
Functional programming

Lecture 02 — First steps

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

February 13, 2023

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr


Schedule

1. Types & functions

2. Function on lists

3. High-order functions & list comprehensions

4. Test

5. Algebraic data type – Binary search trees

6. Algebraic data type – General trees

7. Problem solving – Countdown

8. Functional images

9. File system

10. Radar or Cloud simulator

11. Test

1



Functional programming concepts

Functional programming concepts

First steps

Types and classes

Defining functions

Some functions

2



Genealogy of programming languages

3



Functional languages

4



Main functional programming languages

Lisp

Lisp (historically, LISP) is a family of computer programming

languages with a long history and a distinctive, fully parenthesized

prefix notation. Originally specified in 1958, Lisp is the

second-oldest high-level programming language in widespread use

today. (Only Fortran is older, by one year.)

5

https://lisp-lang.org/


Main functional programming languages

Erlang

Erlang is a general-purpose, concurrent, functional programming

language, as well as a garbage-collected runtime system.

5

https://www.erlang.org/


Main functional programming languages

Elixir
Elixir is a functional, concurrent, general-purpose programming

language that runs on the Erlang virtual machine (BEAM).

5

https://elixir-lang.org/


Main functional programming languages

F#
F# is a strongly typed, multi-paradigm programming language

that encompasses functional, imperative, and object-oriented

programming methods. It is being developed at Microsoft

Developer Division and is being distributed as a fully supported

language in the .NET framework.

5

http://fsharp.org/


Main functional programming languages

Ocaml
Ocaml, originally named Objective Caml, is the main

implementation of the programming language Caml. OCaml’s

toolset includes an interactive top-level interpreter, a bytecode

compiler, a reversible debugger, a package manager (OPAM), and

an optimizing native code compiler.

5

http://ocaml.org/


Main functional programming languages

Clojure
Clojure is a dialect of the Lisp programming language. Clojure is a

general-purpose programming language with an emphasis on

functional programming. It runs on the Java virtual machine and

the Common Language Runtime.

5

https://clojure.org/


Main functional programming languages

Racket
Racket, formerly PLT Scheme, is a general purpose,

multi-paradigm programming language in the Lisp-Scheme family.

One of its design goals is to serve as a platform for language

creation, design, and implementation

5

http://racket-lang.org/


Main functional programming languages

Elm
Elm is a domain-specific programming language for declaratively

creating web browser-based graphical user interfaces. Elm is purely

functional, and is developed with emphasis on usability,

performance, and robustness.

5

http://elm-lang.org/


Main functional programming languages

Scala
Scala is a general-purpose programming language providing

support for functional programming and a strong static type

system. Designed to be concise, many of Scala’s design decisions

aimed to address criticisms of Java.

5

https://www.scala-lang.org/


Main functional programming languages

Haskell
Haskell is a general-purpose, statically-typed, purely functional

programming language with type inference and lazy evaluation.

Designed for teaching, research and industrial applications, Haskell

has pioneered a number of programming language features such as

type classes, which enable type-safe operator overloading, and

monadic IO. Haskell’s main implementation is the Glasgow Haskell

Compiler (GHC). It is named after logician Haskell Curry.

5

https://www.haskell.org/


Characteristics of functional programming

6



Haskell

• Haskell is a compiled, statically typed, functional

programming language.

• It was created in the early 1990s as one of the first

open-source purely functional programming languages.

• It is named after the American logician Haskell Brooks Curry.

7



Glasgow Haskell Compiler

• Concise programs

• Powerful type system

• List comprehensions

• Recursive functions

• High-order functions

• Effectful functions

• Generic functions

• Lazy evaluation

• Equational reasoning

8



Haskell landscape

The imperatives

• GHC: state-of-the-art, open source, compiler and interactive

environment for the functional language Haskell.

• GHCi: GHC’s interactive environment.

• Hackage: Haskell community’s central package archive of

open source software.

9

https://www.haskell.org/ghc/
https://wiki.haskell.org/GHC/GHCi
https://hackage.haskell.org/


Haskell landscape

Testing Frameworks

• QuickCheck: powerful testing framework where test cases are

generated according to specific properties.

• HUnit: unit testing framework similar to JUnit.

• Hspec: a testing framework similar to RSpec with support for

QuickCheck and HUnit.

• The Haskell Test Framework, HTF: integrates both Hunit and

QuickCheck.

10

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hspec.github.io/
https://hackage.haskell.org/package/HTF


Haskell landscape

Ancillary Tools

• darcs: revision control system.

• haddock: documentation system.

• cabal: build system.

• stack: build system.

• hoogle: type-aware API search engine.

11

http://darcs.net/
https://haskell-haddock.readthedocs.io/en/latest/
https://www.haskell.org/cabal/
https://docs.haskellstack.org/en/stable/
https://hoogle.haskell.org/


Haskell landscape

Static Analysis Tools

• hlint: detect common style mistakes and redundant parts of

syntax, improving code quality.

• Sourcegraph: Haskell visualizer.

Dynamic Analysis Tools

• criterion: powerful benchmarking framework.

• hpc: check evaluation coverage of a haskell program, useful

for determining test coverage.

12

https://hackage.haskell.org/package/hlint
https://hackage.haskell.org/package/SourceGraph
https://hackage.haskell.org/package/criterion
http://web.archive.org/web/20090705020757/projects.unsafeperformio.com/hpc/


Haskell landscape

IDEs

• VSCodium.

• IntelliJ.

• Vim.

• GNU Emacs.

• Haskell for Mac (commercial).

• Sublime Text (commercial)

13

https://vscodium.com/
https://www.jetbrains.com/fr-fr/idea/
https://www.vim.org/
https://www.gnu.org/software/emacs/
http://haskellformac.com/
https://www.sublimetext.com/


Haskell books

14



Haskell books

15



Functional programming books

16



A taste of haskell

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

sum [1,2,3]

= { applying function sum }

1 + sum [2,3]

= { applying function sum }

1 + (2 + sum [3])

= { applying function sum }

1 + 2 + (3 + sum [])

= { applying function sum }

1 + (2 + (3 + 0))

= { applying function + }

1 + (2 + 3)

= { applying function + }

1 + 5

= { applying function + }

6

17



A taste of haskell

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

sum [1,2,3]

= { applying function sum }

1 + sum [2,3]

= { applying function sum }

1 + (2 + sum [3])

= { applying function sum }

1 + 2 + (3 + sum [])

= { applying function sum }

1 + (2 + (3 + 0))

= { applying function + }

1 + (2 + 3)

= { applying function + }

1 + 5

= { applying function + }

6

17



A taste of haskell

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x : xs) = qsort smaller ++ [x] ++ qsort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

18



A taste of haskell

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x : xs) = qsort smaller ++ [x] ++ qsort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

qsort [x]

= { applying function qsort }

qsort [] ++ [x] ++ qsort [x]

= { applying function qsort }

[] ++ [x] ++ []

= { applying function ++ }

[x]

18



A taste of haskell

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x : xs) = qsort smaller ++ [x] ++ qsort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

qsort [3,5,1,4,2]

= { applying function qsort }

qsort [1,2] ++ [3] ++ qsort [5,4]

= { applying function qsort }

(qsort [] ++ [1] ++ qsort [2]) ++ [3] ++ (qsort [4] ++ [5] ++ qsort [])

= { applying function qsort }

([] ++ [1] ++ [2]) ++ [3] ++ ([4] ++ [5] ++ [])

= { applying function ++ }

[1,2] ++ [3] ++ [4,5]

= { applying function ++ }

[1,2,3,4,5]
18



First steps

Functional programming concepts

First steps

Types and classes

Defining functions

Some functions

19



Glasgow Haskell Compiler

• The Glasgow Haskell Compiler (GHC) is the state-of-the-art

open source implementation of Haskell

• The GHC if freely available for a range of operating systems

from the Haskell home page http://www.haskell.org

• We recommand downloading the Haskell Platform

• Once installed, the interface GHCi system can be started from

the terminal command prompt by simply typing ghci.

20

http://www.haskell.org


GHCi

λ > 1+2+3

6

λ > 1+2*3

7

λ > (1+2)*3

9

λ > 2-3+4

3

λ > 2*3/4

1.5

21



GHCi

λ > 2*pi

6.283185307179586

λ > (1 + sqrt 5) / 2

1.618033988749895

λ > log 2

0.6931471805599453

22



GHCi

λ > 2^3^4

2417851639229258349412352

λ > (2^3)^4

4096

λ > ceiling 2.6

3

λ > floor 2.6

2

λ > round 2.6

3

λ > (sin pi)^2 + (cos pi)^2

1.0

23



GHCi

λ > x = 42

λ > x+1

43

λ > let x = 42 in x+1

43

24



GHCi

λ > "Haskell rocks!"

"Haskell rocks!"

λ > "Haskell " ++ "rocks!"

"Haskell rocks!"

λ > "Haskell " <> "rocks!"

"Haskell rocks!"

λ > ['H','a','s','k','e','l','l',' ','r','o','c','k','s','!']

"Haskell rocks!"

25



GHCi

Command Meaning

:load name load script name

:reload reload current script

:set editor name set editor to name

:edit name edit script name

:edit edit current script

:type expr show type of expr

:? show all commands

:quit quit GHCi

. . .

26



GHCi

λ > :type 1

1 :: Num a => a

λ > :type 2.5

2.5 :: Fractional a => a

λ > :type 5/2

5/2 :: Fractional a => a

λ > :type 5 `div` 2

5 `div` 2 :: Integral a => a

27



GHCi

λ > :type 1+2

1+2 :: Num a => a

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type (1 +)

(1 +) :: Num a => a -> a

λ > :type (+ 1)

(+ 1) :: Num a => a -> a

28



GHCi

λ > :type 2.5

2.5 :: Fractional a => a

λ > :type 5/2

5/2 :: Fractional a => a

λ > :type (/)

(/) :: Fractional a => a -> a -> a

λ > :type (/ 2)

(/ 2) :: Fractional a => a -> a

29



GHCi

λ > :type pi

pi :: Floating a => a

λ > :type sqrt 2

sqrt 2 :: Floating a => a

λ > :type cos

cos :: Floating a => a -> a

30



GHCi

λ > fact n = if n == 0 then 1 else n * fact (n-1)

λ > :type fact

fact :: (Eq a, Num a) => a -> a

λ > fact 5

120

λ > fact 0

1

λ > fact 5.0

120.0

λ > fact 2.5

^CInterrupted.

31



GHCi

λ > f = fact

λ > :type fact

fact :: (Eq a, Num a) => a -> a

λ > f 5

120

λ > f (f 3)

720

32



GHCi

λ > 'a'

'a'

λ > :type 'a'

'a' :: Char

λ > 'abc'

<interactive>: error:

o Syntax error on 'abc'

λ > 'a':"bc"

"abc"

33



GHCi

λ > "abc"

"abc"

λ > :type "abc"

"abc" :: String

λ > "abc" ++ "def"

"abcdef"

λ > :type (++)

(++) :: [a] -> [a] -> [a]

34



Types and classes

Functional programming concepts

First steps

Types and classes

Defining functions

Some functions

35



Basic concepts

• In Haskell every expression must have a type.

• A type is a collection of related values.

• We use the notation v :: T to mean that v is a value in the

type T.

Example

True :: Bool

False :: Bool

not :: Bool -> Bool

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

36



Basic types

• Bool - Logical values.

• Char - Single characters.

• String - Strings of characters.

• Int - Fixed-precision integers.

• Integers - Arbitrary-precision integers.

• Float - Since-precision floating-point numbers.

• Double - Double-precision floating-point numbers.

37



List types

• A list is a sequence of elements of the same type, with the

elements being enclosed in square parentheses and separated

by commas.

• We write [T] for the type of all lists whose elements have

type T.

• The number of elements in a list is called its length.

• The list [] of length zero is called the empty list.

• [] and [[]] (and [[[]]], [[[[]]]], . . . ) are different lists.

38



List types

λ > :type []

[] :: [a]

λ > :type [1,2,3,4,5]

[1,2,3,4,5] :: Num a => [a]

λ > :type ['a', 'b', 'c', 'd']

['a', 'b', 'c', 'd'] :: [Char]

λ > :type ["ab", "cd", "ef", "gh"]

["ab", "cd", "ef", "gh"] :: [String]

39



List types

λ > :type [cos, sin]

[cos, sin] :: Floating a => [a -> a]

λ > :type [1, 'a']

<interactive>: error:

o No instance for (Num Char) arising from the literal '1'

λ > :type [[1],[2,3],[4,5,6]]

[[1],[2,3],[4,5,6]] :: Num a => [[a]]

λ > :type [[[1]],[[2,3],[4,5,6]]]

[[[1]],[[2,3],[4,5,6]]] :: Num a => [[[a]]]

40



Tuple types

• A tuple is a sequence of components of possibly different

types, with the components being enclosed in round

parentheses and separated by commas.

• We write (T1, T2, ..., Tn) for the type of all tuples

whose i-th component have type Ti for any 1 6 i 6 n.

• The number of elements in a tuple is called its arity.

• The tuple () of arity zero is called the empty tuple.

• Tuple of arity one are not permitted.

41



Tuple types

λ > :type ()

() :: ()

λ > :type (1,'a')

(1,'a') :: Num a => (a, Char)

λ > :type (1,2,'a',"abc")

(1,2,'a',"abc") :: (Num a, Num b) => (a, b, Char, String)

λ > :type (sqrt, 'a')

(sqrt, 'a') :: Floating a => (a -> a, Char)

λ > :type (1, ('a', "cd"))

(1, ('a', "cd")) :: Num a => (a, (Char, String))

42



Tuple types

λ > :type (1, ('a', "cd"))

(1, ('a', "cd")) :: Num a => (a, (Char, String))

λ > :type (1, [cos, sin])

(1, [cos, sin]) :: (Floating a1, Num a2) => (a2, [a1 -> a1])

λ > :type (1)

(1) :: Num a => a

λ > let t = (1,2) in (t, 3)

((1,2),3)

λ > let t = (1,t)

<interactive>: error:

o Couldn't match expected type 'b' with actual type '(a, b)'

43



Function types

• A function is a mapping of one type to results of another type.

• We write T1 -> T2 for the type of all functions that map

arguments of type T1 to results of type T2.

• There is no restriction that function must be total on their

argument type.

44



Function types

λ > :type not

not :: Bool -> Bool

λ > :type even -- :type odd

even :: Integral a => a -> Bool

λ > :type mod

mod :: Integral a => a -> a -> a

λ > add x y = x+y

λ > :type add

add :: Num a => a -> a -> a

λ > add' (x,y) = x+y

λ > :type add'

add' :: Num a => (a, a) -> a

45



Curried functions

• Currying is the process of transforming a function that takes

multiple arguments in a tuple as its argument, into a function

that takes just a single argument and returns another function

which accepts further arguments, one by one, that the original

function would receive in the rest of that tuple.

• The function arrow -> in type is assumed to associate to the

right.

The type

T1 -> T2 -> T3 -> ... -> Tn

means

T1 -> (T2 -> (T3 -> ( ... -> Tn)...))

46



Curried functions

The type

a1 -> a2 -> a3

means

a1 -> (a2 -> a3)

47



Curried functions

The type

a1 -> a2 -> a3 -> a4

means

a1 -> (a2 -> (a3 -> a4))

47



Curried functions

The type

a1 -> a2 -> a3 -> a4 -> a5

means

a1 -> (a2 -> (a3 -> (a4 -> a5)))

47



Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

48



Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

λ > mult 2 3 4

24

λ > :type mult 2

mult 2 :: Int -> Int -> Int

λ > :type mult 2 3

mult 2 3 :: Int -> Int

λ > :type mult 2 3 4

mult 2 3 4 :: Int

48



Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

λ > mult2 = mult 2

λ > mult3 = mult2 3

λ > mult3 4

24

λ > :type mult2

mult2 :: Int -> Int -> Int

λ > :type mult3

mult3 :: Int -> Int

48



Polymorphic types

• Parametric polymorphism refers to when the type of a value

contains one or more (unconstrained) type variables, so that

the value may adopt any type that results from substituting

those variables with concrete types.

• For example, the function id :: a -> a contains an

unconstrained type variable a in its type, and so can be used in

a context requiring Char -> Char or Integer -> Integer

or (Bool -> Bool) -> (Bool -> Bool) or any of a

literally infinite list of other possibilities.

• The empty list [] :: [a] belongs to every list type.

49



Polymorphic types

λ > length []

0

λ > length [1,3,5,7,2,4,6,8]

8

λ > length ["Huey","Dewey","Louie"]

3

λ > length [sin, cos, tan]

3

50



Polymorphic types

λ > :type length

length :: Foldable t => t a -> Int

λ > :info length

type Foldable :: (* -> *) -> Constraint

class Foldable t where

length :: t a -> Int

...

-- Defined in 'Data.Foldable'

51



Overloaded types

• A type that contains one or more class constraints is called

overloaded.

• Class constraints are written in the form C a, where C is the

name of the class and a is a type variable.

52



Overloaded types

λ > 1 + 2

3

λ > :type 1

1 :: Num a => a

λ > :type 1 + 2

1 + 2 :: Num a => a

λ > 1.0 + 2.0

3.0

λ > :type 1.0

1.0 :: Fractional a => a

λ > :type 1.0 + 2.0

1.0 + 2.0 :: Fractional a => a

λ > sqrt 2 + sqrt 3

3.1462643699419726

λ > :type sqrt 2

sqrt 2 :: Floating a => a

λ > :type sqrt 2 + sqrt 3

sqrt 2 + sqrt 3 :: Floating a => a
53



Overloaded types

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type (-)

(-) :: Num a => a -> a -> a

λ > :type (*)

(*) :: Num a => a -> a -> a

λ > :type (/)

(/) :: Fractional a => a -> a -> a

λ > :type sqrt

sqrt :: Floating a => a -> a

54



Basic classes

• A class is collection of types that support certain overloaded

operations called methods.

• Haskell provides a number of basic classes that are built-in to

the language.

55



Basic classes

Eq – Equality types

This class contains types whose values can be compared for equality

and inequality using the following two methods:

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Eq class.

56



Basic classes

Eq – Equality types

λ > True == True

True

λ > 'a' == 'b'

False

λ > "abc" == "abc"

True

λ > 2.5 == 5.2

False

56



Basic classes

Eq – Equality types

λ > ('a', 1) == ('b', 1)

False

λ > (1, 2, 3) == (1, 2)

<interactive>:120:14: error:

o Couldn't match expected type: (a0, b0, c0)

with actual type: (a1, b1)

λ > [1,2,3] == [1,2,3,4]

False

λ > cos == cos

<interactive>: error:

o No instance for (Eq (Double -> Double))

arising from a use of '=='

56



Basic classes

Ord – Ordered types

This class contains types that are instances of the equality class Eq,

but in addition these values are totally ordered, and as such can be

compared using the following six methods:

(<) :: a -> a -> Bool

(<=) :: a -> a -> Bool

(>) :: a -> a -> Bool

(>=) :: a -> a -> Bool

min :: a -> a -> a

max :: a -> a -> a

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Ord class.

57



Basic classes

Ord – Ordered types

λ > False < True

True

λ > "elegant" < "elephant"

True

λ > "a" < "ab"

True

λ > 'b' > 'a'

True

λ > [1,2,3] <= [1,2]

False

λ > [] < [1]

True 57



Basic classes

Ord – Ordered types

λ > (1,2) < (1,3)

True

λ > (1,2,3) < (1,1)

<interactive>: error:

o Couldn't match expected type: (a0, b0, c0)

with actual type: (a1, b1)

λ > [True] < [False,False]

False

λ > (False,False) <= (False,True)

True

57



Basic classes

Ord – Ordered types

λ >

λ > min ('a',2) ('a',1)

('a',1)

λ > max ('a',2) ('a',1)

('a',2)

λ > sin < cos

<interactive>: error:

o No instance for (Ord (Double -> Double))

arising from a use of '<'

λ > (1, sin) > (2, cos)

<interactive>: error:

o No instance for (Ord (Double -> Double))

arising from a use of '>' 57



Basic classes

Show – Showable types

This class contains types that can be converted into strings of char-

acters using the following method:

show :: a -> String

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Show class.

58



Basic classes

Show – Showable types

λ > show True

"True"

λ > show 'a'

"'a'"

λ > show "abc"

"\"abc\""

λ > show [1,2,3]

"[1,2,3]"

λ > show (1, True, [1,2,3])

"(1,True,[1,2,3])"

58



Basic classes

Read – Readable types

This class is dual to Read and contains types whose values can be

converted from string of characters using the following method:

read :: String -> a

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Read class.

59



Basic classes

Read – Readable types

λ > read "False" :: Bool

False

λ > read "'a'" :: Char

'a'

λ > read "\"abc\"" :: String

"abc"

λ > read "[1,2,3]" :: [Int]

[1,2,3]

λ > read "(1, True, [1,2,3])" :: (Int, Bool, [Int])

(1,True,[1,2,3])

59



Basic classes

Num – Numeric types

This class contains types whose values are numeric, and as such can

be processed using the following six methods:

(+) :: a -> a -> a

(-) :: a -> a -> a

(*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

Note that the Num class does not provide a division method.

60



Basic classes

Num – Numeric types

λ > 1+2

3

λ > 1-2

-1

λ > 1.0+2.0

3.0

λ > 2*3

6

λ > 2.0*3.0

6.0

60



Basic classes

Num – Numeric types

λ > negate 3.0

-3.0

λ > negate (-2)

2

λ > abs(-1.5)

1.5

λ > signum 3

1

λ > signum (-3)

-1

60



Basic classes

Integral – Integral types

This class contains types that are instances of the numeric class Num,

but in addition whose values are integers, and as such support the

method of integer division and integer remainder:

div :: a -> a -> a

mod :: a -> a -> a

61



Basic classes

Integral – Integral types

λ > div 7 2

3

λ > 7 `div` 2

3

λ > 8 `div` 2

4

λ > 7 `mod` 2

1

λ > 8 `mod` 2

0

61



Basic classes

Integral – Integral types

λ > (-7) `div` 2

-4

λ > (-7) `div` (-2)

3

λ > (-7) `mod` 2

1

λ > (-7) `mod` (-2)

-1

61



Basic classes

Fractional – Fractional types

This class contains types that are instances of the numeric class Num,

but in addition whose values are non-integral, and as such support

the method of integer fractional division and fractional reciprocation:

(/) :: a -> a -> a

recip :: a -> a -> a

The basic types Float and Double are instances of the Fractional

class.

62



Basic classes

Fractional – Fractional types

λ > 7.0 / 2.0

3.5

λ > 2.0 / 7.0

0.2857142857142857

λ > recip 2.0

0.5

λ > recip 1.0

1.0

62



Defining functions

Functional programming concepts

First steps

Types and classes

Defining functions

Some functions

63



New from old

even :: Integral a => a -> Bool

even n = n `mod` 2 == 0

odd :: Integral a => a -> Bool

odd n = n `mod` 2 /= 0

recip :: Fractional a => a -> a

recip n = 1 / n

64



Conditional expressions

For processing conditions, the if-then-else syntax was defined

in Haskell98.

if <condition> then <true-value> else <false-value>

if is an expression (which is converted to a value) and not a

statement (which is executed) as in many imperative languages.

As a consequence, the else is mandatory in Haskell. Since if is

an expression, it must evaluate to a result whether the condition is

true or false, and the else ensures this.

65



Conditional expressions

abs :: Int -> Int

abs n = if n >= 0 then n else -n

signum :: Int -> Int

signum n = if n < 0 then -1 else

if n == 0 then 0 else 1

describeLetter :: Char -> String

describeLetter c = if c >= 'a' && c <= 'z'

then "Lower case"

else if c >= 'A' && c <= 'Z'

then "Upper case"

else "Not an ASCII letter"

66



Conditional expressions

addOneIfEven1 :: Integral a => a -> a

addOneIfEven1 n = if even n then n+1 else n

addOneIfEven2 :: Integral a => a -> a

addOneIfEven2 n = n + if even n then 1 else 0

addOneIfEven3 :: Integral a => a -> a

addOneIfEven3 n = (if even n then (+ 1) else (+ 0)) n

addOneIfEven4 :: Integral a => a -> a

addOneIfEven4 n = (if even n then (+ 1) else id) n

67



Conditional expressions

Remember that

isNullLength :: Foldable t => t a -> Bool

isNullLength xs = if length xs == 0 then True else False

is nothing but

isNullLength :: Foldable t => t a -> Bool

isNullLength xs = length xs == 0

or (as we we shall see soon . . . but not really better here!)

isNullLength :: Foldable t => t a -> Bool

isNullLength = (== 0) . length

68



Guarded expressions

As an alternative to using conditional expressions, functions can

also be defined using guarded expressions, in which a sequence of

logical expressions called guards is used to choose between a

sequence of results of the same type.

• If the first guard is True, then the first result is chosen.

• Otherwise, if the second guard is True, then the second result

is chosen.

• And so on.

69



Guarded expressions

abs1 :: Int -> Int

abs1 n = if n >= 0 then n else -n

abs2 :: Int -> Int

abs2 n

| n >= 0 = n

| otherwise = -n

70



Guarded expressions

signum1 :: Int -> Int

signum1 n = if n < 0 then -1 else

if n == 0 then 0 else 1

signum2 :: Int -> Int

signum2 n

| n < 0 = -1

| n == 0 = 0

| otherwise = 1

70



Guarded expressions

describeLetter1 :: Char -> String

describeLetter1 c = if c >= 'a' && c <= 'z'

then "Lower case"

else if c >= 'A' && c <= 'Z'

then "Upper case"

else "Not an ASCII letter"

describeLetter2 :: Char -> String

describeLetter2 c

| c >= 'a' && c <= 'z' = "Lower case"

| c >= 'A' && c <= 'Z' = "Upper case"

| otherwise = "Not an ASCII letter"

70



Guarded expressions

fact :: (Eq t, Num t) => t -> t

fact n

| n == 0 = 1

| otherwise = n * fact (n-1)

mult :: (Eq t, Num t, Num a) => a -> t -> a

mult n m

| m == 0 = 0

| otherwise = n + mult n (m - 1)

71



Pattern matching

Many functions have a simple and intuitive definition using pattern

matching, in which a sequence of syntactic expressions called

patterns is used to choose between a sequence of results of the

same type.

The wildcard pattern _ matches any value.

• If the first pattern is matched, then the first result is chosen.

• Otherwise, if the second pattern is matched, then the second

result is chosen.

• And so on. . .

72



Pattern matching

-- conditional expression

not :: Bool -> Bool

not b = if b == True then False else True

-- guarded function

not :: Bool -> Bool

not b

| b == True = False

| otherwise = True

-- pattern matching

not :: Bool -> Bool

not False = True

not True = False

73



Pattern matching

(&&) :: Bool -> Bool -> Bool

True && True = True

True && False = False

False && True = False

False && False = False

(&&) :: Bool -> Bool -> Bool

True && True = True

_ && _ = False

(&&) :: Bool -> Bool -> Bool

True && b = b

False && _ = False

73



Pattern matching

guess :: Int -> String

guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

guess _ = "I am at least three"

-- be careful with the wildcard pattern

guess :: Int -> String

guess _ = "I am at least three"

guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

73



Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

first :: (a, b, c) -> a

first (x, _, _) = x

second :: (a, b, c) -> b

second (_, y, _) = y

third :: (a, b, c) -> c

third (_, _, z) = z

74



Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

Functions fst and snd are defined in the module Data.Tuple:

λ > :type fst

fst :: (a, b) -> a

λ > fst (1,2)

1

λ > :type snd

snd :: (a, b) -> b

λ > snd (1,2)

2

74



Pattern matching – List patterns

A list of patterns is itself a pattern, which matches any list of the

same length whose components all match the corresponding

patterns in order.

-- three characters beginning with the letter 'a'

test :: [Char] -> Bool

test ['a',_,_] = True

test _ = False

-- four characters ending with the letter 'z'

test :: [Char] -> Bool

test [_,_,_,'z'] = True

test _ = False

75



Pattern matching – Lambda expression

• An anonymous function is a function without a name.

• It is a Lambda abstraction and might look like this:

\x -> x + 1.

(That backslash is Haskell’s way of expressing a λ and is

supposed to look like a Lambda.)

λ > :type (\x -> x+1)

(\x -> x+1) :: Num a => a -> a

λ > (\x -> x+1) 2

3

76



Pattern matching – Lambda expression

The definition

add :: Int -> Int -> Int -> Int

add x y z = x+y+z

can be understood as meaning

add :: Int -> Int -> Int -> Int

add = \x -> (\y -> (\z -> x+y+z))

which makes precise that add is a function that takes an integer x

and returns a function which in turn takes another integer y and

returns a function which in turn takes another integer z and

returns the result x+y+z.

77



Pattern matching – Lambda expression

λ-expressions are useful when defining functions that returns

function as results by their very nature, rather than a consequence

of currying.

const :: a -> b -> a

const x _ = x

-- emphasis const :: a -> (b -> a)

const :: a -> b -> a

const x = \_ -> x

78



Pattern matching – Lambda expression

A closure (the opposite of a combinator) is a function that makes

use of free variables in its definition. It closes around some portion

of its environment.

f :: Num a => a -> a -> a

f x = \y -> x + y

f returns a closure, because the variable x, which is bounded

outside of the lambda abstraction is used inside its definition.

λ > g = f 1

λ > g 2

3

λ > g 3

4

79



Pattern matching – Operator sections

• Functions such as + that are written between their two

arguments are called section

• Any operator can be converted into a curried function by

enclosing the name of the operator in parentheses, such as

(+) 1 2.

• More generally, if o is an operator, then expression of the form

(o), (x o) and (o y) are called sections whose meaning as

functions can be formalised using λ-expressions as follows:

(o) = \x -> (\y -> x o y))

(x o) = \y -> x o y

(o y) = \x -> x o y

80



Pattern matching – Operator sections

• (+) is the addition function \x -> (\y -> x+y).

• (1 +) is the successor function \y -> 1+y.

• (1 /) is the reciprocation function \y -> 1/y.

• (* 2) is the doubling function \x -> x*2.

• (/ 2) is the halving function \x -> x/2.

81



Pattern matching – Bindings

• A where clause is used to divide the more complex logic or

calculation into smaller parts, which makes the logic or

calculation easy to understand and handle

• A where clause is bound to a surrounding syntactic construct,

like the pattern matching line of a function definition.

• A where clause is a syntactic construct

82



Pattern matching – Bindings

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "Underweight"

| weight / height ^ 2 < 25.0 = "Healthy weight"

| weight / height ^ 2 < 30.0 = "Overweight"

| otherwise = "Obese"

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= 18.5 = "Underweight"

| bmi < 25.0 = "Healthy weight"

| bmi < 30.0 = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ^ 2
83



Pattern matching – Bindings

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= underweight = "Underweight"

| bmi < healthy = "Healthy weight"

| bmi < overweight = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ^ 2

underweight = 18.5

healthy = 25

overweight = 30

84



Pattern matching – Bindings

• A let binding binds variables anywhere and is an expression

itself, but its scope is tied to where the let expression appears.

• if a let binding is defined within a guard, its scope is local and

it will not be available for another guard.

• A let binding can take global scope overall pattern-matching

clauses of a function definition if it is defined at that level.

85



Pattern matching – Bindings

cylinder :: (RealFloat a) => a -> a -> a

cylinder r h =

let sideArea = 2 * pi * r * h

topArea = pi * r ^2

in sideArea + 2*topArea

86



Pattern matching – Bindings

λ > let zoot x y z = x*y + z

λ > :type zoot

zoot :: Num a => a -> a -> a -> a

λ > zoot 3 9 2

29

λ > let boot x y z = x*y + z in boot 3 9 2

29

λ > :type boot

<interactive>: error:

o Variable not in scope: boot

87



Pattern matching – Bindings

λ > let a = 1; b = 2 in a + b

3

λ > let a = 1; b = a + 2 in a + b

4

λ > let a = 1; a = 2 in a

<interactive>:: error:

Conflicting definitions for 'a'

λ > let a = 1; b = 2+a; c = 3+a+b in (a, b, c)

(1,3,7)

88



Pattern matching – Bindings

λ > let a = 1 in let a = 2; b = 3+a in b

5

λ > let a = 1 in let a = a+2 in let b = 3+a in b

^CInterrupted.

λ > let f x y = x+y+1 in f 3 5

9

λ > let f x y = x+y; g x = f x (x+1) in g 5

11

89



Pattern matching – Bindings

dist :: Floating a => (a, a) -> (a, a) -> a

dist (x1,y1) (x2,y2) =

let xdist = x2 - x1

ydist = y2 - y1

sqr z = z*z

in sqrt ((sqr xdist) + (sqr ydist))

dist :: Floating a => (a, a) -> (a, a) -> a

dist (x1,y1) (x2,y2) = sqrt((sqr xdist) + (sqr ydist))

where

xdist = x2 - x1

ydist = y2 - y1

sqr z = z*z

90



Pattern matching – Bindings

We can pattern match with let bindings. E.g., we can dismantle a

tuple into components and bind the components to names.

λ > f x y z = let (sx,sy,sz) = (x*x,y*y,z*z) in (sx,sy,sz)

λ > f 1 2 3

(1,4,9)

λ > g x y = let (sx,_) = (x*x,y*y) in sx

λ > g 2 3

4

λ > h x = let ((sx,cx),qx) = ((x*x,x*x*x),x*x*x*x) in (sx,cx,qx)

λ > h 2

(4,8,16)

91



Pattern matching – Bindings

let bindings are expressions.

λ > 1 + let x = 2 in x*x

5

λ > (let x = 2 in x*x) + 1

5

λ > (let (x,y,z) = (1,2,3) in x+y+z) * 100

600

λ > (let x = 2 in (+ x)) 3

5

λ > let x=3 in x*x + let x=4 in x*x

25

92



Some functions

Functional programming concepts

First steps

Types and classes

Defining functions

Some functions

93



Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

94



Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact1 :: Integral a => a -> a

dblFact1 n = go n

where

p m = (even n && even m) || (odd n && odd m)

go 0 = 1

go m

| p m = m * go (m-1)

| otherwise = go (m-1)

94



Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact2 :: Integral a => a -> a

dblFact2 n = go n

where

nParity2 = n `mod` 2

p m = m `mod` 2 == nParity2

go 0 = 1

go m

| p m = m * go (m-1)

| otherwise = go (m-1)

94



Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact3 :: (Eq a, Num a) => a -> a

dblFact3 0 = 1

dblFact3 1 = 1

dblFact3 n = n * dblFact3 (n-2)

94



Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact4 :: (Num a, Enum a) => a -> a

dblFact4 n = product [n,n-2..1]

94



Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

95



Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

collatz1 1 = "win"

collatz1 n = collatz1 (if even n

then n `div` 2

b

else 3*n + 1)

95



Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

collatz2 :: Integral a => a -> String

collatz2 1 = "win"

collatz2 n

| even n = collatz2 (n `div` 2)

| otherwise = collatz2 (3*n + 1)

95



Ackermann–Péter function

A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n))

aP :: (Num a, Eq a, Num b, Eq b) => a -> b -> b

aP 0 n = n+1

aP m 0 = aP (m-1) 1

aP m n = aP (m-1) (aP m (n-1))

96



Prime numbers

A prime number (or a prime) is a natural number greater than 1

that is not a product of two smaller natural numbers.

-- very naive

isPrime :: Integral a => a -> Bool

isPrime 0 = False

isPrime 1 = False

isPrime n = go 2

where

go k

| k >= n = True

| otherwise = n `mod` k /= 0 && go (k+1)

97



Ping-pong programming

-- odd number predicate

isOdd :: (Eq a, Num a) => a -> Bool

isOdd 0 = False

isOdd 1 = True

isOdd n = isEven (n-1)

-- even number predicate

isEven :: (Eq a, Num a) => a -> Bool

isEven 0 = True

isEven 1 = False

isEven n = isOdd (n-1)

98



Factorial

fact1 :: (Eq a, Num a) => a -> a

fact1 n = if n == 0 then 1 else n * fact1 (n-1)

fact2 :: (Eq a, Num a) => a -> a

fact2 n

| n == 0 = 1

| otherwise = n * fact2 (n-1)

99



Factorial

fact3 :: (Ord a, Num a) => a -> a

fact3 = go 1

where

go m n

| m > n = 1

| otherwise = m * go (m+1) n

fact4 :: (Eq t, Num t) => t -> t

fact4 n = go 1 n

where

go acc 0 = acc

go acc m = go (acc*m) (m-1)

99



Factorial

fact5 :: (Enum a, Num a) => a -> a

fact5 n = product [1..n]

99



Pascal triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

pT :: (Num a, Ord a, Num b) => a -> a -> b

pT r c

| r == 1 && c == 1 = 1

| c < 1 || c > r = 0

| otherwise = pT (r-1) (c-1) + pT (r-1) c

100


	Functional programming concepts
	First steps
	Types and classes
	Defining functions
	Some functions

