Functional programming Lecture 05 — Foldable and friends

Stéphane Vialette stephane.vialette@univ-eiffel.fr May 14, 2023

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049, Université Gustave Eiffel

In mathematics, a Semigroup is a set together with an associative operator that combines two elements from the set.

In mathematics, a Semigroup is a set together with an associative operator that combines two elements from the set.

Commutative monoid

The set of positive integers $\mathbb{N} = \{1, 2, \dots\}$ is a semigroup under addition.

In mathematics, a Semigroup is a set together with an associative operator that combines two elements from the set.

Free semigroup

The set of all finite strings over some fixed alphabet Σ forms a semigroup with string concatenation as the operation. The semigroup is called the free semigroup over Σ .

Monoid[']

In Haskell, the notion of a semigroup is captured by the following built-in class declaration (in Prelude since GHC 8.4).

```
type Semigroup :: * -> Constraint
class Semigroup a where
  (<>) :: a -> a -> a
  GHC.Base.sconcat :: GHC.Base.NonEmpty a -> a
  GHC.Base.stimes :: Integral b => b -> a -> a
  {-# MINIMAL (<>) #-}
```

The binary operation <> must be associative :

$$(x \leftrightarrow y) \leftrightarrow z == x \leftrightarrow (y \leftrightarrow z)$$

Methods

- (<>) :: a -> a -> a
 An associative binary operation.
- sconcat :: GHC.Base.NonEmpty a -> a
 Take a nonempty list of type a and apply the <> operation to all of them to get a single result.
- stimes :: Integral b => b -> a -> a
 Given a number x and a value of type a, combine x numbers of the value a by repeatedly applying <>.

4

```
instance Semigroup [a] where
   (<>) = (++)
\lambda > [1,2,3,4] \Leftrightarrow [5,6,7,8]
[1,2,3,4,5,6,7,8]
\lambda > [1,2,3,4] ++ [5,6,7,8]
[1,2,3,4,5,6,7,8]
\lambda > Data.Semigroup.stimes 3 "a"
"aaa"
\lambda > Data.List.replicate 3 'a'
"aaa"
```

In mathematics, a monoid is a set together with an associative operator that combines two elements from the set, and an identity element for the operator.

In mathematics, a monoid is a set together with an associative operator that combines two elements from the set, and an identity element for the operator.

Commutative monoid

The set of natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ is a commutative monoid under addition (identity element 0) or multiplication (identity element 1).

7

In mathematics, a monoid is a set together with an associative operator that combines two elements from the set, and an identity element for the operator.

Free monoid

The set of all finite strings over some fixed alphabet Σ forms a monoid with string concatenation as the operation. The empty string serves as the identity element. This monoid is denoted Σ^* and is called the free monoid over Σ .

7

In Haskell, the notion of a monoid is captured by the following built-in class declaration.

```
type Monoid :: * -> Constraint
class Semigroup a => Monoid a where
  mempty :: a
  mappend :: a -> a -> a
  mappend = (<>)
  mconcat :: [a] -> a
  mconcat = foldr mappend mempty
  {-# MINIMAL mempty #-}
```

Identity laws:

```
x <> mempty = x
mempty <> x = x
```

Trivial monoids

- Lists.
- Sum (Sum).
- Product (Product).
- Logical and (And).
- Logical or (Any).
- ..

The prototypical and perhaps most important example is lists, which form a monoid under concatenation.

```
instance Semigroup [a] where
  (<>) = (++)

instance Monoid [a] where
  mempty = []
```

The prototypical and perhaps most important example is lists, which form a monoid under concatenation.

```
instance Semigroup [a] where
  (<>) = (++)
instance Monoid [a] where
  mempty = []
\lambda > \text{mempty} :: [Int]
\lambda > [1,2,3,4] \text{ `mappend` []}
[1,2,3,4]
\lambda > [] \text{`mappend'} [1,2,3,4]
[1,2,3,4]
```

The prototypical and perhaps most important example is lists, which form a monoid under concatenation.

```
instance Semigroup [a] where
  (<>) = (++)
instance Monoid [a] where
  mempty = []
\lambda > [1,2,3,4] `mappend` [5,6,7,8]
[1,2,3,4,5,6,7,8]
\lambda > \text{mconcat} [[1,2],[3,4,5],[6,7,8,9]]
[1,2,3,4,5,6,7,8,9]
\lambda > \text{mconcat} [[1,2],[],[3,4,5],[],[],[6,7,8,9]]
[1,2,3,4,5,6,7,8,9]
```

Monoid under Addition.

```
\texttt{newtype} \ \texttt{Sum} \ \texttt{a} = \texttt{Sum} \ \{ \ \texttt{getSum} \ :: \ \texttt{a} \ \}
```

Monoid under Addition.

```
newtype Sum a = Sum { getSum :: a }
instance Num a => Semigroup (Sum a) where
  x <> y = Sum (getSum x + getSum y)
  -- (<>) = coerce ((+) :: a -> a -> a)
instance Monoid (Sum a) where
  mempty = Sum 0
```

Monoid under Addition.

```
newtype Sum a = Sum { getSum :: a }
\lambda > Sum 1 <> Sum 2 <> Sum 3 <> Sum 4
Sum {getSum = 10}
\lambda > getSum $ Sum 1 <> Sum 2 <> Sum 3 <> Sum 4
10
\lambda > \text{mconcat} . map Sum $ [1,2,3,4]
Sum {getSum = 10}
\lambda > \text{getSum} . mconcat . map Sum $ [1,2,3,4]
10
```

Monoid under multiplication.

```
newtype Product a = Product { getProduct :: a }
```

Monoid under multiplication.

```
newtype Product a = Product { getProduct :: a }
instance Num a => Semigroup (Product a) where
   -- (<>) = coerce ((*) :: a -> a -> a)
   x <> y = Product (getProduct x * getProduct y)
instance Monoid (Product a) where
   mempty = Product 1
```

Monoid under multiplication.

```
newtype Product a = Product { getProduct :: a }
\lambda > Product 1 <> Product 2 <> Product 3 <> Product 4
Product {getProduct = 24}
\lambda > getProduct $ Product 1 <> Product 2 <> Product 3 <> Product 4
24
\lambda > \text{mconcat} . map Product $ [1,2,3,4]
Product {getProduct = 24}
\lambda > \text{getProduct} . mconcat . map Product $ [1,2,3,4]
24
```

```
Boolean monoid under disjunction (||).
```

```
newtype Any = Any { getAny :: Bool }
```

```
Boolean monoid under disjunction (||).
newtype Any = Any { getAny :: Bool }
instance Semigroup Any where
  x \leftrightarrow y = Any (getAny x || getAny y)
  -- (<>) = coerce (||)
instance Monoid (Any a) where
  mempty = Any False
```

```
Boolean monoid under disjunction (||).
newtype Any = Any { getAny :: Bool }
\lambda > Any True <> mempty <> Any False
Any {getAny = True}
\lambda > getAny $ Any True <> mempty <> Any False
True
\lambda > getAny (Any False <> mempty <> Any False)
False
\lambda > \text{getAny } \$ \text{ mconcat } (\text{map } (\x -> \text{Any } (\text{even } x)) [2,4,6,7,8])
True
```

```
Boolean monoid under conjunction (&&).
```

```
newtype All = All { getAll :: Bool }
```

```
Boolean monoid under conjunction (&&).
newtype All = All { getAll :: Bool }
instance Semigroup All where
  x \leftrightarrow y = All (getAll x && getAll y)
  -- (<>) = coerce (&&)
instance Monoid (All a) where
  mempty = All True
```

```
Boolean monoid under conjunction (&&).
newtype All = All { getAll :: Bool }
\lambda > All True <> mempty <> All False
All {getAll = False}
\lambda > getAll $ All True <> mempty <> All False
False
\lambda > getAll $ All True <> mempty <> All True
True
\lambda > \text{getAll } \$ \text{ mconcat } (\text{map } (\x -> \text{All } (\text{even } x)) [2,4,6,7,8])
False
```

First

Maybe monoid returning the leftmost non-Nothing value.

```
newtype First a = First { getFirst :: Maybe a }
```

First.

Maybe monoid returning the leftmost non-Nothing value.

First

Maybe monoid returning the leftmost non-Nothing value.

```
newtype First a = First { getFirst :: Maybe a }
λ > First (Just 'A') <> First Nothing <> First (Just 'B')
First {getFirst = Just 'A'}
λ > getFirst $ First (Just 'A') <> First Nothing <> First (Just 'B')
Just 'A'
\lambda > First Nothing <> First Nothing <> First Nothing
First {getFirst = Nothing}
\lambda > getFirst $ First Nothing <> First Nothing <> First Nothing
Nothing
```

Last

Maybe monoid returning the rightmost non-Nothing value.

```
newtype Last a = Last { getLast :: Maybe a }
```

Last

Maybe monoid returning the rightmost non-Nothing value.

Last

Maybe monoid returning the rightmost non-Nothing value.

```
newtype Last a = Last { getLast :: Maybe a }
\lambda > \text{Last (Just 'A')} \Leftrightarrow \text{Last Nothing } \Leftrightarrow \text{Last (Just 'B')}
Last {getLast = Just 'B'}
λ > getLast $ Last (Just 'A') <> Last Nothing <> Last (Just 'B')
Just 'B'
\lambda > Last Nothing \Leftrightarrow Last Nothing \Leftrightarrow Last Nothing
Last {getLast = Nothing}
\lambda getLast $ Last Nothing <> Last Nothing <> Last Nothing
Nothing
```

Foldable

Motivating example

One of the primary applications of monoids in Haskell is to combine all the values in a data structure to give a single value

```
fold :: Monoid a => [a] -> a
fold [] = mempty
fold (x:xs) = x `mappend` fold xs
```

- fold provides a simple means of folding up a list using a monoid.
- fold bahaves in the same was as mconcat from the Monoid class (but is definced using explicit recursion rather than using foldr).

Another otivating example

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
fold :: Monoid a => Tree a -> a
fold (Leaf x) = x
fold (Node tl tr) = fold tl `mappend` fold tr
\lambda > \text{ fold (Leaf [1])}
[1]
\lambda > \text{ fold (Node (Leaf [1]) (Leaf [2]))}
[1,2]
\lambda > \text{ fold (Leaf (Just [1]))}
Just [1]
\lambda > \text{ fold (Node (Leaf (Just [1])) (Leaf (Just [2])))}
Just [1,2]
```

Foldable

- The idea of folding up the values in data structure using a monoid isn't specific to types such as lists and binary trees, but can be abstracted to a range of parameterized types.
- In Haskell, this concept is captured by the class Foldable defined in Data. Foldable.

Foldable

```
type Foldable :: (* -> *) -> Constraint
class Foldable t where
  fold :: Monoid m => t m -> m
  foldMap :: Monoid m => (a -> m) -> t a -> m
  foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow t a \rightarrow b
  foldl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow t a \rightarrow b
  toList :: t a -> [a]
  null :: t a -> Bool
  length :: t a -> Int
  elem :: Eq a \Rightarrow a \Rightarrow t a \Rightarrow Bool
  maximum :: Ord a => t a -> a
  minimum :: Ord a => t a -> a
  sum :: Num a => t a -> a
  product :: Num a => t a -> a
  {-# MINIMAL foldMap | foldr #-}
```

Turning lists to foldables

```
instance Foldable [] where
 -- fold [] = mempty
 -- fold (x:xs) = x `mappend` fold xs
 foldMap _ [] = mempty
 foldMap f (x:xs) = f x `mappend` foldMap f xs
 foldr _ acc [] = acc
 foldr f acc (x:xs) = f x (foldr f acc xs)
```

Turning lists to foldables

```
\lambda > \text{fold [[1],[2],[3],[4]]}
[1,2,3,4]
\lambda > \text{foldMap ($\times -> [x]$) [1,2,3,4]}
[1,2,3,4]
\lambda > \text{foldMap (replicate 1) [1,2,3,4]}
[1,2,3,4]
\lambda > \text{foldMap (replicate 2) [1,2,3,4]}
[1,1,2,2,3,3,4,4]
```

Turning lists to foldables

```
\lambda > \text{ foldMap Sum } [1,2,3,4]
Sum {getSum = 10}
\lambda > \text{ getSum } \text{ foldMap Sum } [1,2,3,4]
10
\lambda > \text{ foldMap Product } [1,2,3,4]
Product {getProduct = 24}
\lambda > \text{ getProduct } \text{ foldMap Product } [1,2,3,4]
24
```

Turning trees to foldables

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
               deriving Show
instance Foldable Tree where
  -- foldMap :: Monoid a => Tree a -> a
  foldMap f (Leaf x) = f x
  foldMap f (Node lt rt) = foldMap f lt `mappend`
                              foldMap f rt
  -- foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow Tree \ a \rightarrow b
  foldr f acc (Leaf x) = f x acc
  foldr f acc (Node lt rt) = foldr f (foldr f acc rt) lt
```

Turning trees to foldables

```
\lambda > t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))
\lambda > \text{foldr} (+) 0 t
10
\lambda > \text{foldr} (*) 1 t
24
\lambda > \text{sum t}
10
\lambda > \text{product t}
24
\lambda > \text{ foldr (:)} \quad \Box \quad \text{t}
[1,2,3,4]
```

Turning trees to foldables

```
\lambda > t = Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4))
\lambda > null t
False
\lambda > length t
4
\lambda > \min \min t
\lambda > \text{maximum t}
4
\lambda > 3 'elem' t
True
\lambda > 5 'elem' t
False
```

```
average :: [Int] -> Int
average xs = sum xs `div` length xs

sum and length are not specific to lists but can be used with any
foldable type :

average :: Foldable t => t Int -> Int
average xs = sum xs `div` length xs
```

average :: [Int] -> Int

average xs = sum xs `div` length xs

```
sum and length are not specific to lists but can be used with any
foldable type:
average :: Foldable t => t Int -> Int
average xs = sum xs `div` length xs
As such, average can now be be applied to both lists and trees.
\lambda > \text{average } [1,2,3,4]
2
\lambda > average (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 3) (Leaf 4)))
```

In a similar way, <code>Data.Foldable</code> provides generic versions of a number of familiar functions that operate on lists of logical vlues :

```
and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All
or :: Foldable t => t Bool -> Bool
or : getAny . foldMap Any
all :: Foldable t \Rightarrow (a \rightarrow Bool) \rightarrow t a \rightarrow Bool
all p = getAll . foldMap (All . p)
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny . foldMap (Any . p)
```

```
\lambda> and [True,False,True]  
False  
\lambda> \text{ and [True,True,True]}  
True  
\lambda> \text{ and (Node (Node (Leaf True) (Leaf False)) (Leaf True))}  
False  
\lambda> \text{ and (Node (Node (Leaf True) (Leaf True)) (Leaf True))}  
True
```

```
\begin{array}{lll} \lambda> & \text{or [True,False,True]} \\ \text{True} \\ \\ \lambda> & \text{or [False,False,False]} \\ \text{False} \\ \\ \lambda> & \text{or (Node (Node (Leaf True) (Leaf False)) (Leaf True))} \\ \text{True} \\ \\ \lambda> & \text{or (Node (Node (Leaf False) (Leaf False)) (Leaf False))} \\ \text{False} \end{array}
```

```
\begin{array}{l} \lambda> \text{ all even } [1,2,3,4] \\ \text{False} \\ \\ \lambda> \text{ all } (<5) \ [1,2,3,4] \\ \text{True} \\ \\ \lambda> \text{ all even (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))} \\ \text{False} \\ \\ \lambda> \text{ all } (<5) \text{ (Node (Node (Leaf 1) (Leaf 2)) (Leaf 3))} \\ \text{True} \end{array}
```