
Functional programming

Lecture 04 — Kind, functors and applicatives

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

March 21, 2023

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

What’s the type of a type?

What’s the type of a type?

Interlude - Phantom types

Functors

Applicative functors

Using newtype to make type class instances

1

Kinds

• kinds are to types what types are to values.

• Just like values/terms can be classified into types, types can

be classified into kinds.

• Just like we can use :type in GHCi to check the type of a

term, we can use :kind to check the kind of a type.

2

Concrete types

All concrete types, have the kind of *.

λ> :kind Int

Int :: *

λ> :kind Bool

Bool :: *

λ> :kind [Int]

[Int] :: *

λ> :kind Int -> String

Int -> String :: *

λ> :kind Int -> String -> (Double,Double)

Int -> String -> (Double,Double) :: *

3

Kind

data T

λ> :kind T

T :: *

data T = P | Q | R

λ> :kind T

T :: *

4

Kind

data T a = P a

λ> :kind T

T :: * -> *

data T a = P a | Q a | R a

λ> :kind T

T :: * -> *

data T a = P a | Q a | R

λ> :kind T

T :: * -> *

4

Kind

data T a b = P a b

λ> :kind T

T :: * -> * -> *

data T a b = P a b | Q a b

λ> :kind T

T :: * -> * -> *

data T a b = P a | Q b

λ> :kind T

T :: * -> * -> *

data T a b = P a b | Q a | R

λ> :kind T

T :: * -> * -> *

4

Kind

data T a b c = P a b c

λ> :kind T

T :: * -> * -> * -> *

data T a b c d = P a b c d

λ> :kind T

T :: * -> * -> * -> * -> *

data T a b c d e = P a b c d e

λ> :kind T

T :: * -> * -> * -> * -> * -> *

4

Higher-Kinded Type

λ> :kind []

[] :: * -> *

5

Higher-Kinded Type

data Maybe a = Nothing | Just a

λ> :kind Maybe

Maybe :: * -> *

λ> :kind Maybe Int

Maybe Int :: *

5

Higher-Kinded Type

data Either a b = Left a | Right b

λ> :kind Either

Either :: * -> * -> *

λ> :kind Either Int

Either Int :: * -> *

λ> :kind Either Int String

Either Int String :: *

5

Higher-Kinded Type

data NonEmpty f a = NonEmpty a (f a) deriving Show

λ> :type NonEmpty

NonEmpty :: a -> f a -> NonEmpty f a

λ> :kind NonEmpty

NonEmpty :: (* -> *) -> * -> *

6

Higher-Kinded Type

data NonEmpty f a = NonEmpty a (f a) deriving Show

λ> :type NonEmpty

NonEmpty :: a -> f a -> NonEmpty f a

λ> :kind NonEmpty

NonEmpty :: (* -> *) -> * -> *

6

Higher-Kinded Type

data NonEmpty f a = NonEmpty a (f a) deriving Show

λ> :type NonEmpty

NonEmpty :: a -> f a -> NonEmpty f a

λ> :kind NonEmpty

NonEmpty :: (* -> *) -> * -> *

λ> NonEmpty 1 [2,3,4]

NonEmpty 1 [2,3,4]

λ> :type NonEmpty 1 [2,3,4]

NonEmpty 1 [2,3,4] :: Num a => NonEmpty [] a

λ> NonEmpty 1 [True]

<interactive>: error:

No instance for (Num Bool) arising from the literal '1'

6

Higher-Kinded Type

data NonEmpty f a = NonEmpty a (f a) deriving Show

λ> :type NonEmpty

NonEmpty :: a -> f a -> NonEmpty f a

λ> :kind NonEmpty

NonEmpty :: (* -> *) -> * -> *

λ> NonEmpty 1 Nothing

NonEmpty 1 Nothing

λ> NonEmpty 1 (Just 2)

NonEmpty 1 (Just 2)

λ> :type NonEmpty 1 (Just 2)

NonEmpty 1 (Just 2) :: Num a => NonEmpty Maybe a

λ> NonEmpty 1 (Just True)

<interactive>: error:

No instance for (Num Bool) arising from the literal '1' 6

Constraints

The Constraint kind covers everything that can appear to the

left of an => arrow, including typeclass constraints:

7

Constraints

The Constraint kind covers everything that can appear to the

left of an => arrow, including typeclass constraints:

λ> :kind Show

Show :: * -> Constraint

λ> :kind Eq

Eq :: * -> Constraint

λ> :kind Ord

Ord :: * -> Constraint

λ> :kind Semigroup

Semigroup :: * -> Constraint

λ> :kind Monoid

Monoid :: * -> Constraint

7

Constraints

The Constraint kind covers everything that can appear to the

left of an => arrow, including typeclass constraints:

λ> :kind Functor

Functor :: (* -> *) -> Constraint

λ> :kind Applicative

Applicative :: (* -> *) -> Constraint

λ> :kind Monad

Monad :: (* -> *) -> Constraint

λ> :kind Foldable

Foldable :: (* -> *) -> Constraint

λ> :kind Traversable

Traversable :: (* -> *) -> Constraint

7

Higher-Kinded Type

data Collection f a = Collection (f a) deriving (Show)

This type takes a wrapper f (such as []) and a concrete type a

(such as Int) and returns a collection of f a

λ> :type Collection [1,2,3]

Collection [1,2,3] :: Num a => Collection [] a

λ> :type Collection ["Haskell", "rocks!"]

Collection ["Haskell", "rocks!"] :: Collection [] String

λ> :type Collection Nothing

Collection Nothing :: Collection Maybe a

λ> :type Collection (Just L.head)

Collection (Just L.head) :: Collection Maybe ([a] -> a)

8

Higher-Kinded Type

data Collection f a = Collection (f a) deriving (Show)

This type takes a wrapper f (such as []) and a concrete type a

(such as Int) and returns a collection of f a

λ> :type Collection [1,2,3]

Collection [1,2,3] :: Num a => Collection [] a

λ> :type Collection ["Haskell", "rocks!"]

Collection ["Haskell", "rocks!"] :: Collection [] String

λ> :type Collection Nothing

Collection Nothing :: Collection Maybe a

λ> :type Collection (Just L.head)

Collection (Just L.head) :: Collection Maybe ([a] -> a)

8

Interlude - Phantom types

What’s the type of a type?

Interlude - Phantom types

Functors

Applicative functors

Using newtype to make type class instances

9

Phantom Types

• Phantom types are a way to add extra information to types,

eg. to differentiate them, in such a way so that the extra

information goes away when type-checking is complete.

• We might want to avoid the Mars Climate Orbiter disaster.

... software that calculated the total impulse produced by

thruster firings produced results in pound-force seconds. The

trajectory calculation software then used these results -

expected to be in newton-seconds (incorrect by a factor of

4.45) - to update the predicted position of the spacecraft ...

10

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

Type-level programming

We want to distinguish Fahrenheit and Celsius degrees but don’t

want to define separate types to store and process the

corresponding tempreratures.

11

Type-level programming

We want to distinguish Fahrenheit and Celsius degrees but don’t

want to define separate types to store and process the

corresponding tempreratures.

type Temp = Double

paperBurning :: Temp

paperBurning = 451 -- Fahrenheit

absoluteZero :: Temp

absoluteZero = -273.15 -- Celcius

11

Type-level programming

We want to distinguish Fahrenheit and Celsius degrees but don’t

want to define separate types to store and process the

corresponding tempreratures.

λ> paperBurning

451.0

λ> absoluteZero

-273.15

λ> :type (paperBurning, absoluteZero)

(paperBurning, absoluteZero) :: (Temp, Temp)

λ> paperBurning + absoluteZero -- oups !

177.85000000000002

λ> :type paperBurning + absoluteZero

paperBurning + absoluteZero :: Temp

11

Type-level programming

-- Fahrenheit degrees

data F

-- Celcius degrees

data C

-- Temprature

newtype Temp u = Temp {getTemp :: Double}

derving (Eq, Ord)

Note that the u (unit) type variable is not used in the right-hand

side : it is a phantom parameter.

12

Type-level programming

fahrenheitCharUnit :: String

fahrenheitCharUnit = "F"

celciusCharUnit :: String

celciusCharUnit = "C"

instance Show (Temp F) where

show = flip (++) fahrenheitCharUnit . show . getTemp

instance Show (Temp C) where

show = flip (++) celciusCharUnit . show . getTemp

paperBurning :: Temp F

paperBurning = Temp {getTemp = 451}

absoluteZero :: Temp C

absoluteZero = Temp {getTemp = -273.15}
13

Type-level programming

λ> paperBurning

451.0F

λ> :type paperBurning

paperBurning :: Temp F

λ> absoluteZero

-273.15C

λ> :type absoluteZero

absoluteZero :: Temp C

λ> paperBurning + absoluteZero

<interactive>: error:

Couldn't match type 'C' with 'F'

Expected: Temp F

Actual: Temp C

14

Crazy types

Unfortunately, we don’t have much control over the type we use

instead of u (unit), besides which, it should be of kind Type.

crazyTemp :: Temp Bool

crazyTemp = Temp {getTemp = 0}

soCrazyTemp :: Temp (Temp C)

soCrazyTemp = Temp {getTemp = 0}

15

Proxies

• We want to have a value of a type, but the sole purpose of

that value is to refer to a type.

• The value itseld is never used.

• Such types are called proxies.

data Proxy a = Proxy

• The type a is a phantom.

• The only value of this type is Proxy.

• Available in module Data.Proxy.

16

Proxies

data Proxy a = Proxy

class UnitName u where

unitName :: Proxy u -> String

instance UnitName F where

unitName :: Proxy F -> String

unitName _ = "F"

instance UnitName C where

unitName :: Proxy C -> String

unitName _ = "C"

instance UnitName u => UnitName (Temp u) where

unitName _ = unitName (Proxy :: Proxy u)

17

Proxies

newtype Temp u = Temp {getTemp :: Double}

instance UnitName u => Show (Temp u) where

show = flip (++) symb . show . getTemp

where

symb = unitName (Proxy :: Proxy u)

λ> paperBurning

451.0F

λ> absoluteZero

-273.15C

18

The whole story

-- Fahrenheit degrees

data F

-- Celcius degrees

data C

newtype Temp u = Temp {getTemp :: Double}

19

The whole story

data Proxy a = Proxy

class UnitName u where

unitName :: Proxy u -> String

instance UnitName F where

unitName :: Proxy F -> String

unitName _ = "F"

instance UnitName C where

unitName :: Proxy C -> String

unitName _ = "C"

instance UnitName u => UnitName (Temp u) where

unitName _ = unitName (Proxy :: Proxy u)

20

The whole story

instance UnitName u => Show (Temp u) where

show = flip (++) symb . show . getTemp

where

symb = unitName (Proxy :: Proxy u)

λ> Temp {getTemp = 0} :: Temp C

0.0C

λ> Temp {getTemp = 0} :: Temp F

0.0F

21

The whole story

celciusToFahrenheit :: Temp C -> Temp F

celciusToFahrenheit ct = Temp {getTemp = f}

where

c = getTemp ct

f = (c*9/5) + 32

fahrenheitToCelsius :: Temp F -> Temp C

fahrenheitToCelsius ft = Temp {getTemp = c}

where

f = getTemp ft

c = (f-32) * 5/9

22

The whole story

λ> celciusToFahrenheit (Temp {getTemp = 0} :: Temp C)

32.0F

λ> fahrenheitToCelsius (Temp {getTemp = 32} :: Temp F)

0.0C

23

The whole story

mkCelcius :: Double -> Temp C

mkCelcius = Temp

mkFahrenheit :: Double -> Temp F

mkFahrenheit = Temp

λ> celciusToFahrenheit (mkCelcius 0)

32.0F

λ> fahrenheitToCelsius (mkFahrenheit 32)

0.0C

24

Functors

What’s the type of a type?

Interlude - Phantom types

Functors

Applicative functors

Using newtype to make type class instances

25

Functor

• A Functor is any type that can act as a generic container.

• A Functor allows us to transform the underlying values with a

function, so that the values are all updated, but the structure

of the container is the same.

• Haskell represents the concept of a functor with the Functor

typeclass. This typeclass has a single required function fmap.

26

Functor

type Functor :: (* -> *) -> Constraint

class Functor f where

fmap :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a

{-# MINIMAL fmap #-}

• Functor in Haskell is a typeclass that provides two methods :

fmap and (<$).

• To implement a Functor instance for a data type, you need to

provide a type-specific implementation of fmap.

• fmap is a higher ordered function taking two inputs:

(i) a transformation function from an a type to a b type, and

(ii) a functor containing values of type a.

27

Kind signature of Functor

type Functor :: (* -> *) -> Constraint

class Functor f where

fmap :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a

{-# MINIMAL fmap #-}

• The kind of Functor is (* -> *) -> Constraint, which

means that we can implement Functor for types whose kind

is * -> *.

• In other words, we can implement Functor for types that

have one unapplied type variable.

28

Kind signature of Functor

type Functor :: (* -> *) -> Constraint

class Functor f where

fmap :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a

{-# MINIMAL fmap #-}

• (<$) replaces all locations in the input with the same value.

The default definition is fmap . const, but this may be

overridden with a more efficient version.

x <$ y

= { definition of <$ }

(fmap . const) x y

= { definition of function composition }

fmap (const x) y 28

The big picture

map :: (a -> b) -> [a] -> [b]

class Functor f where

fmap :: (a -> b) -> f a -> f b

29

Functor laws

In addition to provinding a function fmap of the specified type,

functors are also required to satisfy two equational laws.

• Identity

Applying id function to the wrapped value changes nothing:

fmap id == id

• Composition

Applying fmap sequentially is the same as applying fmap with

the composition of functions:

fmap f . fmap g == fmap (f . g)

30

Maybe is a functor

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

λ> fmap (+1) Nothing

Nothing

λ> fmap (+1) (Just 2)

Just 3

λ> fmap ((*3) . (+1)) Nothing

Nothing

λ> fmap ((*3) . (+1)) (Just 2)

Just 9

31

Maybe is a functor

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

λ> fmap (+1) Nothing

Nothing

λ> fmap (+1) (Just 2)

Just 3

λ> fmap ((*3) . (+1)) Nothing

Nothing

λ> fmap ((*3) . (+1)) (Just 2)

Just 9

31

[] is a functor

instance Functor [] where

fmap _ [] = []

fmap f (x:xs) = f x:fmap f xs

32

[] is a functor

instance Functor [] where

fmap = map -- Data.List.map

32

[] is a functor

instance Functor [] where

fmap f = map

λ> fmap (+1) []

[]

λ> fmap (+1) [1,2,3]

[2,3,4]

λ> fmap Just [1,2,3]

[Just 1,Just 2,Just 3]

λ> fmap (not . even) [1,2,3,4,5,6]

[True,False,True,False,True,False]

λ> (fmap not . fmap even) [1,2,3,4,5,6]

[True,False,True,False,True,False]

32

[] is a functor

instance Functor [] where

fmap = map -- Data.List.map

λ> xs = [1,2,3]

λ> fmap Just xs

[Just 1,Just 2,Just 3]

λ> L.intersperse Nothing . fmap Just $ xs

[Just 1,Nothing,Just 2,Nothing,Just 3]

λ> fmap (fmap (+1)) . L.intersperse Nothing . fmap Just $ xs

[Just 2,Nothing,Just 3,Nothing,Just 4]

λ> [y | y <- [Just 2,Nothing,Just 3,Nothing,Just 4]]

[Just 2,Nothing,Just 3,Nothing,Just 4]

λ> [y | Just y <- [Just 2,Nothing,Just 3,Nothing,Just 4]]

[2,3,4]

32

Either is a functor . . . but wait !

λ> :kind Either

Either :: * -> * -> *

λ> :kind Functor

Functor :: (* -> *) -> Constraint

λ> :kind Either Int

Either Int :: * -> *

λ> :kind Either Bool

Either Bool :: * -> *

λ> :kind Either (Maybe Bool)

Either (Maybe Bool) :: * -> *

λ> :kind Either (Either Int String)

Either (Either Int String) :: * -> *

33

Either is a functor . . . but wait !

λ> :kind Either

Either :: * -> * -> *

λ> :kind Functor

Functor :: (* -> *) -> Constraint

λ> :kind Either Int

Either Int :: * -> *

λ> :kind Either Bool

Either Bool :: * -> *

λ> :kind Either (Maybe Bool)

Either (Maybe Bool) :: * -> *

λ> :kind Either (Either Int String)

Either (Either Int String) :: * -> *

33

Either is a functor

instance Functor (Either a) where

fmap f (Left x) = Left x

fmap f (Right x) = Right (f x)

34

Either is a functor

instance Functor (Either a) where

fmap f (Left x) = Left x

fmap f (Right x) = Right (f x)

• Either has kind * -> * -> *, so we can’t write

instance Functor Either where.

• If we write instance Functor (Either a) where, the

function fmap has type :

fmap :: (b -> c) -> Either a b -> Either a c

34

Either is a functor

instance Functor (Either a) where

fmap f (Left x) = Left x

fmap f (Right x) = Right (f x)

λ> :type fmap (++ "rock!") (Left 0)

fmap (++ "rock!") (Left 1) :: Num a => Either a [Char]

λ> fmap (++ "rock!") (Left 0)

Left 0

λ> :type fmap (++ "rock!") (Right "Haskell ")

fmap (++ "rock!") (Right "Haskell ") :: Either a [Char]

λ> fmap (++ "rock!") (Right "Haskell ")

Right "Haskell rock!"

34

Replicating

λ> fmap (L.replicate 3) []

[]

λ> fmap (L.replicate 3) [1,2,3,4]

[[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

λ> fmap (replicate 3) Nothing

Nothing

λ> fmap (replicate 3) (Just 1)

Just [1,1,1]

λ> fmap (replicate 3) (Left 1)

Left 1

λ> fmap (replicate 3) (Right 1)

Right [1,1,1]

35

Functions as functors

instance Functor ((->) a) where

fmap = (.)

λ> :type fmap (*3) (+100)

fmap (*3) (+100) :: Num a => a -> a

λ> fmap (*3) (+100) 1

303

λ> (*3) `fmap` (+100) $ 1

303

λ> (*3) . (+100) $ 1

303

36

Functions as functors

instance Functor ((->) a) where

fmap = (.)

λ> :type fmap (*3) (+100)

fmap (*3) (+100) :: Num a => a -> a

λ> fmap (*3) (+100) 1

303

λ> (*3) `fmap` (+100) $ 1

303

λ> (*3) . (+100) $ 1

303

36

Make your own functor

data Tree a = E | N (Tree a) a (Tree a)

deriving Show

instance Functor Tree where

fmap _ E = E

fmap f (N lt x rt) = N (fmap f lt) (f x) (fmap f rt)

mkL :: a -> Tree a

mkL x = N E x E

λ> fmap (*2) E

E

λ> fmap (*2) (mkL 1)

N E 2 E

λ> fmap (*2) (N (mkL 1) 2 (mkL 3))

N (N E 2 E) 4 (N E 6 E)

37

Make your own functor

data Tree a = E | N (Tree a) a (Tree a)

deriving Show

instance Functor Tree where

fmap _ E = E

fmap f (N lt x rt) = N (fmap f lt) (f x) (fmap f rt)

mkL :: a -> Tree a

mkL x = N E x E

λ> fmap (*2) E

E

λ> fmap (*2) (mkL 1)

N E 2 E

λ> fmap (*2) (N (mkL 1) 2 (mkL 3))

N (N E 2 E) 4 (N E 6 E) 37

A pathological example

data CMaybe a = CNothing | CJust Int a deriving (Show)

instance Functor CMaybe where

fmap f CNothing = CNothing

fmap f (CJust c x) = CJust (c+1) (f x)

Does this obey the functor laws?

λ> fmap id (CJust 0 "Haskell")

CJust 1 "Haskell"

λ> id (CJust 0 "Haskell")

CJust 0 "Haskell"

38

A pathological example

data CMaybe a = CNothing | CJust Int a deriving (Show)

instance Functor CMaybe where

fmap f CNothing = CNothing

fmap f (CJust c x) = CJust (c+1) (f x)

Does this obey the functor laws?

λ> fmap id (CJust 0 "Haskell")

CJust 1 "Haskell"

λ> id (CJust 0 "Haskell")

CJust 0 "Haskell"

38

Applicative functors

What’s the type of a type?

Interlude - Phantom types

Functors

Applicative functors

Using newtype to make type class instances

39

Applicative

• Applicative is the class for applicative functors.

• Applicative functors are functors with extra laws and

operations.

• Applicative is an intermediate class between Functor and

Monad.

• Applicative enables the eponymous applicative style (i.e., a

convenient way of structuring functorial computations), and

also provides means to express a number of important

patterns.

40

Kind signature of Applicative

type Applicative :: (* -> *) -> Constraint

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

(*>) :: f a -> f b -> f b

(<*) :: f a -> f b -> f a

{-# MINIMAL pure, ((<*>) | liftA2) #-}

• The kind of Applicative is (* -> *) -> Constraint,

which means that we can implement Applicative for types

whose kind is * -> *.

• If we want to make a type constructor part of the

Applicative typeclass, it has to be in Functor first.

41

Applicative

type Applicative :: (* -> *) -> Constraint

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

(*>) :: f a -> f b -> f b

(<*) :: f a -> f b -> f a

{-# MINIMAL pure, ((<*>) | liftA2) #-}

• To implement a Functor instance for a data type, you need to

provide a type-specific implementations of pure and either a

type-specific implementations of (<*>) or liftA2.

42

The big picture

map :: (a -> b) -> [a] -> [b]

class Functor f where

fmap :: (a -> b) -> f a -> f b

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

43

Maybe is an applicative functor

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just f) <*> x = fmap f x

44

Maybe is an applicative functor

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just f) <*> x = fmap f x

λ> :type pure 1

pure 1 :: (Applicative f, Num a) => f a

λ> pure 1 :: Maybe Int

Just 1

λ> :type pure "Haskell"

pure "Haskell" :: Applicative f => f String

λ> pure "Haskell" :: Maybe String

Just "Haskell"

44

Maybe is an applicative functor

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just f) <*> x = fmap f x

λ> Just (+3) <*> Just 9

Just 12

λ> pure (+3) <*> Just 9

Just 12

λ> fmap (+3) (Just 9)

Just 12

λ> pure (+3) <*> Nothing

Nothing

λ> Nothing <*> Just 9

Nothing
44

The applicative style

• Applicative functors and the applicative style of doing

pure f <*> x <*> y <*> ...

allow us to take a function that expects parameters that

aren’t necessarily wrapped in functors and use that function to

operate on several values that are in functor contexts.

• The function can take as many parameters as we want,

because it’s always partially applied step by step between

occurences of <*>.

45

The applicative style

λ> pure (+) <*> Just 3 <*> Just 5

Just 8

46

The applicative style

λ> pure (+) <*> Just 3 <*> Just 5

Just 8

pure (+) <*> Just 3 <*> Just 5

= { <*> is left-associative }

(pure (+) <*> Just 3) <*> Just 5

= { definition of pure }

(Just (+) <*> Just 3) <*> Just 5

= { definition of <*> }

fmap (+) (Just 3) <*> Just 5

= { definition of fmap }

Just (3+) <*> Just 5

= { definition of <*> }

fmap (3+) (Just 5)

= { definition of fmap }

Just 8 46

The applicative style

λ> pure (+) <*> Just 3 <*> Just 5

Just 8

λ> Nothing <*> Just 3 <*> Just 5

Nothing

λ> pure (+) <*> Nothing <*> Just 5

Nothing

λ> pure (+) <*> Just 3 <*> Nothing

Nothing

λ> pure (*) <*> (pure (+) <*> Just 1 <*> Just 2) <*> (Just 4)

Just 12

46

The applicative style

λ> combine x y = pure (+) <*> Just x <*> Just y

λ> :type combine

combine :: Num a => a -> a -> Maybe a

λ> zipWith combine [0,4..20] [100..]

[Just 100,Just 105,Just 110,Just 115,Just 120,Just 125]

47

The applicative style

λ> fmap ((<*>) (pure (+1)) . Just) [1,2,3,4]

[Just 2,Just 3,Just 4,Just 5]

λ> [pure (+1) <*> Just n | n <- [1,2,3,4]]

[Just 2,Just 3,Just 4,Just 5]

λ> foldr (\x -> (:) (pure (+1) <*> Just x)) [] [1,2,3,4]

[Just 2,Just 3,Just 4,Just 5]

47

The applicative style

λ> Just (+) <*> Just 3 <*> Just 5

Just 8

λ> Just (+) <*> pure 3 <*> pure 5

Just 8

λ> pure (+) <*> Just 3 <*> pure 5

Just 8

λ> pure (+) <*> pure 3 <*> Just 5

Just 8

λ> pure (+) <*> pure 3 <*> pure 5

8

47

The applicative style

Control.Applicative exports a function called <$>, which is

just fmap as an infix operator :

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

λ> (+) <$> Just 3 <*> Just 5

Just 8

λ> (+) 3 5

8

48

The applicative style

Control.Applicative exports a function called <$>, which is

just fmap as an infix operator :

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

λ> (+) <$> Just 3 <*> Just 5

Just 8

λ> (+) 3 5

8

48

The applicative style

(+) <$> Just 3 <*> Just 5

= { definition of <$> }

fmap (+) (Just 3) <*> Just 5

= { definition of fmap }

Just (3+) <*> Just 5

= { definition of <*> }

fmap (3+) (Just 5)

= { definition of fmap }

Just 8

49

The applicative style

(+) <$> Nothing <*> Just 5

= { definition of <$> }

fmap (+) Nothing <*> Just 5

= { definition of fmap }

Nothing <*> Just 5

= { definition of <*> }

Nothing

49

The applicative style

(+) <$> Just 3 <*> Nothing

= { definition of <$> }

fmap (+) (Just 3) <*> Nothing

= { definition of fmap }

Just (3+) <*> Nothing

= { definition of <*> }

fmap (3+) Nothing

= { definition of fmap }

Nothing

49

[] is an applicative functor

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

50

[] is an applicative functor

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

λ> :type pure 1

pure 1 :: (Applicative f, Num a) => f a

λ> pure 1 :: [Int]

[1]

λ> :type pure "Haskell"

pure "Haskell" :: Applicative f => f String

λ> pure "Haskell" :: [String]

["Haskell"]

50

[] is an applicative functor

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

λ> [(+1),(*10)] <*> [1,2,3,4]

[2,3,4,5,10,20,30,40]

λ> [even,odd] <*> [1,2,3,4]

[False,True,False,True,True,False,True,False]

λ> [] <*> [1,2,3,4]

[]

λ> [(+1),(*10)] <*> []

[]

50

[] is an applicative functor

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

λ> (++) <$> ["A","B","C"] <*> ["x","y","z"]

["Ax","Ay","Az","Bx","By","Bz","Cx","Cy","Cz"]

λ> [even,odd] <*> [1,2,3,4]

[False,True,False,True,True,False,True,False]

λ> [] <*> [1,2,3,4]

[]

λ> [(+1),(*10)] <*> []

[]

50

[] is an applicative functor

Using the applicative style on lists is often a good replacement for

list comprehensions:

λ> [x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

λ> (*) <$> [2,5,10] <*> [8,10,11]

[16,20,22,40,50,55,80,100,110]

λ> binaries = [b:bs | bs <- "":binaries, b <- ['0','1']]

λ> take 10 binaries

["0","1","00","10","01","11","000","100","010","110"]

λ> binariesA = pure (flip (:)) <*> "":binariesA <*> ['0','1']

λ> take 10 binariesA

["0","1","00","10","01","11","000","100","010","110"]

51

[] is an applicative functor

Using the applicative style on lists is often a good replacement for

list comprehensions:

λ> [x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

λ> (*) <$> [2,5,10] <*> [8,10,11]

[16,20,22,40,50,55,80,100,110]

λ> binaries = [b:bs | bs <- "":binaries, b <- ['0','1']]

λ> take 10 binaries

["0","1","00","10","01","11","000","100","010","110"]

λ> binariesA = pure (flip (:)) <*> "":binariesA <*> ['0','1']

λ> take 10 binariesA

["0","1","00","10","01","11","000","100","010","110"]

51

Functions as applicative functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

52

Functions as applicative functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

λ> (pure 1) "Haskell"

1

λ> pure 1 "Haskell" -- thanks to currying

1

pure 1 "Hakskell"

= { definition of pure }

(_ -> 1) "Hakskell"

= { fonction application }

1

52

Functions as applicative functors

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

λ> :type (+) <$> (+3) <*> (*100)

(+) <$> (+3) <*> (*100) :: Num a => a -> a

λ> (+) <$> (+3) <*> (*100) $ 5

508

52

Functions as applicative functors

(+) <$> (+3) <*> (*100) $ 5

= { definition of <$> : f <$> x = fmap f x }

fmap (+) (+3) <*> (*100) $ 5

= { definition of map : fmap f g = (\x -> f (g x)) }

\x -> (+) (x+3) <*> (*100) $ 5

= { definition of <*> : f <*> g = \x -> f x (g x) }

\y -> (\x -> (+) (x+3)) y (y*100) $ 5

= { rewrite inner lambda }

\y -> (+) (y+3) (y*100) $ 5

= { function application }

(5+3) + (5*100)

= { arithmetics }

508

53

Functions as applicative functors

λ> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (/2) $ 8

[11.0,16.0,4.0]

λ> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (`div` 2) $ 8

[11,16,4]

λ> (\x y z -> [x,y,z]) <$>

(++ ".") <*> (++ "!") <*> (++ "?") $ "A"

["A.","A!","A?"]

λ> (\x y z -> [x,y,z]) <$>

(replicate 1) <*> (replicate 2) <*> (replicate 3) $ 'A'

["A","AA","AAA"]

54

Functions as applicative functors

• We can think of functions as boxes that contain their eventual

results, so doing

k <$> f <*> g

creates a function that will call k with the eventual results

from f and g

• When we do something like

(+) <$> Just 3 <*> Just 5

we’re using + on values that might or might not be there,

which also results in a value that might or might not be there.

• When we do

(+) <$> (+10) <*> (+5)

we’re using + on the future return values of (+10) and (+5)

and the result is also something that will produce a value only

when called with a parameter.
55

ZipList

There are actually more ways for lists to be applicative functors.

newtype ZipList a = ZipList { getZipList :: [a] }

instance Functor ZipList where

fmap f (ZipList xs) = ZipList (map f xs)

instance Applicative ZipList where

pure x = ZipList (repeat x)

ZipList fs <*> ZipList xs = ZipList (zipWith id fs xs)

56

ZipList

λ> fmap (+1) . ZipList $ []

ZipList {getZipList = []}

λ> fmap (+1) . ZipList $ []

ZipList {getZipList = []}

λ> fmap (*3) . fmap (+1) . ZipList $ [1,2,3,4]

ZipList {getZipList = [6,9,12,15]}

56

ZipList

λ> pure 'a' :: ZipList Char

aaaaaaaaaaaaaaaaaaa... ^C Interrupted.

λ> take 10 $ getZipList (pure 'a' :: ZipList Char)

"aaaaaaaaaa"

56

ZipList

λ> getZipList $ (+) <$> ZipList [1,2,3]

<*> ZipList [100,100,100]

[101,102,103]

λ> getZipList $ (+) <$> ZipList [1,2,3]

<*> ZipList [100,100..]

[101,102,103]

λ> getZipList $ max <$> ZipList [1,2,3,4,5,3]

<*> ZipList [5,3,1,2]

[5,3,3,4]

λ> getZipList $ (,,) <$> ZipList "dog"

<*> ZipList "cat"

<*> ZipList "rat"

[('d','c','r'),('o','a','a'),('g','t','t')]

56

Hiding applicative functors

liftA2 :: (Applicative f) =>

(a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = f <$> a <*> b

57

Hiding applicative functors

liftA2 :: (Applicative f) =>

(a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = f <$> a <*> b

λ> liftA2 (:) (Just 1) (Just [2,3,4])

Just [1,2,3,4]

λ> (:) <$> Just 1 <*> Just [2,3,4]

Just [1,2,3,4]

λ> pure (:) <*> Just 1 <*> Just [2,3,4]

Just [1,2,3,4]

57

Hiding applicative functors

liftA2 :: (Applicative f) =>

(a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = f <$> a <*> b

λ> liftA2 (++) (Just [1,2,3,4]) (Just [5,6,7,8])

Just [1,2,3,4,5,6,7,8]

λ> (++) <$> Just [1,2,3,4] <*> Just [5,6,7,8]

λ> pure (++) <*> Just [1,2,3,4] <*> Just [5,6,7,8]

Just [1,2,3,4,5,6,7,8]

57

Combining applicative functors

sequenceA takes a list of applicatives and returns an applicative

that has a list as its result value.

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA [] = pure []

sequenceA (x:xs) = (:) <$> x <*> sequenceA xs

58

Combining applicative functors

λ> sequenceA [Just 1, Just 2]

Just [1,2]

sequenceA [Just 1, Just 2]

= { definition of sequenceA }

(:) <$> Just 1 <*> sequenceA [Just 2]

= { definition of sequenceA }

(:) <$> Just 1 (<*> Just 2 <*> sequenceA [])

= { definition of sequenceA }

(:) <$> Just 1 (<*> Just 2 <*> pure [])

= { definition of pure }

(:) <$> Just 1 <*> Just 2 <*> Just []

= { definition of <$>, fmap and <*> }

Just [1,2]

59

Combining applicative functors

λ> sequenceA [Just 1, Just 2]

Just [1,2]

sequenceA [Just 1, Just 2]

= { definition of sequenceA }

(:) <$> Just 1 <*> sequenceA [Just 2]

= { definition of sequenceA }

(:) <$> Just 1 (<*> Just 2 <*> sequenceA [])

= { definition of sequenceA }

(:) <$> Just 1 (<*> Just 2 <*> pure [])

= { definition of pure }

(:) <$> Just 1 <*> Just 2 <*> Just []

= { definition of <$>, fmap and <*> }

Just [1,2]

59

Combining applicative functors

λ> sequenceA [Just 1,Just 2,Just 3,Just 4]

Just [1,2,3,4]

λ> sequenceA [Just 1,Just 2,Nothing,Just 4]

Nothing

λ> sequenceA [(+3),(+2),(+1)] 3

[6,5,4]

λ> getZipList $ ZipList [(+3),(+2),(+1)] <*> pure 3

[6,5,4]

λ> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

λ> sequenceA [[1,2,3],[],[4,5,6]]

[]

60

Combining applicative functors

λ> map (\f -> f 7) [(>4),(<10),odd]

[True,True,True]

λ> map ($ 7) [(>4),(<10),odd]

[True,True,True]

λ> and $ map (\f -> f 7) [(>4),(<10),odd]

True

60

Combining applicative functors

λ> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

λ> [[x,y] | x <- [1,2,3], y <- [4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

λ> sequenceA [[1,2],[3,4]]

[[1,3],[1,4],[2,3],[2,4]]

λ> [[x,y] | x <- [1,2], y <- [3,4]]

[[1,3],[1,4],[2,3],[2,4]]

λ> sequenceA [[1,2],[3,4],[5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],

[2,4,5],[2,4,6]]

λ> [[x,y,z] | x <- [1,2], y <- [3,4], z <- [5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],

[2,4,5],[2,4,6]]

60

Combining applicative functors

sequenceA [[1,2],[3,4]]

= { definition of sequenceA }

(:) <$> [1,2] <*> sequenceA [[3,4]]

= { definition of sequenceA }

(:) <$> [1,2] <*> ((:) <$> [3,4] <*> sequenceA [])

= { definition of sequenceA }

(:) <$> [1,2] <*> ((:) <$> [3,4] <*> [[]])

= { definition of <$>, fmap and <*> }

(:) <$> [1,2] <*> [[3],[4]]

= { definition of <$> }

fmap (:) [1,2] <*> [[3],[4]]

= {definition of fmap and <*> }

[[1,3],[1,4],[2,3],[2,4]

61

Using newtype to make type class

instances

What’s the type of a type?

Interlude - Phantom types

Functors

Applicative functors

Using newtype to make type class instances

62

Making type class instances

• Many times, we want to make our types instances of certain

type classes, but the type parameters just don’t match up for

what we want to do.

• Use newtype to get around limitations.

63

Making type class instances

newtype Pair b a = Pair { getPair :: (a,b) }

We can make it an instance of Functor so that the function is

mapped over the first component:

instance Functor (Pair c) where

fmap f (Pair (x,y)) = Pair (f x, y)

λ> getPair $ fmap (*100) (Pair (2,3))

(200,3)

λ> getPair $ fmap reverse (Pair ("london calling", 3))

("gnillac nodnol",3)

64

Making type class instances

newtype Pair b a = Pair { getPair :: (a,b) }

We can make it an instance of Functor so that the function is

mapped over the first component:

instance Functor (Pair c) where

fmap f (Pair (x,y)) = Pair (f x, y)

λ> getPair $ fmap (*100) (Pair (2,3))

(200,3)

λ> getPair $ fmap reverse (Pair ("london calling", 3))

("gnillac nodnol",3)

64

On newtype laziness

• newtype is usually faster than data.

• The only thing that can be done with newtype is turning an

existing type into a new type, so internally, Haskell can

represent the values of types defined with newtype just like

the original ones, only it has to keep in mind that the their

types are now distinct.

• This fact means that not only is newtype faster, it’s also

lazier.

65

On newtype laziness

data T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

66

On newtype laziness

data T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

λ> sayHello undefined

"*** Exception: Prelude.undefined

...

66

On newtype laziness

data T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

• Types defined with the data keyword can have multiple value

constructors (even though T only has one).

• So in order to see if the value given to our function conforms

to the (T _) pattern, Haskell has to evaluate the value just

enough to see which value constructor was used when we

made the value.

66

On newtype laziness

newtype T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

67

On newtype laziness

newtype T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

λ> sayHello undefined

"hello!"

67

On newtype laziness

newtype T = T { getInner :: Bool }

sayHello :: T -> String

sayHello (T _) = "hello!"

• when we use newtype, Haskell can internally represent the

values of the new type in the same way as the original values.

• It doesn’t have to add another box around them, it just has to

be aware of the values being of different types.

• And because Haskell knows that types made with the newtype

keyword can only have one constructor, it doesn’t have to

evaluate the value passed to the function to make sure that it

conforms to the (T _) pattern because newtype types can

only have one possible value constructor and one field!

67

	What’s the type of a type?
	Interlude - Phantom types
	Functors
	Applicative functors
	Using newtype to make type class instances

