# MINIMAL mempty #-}

Identity laws:

x <> mempty = x

mempty <> x = x 8

Trivial monoids

• Lists.

• Sum (Sum).

• Product (Product).

• Logical and (And).

• Logical or (Any).

• . . .

9

Prototypical example

The prototypical and perhaps most important example is lists,

which form a monoid under concatenation.

instance Semigroup [a] where

(<>) = (++)

instance Monoid [a] where

mempty = []

10

Prototypical example

The prototypical and perhaps most important example is lists,

which form a monoid under concatenation.

instance Semigroup [a] where

(<>) = (++)

instance Monoid [a] where

mempty = []

λ > mempty :: [Int]

[]

λ > [1,2,3,4] `mappend` []

[1,2,3,4]

λ > [] `mappend` [1,2,3,4]

[1,2,3,4]

10

Prototypical example

The prototypical and perhaps most important example is lists,

which form a monoid under concatenation.

instance Semigroup [a] where

(<>) = (++)

instance Monoid [a] where

mempty = []

λ > [1,2,3,4] `mappend` [5,6,7,8]

[1,2,3,4,5,6,7,8]

λ > mconcat [[1,2],[3,4,5],[6,7,8,9]]

[1,2,3,4,5,6,7,8,9]

λ > mconcat [[1,2],[],[3,4,5],[],[],[6,7,8,9]]

[1,2,3,4,5,6,7,8,9]

10

Product

Monoid under Addition.

newtype Sum a = Sum { getSum :: a }

11

Product

Monoid under Addition.

newtype Sum a = Sum { getSum :: a }

instance Num a => Semigroup (Sum a) where

x <> y = Sum (getSum x + getSum y)

-- (<>) = coerce ((+) :: a -> a -> a)

instance Monoid (Sum a) where

mempty = Sum 0

11

Product

Monoid under Addition.

newtype Sum a = Sum { getSum :: a }

λ > Sum 1 <> Sum 2 <> Sum 3 <> Sum 4

Sum {getSum = 10}

λ > getSum $ Sum 1 <> Sum 2 <> Sum 3 <> Sum 4

10

λ > mconcat . map Sum $ [1,2,3,4]

Sum {getSum = 10}

λ > getSum . mconcat . map Sum $ [1,2,3,4]

10

11

Product

Monoid under multiplication.

newtype Product a = Product { getProduct :: a }

12

Product

Monoid under multiplication.

newtype Product a = Product { getProduct :: a }

instance Num a => Semigroup (Product a) where

-- (<>) = coerce ((*) :: a -> a -> a)

x <> y = Product (getProduct x * getProduct y)

instance Monoid (Product a) where

mempty = Product 1

12

Product

Monoid under multiplication.

newtype Product a = Product { getProduct :: a }

λ > Product 1 <> Product 2 <> Product 3 <> Product 4

Product {getProduct = 24}

λ > getProduct $ Product 1 <> Product 2 <> Product 3 <> Product 4

24

λ > mconcat . map Product $ [1,2,3,4]

Product {getProduct = 24}

λ > getProduct . mconcat . map Product $ [1,2,3,4]

24

12

Disjunction

Boolean monoid under disjunction (||).

newtype Any = Any { getAny :: Bool }

13

Disjunction

Boolean monoid under disjunction (||).

newtype Any = Any { getAny :: Bool }

instance Semigroup Any where

x <> y = Any (getAny x || getAny y)

-- (<>) = coerce (||)

instance Monoid (Any a) where

mempty = Any False

13

Disjunction

Boolean monoid under disjunction (||).

newtype Any = Any { getAny :: Bool }

λ > Any True <> mempty <> Any False

Any {getAny = True}

λ > getAny $ Any True <> mempty <> Any False

True

λ > getAny (Any False <> mempty <> Any False)

False

λ > getAny $ mconcat (map (\x -> Any (even x)) [2,4,6,7,8])

True

13

Disjunction

Boolean monoid under conjunction (&&).

newtype All = All { getAll :: Bool }

14

Disjunction

Boolean monoid under conjunction (&&).

newtype All = All { getAll :: Bool }

instance Semigroup All where

x <> y = All (getAll x && getAll y)

-- (<>) = coerce (&&)

instance Monoid (All a) where

mempty = All True

14

Disjunction

Boolean monoid under conjunction (&&).

newtype All = All { getAll :: Bool }

λ > All True <> mempty <> All False

All {getAll = False}

λ > getAll $ All True <> mempty <> All False

False

λ > getAll $ All True <> mempty <> All True

True

λ > getAll $ mconcat (map (\x -> All (even x)) [2,4,6,7,8])

False

14

First

Maybe monoid returning the leftmost non-Nothing value.

newtype First a = First { getFirst :: Maybe a }

15

First

Maybe monoid returning the leftmost non-Nothing value.

newtype First a = First { getFirst :: Maybe a }

instance Semigroup (First a) where

First Nothing <> b = b

a <> _ = a

instance Monoid (First a) where

mempty = First Nothing

15

First

Maybe monoid returning the leftmost non-Nothing value.

newtype First a = First { getFirst :: Maybe a }

λ > First (Just 'A') <> First Nothing <> First (Just 'B')

First {getFirst = Just 'A'}

λ > getFirst $ First (Just 'A') <> First Nothing <> First (Just 'B')

Just 'A'

λ > First Nothing <> First Nothing <> First Nothing

First {getFirst = Nothing}

λ > getFirst $ First Nothing <> First Nothing <> First Nothing

Nothing

15

Last

Maybe monoid returning the rightmost non-Nothing value.

newtype Last a = Last { getLast :: Maybe a }

16

Last

Maybe monoid returning the rightmost non-Nothing value.

newtype Last a = Last { getLast :: Maybe a }

instance Semigroup (Last a) where

a <> Last Nothing = a

_ <> b = b

instance Monoid (First a) where

mempty = Last Nothing

16

Last

Maybe monoid returning the rightmost non-Nothing value.

newtype Last a = Last { getLast :: Maybe a }

λ > Last (Just 'A') <> Last Nothing <> Last (Just 'B')

Last {getLast = Just 'B'}

λ > getLast $ Last (Just 'A') <> Last Nothing <> Last (Just 'B')

Just 'B'

λ > Last Nothing <> Last Nothing <> Last Nothing

Last {getLast = Nothing}

λ > getLast $ Last Nothing <> Last Nothing <> Last Nothing

Nothing

16

Foldable

17

Motivating example

One of the primary applications of monoids in Haskell is to

combine all the values in a data structure to give a single value

fold :: Monoid a => [a] -> a

fold [] = mempty

fold (x:xs) = x `mappend` fold xs

• fold provides a simple means of folding up a list using a

monoid.

• fold bahaves in the same was as mconcat from the Monoid

class (but is definced using explicit recursion rather than using

foldr).

18

Another otivating example

data Tree a = Leaf a | Node (Tree a) (Tree a)

fold :: Monoid a => Tree a -> a

fold (Leaf x) = x

fold (Node tl tr) = fold tl `mappend` fold tr

λ > fold (Leaf [1])

[1]

λ > fold (Node (Leaf [1]) (Leaf [2]))

[1,2]

λ > fold (Leaf (Just [1]))

Just [1]

λ > fold (Node (Leaf (Just [1])) (Leaf (Just [2])))

Just [1,2]

19

Foldable

• The idea of folding up the values in data structure using a

monoid isn’t specific to types such as lists and binary trees,

but can be abstracted to a range of parameterized types.

• In Haskell, this concept is captured by the class Foldable

defined in Data.Foldable.

20

Foldable

type Foldable :: (* -> *) -> Constraint

class Foldable t where

fold :: Monoid m => t m -> m

foldMap :: Monoid m => (a -> m) -> t a -> m

foldr :: (a -> b -> b) -> b -> t a -> b

foldl :: (b -> a -> b) -> b -> t a -> b

toList :: t a -> [a]

null :: t a -> Bool

length :: t a -> Int

elem :: Eq a => a -> t a -> Bool

maximum :: Ord a => t a -> a

minimum :: Ord a => t a -> a

sum :: Num a => t a -> a

product :: Num a => t a -> a

{-# MINIMAL foldMap | foldr #-}
21

Turning lists to foldables

instance Foldable [] where

-- fold [] = mempty

-- fold (x:xs) = x `mappend` fold xs

foldMap _ [] = mempty

foldMap f (x:xs) = f x `mappend` foldMap f xs

foldr _ acc [] = acc

foldr f acc (x:xs) = f x (foldr f acc xs)

22

Turning lists to foldables

λ > fold [[1],[2],[3],[4]]

[1,2,3,4]

λ > foldMap (\x -> [x]) [1,2,3,4]

[1,2,3,4]

λ > foldMap (replicate 1) [1,2,3,4]

[1,2,3,4]

λ > foldMap (replicate 2) [1,2,3,4]

[1,1,2,2,3,3,4,4]

22

Turning lists to foldables

λ > foldMap Sum [1,2,3,4]

Sum {getSum = 10}

λ > getSum $ foldMap Sum [1,2,3,4]

10

λ > foldMap Product [1,2,3,4]

Product {getProduct = 24}

λ > getProduct $ foldMap Product [1,2,3,4]

24

22

Turning trees to foldables

data Tree a = Leaf a | Node (Tree a) (Tree a)

deriving Show

instance Foldable Tree where

-- foldMap :: Monoid a => Tree a -> a

foldMap f (Leaf x) = f x

foldMap f (Node lt rt) = foldMap f lt `mappend`

foldMap f rt

-- foldr :: (a -> b -> b) -> b -> Tree a -> b

foldr f acc (Leaf x) = f x acc

foldr f acc (Node lt rt) = foldr f (foldr f acc rt) lt

23

Turning trees to foldables

λ > t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))

λ > foldr (+) 0 t

10

λ > foldr (*) 1 t

24

λ > sum t

10

λ > product t

24

λ > foldr (:) [] t

[1,2,3,4]

23

Turning trees to foldables

λ > t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))

λ > null t

False

λ > length t

4

λ > minimum t

1

λ > maximum t

4

λ > 3 `elem` t

True

λ > 5 `elem` t

False

23

Generic functions

average :: [Int] -> Int

average xs = sum xs `div` length xs

sum and length are not specific to lists but can be used with any

foldable type :

average :: Foldable t => t Int -> Int

average xs = sum xs `div` length xs

As such, average can now be be applied to both lists and trees.

λ > average [1,2,3,4]

2

λ > average (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4)))

2

24

Generic functions

average :: [Int] -> Int

average xs = sum xs `div` length xs

sum and length are not specific to lists but can be used with any

foldable type :

average :: Foldable t => t Int -> Int

average xs = sum xs `div` length xs

As such, average can now be be applied to both lists and trees.

λ > average [1,2,3,4]

2

λ > average (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4)))

2

24

Generic functions

In a similar way, Data.Foldable provides generic versions of a num-

ber of familiar functions that operate on lists of logical vlues :

and :: Foldable t => t Bool -> Bool

and = getAll . foldMap All

or :: Foldable t => t Bool -> Bool

or : getAny . foldMap Any

all :: Foldable t => (a -> Bool) -> t a -> Bool

all p = getAll . foldMap (All . p)

any :: Foldable t => (a -> Bool) -> t a -> Bool

any p = getAny . foldMap (Any . p)

25

Generic functions

λ > and [True,False,True]

False

λ > and [True,True,True]

True

λ > and (Node (Node (Leaf True) (Leaf False)) (Leaf True))

False

λ > and (Node (Node (Leaf True) (Leaf True)) (Leaf True))

True

25

Generic functions

λ > or [True,False,True]

True

λ > or [False,False,False]

False

λ > or (Node (Node (Leaf True) (Leaf False)) (Leaf True))

True

λ > or (Node (Node (Leaf False) (Leaf False)) (Leaf False))

False

25

Generic functions

λ > all even [1,2,3,4]

False

λ > all (< 5) [1,2,3,4]

True

λ > all even (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

False

λ > all (< 5) (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

True

25

Generic functions

λ > any even [1,2,3,4]

True

λ > any (> 5) [1,2,3,4]

False

λ > any even (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

True

λ > any (> 5) (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))

False

25

