
Functional programming

Lecture 02 — Functions

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

February 13, 2023

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Lists

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

1

The anatomy of a list

• Lists are the workhorses of functional programming.

• Lists are inherently recursive.

• A list is either empty or an element followed by another list.

2

List notation

• The type [a] denotes lists of elements of type a.

• The empty list is denoted by [].

• We can have lists over any type but we cannot mix different

types in the same list

3

List notation

[] :: [a]

[undefined,undefined] :: [a]

[sin,cos,tan] :: Floating a => [a -> a]

[[1,2,3],[4,5]] :: Num a => [[a]]

[(+1),(*2)] :: Num a => [a -> a]

[(1,'1',"1"),(2,'2',"2")] :: Num a => [(a, Char, String)]

["tea","for",2] not valid

4

List notation

• The operator (:) :: a -> [a] -> [a] (pronounced cons)

is constructor for lists.

• Cons associates to the right.

• Cons is non-strict in both arguments.

• List notation, such as [1,2,3,4], is in fact an abbreviation

for the more basic form 1:2:3:4:[]

5

List notation

[1,2,3,4,5] ≡ 1:2:3:4:5:[]

(:)

1 (:)

2 (:)

3 (:)

4 (:)

5 []

6

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

7

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

λ > head [1,2,3,4]

1

λ > head (1:[2,3,4])

1

λ > head [1]

1

λ > head (1:[])

1

λ > head []

*** Exception: Prelude.head: empty list
7

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

head1 :: [a] -> []

head1 [] = error "*** Exception: head: empty list"

head1 (x:xs) = x

head2 :: [a] -> []

head2 [] = error "*** Exception: head: empty list"

head2 (x:_) = x

7

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

8

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

λ > tail [1,2,3,4]

[2,3,4]

λ > tail (1:[2,3,4])

[2,3,4]

λ > tail [1]

[]

λ > tail (1:[])

[]

λ > tail []

*** Exception: Prelude.tail: empty list
8

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

tail1 :: [a] -> []

tail1 [] = error "*** Exception: tail: empty list"

tail1 (x:xs) = xs

tail2 :: [a] -> []

tail2 [] = error "*** Exception: tail: empty list"

tail2 (_:xs) = xs

8

Enumerations

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

9

Enumerating lists of integers

When m, n and p are integers, we can write

[m..n] for the list [m,m+1,m+2,...,n]

[m..] for the infinite list [m,m+1,m+2,...]

[m,p..n] for the list [m,m+(p-n),m+2(p-n),...,n]

[m,p..] for the infinite list [m,m+(p-n),m+2(p-n),...]

10

Enumerating lists of integers

λ > [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > [10..1]

[]

λ > [1..]

[1,2,3,4,5,6,7,8,9,... ^CInterrupted.

λ > [1,3..9]

[1,3,5,7,9]

λ > [1,3..0]

[]

11

Enumerating lists of integers

λ > [10,8..0]

[10,8,6,4,2,0]

λ > [10,8..1]

[10,8,6,4,2]

λ > [5,3..]

[5,3,1,-1,-3,-5,-7,-9,... ^CInterrupted.

12

Enumerating lists of integers

Do not use floating point numbers in enumerations! Never ever!

λ > [0.1,0.3..1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

λ > [1,0.6..0]

[1.0,0.6,0.19999999999999996]

λ > [1,4/3..2]

[1.0,1.3333333333333333,1.6666666666666665,1.9999999999999998]

λ > [5,13/3..3]

[5.0,4.333333333333333,3.666666666666666,2.999999999999999]

13

Enumerating lists of integers

Do not expect too much!

λ > [1,2,4,8,16..100] -- expecting the powers of 2 !

<interactive>: error: parse error on input '..'

λ > [2,3,5,7,11..101] -- expecting prime numbers

<interactive>: error: parse error on input '..'

λ > [1,-2,3,-4..9] -- expecting [1,-2,3,-4,5,-6,7,-8,9]

<interactive>: error: parse error on input '..'

λ > [100,50,25..1] -- expecting [100,50,25,12.5,6.25,...]

<interactive>: error: parse error on input '..'

14

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

λ > succ 'a'

'b'

λ > pred 'z'

'y'

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['A'..'Z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

λ > succ 'A'

'B'

λ > pred 'Z'

'Y'

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['a','c'..'z']

"acegikmoqsuwy"

λ > ['z','y'..'a']

"zyxwvutsrqponmlkjihgfedcba"

λ > ['z','x'..'a']

"zxvtrpnljhfdb"

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > succ 'Z'

'['

λ > pred 'a'

'`'

λ > ['A'..'z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz"

15

Enumerating lists of integers

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

More on this soon !

15

List comprehensions

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

16

List comprehensions

Comprehensions are annotations in Haskell which are used to

produce new lists from existing ones

[f x | x <- xs]

• Everything before the pipe determines the output of the list

comprehension. It’s basically what we want to do with the list

elements.

• Everything after the pipe | is the generator.

• A generator:

• Generates the set of values we can work with.

• Binds each element from that set of values to x .

• Draw our elements from that set

(<- is pronounced ”drawn from”).

17

List comprehensions

• Set (i.e., math) point of view.

{x2 : x ∈ N}

• Comprehensions (i.e., Haskell) point of view.

[x*x | x <- [1..]]

18

List comprehensions

λ > [x*x | x <- [1..9]]

[1,4,9,16,25,36,49,64,81]

λ > [x*x | x <- [1,3..9]]

[1,9,25,49,81]

λ > [2^n | n <- [1..10]]

[2,4,8,16,32,64,128,256,512,1024]

λ > [(-1)^(n+1) * n | n <- [1..10]]

[1,-2,3,-4,5,-6,7,-8,9,-10]

λ > [100/n | n <- [1..10]]

[100.0,50.0,33.333333333333336,25.0,20.0,16.666666666666668,

14.285714285714286,12.5,11.11111111111111,10.0]

19

Many generators

λ > [x | x <- []]

[]

λ > [(x,y) | x <- [1..3], y <- [1..3]]

[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)

λ > [(x,y) | x <- [1..3], y <- [x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

λ > [x*y | x <- [1..3], y <- [1..3]]

[1,2,3,2,4,6,3,6,9]

λ > let n = 2 in [x*y `mod` n | x <- [1..3], y <- [1..3]]

[1,0,1,0,0,0,1,0,1]

20

Many lists

λ > [[1..n] | n <- [1..4]]

[[1],[1,2],[1,2,3],[1,2,3,4]]

λ > [[m..n] | m <- [1..4], n <- [1..4]]

[[1],[1,2],[1,2,3],[1,2,3,4],[],[2],[2,3],[2,3,4],[],[],[3],

[3,4],[],[],[],[4]]

λ > [[m..n] | m <- [1..4], n <- [m..4]]

[[1],[1,2],[1,2,3],[1,2,3,4],[2],[2,3],[2,3,4],[3],[3,4],[4]]

λ > [[[m..n] | n <- [m..3]] | m <- [1..3]]

[[[1],[1,2],[1,2,3]],[[2],[2,3]],[[3]]]

λ > [[[m..n] | n <- [1..3]] | m <- [1..3]]

[[[1],[1,2],[1,2,3]],[[],[2],[2,3]],[[],[],[3]]]

21

Predicates

• If we do not want to draw all elements from a list, we can add

a condition, a predicate.

• A predicate is a function which takes an element and returns a

boolean value.

[f x | x <- xs, p1 x, p2 x, ..., pn x]

22

Predicates

λ > [x*x | x <- [1..10], even x]

[4,16,36,64,100]

λ > [(x,x*x) | x <- [1..10], even x]

[(2,4),(4,16),(6,36),(8,64),(10,100)]

λ > [(x,x*x) | x <- [1..10], even x, x `mod` 3 /= 0]

[(2,4),(4,16),(8,64),(10,100)]

λ > [(x, y) | x <- [1..10], even x, y <- [x..10], odd y]

[(2,3),(2,5),(2,7),(2,9),(4,5),(4,7),(4,9),(6,7),(6,9),(8,9)]

λ > [x | x <- [1..100], even x, x `mod` 3 == 0, x `mod` 5 == 0]

[30,60,90]

23

Predicates and pattern matching

λ > [x | (x,1) <- [(x,y) | x <- [1..3], y <- [1..3]]]

[1,2,3]

λ > [x | (x,y) <- [(x,y) | x <- [1..3], y <- [1..3]], y<=2]

[1,1,2,2,3,3]

λ > [(x,y) | (x,y) <- [(x,y) | x <- [1..3], y <- [1..3]], x==y]

[(1,1),(2,2),(3,3)]

λ > [y | xys <- [[(x,x*2)] | x <- [1..6]], (2,y) <- xys]

[4]

λ > [y | xys <- [[(x,x*2)] | x <- [1..6]], (x,y) <- xys, even x]

[4,8,12]

24

Problem solving with list comprehensions

Compute the list [1,1+2,...,1+2+3+...+n].

-- assuming we don't know about Data.Foldable.sum

sums :: (Num a, Enum a, Eq a) => a -> [a]

sums n = [f k | k <- [1..n]]

where

f 1 = 1

f k = k + f (k-1)

λ > sums 10

[1,3,6,10,15,21,28,36,45,55]

λ > [n*(n+1) `div` 2 | n <- [1..10]]

[1,3,6,10,15,21,28,36,45,55]

25

Problem solving with list comprehensions

Compute the list [1^2,1^2+2^2,...,1^2+2^2+3^2+...+n^2].

-- assuming we don't know about Data.Foldable.sum

sumsSq :: (Num a, Enum a, Eq a) => a -> [a]

sumsSq n = [f k | k <- [1..n]]

where

f 1 = 1

f k = k*k + f (k-1)

λ > sumsSq 10

[1,5,14,30,55,91,140,204,285,385]

λ > [n*(n+1)*(2*n+1) `div` 6 | n <- [1..10]]

[1,5,14,30,55,91,140,204,285,385]

26

Problem solving with list comprehensions

Compute the list of all positive intergers k 6 n such that k 6≡ 0

(mod 2), k 6≡ 0 (mod 3) , k ≡ 1 (mod 5) and k ≡ 0 (mod 7).

f :: Integral a => a -> [a]

f n = [k | k <- [1..n]

, odd k

, k `mod` 3 > 0

, k `mod` 5 == 1

, k `mod` 7 == 0]

λ > f 1000

[91,161,301,371,511,581,721,791,931]

27

Problem solving with list comprehensions

A Pythagorean triple consists of three positive integers a, b, and c ,

such that a2 + b2 = c2. Compute all Pythagorean triples with

a < b < c 6 15.

-- naive implementation

pythT :: (Num a, Enum a, Eq a) => c -> [(a, a, a)]

pythT n = [(a, b, c) | a <- [1..n]

, b <- [a+1..n]

, c <- [b+1..n]

, a*a + b*b == c*c]

λ > pythT 15

[(3,4,5),(5,12,13),(6,8,10),(9,12,15)]

28

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s1 :: Num a => [a]

p2s1 = [2^n | n <- 1:p2s1]

λ > take 11 p2s1

[2,4,8,16,32,64,128,256,512,1024,2048]

λ > head (drop 120 p2s1)

2658455991569831745807614120560689152

29

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s2 :: Num a => [a]

p2s2 = [2*n | n <- 1:p2s2]

n=1

p2s2 = 1:2^1:p2s2

n=2

p2s2 = 1:2^1:2^2:p2s2

n=3

p2s2 = 1:2^1:2^2:2^3:p2s2

n=4

p2s2 = 1:2^1:2^2:2^3:2^4:p2s2

...

29

Problem solving with list comprehensions

Compute the infinite list of all binary strings.

binaries :: [String]

binaries = [b:bs | bs <- "":binaries, b <- ['0','1']]

λ > take 11 binaries

["0","1","00","10","01","11","000","100","010","110","001"]

λ > head (drop 10000000 binaries)

"01000001011010010001100"

30

Processing lists – basic functions

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

31

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

32

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

λ > 2 `elem` [1..5]

True

λ > 8 `elem` [1..5]

False

32

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

elem1 :: Eq a => a -> [a] -> Bool

elem1 _ [] = False

elem1 x' (x:xs)

| x == x' = True

| otherwise = elem1 x' xs

elem2 :: Eq a => a -> [a] -> Bool

elem2 _ [] = False

elem2 x' (x:xs) = x == x' || elem2 x' xs 32

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

33

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

λ > repeat 'a'

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

^C Interrupted.

λ > repeat "a" -- i.e. repeat ['a']

["a","a","a","a","a","a","a","a"...

^C Interrupted.

33

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

repeat1 :: a -> [a]

repeat1 x = x:repeat1 x

repeat2 :: a -> [a]

repeat2 x = [x | n <- [1 ..]]

repeat3 :: a -> [a]

repeat3 x = [x | _ <- [1 ..]]

33

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

34

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

λ > take 10 [1..20]

[1,2,3,4,5,6,7,8,9,10]

λ > take 10 [1..]

[1,2,3,4,5,6,7,8,9,10]

λ > take 20 [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > take 0 [1..]

[]

λ > take (-1) [1..]

[]
34

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

take1 :: (Ord t, Num t) => t -> [a] -> [a]

take1 _ [] = []

take1 n (x:xs)

| n <= 0 = []

| otherwise = x:take1 (n-1) xs

take2 :: (Eq t, Num t) => t -> [a] -> [a]

take2 _ [] = []

take2 0 _ = []

take2 n (x:xs) = x:take2 (n-1) xs

34

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

35

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

λ > drop 10 [1..20]

[11,12,13,14,15,16,17,18,19,20]

λ > drop 10 [1..]

[11,12,13,14,15,16,17,18,19,20,...

^C Interrupted.

λ > drop (-1) [1..]

[1,2,3,4,5,6,7,8,9,10,...

^C Interrupted.

λ > drop 20 [1..10]

[]

35

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

drop1 :: (Ord t, Num t) => t -> [a] -> [a]

drop1 _ [] = []

drop1 n (x:xs)

| n > 0 = drop1 (n-1) xs

| otherwise = x:xs

drop2 :: (Ord t, Num t) => t -> [a] -> [a]

drop2 _ [] = []

drop2 n xs@(_:xs')

| n > 0 = drop2 (n-1) xs'

| otherwise = xs

35

Taking and Dropping – In practice

Define a function that rotates the elements of a list n places to the

left, wrapping around at the start of the list, and assuming that

the integer argument n is between zero and the length of the list.

For example:

λ > rotate 0 [1..8]

[1,2,3,4,5,6,7,8]

λ > rotate 1 [1..8]

[2,3,4,5,6,7,8,1]

λ > rotate 4 [1..8]

[5,6,7,8,1,2,3,4]

36

Taking and Dropping – In practice

Define a function that rotates the elements of a list n places to the

left, wrapping around at the start of the list, and assuming that

the integer argument n is between zero and the length of the list.

rotate1 :: Int -> [a] -> [a]

rotate1 = go []

where

go acc 0 xs = xs ++ reverse acc

go acc n [] = go [] n (reverse acc) -- (*)

go acc n (x:xs) = go (x:acc) (n-1) xs

rotate2 :: Int -> [a] -> [a]

rotate2 n xs = drop n xs ++ take n xs

36

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

37

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

λ > replicate 10 1

[1,1,1,1,1,1,1,1,1,1]

λ > replicate 0 1

[]

λ > replicate (-1) 1

[]

37

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

replicate1 :: (Num t, Ord t) => t -> a -> [a]

replicate1 n x

| n <= 0 = []

| otherwise = x:replicate1 (n-1) x

replicate2 :: (Ord t, Num t) => t -> a -> [a]

replicate2 n x = take n (repeat x)

37

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

38

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

λ > tails [1..4]

[[1,2,3,4],[2,3,4],[3,4],[4],[]]

λ > tails []

[[]]

λ > tails [1..]

^C Interrupted.

λ > head (tails [1..])

^C Interrupted.

38

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

tails1 :: [a] -> [[a]]

tails1 [] = [[]]

tails1 (x:xs) = (x:xs):tails1 xs

tails2 :: [a] -> [[a]]

tails2 [] = [[]]

tails2 xs@(_:xs') = xs:tails2 xs'

38

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

39

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

λ > reverse [1..5]

[5,4,3,2,1]

λ > reverse []

[]

λ > reverse [1..]

^C Interrupted.

39

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

-- inefficient because of (++)

reverse1 :: [a] -> [a]

reverse1 [] = []

reverse1 (x:xs) = reverse1 xs ++ [x]

-- using an accumulator is much more efficient

reverse2 :: [a] -> [a]

reverse2 = go []

where

go acc [] = acc

go acc (x:xs) = go (x:acc) xs 39

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

40

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

λ > init [1,2,3,4]

[1,2,3]

λ > init [1]

[]

λ > init []

*** Exception: Prelude.init: empty list

40

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

init1 :: [a] -> [a]

init1 [] = error "*** Exception: init': empty list"

init1 [_] = []

init1 (x:xs) = x:init' xs

-- with functors and Maybe type

safeInit :: [a] -> Maybe [a]

safeInit [] = Nothing

safeInit [_] = Just []

safeInit (x:xs) = (x :) <$> safeInit xs

40

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

41

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

λ > inits [1..4]

[[],[1],[1,2],[1,2,3],[1,2,3,4]]

λ > inits [1]

[[],[1]]

λ > inits []

[[]]

λ > inits [1..]

[[],[1],[1,2],[1,2,3],[1,2,3,4],...^C Interrupted.

λ > head (inits [1..])

[]
41

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

inits1 :: [a] -> [[a]]

inits1 [] = [[]]

inits1 xs = inits1 (init xs) ++ [xs]

inits2 :: [a] -> [[a]]

inits2 = reverse . go

where

go [] = [[]]

go xs = xs:go (init xs)

41

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

42

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

λ > intersperse ',' ['a','b','c','d']

"a,b,c,d"

λ > intersperse 0 [1,2,3,4]

[1,0,2,0,3,0,4]

λ > intersperse [0] [[1,2],[3,4],[5,6]]

[[1,2],[0],[3,4],[0],[5,6]]

42

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

intersperse1 :: a -> [a] -> [a]

intersperse1 _ [] = []

intersperse1 _ [x] = [x]

intersperse1 y (x:xs) = x:y:intersperse1 i xs

42

Concatening

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

43

Concatening

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

λ > concat [[1,2],[3,4],[5,6]]

[1,2,3,4,5,6]

λ > concat [[1,2]]

[1,2]

λ > concat [[]]

[]

λ > concat []

[]

43

Concatening

Data.List.concat :: Foldable t => t [a] -> [a]

concat concatenates a list of lists.

-- recursive

concat1 :: [[a]] -> [a]

concat1 [] = []

concat1 (xs:xss) = xs ++ concat1 xss

-- with a list comprehension

concat2 :: [[a]] -> [a]

concat2 xss = [x | xs <- xss, x <- xs]

43

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

44

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

λ > intercalate [0] [[1,2],[3,4],[5,6]]

[1,2,0,3,4,0,5,6]

λ > intercalate [0] [[1,2]]

[1,2]

λ > intercalate [0] []

[]

λ > intercalate " -> " ["task1","task2","task3"]

"task1 -> task2 -> task3"

44

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

intercalate1 :: [a] -> [[a]] -> [a]

intercalate1 _ [] = []

intercalate1 _ [xs] = xs

intercalate1 xs' (xs:xss) = xs ++

xs' ++

intercalate1 xs' xss

intercalate2 :: [a] -> [[a]] -> [a]

intercalate2 xs xss = concat (intersperse xs xss)

44

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

45

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

λ > zip [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zip [1,2,3,4] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zip [1,2,3] ['a','b','c','d']

[(1,'a'),(2,'b'),(3,'c')]

45

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

zip :: [a] -> [b] -> [(a, b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y):zip xs ys

45

Zipping – In practice

Index a list from a given integer.

λ > index 0 ['a'..'f']

[(0,'a'),(1,'b'),(2,'c'),(3,'d'),(4,'e'),(5,'f')]

λ > index 1 ['a'..'f']

[(1,'a'),(2,'b'),(3,'c'),(4,'d'),(5,'e'),(6,'f')]

λ > index (2^10) ['a'..'e']

[(1024,'a'),(1025,'b'),(1026,'c'),(1027,'d'),(1028,'e')]

λ > index2 (-10) ['a'..'f']

[(-10,'a'),(-9,'b'),(-8,'c'),(-7,'d'),(-6,'e'),(-5,'f')]

46

Zipping – In practice

Index a list from a given integer.

index1 :: Num a => a -> [b] -> [(a, b)]

index1 n [] = []

index1 n (x:xs) = (n,x):index1 (n+1) xs

index2 :: Enum a => a -> [b] -> [(a, b)]

index2 n xs = zip [n..] xs

46

Zipping – In practice

Implementing take with zip.

take3 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take3 n xs = go (zip xs [1..])

where

go ((x,i):xis)

| i <= n = x:go xis

| otherwise = []

take4 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take4 n xs = go $ zip xs [1..]

where

go ((x,i):xis)

| i <= n = x:go xis

| otherwise = []

47

Zipping – In practice

Implementing take with zip.

-- don't do this!!!

-- infinite computation: a predicate does not stop

-- the infinite enumeration (we are just skipping

-- values again and again).

take5 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take5 n xs = [x | (x, i) <- zip xs [1..], i <= n]

-- not better!

take5 :: Int -> [a] -> [a]

take5 n xs = [x | (x, i) <- zip xs [1..nxs], i <= n]

where

nxs = length xs

47

Anding

Data.Foldable.and :: Foldable t => t Bool -> Bool

[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

48

Anding

Data.Foldable.and :: Foldable t => t Bool -> Bool

[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

λ > and []

True

λ > and [True]

True

λ > and [False]

False

λ > and (take 100 (repeat True) ++ [False])

False

48

Anding

Data.Foldable.and :: Foldable t => t Bool -> Bool

[Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

and1 :: [Bool] -> Bool

and1 [] = True

and1 (False:bas) = False

and1 (True:bs) = and1 bs

and2 [] = True

and2 (b:bs) = b && and2 bs

48

Oring

Data.Foldable.or :: Foldable t => t Bool -> Bool

[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

49

Oring

Data.Foldable.or :: Foldable t => t Bool -> Bool

[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

λ > or []

False

λ > or [True]

True

λ > or (take 100 (repeat False))

False

λ > or (take 100 (repeat False) ++ [True])

True

49

Oring

Data.Foldable.or :: Foldable t => t Bool -> Bool

[Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

or1 :: [Bool] -> Bool

or1 [] = False

or1 (True:bas) = True

or1 (False:bs) = or1 bs

or2 :: [Bool] -> Bool

or2 [] = False

or2 (b:bs) = b || or2 bs

49

Maximizing

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a

[a] -> a

maximum returns the largest element of a non-empty structure.

(minimum returns the largest element of a non-empty structure).

λ > maximum []

*** Exception: Prelude.maximum: empty list

λ > maximum [1]

1

λ > maximum [4,3,7,1,8,6,2,3,5]

8

λ > maximum [2,3,1,4,3,1,2,4]

4
50

Maximizing

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a

[a] -> a

maximum1 :: Ord a => [a] -> a

maximum1 [] = error "empty list"

maximum1 [x] = x

maximum1 (x:xs) = let m = maximum1 xs in if m>x then m else x

maximum2 :: Ord a => [a] -> a

maximum2 [] = error "empty list"

maximum2 [x] = x

maximum2 (x:xs) = max x (maximum2 xs)

50

Maximizing

Data.Foldable.maximum :: (Foldable t, Ord a) => t a -> a

[a] -> a

maximum3 :: Ord a => [a] -> a

maximum3 [] = error "empty list"

maximum3 (x:xs) = go x xs

where

go m [] = m

go m (x':xs')

| x' > m = go x' xs'

| otherwise = go m xs'

50

High-order functions

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

51

High-order functions

• A function that takes a function as an argument or returns a

function as a result is called a high-order function.

• Because the term curried already exists for returning functions

as results, the ther high-order is often just used for taking

functions as arguments.

• Using high-order functions considerably increases the power of

Haskell by allowing common programming patterns to be

encapsulated as functions within the language itself.

52

Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

53

Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

λ > filter even [1..10]

[2,4,6,8,10]

λ > filter (\x -> x `mod` 2 == 0) [1..10]

[2,4,6,8,10]

λ > filter (\x -> even x && odd x) [1..10]

[]

λ > filter (> 5) [1,5,2,6,3,7,4,8]

[6,7,8]

λ > filter (<= 5) [1,5,2,6,3,7,4,8]

[1,5,2,3,4]

53

Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

-- recursive

filter1 :: (a -> Bool) -> [a] -> [a]

filter1 _ [] = []

filter1 p (x:xs)

| p x = x:filter1 p xs

| otherwise = filter1 p xs

-- with a list comprehension

filter2 :: (a -> Bool) -> [a] -> [a]

filter2 p xs = [x | x <- xs, p x]

53

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

54

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

λ > map (*2) [1..5]

[2,4,6,8,10]

λ > map even [1..5]

[False,True,False,True,False]

λ > map (\x -> 2*x) [1..5] -- equiv map (2*) [1..5]

[2,4,6,8,10]

λ > map (\x -> [x]) [1..5]

[[1],[2],[3],[4],[5]]

54

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

λ > map (map (* 2)) [[1,2,3],[4,5,6],[7,8,9]]

[[2,4,6],[8,10,12],[14,16,18]]

λ > map (filter even) [[1,2,3],[4,5,6],[7,8,9]]

[[2],[4,6],[8]]

λ > map length [[1,2,3],[4,5,6],[7,8,9]]

[3,3,3]

λ > map (take 2) [[1,2,3],[4,5,6],[7,8,9]]

[[1,2],[4,5],[7,8]]

54

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

-- recursive

map1 :: (a -> b) -> [a] -> [b]

map1 _ [] = []

map1 f (x:xs) = f x:map1 f xs

-- with a list comprehension

map2 :: (a -> b) -> [a] -> [b]

map1 f xs = [f x | x <- xs]

54

Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

55

Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

M =

1 2

3 4

5 6

 M ′ =

1 2 0 0 0 0 0

3 4 0 0 0 0 0

5 6 0 0 0 0 0



m = [[1,2],

[3,4],

[5,6]]

m' = [[1,2,0,0,0,0,0],

[3,4,0,0,0,0,0],

[5,6,0,0,0,0,0]]

55

Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

λ > m = [[1,2],[3,4],[5,6]]

λ > addExtraColumns 0 m

[[1,2],[3,4],[5,6]]

λ > addExtraColumns 1 m

[[1,2,0],[3,4,0],[5,6,0]]

λ > addExtraColumns 5 m

[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]

55

Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns1 k xss = map (++ yss) xss

where

yss = replicate k 0

55

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.

56

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.

λ > takeWhile (< 10) [1..20]

[1,2,3,4,5,6,7,8,9]

λ > takeWhile odd ([1,3..10] ++ [1..10])

[1,3,5,7,9,1]

λ > takeWhile even [1..10]

[]

λ > takeWhile (> 0) (map (`mod` 5) [1..10])

[1,2,3,4]

56

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.

takeWhile1 :: (a -> Bool) -> [a] -> [a]

takeWhile1 _ [] = []

takeWhile1 p (x:xs)

| p x = x:takeWhile1 p xs

| otherwise = []

56

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

57

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

λ > dropWhile (< 10) [1..20]

[10,11,12,13,14,15,16,17,18,19,20]

λ > dropWhile odd ([1,3..10] ++ [1..10])

[2,3,4,5,6,7,8,9,10]

λ > dropWhile even [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > dropWhile (> 0) (map (`mod` 5) [1..10])

[0,1,2,3,4,0]

λ > dropWhile (< 3) (takeWhile (< 6) [1..10])

[3,4,5]

57

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

dropWhile1 :: (a -> Bool) -> [a] -> [a]

dropWhile1 _ [] = []

dropWhile1 p (x:xs)

| p x = dropWhile1 p xs

| otherwise = x:xs

dropWhile2 :: (a -> Bool) -> [a] -> [a]

dropWhile2 _ [] = []

dropWhile2 p xs@(x:xs')

| p x = dropWhile2 p xs'

| otherwise = xs
57

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate creates an infinite list where the first item is calculated by

applying the function on the second argument, the second item by

applying the function on the previous result, and so on.

λ > iterate (\x -> x+1) 1 -- equiv iterate (+1) 1

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...

^C Interrupted.

λ > take 10 (iterate (\x -> x+1) 1)

[1,2,3,4,5,6,7,8,9,10]

λ > take 10 (iterate (+1) 1)

[1,2,3,4,5,6,7,8,9,10]

λ > takeWhile (< 10) (iterate (+1) 1)

[1,2,3,4,5,6,7,8,9]

58

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate1 :: (a -> a) -> a -> [a]

iterate1 f x = let y = f x in y:iterate1 f y

iterate1 f x

= x:iterate1 (f x)

= x:f x:iterate1 (f (f x))

= x:f x:f (f x):iterate1 (f (f (f x)))

= ...

58

Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate2 :: (a -> a) -> a -> [a]

iterate2 f x = x:[f y | y <- iterate2 f x]

iterate2 f x

= x:[f y | y <- iterate2 f x]

= x:f x:[f y | y <- iterate2 f (f x)]

= x:f x:f (f x):[f y | y <- iterate2 f (f (f x))]

= ...

58

Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith generalises zip by zipping with the function given as the

first argument, instead of a tupling function.

λ > zipWith (+) [0..4] [10..14]

[10,12,14,16,18]

λ > zipWith (\x y -> (x,y)) [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zipWith (,) [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > f x b = if b then x*10 else x

λ > zipWith f [1,2,3,4] [True,False,True,False]

[10,2,30,4]

59

Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith1 :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith1 _ [] _ = []

zipWith1 _ _ [] = []

zipWith1 f (x:xs) (y:ys) = f x y:zipWith1 f xs ys

zip2 :: [a] -> [b] -> [(a,b)]

zip2 = zipWith1 (,)

59

Zipping with functions – In practice

Determine whether a list is in non-decreasing order.

nonDec1 :: Ord a => [a] -> Bool

nonDec1 [] = True

nonDec1 [_] = True

nonDec1 (x1:x2:xs) = x1 <= x2 && nonDec1 (x2:xs)

nonDec2 :: Ord a => [a] -> Bool

nonDec2 [] = True

nonDec2 [_] = True

nonDec2 (x1:xs@(x2:_)) = x1 <= x2 && nonDec2 xs

nonDec3 :: Ord a => [a] -> Bool

nonDec3 xs = and $ zipWith (<=) xs (tail xs)

60

Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

61

Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

M =

1 2

3 4

5 6

 M ′ =

1 2 0 0 0 0 0

3 4 0 0 0 0 0

5 6 0 0 0 0 0



m = [[1,2],

[3,4],

[5,6]]

m' = [[1,2,0,0,0,0,0],

[3,4,0,0,0,0,0],

[5,6,0,0,0,0,0]]

61

Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

λ > m = [[1,2],[3,4],[5,6]]

λ > addExtraColumns 0 m

[[1,2],[3,4],[5,6]]

λ > addExtraColumns 1 m

[[1,2,0],[3,4,0],[5,6,0]]

λ > addExtraColumns 5 m

[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]

61

Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns1 k xss = map (++ yss) xss

where

yss = replicate k 0

addExtraColumns2 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns2 k xss = zipWith (++) xss yss

where

yss = repeat $ replicate k 0

61

Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− . . .

62

Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− . . .

approxPi1 k = 4 * sum (take k xs)

where

ss = [(-1)^n | n <- [0..]]

xs = zipWith (*) ss (map (1/) (iterate (+2) 1))

approxPi2 k = 4 * sum (take k xs)

where

ss = 1:[(-1)*s | s <- ss]

xs = zipWith (*) ss (map (1/) (iterate (+2) 1))

62

Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− . . .

λ > pi

3.141592653589793

λ > let n = 10 in approxPi1 n

3.0418396189294032

λ > let n = 100 in approxPi1 n

3.1315929035585537

λ > let n = 10000 in approxPi1 n

3.1414926535900345

62

Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
− . . .

λ > ns = iterate (*10) 1

λ > mapM_ print (take 8 [pi / approxPi1 n | n <- ns])

0.7853981633974483

1.0327936535639899

1.0031931832582315

1.0003184111600008

1.0000318320017856

1.0000031831090173

1.0000003183099935

1.00000003183099

62

η-conversion

An eta conversion (also written η-conversion) is adding or

dropping of abstraction over a function.

The following two values are equivalent under η-conversion:

\x -> someFunction x

and

someFunction

Converting from the first to the second would constitute an

η-reduction, and moving from the second to the first would be an

eta-expansion.

The term η-conversion can refer to the process in either direction.

63

η-conversion

insertEntry :: Entry -> AddressBook -> AddressBook

insertEntry entry book = Cons entry book

insertEntry :: Entry -> AddressBook -> AddressBook

insertEntry entry = Cons entry

insertEntry :: Entry -> AddressBook -> AddressBook

insertEntry entry = Cons

η-reduction

η-reduction

64

The composition operator

The high-order library operator . returns the composition of two

function as a single function

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

f . g, which is read as f composed with g, is the function that

takes an argument x, applies the function g to this argument, and

applies the function f to the result.

65

The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.

66

The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.

odd1 :: Integral a => a -> Bool

odd1 n = not (even n)

odd2 :: Integral a => a -> Bool

odd2 n = (not . even) n -- i.e., odd2 = \x -> not (even n)

odd3 :: Integral a => a -> Bool

odd3 = not . even

66

The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.

twice1 :: (a -> a) -> a -> a

twice1 f x = f (f x)

twice2 :: (a -> a) -> a -> a

twice2 f x = (f . f) x -- i.e., twice2 = \x -> f (f x)

twice3 :: (a -> a) -> a -> a

twice3 f = f . f

66

The composition operator

Composition is associative

f . (g . h) = f . g . h

for any functions f, g and h of the appropriate types.

sumSqrEven1 :: Integral a => [a] -> a

sumSqrEven1 xs = sum (map (^2) (filter even xs))

sumSqrEven2 :: Integral a => [a] -> a

sumSqrEven2 xs = (sum . map (^2) . filter even) xs

sumSqrEven3 :: Integral a => [a] -> a

sumSqrEven3 = sum . map (^2) . filter even

67

The composition operator

Composition also has an identity, given by the identity function:

id :: a -> a

id = \x -> x

For any function f:

id . f = f

f . id = f

68

The composition operator

Composition also has an identity, given by the identity function:

λ > f = head . id

λ > f [1,2,3,4]

1

f = head . id

= \x -> head (id x)

= \x -> head x

= head

68

The composition operator

Composition also has an identity, given by the identity function:

λ > g = id . head

λ > g [1,2,3,4]

1

g = id . head

= \x -> id (head x)

= \x -> head x

= head

68

The composition operator

Composition also has an identity, given by the identity function:

λ > :type take

take :: Int -> [a] -> [a]

λ > f = take . id

λ > f 3 [1..10]

[1,2,3]

f = take . id

= \x -> take (id x)

= \x -> take x -- :: Int -> ([a] -> [a])

= take

68

The composition operator

Composition also has an identity, given by the identity function:

λ > :type take

take :: Int -> [a] -> [a]

λ > g = id . take

λ > g 3 [1..10]

[1,2,3]

g = id . take

= \x -> id (take x)

= \x -> take x -- :: Int -> ([a] -> [a])

= take

68

The function application operator

The $ is an operator for function application.

($) :: (a -> b) -> a -> b

f $ x = f x

All this does is apply a function. So, f $ x exactly equivalent to

f x:

λ > head $ [1,2,3,4]

1

λ > tail $ [1,2,3,4]

[2,3,4]

λ > map (+ 1) $ [1,2,3,4]

[2,3,4,5]

69

The function application operator

This seems utterly pointless, until you look beyond the type.

λ > :info ($)

($) :: (a -> b) -> a -> b -- Defined in ‘GHC.Base’

infixr 0 $

This little note holds the key to understanding the ubiquity of ($):

infixr 0.

• infixr tells us it’s an infix operator with right associativity.

• 0 tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

• is left associative and

• has the highest precedence possible (10).

70

The function application operator

This seems utterly pointless, until you look beyond the type.

λ > :info ($)

($) :: (a -> b) -> a -> b -- Defined in ‘GHC.Base’

infixr 0 $

This little note holds the key to understanding the ubiquity of ($):

infixr 0.

• infixr tells us it’s an infix operator with right associativity.

• 0 tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

• is left associative and

• has the highest precedence possible (10).

70

The function application operator

Compare

λ > take 10 "Haskell " ++ "rocks!"

"Haskell rocks!"

λ > (take 10 "Haskell ") ++ "rocks!"

"Haskell rocks!"

with

λ > take 10 $ "Haskell " ++ "rocks!"

"Haskell ro"

λ > take 10 ("Haskell " ++ "rocks!")

"Haskell ro"

71

The function application operator

One pattern where you see the dollar sign used sometimes is

between a chain of composed functions and an argument being

passed to (the first of) those.

λ > sum . drop 3 . take 5 [1..10]

error.

λ > sum . drop 3 . take 5 $ [1..10]

9

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

72

The function application operator

Function application.

λ > map (\f -> f 2) [(* i) | i <- [1,2,3,4,5]]

[2,4,6,8,10]

λ > map 2 [(* i) | i <- [1,2,3,4,5]]

error.

λ > map ($ 2) [(* i) | i <- [1,2,3,4,5]]

[2,4,6,8,10]

λ > map ($ 2) [f i | f <- [(*),(+)], i <- [1,2,3,4,5]]

[2,4,6,8,10,3,4,5,6,7]

73

And a curiosity

$ is just an identity function for . . . functions.

($) :: (a -> b) -> a -> b

:: (a -> b) -> (a -> b)

id :: a -> a

:: (a -> b) -> (a -> b) -- for a ~ a -> b

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

λ > (sum . drop 3) `id` take 5 [1..10]

9

λ > id (sum . drop 3) (take 5 [1..10])

9

74

And a curiosity

$ is just an identity function for . . . functions.

($) :: (a -> b) -> a -> b

:: (a -> b) -> (a -> b)

id :: a -> a

:: (a -> b) -> (a -> b) -- for a ~ a -> b

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

λ > (sum . drop 3) `id` take 5 [1..10]

9

λ > id (sum . drop 3) (take 5 [1..10])

9 74

Origami programming

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

75

Folding

• In functional programming, fold is a family of higher order

functions that process a data structure in some order and

build a return value.

• This is as opposed to the family of unfold functions which

take a starting value and apply it to a function to generate a

data structure.

• A fold deals with two things:

1. a combining function, and

2. a data structure.

The fold then proceeds to combine elements of the data

structure using the function in some systematic way.

76

Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

:

1 :

2 :

3 :

4 :

5 []

f

1 f

2 f

3 f

4 f

5 z

foldr f z

77

Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

foldr (+) 0 [1,2,3,4]

= (+) 1 (foldr (+) 0 [2,3,4]

= (+) 1 ((+) 2 (foldr (+) 0 [3,4])

= (+) 1 ((+) 2 ((+) 3 (foldr (+) 0 [4])

= (+) 1 ((+) 2 ((+) 3 ((+) 4 (foldr (+) 0 [])

= (+) 1 ((+) 2 ((+) 3 ((+) 4 0) -- stop recursion

= (+) 1 ((+) 2 ((+) 3 4)

= (+) 1 ((+) 2 7)

= (+) 1 9

= 10
78

Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

foldr (:) [] [1,2,3,4]

= (:) 1 (foldr (:) [] [2,3,4]

= (:) 1 ((:) 2 (foldr (:) [] [3,4])

= (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [4])

= (:) 1 ((:) 2 ((:) 3 ((:) 4 (foldr (:) [] [])

= (:) 1 ((:) 2 ((:) 3 ((:) 4 []) -- stop recursion

= (:) 1 ((:) 2 ((:) 3 4:[])

= (:) 1 ((:) 2 3:4:[])

= (:) 1 2:3:4:[]

= 1:2:3:4:[] -- [1,2,3,4]
79

Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

let f x acc = [x]:acc in foldr f [] [1,2,3,4]

= f 1 (foldr f [] [2,3,4]

= f 1 (f 2 (foldr f [] [3,4]))

= f 1 (f 2 (f 3 (foldr f [] [4])))

= f 1 (f 2 (f 3 (f 4 (foldr f [] []))))

= f 1 (f 2 (f 3 (f 4 []))) -- stop recursion

= f 1 (f 2 (f 3 [4]:[]))

= f 1 (f 2 [3]:[4]:[])

= f 1 [2]:[3]:[4]:[]

= [1]:[2]:[3]:[4]:[] -- [[1],[2],[3],[4]]
80

Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

let f x acc = acc ++ [x] in foldr f [] [1,2,3,4]

= f 1 (foldr f [] [2,3,4]

= f 1 (f 2 (foldr f [] [3,4]))

= f 1 (f 2 (f 3 (foldr f [] [4])))

= f 1 (f 2 (f 3 (f 4 (foldr f [] []))))

= f 1 (f 2 (f 3 (f 4 []))) -- stop recursion

= f 1 (f 2 (f 3 ([] ++ [4])))

= f 1 (f 2 ([] ++ [4] ++ [3]))

= f 1 ([] ++ [4] ++ [3] ++ [2])

= [] ++ [4] ++ [3] ++ [2] ++ [1] -- [4,3,2,1]
81

Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

:

1 :

2 :

3 :

4 :

5 []

f

f

f

f

f

z 1

2

3

4

5

foldl f z

82

Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

foldl (+) 0 [1,2,3,4]

= foldl (+) ((+) 0 1) [2,3,4]

= foldl (+) ((+) ((+) 0 1) 2) [3,4]

= foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [4]

= foldl (+) ((+) ((+) ((+) ((+) 0 1) 2) 3) 4) []

= ((+) ((+) ((+) ((+) 0 1) 2) 3) 4) -- stop recursion

= ((+) ((+) ((+) 1 2) 3) 4)

= ((+) ((+) 3 3) 4)

= ((+) 6 4)

= 10
83

Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

let fC acc x = x:acc in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC 1:[] 2) 3) 4)

= (fC (fC 2:1:[] 3) 4)

= (fC 3:2:1:[] 4)

= 4:3:2:1:[] -- [4,3,2,1]
84

Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

let fC acc x = [x]:acc in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC [1]:[] 2) 3) 4)

= (fC (fC [2]:[1]:[] 3) 4)

= (fC [3]:[2]:[1]:[] 4)

= [4]:[3]:[2]:[1]:[] -- [[4],[3],[2],[1]]
85

Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

let fC acc x = acc ++ [x] in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC []++[1] 2) 3) 4)

= (fC (fC []++[1]++[2] 3) 4)

= (fC []++[1]++[2]++[3] 4)

= []++[1]++[2]++[3]++[4] -- [1,2,3,4]
86

Folding

f

1 f

2 f

3 f

4 f

5 z

foldr f z

f

f

f

f

f

z 1

2

3

4

5

foldl f z

87

Curried functions & friends

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

88

Currying

Currying is the process of transforming a function that takes

multiple arguments in a tuple as its argument, into a function that

takes just a single argument and returns another function which

accepts further arguments, one by one, that the original function

would receive in the rest of that tuple.

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

is the curried form of

g :: (a, b) -> c

In Haskell, all functions are considered curried: That is, all

functions in Haskell take just one argument.

89

Currying / uncurrying

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

g :: (a, b) -> c

You can convert these two types in either directions with the

Prelude functions curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a, b) -> c

We have:

f = curry g

g = uncurry f

90

Currying / uncurrying

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

g :: (a, b) -> c

You can convert these two types in either directions with the

Prelude functions curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a, b) -> c

Both forms are equally expressive. It holds:

f x y = g (x,y)

90

Uncurrying

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > add1 = (+) 1

λ > :type add1

add1 :: Num a => a -> a

λ > add1 2

3

λ > :type uncurry (+)

uncurry (+) :: Num a => (a, a) -> a

λ > uncurry (+) (1,2)

3

λ > uncurry (+) 1

error.

91

Uncurrying

λ > zipWith (+) [0..4] [10..14]

[10,12,14,16,18]

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type map

map :: (a -> b) -> [a] -> [b]

λ > zip [0..4] [10..14]

[(0,10),(1,11),(2,12),(3,13),(4,14)]

λ > map (\(x,y) -> x+y) $ zip [0..4] [10..14]

[10,12,14,16,18]

λ > map (uncurry (+)) $ zip [0..4] [10..14]

[10,12,14,16,18]

92

Currying

λ > :type fst

fst :: (a, b) -> a

λ > fst (1,2)

1

λ > fst 1

error.

λ > type curry fst

curry fst :: a -> b -> a

λ > f = curry fst 1

λ > :type f

f :: Num a => b -> a

λ > f 2

1

93

Currying

λ > add p = fst p + snd p

λ > :type add

add :: Num a => (a, a) -> a

λ > add (1,2)

3

λ > add1 = curry add 1

λ > :type add1

add1 :: Num a => a -> a

λ > add1 2

3

94

Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

λ > (/) 1 2

0.5

λ > foldr (++) [] ["A","B","C","D"]

"ABCD"

λ > foldr (flip (++)) [] ["A","B","C","D"]

"DCBA"

λ > foldr (:) [] ['a'..'d']

"abcd"

λ > foldr (flip (:)) [] ['a'..'d']

error.

95

Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

λ > (/) 1 2

0.5

λ > foldr (++) [] ["A","B","C","D"]

"ABCD"

λ > foldr (flip (++)) [] ["A","B","C","D"]

"DCBA"

λ > foldr (:) [] ['a'..'d']

"abcd"

λ > foldr (flip (:)) [] ['a'..'d']

error.

96

Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

flip1 :: (a -> b -> c) -> b -> a -> c

flip1 f x y = f y x

flip1 :: (a -> b -> c) -> b -> a -> c

flip1 f = \x -> \y -> f y x

96

Flipping – Use cases

λ > foldr (:) [] [1..4]

[1,2,3,4]

λ > foldl (flip (:)) [] [1..4]

[4,3,2,1]

λ > foldl (-) 100 [1..4] -- (((100-1)-2)-3)-4

90

λ > foldr (-) 100 [1..4] -- 1-(2-(3-(4-100)))

98

λ > foldl (flip (-)) 100 [1..4] -- 4-(3-(2-(1-100)))

102

λ > foldr (flip (-)) 100 [1..4] -- (((100-4)-3)-2)-1

90

97

Constant

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

λ > const 1 2

1

λ > const (2/3) (1/0)

0.6666666666666666

λ > const take drop 5 [1..10]

[1,2,3,4,5]

λ > foldr (_ acc -> 1 + acc) 0 [1..10]

10

λ > foldr (const (1+)) 0 [1..10]

10

98

Constant

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

const1 :: a -> b -> a

const1 x _ = x

const2 :: a -> b -> a

const2 = \x -> _ -> x

98

Fun with flipping and constant

curry id = \x y -> id (x, y) -- def. curry

= \x y -> (x, y) -- def. id

= \x y -> (,) x y -- desugar

= \x -> (,) x -- eta reduction

= (,) -- eta reduction

λ > curry id 1 2

(1,2)

λ > (,) 1 2

(1,2)

99

Fun with flipping and constant

uncurry const = \(x, y) -> const x y -- def. uncurry

= \(x, y) -> x -- def. const

= fst -- def. fst

λ > uncurry const (1, 2)

1

λ > fst (1, 2) -- from Data.Tuple (in Prelude)

1

99

Fun with flipping and constant

uncurry (flip const)

= \(x, y) -> (flip const) x y -- def. uncurry

= \(x, y) -> const y x -- def. flip

= \(x, y) -> y -- def. const

= snd -- def. snd

λ > uncurry (flip const) (1, 2)

2

λ > snd (1, 2) -- from Data.Tuple (in Prelude)

2

99

Fun with flipping and constant

uncurry (flip (,))

= \(x, y) -> (flip (,)) x y -- def. uncurry

= \(x, y) -> (,) y x -- def. flip

= \(x, y) -> (y, x) -- desugar

λ > uncurry (flip (,)) (1, 2)

(2,1)

λ > import Data.Tuple

λ > :type swap

swap :: (a, b) -> (b, a)

λ > swap (1, 2)

(2,1)

99

Processing lists – revisit

Lists

Enumerations

List comprehensions

Processing lists – basic functions

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit

100

Rotations – revisit

Produce all rotations of a list.

λ > rotate []

[[]]

λ > rotate [1]

[[1]]

λ > rotate [1,2]

[[2,1],[1,2]]

λ > rotate [1,2,3]

[[3,1,2],[2,3,1],[1,2,3]]

λ > rotate [1,2,3,4]

[[4,1,2,3],[3,4,1,2],[2,3,4,1],[1,2,3,4]]

101

Rotations – revisit

Produce all rotations of a list.

shift1xs :: [a] -> [a]

shift1 [] = []

shift1 (x:xs) = xs ++ [x]

rotate3 :: [a] -> [[a]]

rotate3 [] = [[]]

rotate3 xs = foldl (\acc@(xs':acc') _ -> shift xs':acc) [xs] $ tail xs

101

Rotations – revisit

Produce all rotations of a list.

rotate4 :: [a] -> [[a]]

rotate4 xs = init $ zipWith (++) (tails xs) (inits xs)

-- tails [1,2,3,4] = [[1,2,3,4], [2,3,4], [3,4], [4], []]

-- inits [1,2,3,4] = [[], [1], [1,2], [1,2,3], [1,2,3,4]]

101

Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- foldr

elem1 :: (Foldable t, Eq a) => a -> t a -> Bool

elem1 x' xs = foldr f False xs

where

f x b = x == x' || b

102

Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- eta-reduction

elem2 :: (Foldable t, Eq a) => a -> t a -> Bool

elem2 x' = foldr f False

where

f x b = x == x' || b

102

Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- lambda

elem3 :: (Foldable t, Eq a) => a -> t a -> Bool

elem3 x' = foldr (\x b -> x == x' || b) False

102

Filtering (revisit)

Data.List.filter, applied to a predicate and a list, returns the

list of those elements that satisfy the predicate.

filter3 :: Foldable t => (a -> Bool) -> t a -> [a]

filter3 p xs = foldr f [] xs

where

f x acc

| p x = x:acc

| otherwise = acc

103

Repeating (revisit)

Data.List.repeat takes an element and returns an infinite list

that just has that element.

repeat4 :: a -> [a]

repeat4 x = foldr (_ acc -> x:acc) [] [1..]

104

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

105

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

maximum4 :: Ord a => [a] -> a

maximum4 [] = error "empty list"

maximum4 (x:xs) = foldr f x xs

where

f x m = if x > m then x else m

maximum5 :: Ord a => [a] -> a

maximum5 [] = error "empty list"

maximum5 (x:xs) = foldr max x xs

105

Repeating (revisi

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

maximum6 :: Ord a => [a] -> a

maximum6 [] = error "empty list"

maximum6 xs = foldl1 max xs

maximum7 :: Ord a => [a] -> a

maximum7 [] = error "empty list"

maximum7 xs = foldr1 max xs

105

Remove duplicate

Data.Foldable.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In

particular, it keeps only the first occurrence of each element.

nub1 :: Eq a => [a] -> [a]

nub1 [] = []

nub1 (x : xs) = x:nub1 (filter (\y -> x/=y) xs)

nub2 :: Eq a => [a] -> [a]

nub2 [] = []

nub2 (x : xs) = x:nub1 xs'

where

xs' = filter (/=x) xs

106

Remove duplicate

Data.Foldable.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In

particular, it keeps only the first occurrence of each element.

nub1 :: Eq a => [a] -> [a]

nub1 [] = []

nub1 (x : xs) = x:nub1 (filter (\y -> x/=y) xs)

nub2 :: Eq a => [a] -> [a]

nub2 [] = []

nub2 (x : xs) = x:nub1 xs'

where

xs' = filter (/=x) xs

106

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.

107

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.

nubBy1 :: Eq a => (a -> a -> Bool) -> [a] -> [a]

nubBy1 _ [] = []

nubBy1 p (x : xs) = x:nub1 xs'

where

xs' = filter (not . p x) xs

nub3 :: Eq a => [a] -> [a]

nub3 = nubBy (==)

107

Remove duplicate

Data.Foldable.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.

elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool

elemBy _ _ [] = False

elemBy eq y (x:xs) = x `eq` y || elemBy eq y xs

nubBy2 :: (a -> a -> Bool) -> [a] -> [a]

nubBy2 eq xs = go xs []

where

go [] _ = []

go (y:ys) xs

| elemBy eq y xs = go ys xs

| otherwise = y:go ys (y:xs) 107

	Lists
	Enumerations
	List comprehensions
	Processing lists – basic functions
	High-order functions
	Origami programming
	Curried functions & friends
	Processing lists – revisit

