Functional programming
Lecture 02 — Functions

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

February 13, 2023

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Lists

Lists

The anatomy of a list

e Lists are the workhorses of functional programming.
e Lists are inherently recursive.

e A list is either empty or an element followed by another list.

List notation

e The type [a] denotes lists of elements of type a.
e The empty list is denoted by [].

e We can have lists over any type but we cannot mix different
types in the same list

List notation

(] 1 [al
[undefined,undefined] 0 [al

[sin,cos,tan] :: Floating a => [a —> a]
(f1,2,31,[4,5]] :: Num a => [[a]]

[(+1), (*2)] :: Num a => [a -> a]

CCL,r1r,m1m),(2,'2',"2")] :: Num a => [(a, Char, String)]

["tea","for",2] not valid

List notation

e The operator (:) :: a -> [a] -> [a] (pronounced cons)
is constructor for lists.
e Cons associates to the right.

e Cons is non-strict in both arguments.

List notation, such as [1,2,3,4], is in fact an abbreviation
for the more basic form 1:2:3:4: []

List notation

[1,2,3,4,5] = 1:2:3:4:5:[]

/\
/\
/\
/\
/\

(]

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

A > head [1,2,3,4]
1

A > head (1:[2,3,4])
1

A > head [1]
1

A > head (1:[])
1

A > head []
% Exception: Prelude.head: empty list

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

headl :: [a] -> []
headl []
headl (x:xs)

error "*xxx Exception: head: empty list"

X

head2 :: [a] —> []
head2 []
head2 (x:_) = x

error "*x** Exception: head: empty list"

Except the first element

Data.List.tail :: [a] -> [al

tail extracts the elements after the head of a non-empty list.

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a non-empty list.

A> tail [1,2,3,4]
[2,3,4]

A> tail (1:[2,3,41)
[2,3,4]

A > tail [1]
0

A> tail (1:[1)
0

A> tail []

#%* Exception: Prelude.tail: empty list

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a non-empty list.
taill :: [a]l -> []

taill [] = error "x** Exception: tail: empty list"

taill (x:xs)

XS

tail2 :: [a] —> []
tail2 []

tail2 (_:xs) = xs

error "*x** Exception: tail: empty list"

Enumerations

Enumerations

Enumerating lists of integers

When m, n and p are integers, we can write
[m..n] for the list [m,m+1,m+2,...,n]
[m..] for the infinite list [m,m+1,m+2,...]
[m,p..n] for the list [m,m+(p-n) ,m+2(p-n),...,n]

[m,p..] for the infinite list [m,m+(p-n) ,m+2(p-n),...]

10

Enumerating lists of integers

A> [1..10]
[1,2,3,4,5,6,7,8,9,10]

A> [10..1]

(]

A> [1..]

[1,2,3,4,5,6,7,8,9,... “CInterrupted.
A> [1,3..9]

[1,3,5,7,91]

A> [1,3..0]

(]

11

Enumerating lists of integers

A> [10,8..0]
(10,8,6,4,2,0]

A> [10,8..1]
[10,8,6,4,2]

A> [5,3..]
[5,3,1,-1,-3,-5,-7,-9,... “CInterrupted.

12

Enumerating lists of integers

Do not use floating point numbers in enumerations! Never ever!

A> [0.1,0.3..1]
[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

A> [1,0.6..0]
[1.0,0.6,0.19999999999999996]

A> [1,4/3..2]
[1.0,1.3333333333333333,1.6666666666666665,1.9999999999999998]

A> [5,13/3..3]
[5.0,4.333333333333333,3.666666666666666,2.999999999999999]

13

Enumerating lists of integers

Do not expect too much!

A> [1,2,4,8,16..100] -- ezpecting the powers of 2 !

<interactive>: error: parse error on input '..'

A> [2,3,5,7,11..101] -- ezpecting prime numbers
<interactive>: error: parse error on input '..'

A> [1,-2,3,-4..9] -- expecting [1,-2,3,-4,5,-6,7,-8,9]
<interactive>: error: parse error on input '..'

A > [100,50,25..1] -- exzpecting [100,50,25,12.5,6.25,...]
<interactive>: error: parse error on input '..'

14

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

A > succ 'a
lbl
A> pred 'z'
lyl

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A> ['A'..'Z']
" ABCDEFGHIJKLMNOPQRSTUVWXYZ"

A > succ 'A'
IBI

A > pred 'Z'
lYl

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A> ['a','c'..'z']
"acegikmogsuwy"

A> [Izl’lyl..lal]
"zyxwvutsrgponmlkjihgfedcba"

A> ['z','x'"..'a"]
"zxvtrpnljhfdb"

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A > succ 'Z'
l[l

A > pred 'a'

A> ['A'..'z']
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\] ~_"abcdefghijklmnopgrstuvwxyz"

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

More on this soon !

15

List comprehensions

List comprehensions

16

List comprehensions

Comprehensions are annotations in Haskell which are used to

produce new lists from existing ones

[f x | x <= xs]

e Everything before the pipe determines the output of the list
comprehension. It's basically what we want to do with the list

elements.
e Everything after the pipe | is the generator.

e A generator:
e (Generates the set of values we can work with.
e Binds each element from that set of values to x .
e Draw our elements from that set
(<~ is pronounced "drawn from™).

17

List comprehensions

e Set (i.e., math) point of view.

{(x?: x e N}

e Comprehensions (i.e., Haskell) point of view.
[x*x | x <= [1..]]

18

List comprehensions

A> [xxx | x <= [1..9]]
[1,4,9,16,25,36,49,64,81]

A> [x+x | x <= [1,3..9]]
[1,9,25,49,81]

A> [2°n | n <= [1..10]]
[2,4,8,16,32,64,128,256,512,1024]

A> [(-1)"(a+1) *n | n < [L1..10]]
[1,_2:3,_4:5,_6:7,_8:9,_101

A> [100/n | n <= [1..10]]
[100.0,50.0,33.333333333333336,25.0,20.0,16.666666666666668,
14.285714285714286,12.5,11.11111111111111,10.0]

19

Many generators

A> [x | x <= [1]
]

A> [(x,y) | x <= [1..3], y <= [1..3]]
[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)

A> [(x,y) | x <= [1..3], v <= [x..3]]
[(1,1),(1,2),01,3),(2,2),(2,3),(3,3)]

A> [xxy | x <= [1..3], y <= [1..3]]
[1,2,3,2,4,6,3,6,9]

A> let n =2 in [x*y "mod” n | x <= [1..3], y <= [1..3]]
(t,0,1,0,0,0,1,0,1]

20

A> [[1..n] | n <= [1..4]]
(f11,01,2]1,11,2,31,[1,2,3,4]]

A> [[m..n] | m <= [1..4], n <= [1..4]]
(f11,01,21,01,2,31,01,2,3,4]1,[1,[2],[2,31,[2,3,4],(1, 01, (3],
[3,41,11,11,[71,[4]1]

A> [[m..n] | m<- [1..4], n <= [m..4]]
(ri1,101,21,11,2,31,101,2,3,4]1,[2],[2,31,[2,3,4]1, [3], [3,4], [4]]

A> [[[m..n] | n <= m..3]] | m <= [1..3]]
[crey, fe,21,101,2,311, 0021, (2,317, [[31]]

A> [[[m..n] | n<- [1..3]] | m <= [1..3]]
(e, 0t,21,01,2,311, 001, [21, [2,31], [[7, [0, [31]1]

21

IIiIHHH%HH%II

e If we do not want to draw all elements from a list, we can add

a condition, a predicate.

o A predicate is a function which takes an element and returns a

boolean value.

[f x | x<-xs, pl x, p2 X, ..., pn x]

22

A> [x*x | x <= [1..10], even x]
[4,16,36,64,100]

A> [(x,x*x) | x <= [1..10], even x]
[(2,4),(4,16),(6,36),(8,64),(10,100)]

A> [(x,x*x) | x <= [1..10], even x, x "mod~ 3 /= 0]
[(2,4),(4,16),(8,64),(10,100)]

A> [(x, y) | x <= [1..10], even x, y <~ [x..10], odd y]
[(2,3),02,5),02,7,(2,9),(4,5),4,7),4,9),(6,7),(6,9),(8,9)]

A> [x | x <= [1..100], even x, x "mod~ 3 == 0, x "mod~ 5 == 0]
[30,60,90]

23

Predicates and pattern matching

A> [x | (x,1) <= [(x,y) | x <= [1..3], y <= [1..3]]1]
[1,2,3]

A> [x | (x,y) <- [&x,y) | x <= [1..3], y <= [1..3]1]1, y<=2]
(1,1,2,2,3,3]

A> [(x,y) | (x,y) <= [(x,y) | x <= [1..3], y <= [1..3]], x==y]
[(1,1),(2,2),(3,3)]

A> [y | xys <= [[(x,x*¥2)] | x <= [1..6]], (2,y) <- xys]
[4]

A> [y | xys <= [[(x,x*¥2)] | x <= [1..6]], (x,y) <- xys, even X
[4,8,12]

24

Problem solving with list comprehensions

Compute the list [1,1+2,...,1+2+3+...+n].

-— assuming we don't know about Data.Foldable.sum

sums :: (Num a, Enum a, Eq a) => a -> [a]
sums n = [f k | k <= [1..n]]
where
f1=1
fk=%k+f (k-1)

A > sums 10
[1,3,6,10,15,21,28,36,45,55]

A> [n*(n+1) “div> 2 | n <= [1..10]]
[1,3,6,10,15,21,28,36,45,55]

25

Problem solving with list comprehensions

Compute the list [172,172+272,...,172+42724372+. . .+n"2].

-— assuming we don't know about Data.Foldable.sum

sumsSq :: (Num a, Enum a, Eq a) => a -> [a]
sumsSq n = [f k | k <~ [1..n]]
where
f1=1
f k = kxk + £ (k-1)

A > sumsSq 10
[1,5,14,30,55,91,140,204,285,385]

A > [nx(n+1)*(2*n+1) “div> 6 | n <- [1..10]]
[1,5,14,30,55,91,140,204,285,385]

26

Problem solving with list comprehensions

Compute the list of all positive intergers k < n such that kK Z 0
(mod 2), k20 (mod 3) , k=1 (mod 5) and k =0 (mod 7).

f :: Integral a => a -> [a]
fn=[k | k<= [1..n]

, odd k

, k "mod™ 3 > O

, k "mod” ==

, k "mod~ 7 == 0]

A> £ 1000
[91,161,301,371,511,581,721,791,931]

27

Problem solving with list comprehensions

A Pythagorean triple consists of three positive integers a, b, and c,
such that a® + b?> = c?. Compute all Pythagorean triples with
a<b<c<15.

-— natve implementation
pythT :: (Num a, Enum a, Eq a) => ¢ -> [(a, a, a)]
pythT n = [(a, b, ¢) | a <= [1..n]

, b <— [a+1..n]

, ¢ <— [b+1..n]

, axa + bxb == cx*c]

A > pythT 15
[(3,4,5),(5,12,13),(6,8,10),(9,12,15)]

28

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2sl :: Num a => [a]
p2sl = [2°n | n <- 1:p2si]

A > take 11 p2si
[2,4,8,16,32,64,128,256,512,1024,2048]

A > head (drop 120 p2s1)
2658455991569831745807614120560689152

29

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s2 :: Num a => [a]
p2s2 = [2%n | n <- 1:p2s2]

n=1
p2s2 = 1:271:p2s2
n=2
p2s2 = 1:271:272:p2s2
n=3
p2s2 = 1:271:272:273:p2s2
n=4
p2s2 = 1:271:272:273:274:p2s2

29

Problem solving with list comprehensions

Compute the infinite list of all binary strings.

binaries :: [String]

binaries = [b:bs | bs <- "":binaries, b <- ['0','1']]

A > take 11 binaries
[”0","1","OO","10","01","11","000",”100","010”,"110","001"]

A > head (drop 10000000 binaries)
"01000001011010010001100"

30

Processing lists — basic functions

Processing lists — basic functions

31

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be
finite; True, however, results from an element equal to x found at
a finite index of a finite or infinite list.

32

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be
finite; True, however, results from an element equal to x found at
a finite index of a finite or infinite list.

A> 2 “elem” [1..5]
True

A> 8 “elem” [1..5]
False

32

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be
finite; True, however, results from an element equal to x found at
a finite index of a finite or infinite list.

eleml :: Eq a => a -> [a] -> Bool
elemli _ [] = False
eleml x' (x:x8)

| x == x' = True

| otherwise = eleml x' xs

elem2 :: Eq a => a -> [a] -> Bool
elem2 _ []

elem?2 x' (x:x8)

False

x == x' || elem2 x' xs 32

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

33

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

A > repeat 'a'
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. . .

“C Interrupted.

A > repeat "a" -- i.e. repeat ['a']

ll’llall’ a , a s a ,ll

[llall,lla II,II

“C Interrupted.

33

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

repeatl :: a -> [a]

repeatl x = x:repeatl x

repeat2 :: a -> [a]
repeat2 x = [x | n <= [1 ..]]

repeat3 :: a —> [a]
repeat3 x = [x | _ <= [1 ..]]

33

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

34

Data.List.take :: Int -> [a] -> [a]
take takes a certain number of elements from a list.

A > take 10 [1..20]
[1’2,3’4,5’6,7,8’9,101

A > take 10 [1..]
[1,2’3’4,5’6,7’8’9,10]

A > take 20 [1..10]
[1,2)3:4’5:6,7,8,9,10]

A> take 0 [1..]
[]

A> take (-1) [1..]

. 34

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

takel :: (Ord t, Num t) => t -> [a] -> [a]
takel _ [1 = []
takel n (x:xs)

| n <=0 =[]

| otherwise = x:takel (n-1) xs

take2 :: (Eq t, Num t) => t -> [a] —> [a]
take2 _ [] = []
take2 0 _ = []

take2 n (x:xs) = x:take2 (n-1) xs

34

Dropping

Data.List.drop :: Int -> [a] -> [al]

drop drops a certain number of elements from a list.

35

Dropping

Data.List.drop :: Int -> [a] -> [al]
drop drops a certain number of elements from a list.

A > drop 10 [1..20]
[11,12,13,14,15,16,17,18,19,20]

A > drop 10 [1..]
[11,12,13,14,15,16,17,18,19,20, ...
“C Interrupted.

A> drop (-1) [1..]
[1,2,3,4,5,6,7,8,9,10,...
“C Interrupted.

A > drop 20 [1..10]
[

35

Dropping

Data.List.drop :: Int -> [a] -> [al]

drop drops a certain number of elements from a list.

dropl :: (Ord t, Num t) => t -> [a] -> [a]
dropl _ [1 = []
dropl n (x:xs)

| n>0 = dropl (n-1) xs

| otherwise

X XS

drop2 :: (Ord t, Num t) => t -> [a] -> [a]
drop2 _ [1 = []
drop2 n xs0(_:xs')

| n>0 = drop2 (n-1) xs'

| otherwise = xs

35

Taking and Dropping — In practice

Define a function that rotates the elements of a list n places to the
left, wrapping around at the start of the list, and assuming that
the integer argument n is between zero and the length of the list.

For example:

A > rotate 0 [1..8]
[1,2,3,4,5,6,7,8]

A > rotate 1 [1..8]
[2,3,4,5,6,7,8,1]

A > rotate 4 [1..8]
(5,6,7,8,1,2,3,4]

36

Taking and Dropping — In practice

Define a function that rotates the elements of a list n places to the
left, wrapping around at the start of the list, and assuming that
the integer argument n is between zero and the length of the list.

rotatel :: Int -> [a] -> [al]
rotatel = go []
where
go acc O xs = Xxs ++ reverse acc

go acc n [] go [l n (reverse acc) -- (%)

go acc n (x:xs) = go (x:acc) (n-1) xs

rotate2 :: Int -> [a] -> [a]

rotate2 n xs = drop n xs ++ take n xs

36

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

37

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

A > replicate 10 1
(t,1,1,1,1,1,1,1,1,1]

A > replicate 0 1
]

A > replicate (-1) 1
]

37

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

replicatel :: (Num t, Ord t) => t -> a -> [a]
replicatel n x

| n <=0 = [

| otherwise = x:replicatel (n-1) x
replicate2 :: (Ord t, Num t) => t -> a -> [a]

replicate2 n x = take n (repeat x)

37

Data.List.tails :: [a] -> [[a]l]

tails returns all final segments of the argument, longest first.

38

Data.List.tails :: [a]l -> [[all
tails returns all final segments of the argument, longest first.

A> tails [1..4]
[(1,2,3,41,[2,3,41,[3,41,[4]1, 1]

A> tails []
[[11

A> tails [1..]
“C Interrupted.

A > head (tails [1..]1)
“C Interrupted.

38

Data.List.tails :: [a] -> [[a]l]

tails returns all final segments of the argument, longest first.

tailsl :: [a]l -> [[al]
tailsl [1 = [[]1]
tailsl (x:xs) = (x:xs):tailsl xs

tails2 :: [a] -> [[a]]
tails2 [1 = [[]1]

tails2 xs@(_:xs') = xs:tails2 xs'

38

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

39

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

A > reverse [1..5]
[5,4’3’2,1]

A > reverse []

(]

A > reverse [1..]
“C Interrupted.

39

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

-- inefficient because of (++)
reversel :: [a] -> [al]
reversel [] = []

reversel (x:xs) = reversel xs ++ [x]

-— using an accumulator is much more efficient
reverse2 :: [a] -> [a]
reverse2 = go []
where
go acc [] = acc
go acc (x:xs) = go (x:acc) xs 39

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list
must be non-empty.

40

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list
must be non-empty.

A> init [1,2,3,4]
[1,2,3]

A > init [1]
0

A> init []

***x Exception: Prelude.init: empty list

40

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list

must be non-empty.

initl :: [a] —> [a]
init1l [] error "sx* Exception: init': empty list"
init1l [_] (]

initl (x:xs) = x:init' xs

-— wtth functors and Maybe type
safeInit :: [a] -> Maybe [a]

safelnit [] = Nothing

safelnit [_] Just []

safeInit (x:xs) = (x :) <$> safelnit xs

40

Data.List.inits :: [a] -> [[a]l]

inits returns all initial segments of the argument, shortest first.

41

Data.List.inits :: [a] -> [[all]
inits returns all initial segments of the argument, shortest first.

A > inits [1..4]
£e1,r11,0¢,21,101,2,31,[1,2,3,41]

A > inits [1]
(01,0111

A > inits []
[[11

A > inits [1..]
(1,011, 01,21,01,2,31,[1,2,3,4],...°C Interrupted.

A > head (inits [1..])

. 41

Data.List.inits :: [a] -> [[a]l]

inits returns all initial segments of the argument, shortest first.

initsl :: [a] -> [[a]]
inits1 [1 = [[]]
initsl xs = initsl (init xs) ++ [xs]
inits2 :: [a] -> [[al]
inits2 = reverse . go
where
go [1 = [[1]

go xs = xs:go (init xs)

41

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

42

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

A > intersperse l’l [lal,lbl’lcl’ldl:l
"a,b,c,d"

A > intersperse 0 [1,2,3,4]
(1,0,2,0,3,0,4]

A > intersperse [0] [[1,2],[3,4],[5,6]]
(f1,2],[0],[3,4],[0],[5,6]]

42

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

interspersel :: a -> [a] -> [a]
interspersel _ [] =[]
interspersel _ [x] = [x]

interspersel y (x:xs) = x:y:interspersel i xs

42

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

43

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

A > concat [[1,2],[3,4],[5,6]]
[1,2)3:4’5:6]

A > concat [[1,2]]
[1,2]

A > concat [[]]
0

A > concat []
[]

43

IIHiHHHHHEIHHEII

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

-— recursive
concatl :: [[al]l -> [al
concatl [] = [

concatl (xs:xss) = xs ++ concatl xss

-— wtth a list comprehension
concat2 :: [[a]l]l -> [a]

concat2 xss = [x | xs <- xss, x <- xs]

43

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

44

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

A > intercalate [0] [[1,2],[3,4],[5,6]1]
[1,2’053’4’0’5’6]

A > intercalate [0] [[1,2]]
[1,2]

A > intercalate [0] []
0

A > intercalate " -> " ["taskl","task2","task3"]
"taskl -> task2 -> task3"

44

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

intercalatel :: [a]l -> [[a]l]l —> [al
intercalatel _ [] = [
intercalatel _ [xs] = Xs
intercalatel xs' (xs:xss) = Xs ++
xs' ++

intercalatel xs' xss

intercalate2 :: [a] -> [[al]l -> [al

intercalate2 xs xss = concat (intersperse xs xss)

44

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

45

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

A> zip [1,2,3] ['a','b','c']
[(1,'a"),(2,'0"),(3,'c")]

A> zip [1,2,3,4] ['a','d','c']
[(1,'al),(2’|b')’(3,'cl)]

A> zip [1,2,3] ['a','b','c','d"]
[(1"al)’(2’Ib')’(3,'cl)]

45

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.
zip :: [a]l > [b] -> [(a, b)]

zip [] _ =[]

zip _ (] =0
zip (x:xs) (y:ys) = (x,y):zip xs ys

45

Zipping — In practice

Index a list from a given integer.

A> index O ['a'..'f']
[(0,'a"),(1,'D"),(2,'c"),(3,'d"),(4,'e"),(5,'t")]

A> index 1 ['a'..'f']
[(1,'a"),(2,'p"),(3,'c"),(4,'d"),(5,'e"),(6,'t")]

A > index (2710) ['a'..'e']
[(1024,'a'),(1025,'b"), (1026,'c'), (1027,'d"'), (1028, 'e"')]

A > index2 (-10) ['a'..'f']
[(_1Oslal)s(_gy'bl),(_sy'Cl)y(_7,'dl)’(_6)'e'))(_S:If')]

46

Zipping — In practice

Index a list from a given integer.

indexl :: Num a => a -> [b] -> [(a, b)]
index1 n [] = [

indexl n (x:xs) = (n,x):indexl (n+1) xs

index2 :: Enum a => a -> [b] -> [(a, b)]

index2 n xs = zip [n..] xs

46

Zipping — In practice

Implementing take with zip.

take3 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take3 n xs = go (zip xs [1..])
where

go ((x,1):xis)

| 1 <= n X:go xis

(]

| otherwise

taked4 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take4 n xs = go $ zip xs [1..]
where
go ((x,1):xis)
| i <= n = x:go xis
| otherwise = []
47

Zipping — In practice

Implementing take with zip.

-— don't do this!!!

-— anfinite computation: a predicate does mot stop
-- the infinite enumeration (we are just skipping
-- values again and again).

take5 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

takeb n xs = [x | (x, 1) <= zip xs [1..], i <= n]

-— not better!

take5 :: Int -> [a] -> [a]

takeb n xs = [x | (x, 1) <- zip xs [1..nxs], i <= n]
where

nxs = length xs

47

Data.Foldable.and :: Foldable t => t Bool -> Bool
[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be
True only for finite lists

48

Data.Foldable.and :: Foldable t => t Bool -> Bool
[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be
True only for finite lists

A > and []

True

A > and [True]
True

A > and [False]
False

A > and (take 100 (repeat True) ++ [False])

False
48

Data.Foldable.and :: Foldable t => t Bool -> Bool
[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be
True only for finite lists

andl :: [Bool] -> Bool
andl []

andl (False:bas)
andl (True:bs)

True

False
andl bs

and2 []
and2 (b:bs)

True
b && and2 bs

48

Data.Foldable.or :: Foldable t => t Bool —-> Bool
[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

49

Data.Foldable.or :: Foldable t => t Bool —-> Bool
[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

A> or []
False

A > or [Truel
True

A > or (take 100 (repeat False))
False

A > or (take 100 (repeat False) ++ [Truel)
True
49

Data.Foldable.or :: Foldable t => t Bool —-> Bool
[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

orl :: [Bool]l] -> Bool

orl [] = False
orl (True:bas) = True
orl (False:bs) = orl bs

or2 :: [Bool] -> Bool
or2 [] = False
or2 (b:bs) =b || or2 bs

49

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
[a] > a

maximum returns the largest element of a non-empty structure.
(minimum returns the largest element of a non-empty structure).

A > maximum []

%% Exception: Prelude.maximum: empty list

A > maximum [1]
1

A > maximum [4,3,7,1,8,6,2,3,5]
8

A > maximum [2,3,1,4,3,1,2,4]
4
50

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
[a] > a

maximuml :: Ord a => [a] -> a

maximuml [] = error "empty list"

maximuml [x] =x

maximuml (x:xs) = let m = maximuml xs in if m>x then m els

maximum2 :: Ord a => [a] -> a

maximum2 [] = error "empty list"

maximum?2 [x] =x

maximum2 (x:xs) = max x (maximum2 xs)

50

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a
[a] > a

maximum3 :: Ord a => [a] -> a

maximum3 [] = error "empty list"

maximum3 (x:xs) = go X Xs
where
go m [] =m
gom (x':xs')
| x'" >m = go x' xs'

| otherwise = go m xs'

50

High-order functions

High-order functions

51

High-order functions

e A function that takes a function as an argument or returns a
function as a result is called a high-order function.

e Because the term curried already exists for returning functions
as results, the ther high-order is often just used for taking
functions as arguments.

e Using high-order functions considerably increases the power of
Haskell by allowing common programming patterns to be
encapsulated as functions within the language itself.

52

Data.List.filter :: (a -> Bool) -> [a]l -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

53

Data.List.filter :: (a -> Bool) -> [a]l -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

A > filter even [1..10]
[2,4,6,8,10]

A> filter (\x -> x "mod~ 2 == 0) [1..10]
[2,4,6,8,10]

A> filter (\x -> even x && odd x) [1..10]
[]

A > filter (> 5) [1,5,2,6,3,7,4,8]
[6,7,8]

A > filter (<= 5) [1,5,2,6,3,7,4,8]
[1,5,2,3,4]

53

Data.List.filter :: (a -> Bool) -> [a]l -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

-— recursive
filterl :: (a —> Bool) -> [a] -> [a]
filterl _ [1 = []

filterl p (x:xs)

| px
| otherwise = filterl p xs

x:filterl p xs

-— with a list comprehension
filter2 :: (a -> Bool) -> [a] -> [a]
filter2 p xs = [x | x <- xs, p x]

53

Mapping

Data.List.map :: (a -> b) -> [a] —> [b]

map f xs is the list obtained by applying £ to each element of xs.

54

Mapping

Data.List.map :: (a -> b) -> [a] —> [b]
map f xs is the list obtained by applying £ to each element of xs.

A> map (*2) [1..5]
[2,4,6,8,10]

A > map even [1..5]

[False,True,False,True,False]

A> map (\x -> 2*x) [1..5] -- equiv map (2%) [1..5]
[2,4,6,8,10]

A> map (\x -> [x]) [1..5]
[[11,[21,[3]1,[41,[5]]

54

Mapping

Data.List.map :: (a -> b) -> [a] —> [b]
map f xs is the list obtained by applying £ to each element of xs.

A > map (map (* 2)) [[1,2,3],[4,5,6],[7,8,9]]
[[2,4,6],[8,10,12],[14,16,18]]

A > map (filter even) [[1,2,3],[4,5,6],[7,8,9]]
[f21,[4,6]1,[8]]

A > map length [[1,2,3],[4,5,6],[7,8,9]]
[3,3,3]

A > map (take 2) [[1,2,3],[4,5,6],[7,8,9]]
(lt,21,04,5],[7,8]1]

54

Mapping

Data.List.map :: (a -> b) -> [a] —> [b]

map f xs is the list obtained by applying £ to each element of xs.
-— recursive

mapl :: (a -> b) -> [a] -> [b]

mapl _ [1 = []

mapl f (x:xs) = f x:mapl f xs

-— with a list comprehension
map2 :: (a -> b) -> [a]l] -> [b]
mapl f xs = [f x | x <- xs]

54

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

55

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

1 2 1 2 00000
M= 13 4 M =13 400000
5 6 56 00 0 00
m = [[1,2], m' = [[1,2,0,0,0,0,0],
[3,4], [3,4,0,0,0,0,0],
[5,6]] [5,6,0,0,0,0,01]

55

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

A> m = [[1,2],[3,4]1,[5,6]]

A > addExtraColumns O m
[[1,21,[3,4],[5,6]]

A > addExtraColumns 1 m
(r+,2,01,13,4,01,[5,6,011]
A > addExtraColumns 5 m
(rs,2,0,0,0,0,01,I103,4,0,0,0,0,01,[5,6,0,0,0,0,01]

55

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

addExtraColumnsl :: Num a => Int -> [[a]] -> [[al]
addExtraColumnsl k xss = map (++ yss) xss
where

yss = replicate k O

55

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.

56

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
A > takeWhile (< 10) [1..20]

[1,2,3,4,5,6,7,8,9]

A > takeWhile odd ([1,3..10] ++ [1..10])
[1,3,5,7,9,1]

A > takeWhile even [1..10]
[]

A > takeWhile (> 0) (map ("mod™ 5) [1..10])
[1,2,3,4]

56

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.

takeWhilel :: (a -> Bool) -> [a] -> [a]
takeWhilel _ [] = []
takeWhilel p (x:xs)

[p x = x:takeWhilel p xs

| otherwise = []

56

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs.

57

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs.

A > dropWhile (< 10) [1..20]
[10,11,12,13,14,15,16,17,18,19,20]

A > dropWhile odd ([1,3..10] ++ [1..10]1)
(2,3,4,5,6,7,8,9,10]

A > dropWhile even [1..10]
(1,2,3,4,5,6,7,8,9,10]

A > dropWhile (> 0) (map ("mod™ 5) [1..10])
0,1,2,3,4,0]

A > dropWhile (< 3) (takeWhile (< 6) [1..10])
[3,4,5]

57

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs

dropWhilel :: (a -> Bool) -> [a] -> [a]
dropWhilel _ []1 = []
dropWhilel p (x:xs)

| px = dropWhilel p xs

| otherwise = x:xs

dropWhile2 :: (a -> Bool) -> [a] -> [a]
dropWhile2 _ [] = []
dropWhile2 p xs@(x:xs')

| px = dropWhile2 p xs'

| otherwise = xs
57

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate creates an infinite list where the first item is calculated by
applying the function on the second argument, the second item by
applying the function on the previous result, and so on.

A > iterate (\x -> x+1) 1 -- equiv tterate (+1) 1
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, ...
“C Interrupted.

A > take 10 (iterate (\x -> x+1) 1)
[1,2,3,4,5,6,7,8,9,10]

A > take 10 (iterate (+1) 1)

[1,2,3,4,5,6,7,8,9,10]

A > takeWhile (< 10) (iterate (+1) 1)
[1,2,3,4,5,6,7,8,9]

58

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iteratel :: (a -> a) -> a -> [a]

iteratel f x = let y = f x in y:iteratel f y

iteratel f x

x:iteratel (f x)
x:f x:iteratel (f (f x))
x:f x:f (f x):iteratel (f (f (f x)))

58

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate2 :: (a -> a) -> a -> [a]

iterate2 f x = x:[f y | y <~ iterate2 f x]

iterate2 f x

x:[fy | y<- iterate2 f x]
x:f x:[fy | y <= iterate2 £ (f x)]
x:f x:f (f x):[f y | y <- iterate2 f (f (f x))]

58

Zipping with functions

Data.List.zipWith :: (a -> b -> ¢) -> [a] -> [b] —> [c]

zipWith generalises zip by zipping with the function given as the
first argument, instead of a tupling function.

A > zipWith (+) [0..4] [10..14]
[10,12,14,16,18]

A> zipWith (\x y —> (x,y)) [1,2,3] ['a','b','c']
[(1,'a"),(2,'p"),(3,'c"]

A > zipWith (,) [1,2,3] ['a','D','c"']
[(1,'a"),(2,'b"),(3,'c"]

A> f x b= if b then x*10 else x

A > zipWith f [1,2,3,4] [True,False,True,False]
[10,2,30,4]

59

Zipping with functions

Data.List.zipWith :: (a -> b -> ¢) -> [a] -> [b] —> [c]

zipWithl :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipWithl _ [] - = [
zipWithl _ _ [] =0

zipWithl £ (x:xs) (y:ys)

f x y:zipWithl f xs ys

zip2 :: [a]l -> [b] -> [(a,b)]
zip2 = zipWithl (,)

59

Zipping with functions — In practice

Determine whether a list is in non-decreasing order.

nonDecl :: Ord a => [a] -> Bool
nonDecl [] = True
nonDecl [_] = True

x1 <= x2 && nonDecl (x2:xs)

nonDecl (x1:x2:xs)

nonDec2 :: Ord a => [a] -> Bool
nonDec?2 [] = True
nonDec2 [_] = True

nonDec2 (x1:xs@(x2:_)) x1 <= x2 && nonDec2 xs

nonDec3 :: Ord a => [a] -> Bool

nonDec3 xs = and $ zipWith (<=) xs (tail xs)

60

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

61

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

1 2 1200000
M= |3 4 M'=13 400000
5 6 56 00 000
m = [[1,2], m' = [[1,2,0,0,0,0,0],
[3,4], [3,4,0,0,0,0,0],
[5,611] [5,6,0,0,0,0,0]]

61

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

A> m = [[1,2],[3,4],[5,6]]

A > addExtraColumns O m

[[1,2]1,[3,4]1,[5,61]

A > addExtraColumns 1 m
(f1,2,0],[3,4,01,[5,6,0]]

A > addExtraColumns 5 m
[cs,2,0,0,0,0,01,r3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]

61

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

addExtraColumnsl :: Num a => Int -> [[a]] -> [[al]
addExtraColumnsl k xss = map (++ yss) xss
where

yss = replicate k O

addExtraColumns2 :: Num a => Int -> [[al]l -> [[all]
addExtraColumns2 k xss = zipWith (++) xss yss
where

yss = repeat $ replicate k O

61

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that 1
m_, .1
4 3

1 1

1
5777

62

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states
that
S
4 3 5 7 9
approxPil k = 4 * sum (take k xs)
where

1 1

ss = [(-1)"n | n <= [0..]]
xs = zipWith (*) ss (map (1/) (iterate (+2) 1))

approxPi2 k = 4 * sum (take k xs)
where
ss = 1:[(-1)*s | s <- ss]

xs = zipWith (%) ss (map (1/) (iterate (+2) 1))

62

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
1 1

T 1}7_1_
5 7 9

21

;=37

A> pi
3.141592653589793

A> let n = 10 in approxPil n
3.0418396189294032

A> let n = 100 in approxPil n
3.1315929035585537

A> let n = 10000 in approxPil n
3.1414926535900345

62

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
1 1

T 1}7_1_
5 7 9

21

;=37

A > ns = iterate (*10) 1

A > mapM_ print (take 8 [pi / approxPil n | n <- ns])
0.7853981633974483

.0327936535639899

.0031931832582315

.0003184111600008

.0000318320017856

.0000031831090173

.0000003183099935

.00000003183099

I T = T = N SN SN

62

1-conversion

An eta conversion (also written 1-conversion) is adding or
dropping of abstraction over a function.

The following two values are equivalent under n-conversion:
\x -> someFunction x
and

someFunction

Converting from the first to the second would constitute an
n-reduction, and moving from the second to the first would be an

eta-expansion.

The term 1-conversion can refer to the process in either direction.

63

1-conversion

insertEntry ::

Entry -> AddressBook -> AddressBook

insertEntry entry book = Cons entry book

insertEntry ::

1-reduction

Entry -> AddressBook -> AddressBook

insertEntry entry = Cons entry

insertEntry ::

n-reduction

Entry -> AddressBook -> AddressBook

insertEntry entry = Cons

64

The composition operator

The high-order library operator . returns the composition of two
function as a single function

() :: (b->c¢c) > (a->Db) > (a ->c)
f.g=\x—>f (gx)

f . g, which is read as £ composed with g, is the function that
takes an argument x, applies the function g to this argument, and

applies the function £ to the result.

65

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

66

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

oddl :: Integral a => a -> Bool

oddl n = not (even n)

odd2 :: Integral a => a -> Bool
0odd2 n = (not . even) n -— .e., 0dd2 = \z -> not (even

odd3 :: Integral a => a -> Bool

odd3 not . even

66

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

twicel :: (a -> a) -> a -> a
twicel f x = £ (f x)

twice2 :: (a -> a) > a > a
twice2 f x = (f . f) x -- d.e., twice2 = \z > f (f z)
twice3 :: (a -> a) —> a —> a

twiced f = f . £

66

The composition operator

Composition is associative

f.(g.h=1f.¢g.h

for any functions £, g and h of the appropriate types.

sumSqrEvenl :: Integral a => [a] -> a

sumSqrEvenl xs = sum (map ("2) (filter even xs))

sumSqrEven2 :: Integral a => [a] -> a

sumSqrEven2 xs = (sum . map ("2) . filter even) xs

sumSqrEven3 :: Integral a => [a] -> a

sumSqrEven3 = sum . map ("2) . filter even

67

The composition operator

Composition also has an identity, given by the identity function:

id :: a -> a
id = \x —> x

For any function f:

id . £ =f
f . id=f£

68

The composition operator

Composition also has an identity, given by the identity function:

A> f = head . id

A> f [1,2,3,4]
1

f = head . id

\x -> head (id x)
\x -> head x
head

68

The composition operator

Composition also has an identity, given by the identity function:

A> g = 1id . head

A> g [1,2,3,4]
1

id . head

\x -> id (head x)
\x -> head x
head

g

68

The composition operator

Composition also has an identity, given by the identity function:
A > :type take

take :: Int -> [a] -> [a]

A> f = take . id

A> £ 3 [1..10]

[1,2,3]

f = take . id
= \x -> take (id x)
=\x > take x —— :: Int -> ([a] -> [a])
= take

68

The composition operator

Composition also has an identity, given by the identity function:
A > :type take

take :: Int -> [a] -> [a]

A> g = id . take

A> g 3 [1..10]

[1,2,3]

g = id . take
= \x -> id (take x)
=\x > take x —— :: Int -> ([a] -> [a])
= take

68

The function application operator

The $ is an operator for function application.
($) :: (@a->b) ->a->b
f$x=1fx

All this does is apply a function. So, £ $ x exactly equivalent to
f x:

A > head $ [1,2,3,4]
1

A> tail $ [1,2,3,4]
[2,3,4]

A > map <+ 1) $ [1:2,3’4]
[2,3,4,5]

69

The function application operator

This seems utterly pointless, until you look beyond the type.

A > :info ($)
($) :: (&a->b) >a->b -- Defined in ‘GHC.Base’
infixr 0 $

70

The function application operator

This seems utterly pointless, until you look beyond the type.

A > :info ($)
($) :: (&a->b) >a->b -- Defined in ‘GHC.Base’
infixr 0 $

This little note holds the key to understanding the ubiquity of ($):

infixr O.

e infixr tells us it's an infix operator with right associativity.
e O tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

e s left associative and

e has the highest precedence possible (10).

70

The function application operator

Compare

A > take 10 "Haskell " ++ "rocks!"
"Haskell rocks!"

A > (take 10 "Haskell ") ++ "rocks!"
"Haskell rocks!"

with

A > take 10 $ "Haskell " ++ "rocks!"
"Haskell ro"

A > take 10 ("Haskell " ++ "rocks!")
"Haskell ro"

71

The function application operator

One pattern where you see the dollar sign used sometimes is
between a chain of composed functions and an argument being
passed to (the first of) those.

A> sum . drop 3 . take 5 [1..10]

error.

A> sum . drop 3 . take 5 $ [1..10]
9

A> (sum . drop 3 . take 5) [1..10]
9

A> sum . drop 3 $ take 5 [1..10]
9

72

The function application operator

Function application.

)\> map (\f -> f 2) [(* 1) | i <= [1’2:3,475]]
[2,4,6,8,10]

A> map 2 [(x i) | 1 <= [1,2,3,4,5]]
error.

A> map ($ 2) [(x 1) | i <= [1,2,3,4,5]]
[2,4,6,8,10]

A> map ($ 2) [f i | £ <= [(¥),(N], i< [1,2,3,4,5]]
[2,4,6,8,10,3,4,5,6,7]

73

$ is just an identity function for ... functions.

($) :: (a->b) —>a->b
(a ->Db) > (a -> b)

id :: a > a
(a =>b) > (a->b) —— fora ~a->0

74

$ is just an identity function for ... functions.

($) :: (a->b) —>a->b
(a ->Db) > (a -> b)

id :: a > a
(a =>b) > (a->b) —— fora ~a->0

A> (sum . drop 3 . take 5) [1..10]
A> sum . drop 3 $ take 5 [1..10]
A> (sum . drop 3) “id" take 5 [1..10]

A> id (sum . drop 3) (take 5 [1..10])
9 74

Origami programming

Origami programming

75

Folding

e In functional programming, fold is a family of higher order
functions that process a data structure in some order and
build a return value.

e This is as opposed to the family of unfold functions which
take a starting value and apply it to a function to generate a
data structure.

e A fold deals with two things:

1. a combining function, and

2. a data structure.
The fold then proceeds to combine elements of the data
structure using the function in some systematic way.

76

Folding right

foldr :: (a -=>b ->Db) -=>b -> [a] > b
foldr f z [] =z
foldr f z (x:xs) f x (foldr f z xs)

foldr f z
/‘\
f
/\ 7/ \
1 f
/\ 7/ \
2 f
/\ 7/ \
3 f
/\ 7/ \
4 f
/\ / N\

] 5 z
77

Folding right

foldr ::

foldr
foldr

foldr
=)
=)
=)
=)
=)
=)
=)
= ()
= 10

N = T e e = =

fz []

f z (x:x8)

(a->b->Db) >Db->[a] > b

=z
f x (foldr f z xs)

(+) 0 [1,2,3,4]
(foldr

((+)
(+)
(+)
()
()
((+)
9

2
2
2
2
2
2

(+) 0 [2,3,4]

(foldr (+) 0 [3,4])

((+) 3 (foldr (+) 0 [4])

((+) 3 ((+) 4 (foldr (+) 0 [D)
((+) 3 ((+) 4 0) -- stop recursion
((+) 3 4)

7)

78

Folding right

foldr :: (a ->b ->Db) ->b -> [a] > b
foldr f z [] =z
foldr f z (x:xs) = f x (foldr f z xs)

foldr (:) [1 [1,2,3,4]

= (:) 1 (foldr (:) [1 [2,3,4]

= (:) 1 ((:) 2 (foldar (:) [0 [3,4D)

= () 1 () 2 ((:) 3 (foldr (:) [1 [4D)

= (:) 1 (C:) 2 () 3 ((:) 4 (foldr (:) [1 [1)

= () 1 () 2 () 3 ((:) 4 [1) -- stop recursion
= () 1 () 2 () 34:[D

= ()1 () 2 3:4:[D

= (:) 1 2:3:4:[]

= 1:2:3:4:[] -- [1,2,3,4]

79

Folding right

foldr :: (a ->b ->Db) ->b -> [a] > b
foldr f z [] =z
foldr f z (x:xs) = f x (foldr f z xs)

let f x acc = [x]:acc in foldr f [] [1,2,3,4]

=f 1 (foldr £ [1 [2,3,4]

=f 1 (f 2 (foldr £ [1 [3,4]1))

=f 1 (f2 (f 3 (foldr £ [1 [41)))

=f 1 (f2 (3 (4 (foldr £ [1 [1))))

=f 1 (2 3 E 4 1[1))) - stop recursion
=f 1 (f2(f31[4]:01))

=f 1 (f 2 [3]:[4]:[1)

=f 1 [2]:[3]:[4]:0]

= [1]:[2]:[3]:[4]:[] -- [[1],[2], [3], [4]]
80

Folding right

foldr ::
foldr f z [] =z
foldr f z (x:xs) = f x (foldr f z xs)

let f

(f
(f
(f
(f
(f
(f

|
FHh Fh Fh Fh Fh Fh Fh Hh
T e = T = = T = =

(a->b->Db) >Db->[a] > b

x acc = acc ++ [x] in foldr f [] [1,2,3,4]

2

N NN DN DN

(foldr £ [1 [2,3,4]

(foldr £ [1 [3,41))

(f 3 (foldr £ [1 [41)))

(f 3 (£ 4 (foldr £ [1 [N

(f 3 (£ 4 [1))) —- stop recursion
(£ 3 ([0 ++ [4D))

([0 ++ [4] ++ [31))

(0] ++ [4] ++ [3] ++ [2])

= [1 ++ [4] ++ [3] ++ [2] ++ [1] -- [4,3,2,1]

81

Folding left

foldl :: (b ->a ->b) ->b -> [a] > b
foldl f z [] =z
foldl f z (x:xs) foldl f (f z x) xs

foldl £ z

,/\.f

/\ /N
1 : f 5

/ N\ / N\

2 : f 4

/N /\

3 3

/\ /\
/\ /\

82

Folding left

foldl ::

foldl f z (x:xs)

(b->a->b) >b ->[a] > b
foldl f z []

=z
foldl f (f z x) xs

foldl (+) 0 [1,2,3,4]

= foldl (+)
= foldl (+)
= foldl (+)
= foldl (+)
= ((+) ()
= ((+) ()
= ((+) ()
= ((+) 6 4
= 10

)
)
)
)
)
)
3 3)

0 1) [2,3,4]

((+) 0 1) 2) [3,4]

((+) ((+) 0 1) 2) 3) [4]

((+) ((+) ((+) 01) 2) 3) 4 []

((+) 0 1) 2) 3) 4) —-- stop recursion
1.2) 3) 4

4)

83

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b
foldl f z [] =z
foldl f z (x:xs) = foldl £ (f z x) Xs

let fC acc x = x:acc in foldl fC [] [1,2,3,4]
foldl fC (£C [] 1) [2,3,4]

foldl £C (fC (fC [1 1) 2) [3,4]

foldl fC (£C (fC (£C [1 1) 2) 3) [4]

foldl fC (£C (fC (£fC (£C [1 1) 2) 3) 4) [I

(fC (fC (£fC (£C [1 1) 2) 3) 4) -- stop recursion
(fC (fC (£C 1:[1 2) 3) 4)

(fC (£fC 2:1:[1 3) 4)

(fC 3:2:1:[] 4)

4:3:2:1:[] - [4,3,2,1]
84

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b
foldl f z [] =z
foldl f z (x:xs) foldl f (f z x) xs

let fC acc x = [x]:acc in foldl fC [] [1,2,3,4]
= foldl fC (£fC [1 1) [2,3,4]
= foldl fC (fC (£fC [1 1) 2) [3,4]
= foldl fC (£fC (fC (£C [1 1) 2) 3) [4]
= foldl fC (fC (fC (fC (fC [1 1) 2) 3) 4) []
= (fC (fC (£C (£fC [] 1) 2) 3) 4) -- stop recursion
= (fC (fC (£C [1]1:01 2) 3) 4)
= (fC (fC [2]:[1]1:01 3) 4)
= (fC [3]:[2]:[11:01 4
= [4]:[3]1:[2]:[1]:[] -= [[4]1,[3],[2],[1]]

85

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b
foldl f z [] =z
foldl f z (x:xs) foldl f (f z x) xs

let fC acc x = acc ++ [x] in foldl fC [] [1,2,3,4]
foldl fC (£C [] 1) [2,3,4]

foldl £C (fC (fC [1 1) 2) [3,4]

foldl fC (£C (fC (£C [1 1) 2) 3) [4]

foldl fC (£C (fC (£fC (£C [1 1) 2) 3) 4) [I

= (fC (fC (£C (£fC [] 1) 2) 3) 4) -- stop recursion
= (fC (fC (fC [J++[1] 2) 3) 4)

= (fC (fC [I1++[11++[2] 3) 4)

= (£C [I++[1]1++[2]1++[3] 4)

= [1++[1]++[2]++[3]++[4] -- [1,2,3,4]

86

Folding

foldr f z foldl f z
f
/ N\ /\
1 f
/ N\ /\
2 f
/\ /\
3
/\ /\

/\ /\

87

Curried functions & friends

Curried functions & friends

88

Currying is the process of transforming a function that takes
multiple arguments in a tuple as its argument, into a function that
takes just a single argument and returns another function which
accepts further arguments, one by one, that the original function

would receive in the rest of that tuple.
f:ra->b->c --d.e f::a->((->c
is the curried form of

g :: (a, b) > c

In Haskell, all functions are considered curried: That is, all

functions in Haskell take just one argument.

89

Currying / uncurrying

f::a->b->c --id.e. f::a-> (b ->c)
g :: (a, b) > ¢

You can convert these two types in either directions with the
Prelude functions curry and uncurry:

curry :: ((a, b) > c¢c) > a >b -> ¢
uncurry :: (a -> b -> ¢c) > (a, b) > c
We have:

f = curry g

g = uncurry f

90

Currying / uncurrying

f::a->b->c --id.e. f::a-> (b ->c)
g :: (a, b) > ¢

You can convert these two types in either directions with the
Prelude functions curry and uncurry:

curry :: ((a, b) > c¢c) > a >b -> ¢
uncurry :: (a -> b -> ¢c) > (a, b) > c

Both forms are equally expressive. It holds:

fxy=g x,y)

90

A > :type (+)
(#) :: Num a => a -> a -> a

A> addl = (+) 1
A > :type addl

addl :: Num a => a —-> a
A > addl 2
3

A > :type uncurry (+)
uncurry (+) :: Num a => (a, a) -> a

A > uncurry (+) (1,2)
3

A > uncurry (+) 1

error.

91

A > zipWith (+) [0..4] [10..14]
[10,12,14,16,18]

A> :type (+)
(+) :: Num a => a -> a -> a

A > :type map
map :: (a -> b) -> [a] -> [b]

A> zip [0..4] [10..14]
£¢0,10),(1,11),(2,12),(3,13), (4,14)]

A> map (\(x,y) -> x+y) $ zip [0..4] [10..14]
[10,12,14,16,18]

A > map (uncurry (+)) $ zip [0..4] [10..14]
[10,12,14,16,18]

92

A> :type fst
fst :: (a, b) > a

A> fst (1,2)
1

A> fst 1

error.

A > type curry fst
curry fst :: a -> b > a

A> f = curry fst 1

A> :type f
f :: Num a => b -> a
A>f 2

1

93

A> add p = fst p + snd p
A > :type add
add :: Num a => (a, a) -> a

A> add (1,2)
3

A > addl = curry add 1
A > :type addl

addl :: Num a => a —-> a
A > addl 2
3

94

Flipping

flip :: (@ =>b > ¢c) > b ->a -> ¢
evaluates the function flipping the order of arguments

A> (/) 12
0.5

A> foldr (++) [] [IIAII,IIBII,IICII’HDII]
"ABCD"

}\> foldr (fllp (++)) [:I [IIAII’IIBII’IICII’IIDH]
"DCBA"

A> foldr (:) [1 ['a'..'d']
"abcd"

A > foldr (flip (:)) [I ['a'..'d']

error.

95

Flipping

flip :: (2 => b ->¢c) -> b -> a -> ¢

evaluates the function flipping the order of arguments

A> (/) 12
0.5

A >_ foldr (++) [] ["A","B","C","D"]
"ABCD"

A > foldr (flip (++)) [] ["A","B","C","D"]
"DCBA"

A> foldr (:) [] ['a'..'d']
"abcd"

A> foldr (flip (:)) [1 ['a'..'d']

error.

96

Flipping

flip :: (2 => b ->¢c) -> b -> a -> ¢

evaluates the function flipping the order of arguments

flipl :: (a -=>b ->c¢c) > b -> a -> ¢

flipl f xy=f y x

flipl :: (a -=>b ->c¢c) > b -> a -> ¢
flipt £ = \x > \y > f y x

96

Flipping — Use cases

A> foldr (:) [1 [1..4]
[1,2,3,4]

A > foldl (flip (:)) [1 [1..4]
[4,3,2,1]

A > foldl (-) 100 [1..4] -— (((100-1)-2)-3)—4
90
A > foldr (-) 100 [1..4] -— 1-(2-(3-(4-100)))
98
A > foldl (flip (-)) 100 [1..4] —-- 4-(3-(2-(1-100)))
102
A > foldr (flip (-)) 100 [1..4]1 -- (((100-4)-3)-2)-1
90

97

const :: a > b —-> a

const x y always evaluates to x, ignoring its second argument.

A > const 1 2
1

A > const (2/3) (1/0)
0.6666666666666666

A > const take drop 5 [1..10]

[1,2,3,4,5]

A > foldr (_ acc -> 1 + acc) 0 [1..10]
10

A > foldr (const (1+)) 0 [1..10]

10

98

IIHiHHHHHIHIII

const :: a > b —-> a

const x y always evaluates to x, ignoring its second argument.

constl :: a -> b -> a
constl x _ = x
const2 :: a -> b —> a

const2 = \x > _ —> x

98

Fun with flipping and constant

curry id = \x y -> id (x, y) -- def. curry
=\xy > &, y) -- def. 1id
=\xy > () xy -- desugar
=\x > (,) x -- eta reduction
= () -- eta reduction

A> curry id 1 2
(1,2)

A> () 12
(1,2)

99

Fun with flipping and constant

uncurry const = \(x, y) -> const x y -- def. uncurry
=\(x, y) >x -- def. const
= fst -- def. fst

A > uncurry const (1, 2)
1

A> fst (1, 2) -- from Data.Tuple (in Prelude)
1

99

Fun with flipping and constant

uncurry (flip const)

= \(x, y) -> (flip const) x y -- def. uncurry
= \(x, y) -> const y x -- def. flip
=\(x, y) >y -- def. const

= snd -- def. snd

A > uncurry (flip comnst) (1, 2)
2

A> snd (1, 2) -- from Data.Tuple (in Prelude)
2

99

Fun with flipping and constant

uncurry (flip (,))

= \(x, y) > (flip (,)) x y -- def. uncurry
=\(x,) > () yx -- def. flip
=\(x, y) > (y, x) -- desugar

A > uncurry (flip (,)) (1, 2)
(2,1)

A > import Data.Tuple

A > :type swap

swap :: (a, b) -> (b, a)

A> swap (1, 2)

(2,1)

99

Processing lists — revisit

Processing lists — revisit

100

Rotations — revisit

Produce all rotations of a list.

A > rotate []

L1l

A > rotate [1]

[[1]1]

A > rotate [1,2]

[r2,11,1,211]

A > rotate [1,2,3]
[es,1,21,I02,3,11,[1,2,3]1]

A > rotate [1,2,3,4]
(r4,+,2,31,13,4,1,21,[2,3,4,11,[1,2,3,4]]

101

Rotations — revisit

Produce all rotations of a list.

shiftixs ::

shiftl []

[a] -> [al
(]

shiftl (x:xs) = xs ++ [x]

rotated ::
rotate3 []

rotate3d xs

[a]l -> [[al]
= [[]]
= foldl (\acc@(xs':acc') _ -> shift xs':acc) [x:

101

Rotations — revisit

Produce all rotations of a list.

rotate4 :: [a]l -> [[all

rotate4 xs = init $§ zipWith (++) (tails xs) (inits xs)
-- tails [1,2,3,4] = [[1,2,3,4], [2,3,4], [3,4], [4],

-- inits [1,2,3,4] = [[], [17, [1,2], [1,2,3],

101

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

-- foldr
eleml :: (Foldable t, Eq a) => a -> t a -> Bool
eleml x' xs = foldr f False xs
where
fxb=x==x"1]|b

102

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

-— eta-reduction

elem2 :: (Foldable t, Eq a) => a -> t a —-> Bool
elem2 x' = foldr f False
where
fxb=x==x"1]|b

102

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

—-— lambda
elem3 :: (Foldable t, Eq a) => a -> t a -> Bool
elem3 x' = foldr (\x b -> x == x' || b) False

102

Filtering (revisit)

Data.List.filter, applied to a predicate and a list, returns the
list of those elements that satisfy the predicate.

filter3 :: Foldable t => (a -> Bool) -> t a —-> [al
filter3 p xs = foldr f [] xs

where
f x acc
| p x = x:acc
| otherwise = acc

103

Repeating (revisit)

Data.List.repeat takes an element and returns an infinite list
that just has that element.

repeatd :: a —> [a]
repeatd x = foldr (_ acc -> x:acc) [] [1..]

104

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,
which must be non-empty, finite, and of an ordered type.

105

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,
which must be non-empty, finite, and of an ordered type.

maximum4 :: Ord a => [a] -> a
maximumé [] = error "empty list"
foldr £ x xs

maximum4 (x:xs)
where

f xm=41if x > m then x else m

maximumb :: Ord a => [a] > a

maximumb [] error "empty list"

maximum5 (x:xs) foldr max x xs

105

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,
which must be non-empty, finite, and of an ordered type.

maximumé :: Ord a => [a] -> a
maximumé [] = error "empty list"

maximum6 xs = foldll max xs

maximum7 :: Ord a => [a] -> a
maximum?7 [] = error "empty list"

maximum7 xs = foldrl max xs

105

Remove duplicate

Data.Foldable.nub :: Eq a => [a] -> [al

The nub function removes duplicate elements from a list. In
particular, it keeps only the first occurrence of each element.

106

Remove duplicate

Data.Foldable.nub :: Eq a => [a] -> [al

The nub function removes duplicate elements from a list. In
particular, it keeps only the first occurrence of each element.

nubl :: Eq a => [a] -> [a]
nubl [] = []
nubl (x : xs)

x:nubl (filter (\y -> x/=y) xs)

nub2 :: Eq a => [a] -> [a]
nub2 [] = []

nub2 (x : xs) x:nubl xs'

where

xs' = filter (/=x) xs

106

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==
function.

107

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a
user-supplied equality predicate instead of the overloaded ==
function.
nubByl :: Eq a => (a -> a -> Bool) -> [a] -> [a]
nubByl _ [] = []
nubByl p (x : xs) = x:nubl xs'

where

xs' = filter (not . p x) xs

nub3 :: Eq a => [a] -> [a]
nub3 = nubBy (==

107

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a
user-supplied equality predicate instead of the overloaded ==

function.
elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool
elemBy _ _ [] = False

elemBy eq y (x:xs) = x “eq” y || elemBy eq y xs
nubBy2 :: (a -> a -> Bool) -> [a] -> [a]
nubBy2 eq xs = go xs []

where

go [] _ (]
go (y:ys) xs

| elemBy eq y Xxs = go ys xs

| otherwise y:go ys (y:xs) 107

	Lists
	Enumerations
	List comprehensions
	Processing lists – basic functions
	High-order functions
	Origami programming
	Curried functions & friends
	Processing lists – revisit

