Functional programming
Lecture 02 — First steps

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

February 13, 2023

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Schedule

Types & functions

Function on lists

High-order functions & list comprehensions
Test

Algebraic data type — Binary search trees
Algebraic data type — General trees
Problem solving — Countdown

Functional images

© 0 N o a A~ w o=

File system

=
©

Radar or Cloud simulator

[y
[y

. Test

Functional programming concepts

Functional programming concepts

Genealogy of programming languages

Functional languages

$Scala A - i
Y- LI

DI

{=2PURESCRIPT

(R

Main functional programming languages

Lisp

Lisp (historically, LISP) is a family of computer programming
languages with a long history and a distinctive, fully parenthesized
prefix notation. Originally specified in 1958, Lisp is the
second-oldest high-level programming language in widespread use
today. (Only Fortran is older, by one year.)

https://lisp-lang.org/

Main functional programming languages

ERLANG

Erlang

Erlang is a general-purpose, concurrent, functional programming
language, as well as a garbage-collected runtime system.

https://www.erlang.org/

Main functional programming languages

b elixir

Elixir
Elixir is a functional, concurrent, general-purpose programming
language that runs on the Erlang virtual machine (BEAM).

https://elixir-lang.org/

Main functional programming languages

F#
F+# is a strongly typed, multi-paradigm programming language

that encompasses functional, imperative, and object-oriented
programming methods. It is being developed at Microsoft
Developer Division and is being distributed as a fully supported
language in the .NET framework.

http://fsharp.org/

Main functional programming languages
v OCaml
Ocaml

Ocaml, originally named Objective Caml, is the main
implementation of the programming language Caml. OCaml’s
toolset includes an interactive top-level interpreter, a bytecode
compiler, a reversible debugger, a package manager (OPAM), and
an optimizing native code compiler.

http://ocaml.org/

Main functional programming languages

Clojure
Clojure is a dialect of the Lisp programming language. Clojure is a

general-purpose programming language with an emphasis on
functional programming. It runs on the Java virtual machine and

the Common Language Runtime.

https://clojure.org/

Main functional programming languages

Racket
Racket, formerly PLT Scheme, is a general purpose,

multi-paradigm programming language in the Lisp-Scheme family.
One of its design goals is to serve as a platform for language

creation, design, and implementation

http://racket-lang.org/

Main functional programming languages

Elm
Elm is a domain-specific programming language for declaratively

creating web browser-based graphical user interfaces. Elm is purely
functional, and is developed with emphasis on usability,

performance, and robustness.

http://elm-lang.org/

Main functional programming languages

! Scala

Scala is a general-purpose programming language providing
support for functional programming and a strong static type
system. Designed to be concise, many of Scala's design decisions

aimed to address criticisms of Java.

https://www.scala-lang.org/

Main functional programming languages

Haskell
Haskell is a general-purpose, statically-typed, purely functional

programming language with type inference and lazy evaluation.
Designed for teaching, research and industrial applications, Haskell
has pioneered a number of programming language features such as
type classes, which enable type-safe operator overloading, and
monadic 10. Haskell's main implementation is the Glasgow Haskell
Compiler (GHC). It is named after logician Haskell Curry.

https://www.haskell.org/

Characteristics of functional programming

First-class
functions

Lazy Higher-order
Evaluation functions

Characteristics of
functional

Manipulation programming Immutable
of lists data

Pure

HEEIEITL functions

Haskell

e Haskell is a compiled, statically typed, functional
programming language.

e It was created in the early 1990s as one of the first
open-source purely functional programming languages.

e It is named after the American logician Haskell Brooks Curry.

Glasgow Haskell Compiler

e Concise programs

e Powerful type system
e List comprehensions
e Recursive functions
e High-order functions
e Effectful functions

e Generic functions

e Lazy evaluation

e Equational reasoning

Haskell landscape

The imperatives
e GHC: state-of-the-art, open source, compiler and interactive
environment for the functional language Haskell.
e GHCi: GHC's interactive environment.
e Hackage: Haskell community’s central package archive of

open source software.

https://www.haskell.org/ghc/
https://wiki.haskell.org/GHC/GHCi
https://hackage.haskell.org/

Haskell landscape

Testing Frameworks

e QuickCheck: powerful testing framework where test cases are
generated according to specific properties.

e HUnit: unit testing framework similar to JUnit.

e Hspec: a testing framework similar to RSpec with support for
QuickCheck and HUnit.

e The Haskell Test Framework, HTF: integrates both Hunit and
QuickCheck.

10

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hspec.github.io/
https://hackage.haskell.org/package/HTF

Haskell landscape

Ancillary Tools

e darcs: revision control system.

haddock: documentation system.

cabal: build system.

stack: build system.

hoogle: type-aware API search engine.

11

http://darcs.net/
https://haskell-haddock.readthedocs.io/en/latest/
https://www.haskell.org/cabal/
https://docs.haskellstack.org/en/stable/
https://hoogle.haskell.org/

Haskell landscape

Static Analysis Tools

e hlint: detect common style mistakes and redundant parts of
syntax, improving code quality.

e Sourcegraph: Haskell visualizer.

Dynamic Analysis Tools
e criterion: powerful benchmarking framework.

e hpc: check evaluation coverage of a haskell program, useful
for determining test coverage.

12

https://hackage.haskell.org/package/hlint
https://hackage.haskell.org/package/SourceGraph
https://hackage.haskell.org/package/criterion
http://web.archive.org/web/20090705020757/projects.unsafeperformio.com/hpc/

Haskell landscape

IDEs
e VSCodium.
o IntelliJ.
e Vim.

e GNU Emacs.

Haskell for Mac (commercial).

Sublime Text (commercial)

13

https://vscodium.com/
https://www.jetbrains.com/fr-fr/idea/
https://www.vim.org/
https://www.gnu.org/software/emacs/
http://haskellformac.com/
https://www.sublimetext.com/

Haskell books

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Real World

Simon Thompson OREILLY

THE HASKELL
SCHOOL OF
' MuUsIC

THINKING::

FUNCTIONALLY
with

DESIGN HASKELL

with HASKELL

PAUL HUDAK
RICHARD BIRD

14

Haskell books

Emﬁ e Haskel GET PROGRAMMING
ective rlaske!
o e HASKELL
M=Haskell

Programming

Concurrent
i Programming
Pure functional programming .
without fear or frustration 1mn Ha Sk ell

Purely Functional
Data Structures
Chris Ohasahi . £9pE

4
4
v
4
v
(44
v
4
4
4

Practical
Haskell

Al

X

44 Haskell High Performance

Programmin,
5ot el

X

X

15

Functional programming books

Structure and
Interpretation
of Computer
Programs.

a
0\

The Little Schemer

SOFTWARE
DESIGN FOR
FLEXIBILITY

- Programiming
A Gomar

LET OVER

LET OVER

anson and

ald Joy Sussman

DOUG

‘The Reasoned Schemer

COMMON

LAMBDA

LAMBDA

HOYTE

The Little Typer The Little Prover

Daniel . risdenan nd Carl xstlund

P
Pty
oty

16

A taste of haskell

sum :: Num a => [a] -> a
sum [] =0

sum (x : xs) = X + sum XS

17

A taste of haskell

sum :: Num a => [a] -> a

sum [] =0

sum (x : xs) X + sum Xs

sum [1,2,3]

= { applying function sum }
1 + sum [2,3]

= { applying function sum }
1+ (2 + sum [3])

= { applying function sum }
1+ 2+ (3 + sum [])

= { applying function sum }
1+ (2+ (8+0))

= { applying function + }
1+ (2+3)

= { applying function + }
1+5

= { applying function + }

17

A taste of haskell

gsort :: Ord a => [a]l -> [a]

gsort [] = []

gsort (x : xs) = gsort smaller ++ [x] ++ gsort larger
where

smaller = [x' ' <- xs, x' <= x]

| x
[x' <= xs, x' > x]

larger [x

18

A taste of haskell

gsort :: Ord a => [a]l -> [a]
gsort [] = []
gsort (x : xs) = gsort smaller ++ [x] ++ gsort larger

where

smaller = [x' | x' <- xs, x' <= x]
larger = [x' | x' <= xs, x' > x]
gsort [x]

{ applying function gsort }
gsort [] ++ [x] ++ gsort [x]
= { applying function gsort }
0 ++ [x] ++ []

{ applying function ++ }
[x]

18

A taste of haskell

gsort :: Ord a => [a]l -> [a]
gsort [] = []
gsort (x : xs) = gsort smaller ++ [x] ++ gsort larger
where
smaller = [x' | x' <- xs, x' <= x]

[x' |

x
larger x' <= xs, x' > x]

gsort [3,5,1,4,2]
{ applying function gsort }

gsort [1,2] ++ [3] ++ gsort [5,4]

= { applying function gsort }

(gsort [] ++ [1] ++ gsort [2]) ++ [3] ++ (gsort [4] ++ [5] ++ gsort [])
{ applying function gsort }

(01 ++ [11 ++ [2]) ++ [3] ++ ([4] ++ [5] ++ [1)
{ applying function ++ }

[1,2] ++ [3] ++ [4,5]

= { applying function ++ }
[1,2,3,4,5]

18

First steps

First steps

19

Glasgow Haskell Compiler

e The Glasgow Haskell Compiler (GHC) is the state-of-the-art
open source implementation of Haskell

e The GHC if freely available for a range of operating systems
from the Haskell home page http://www.haskell.org

e We recommand downloading the Haskell Platform

e Once installed, the interface GHCi system can be started from

the terminal command prompt by simply typing ghci.

20

http://www.haskell.org

A > 14243
6

A > 1+42%3
A > (142)%*3

A> 2-3+4

A > 2%3/4
1.5

21

A > 2%pi
6.283185307179586

A> (1 + sqrt 5) / 2
1.618033988749895

A> log 2
0.6931471805599453

22

A> 27374
2417851639229258349412352

A> (273)74
4096

A > ceiling 2.6
3

A > floor 2.6
2

A > round 2.6
3

A> (sin pi)~2 + (cos pi)~2
1.0

23

A> x = 42
A > x+1
43

A> let x = 42 in x+1
43

24

A > "Haskell rocks!"
"Haskell rocks!"

A > "Haskell " ++ "rocks!"
"Haskell rocks!"

A > "Haskell " <> "rocks!"
"Haskell rocks!"

A> [IHI’Ial,lsl,lkl,lel,lll’lll’I l,lrl’lol’lcl,lkl’lsl,l!l]
"Haskell rocks!"

25

Command Meaning
:1load name load script name
:reload reload current script

:set editor name
redit name

redit

:type expr

.7

:quit

set editor to name
edit script name
edit current script
show type of expr
show all commands
quit GHCi

26

A> :type 1
1 :: Num a => a

A> :type 2.5
2.5 :: Fractional a => a

A> :type 5/2
5/2 :: Fractional a => a

A> :type 5 “div® 2
5 *div® 2 :: Integral a => a

27

A> :type 1+2

142 :: Num a => a

A> :type (+)

(#4) :: Num a => a -> a -> a

A> :type (1 +)
(1 +) :: Num a => a -> a

A > :type (+ 1)

(+1) :: Num a => a -> a

28

A> :type 2.5

2.5 :: Fractional a => a

A > :type 5/2
5/2 :: Fractional a => a

A> :type (/)
(/) :: Fractional a => a -> a -> a

A> :type (/ 2)
(/ 2) :: Fractional a => a -> a

29

A > :type pi
pi :: Floating a => a

A > :type sqrt 2
sqrt 2 :: Floating a => a

A > :type cos
cos :: Floating a => a -> a

30

A> fact n = if n == 0 then 1 else n * fact (n-1)

A > :type fact
fact :: (Eq a, Num a) => a -> a

A > fact 5
120

A > fact O
1

A > fact 5.0
120.0

A > fact 2.5
“CInterrupted.

31

A> f = fact

A > :type fact
fact :: (Eq a, Num a) => a -> a

A> £ 5
120

A> £ (f 3)
720

32

A> :type 'a'
'a' :: Char

A > ‘'abc'

<interactive>: error:

o Syntax error on 'abc'

A> Ial:llbcll
llabcll

33

A > "abc"

Ilabcll

A > :type "abc"
"abc" :: String

A > '"abc" ++ "def"
"abcdef"

A > :type (++)
(++) :: [a]l -> [a]l —> [al

34

Types and classes

Types and classes

35

Basic concepts

o In Haskell every expression must have a type.

e A type is a collection of related values.

e We use the notation v :: T to mean that v is a value in the
type T.
Example
True :: Bool
False :: Bool
not :: Bool -> Bool
(&&) :: Bool -> Bool —> Bool
(1) :: Bool -> Bool -> Bool

36

e Bool - Logical values.

e Char - Single characters.

e String - Strings of characters.

e Int - Fixed-precision integers.

e Integers - Arbitrary-precision integers.

e Float - Since-precision floating-point numbers.

e Double - Double-precision floating-point numbers.

37

A list is a sequence of elements of the same type, with the

elements being enclosed in square parentheses and separated
by commas.

o We write [T] for the type of all lists whose elements have
type T.

e The number of elements in a list is called its length.
e The list [] of length zero is called the empty list.
e [1and [[1] (and [L[111, [LLC111], ...) are different lists.

38

A> :type []
(1 :: [a]

A> :type [1,2,3,4,5]
[1,2,3,4,5] :: Num a => [a]

A> :type ['a', 'b', 'c', 'd']
[laly lb'; lC'; Id'] . [Char]

A > :type ["ab", "Cd", "ef", "gh"]
["ab", "Cd", "ef", "gh"] .- [String]

39

A > :type [cos, sin]

[cos, sin] :: Floating a => [a -> a]
A> :type [1, 'a'l
<interactive>: error:

o No instance for (Num Char) arising from the literal '1'

)\> Ztype [[1]:[2,3],[4’5’6]]
[[1]1,[2,3]1,[4,5,6]1] :: Num a => [[a]]

A> :type [[[1]11,[[2,3],[4,5,6]]1]
[CC111,[0[2,3],[4,5,6]11] :: Num a => [[[al]]

40

Tuple types

A tuple is a sequence of components of possibly different
types, with the components being enclosed in round
parentheses and separated by commas.

We write (T1, T2, ..., Tn) for the type of all tuples
whose i-th component have type Ti for any 1 <7 < n.

The number of elements in a tuple is called its arity.
The tuple () of arity zero is called the empty tuple.

Tuple of arity one are not permitted.

41

Tuple types

A> :type O
O = 0

A> :type (1,'a')
(1,'a') :: Num a => (a, Char)

A> :type (1,2,'a',"abc")
(1,2,'a',"abc") :: (Num a, Num b) => (a, b, Char, String)

A> :type (sqrt, 'a')
(sqrt, 'a') :: Floating a => (a -> a, Char)

A> c:type (1, ('a', "cd"))
(1, (ra', "cd")) :: Num a => (a, (Char, String))

42

Tuple types

A> :type (1, ('a', "cd"))
(1, (ra', "cd")) :: Num a => (a, (Char, String))

A> :type (1, [cos, sin])
(1, [cos, sin]) :: (Floating al, Num a2) => (a2, [al -> al])

A> :type (1)
(1) :: Num a => a

A> let t
((1,2),3)

(1,2) in (t, 3)

A> let t = (1,t)
<interactive>: error:

o Couldn't match expected type 'b' with actual type '(a, b)'

43

Function types

e A function is a mapping of one type to results of another type.

e We write T1 -> T2 for the type of all functions that map
arguments of type T1 to results of type T2.

e There is no restriction that function must be total on their

argument type.

44

Function types

A > :type not

not :: Bool -> Bool
A > :type even -- :type odd
even :: Integral a => a -> Bool

A > :type mod
mod :: Integral a => a -> a -> a

A> add x y = xty
A > :type add
add :: Num a => a —> a > a

A> add' (x,y) = xty
A > :type add'
add' :: Num a => (a, a) -> a

45

Curried functions

e Currying is the process of transforming a function that takes
multiple arguments in a tuple as its argument, into a function
that takes just a single argument and returns another function
which accepts further arguments, one by one, that the original
function would receive in the rest of that tuple.

e The function arrow => in type is assumed to associate to the

right.

The type

T1 -> T2 > T3 > ... -=> Tn

means

TL > (T2 > (T3 > (... => Tn)...))

46

Curried functions

The type
al -> a2 -> a3
means

al -> (a2 -> a3)

47

Curried functions

The type
al -> a2 -> a3 -> a4
means

al -> (a2 -> (a3 -> a4d))

47

Curried functions

The type
al —> a2 -> a3 -> a4 > ab
means

al -—> (a2 -> (a3 -> (a4 -> ab)))

47

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

mult x y z = x*¥y*z

48

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int
mult x y z = x*¥y*z

A> mult 2 3 4
24

A > :type mult 2
mult 2 :: Int -> Int -> Int

A> :type mult 2 3
mult 2 3 :: Int -> Int

A> :type mult 2 3 4
mult 2 3 4 :: Int
48

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

mult x y z = x*¥y*z

A> mult2 = mult 2
A > mult3 = mult2 3
A> mult3 4

24

A > :type mult2
mult2 :: Int -> Int -> Int

A > :type mult3
mult3 :: Int -> Int

48

Polymorphic types

e Parametric polymorphism refers to when the type of a value
contains one or more (unconstrained) type variables, so that
the value may adopt any type that results from substituting
those variables with concrete types.

e For example, the function id :: a -> a contains an
unconstrained type variable a in its type, and so can be used in
a context requiring Char -> Char or Integer -> Integer
or (Bool -> Bool) -> (Bool -> Bool) or any of a
literally infinite list of other possibilities.

e The empty list [J :: [a] belongs to every list type.

49

Polymorphic types

A > length []
A > length [1,3,5,7,2,4,6,8]
A > 1length ["Huey","Dewey","Louie"]

A > length [sin, cos, tan]

50

Polymorphic types

A > :type length
length :: Foldable t => t a -> Int

A > :info length
type Foldable :: (* -> %) -> Constraint
class Foldable t where

length :: t a -> Int

-- Defined in 'Data.Foldable’

51

Overloaded types

e A type that contains one or more class constraints is called
overloaded.

e Class constraints are written in the form C a, where C is the
name of the class and a is a type variable.

52

Overloaded types

A> 1+ 2 A> 1.0 + 2.0

3 3.0

A> :type 1 A> :type 1.0

1 :: Num a => a 1.0 :: Fractional a => a

A> :type 1 + 2 A> :type 1.0 + 2.0

1+ 2 :: Num a => a 1.0 + 2.0 :: Fractional a => a

A> sqrt 2 + sqrt 3
3.1462643699419726

A > :type sqrt 2
sqrt 2 :: Floating a => a

A > :type sqrt 2 + sqrt 3
sqrt 2 + sqrt 3 :: Floating a => a
53

Overloaded types

A> :type (+)

(#) :: Num a => a -> a -> a
:type (=)
(=) :: Num a => a -> a —-> a

A> :type (%)

(¥) :: Num a => a -> a -> a
A> :type (/)
(/) :: Fractional a => a -> a -> a

A > :type sqrt
sqrt :: Floating a => a -> a

54

Basic classes

e A class is collection of types that support certain overloaded
operations called methods.

e Haskell provides a number of basic classes that are built-in to

the language.

55

Basic classes

Eq — Equality types

This class contains types whose values can be compared for equality
and inequality using the following two methods:

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Eq class.

56

Basic classes

Eq — Equality types

A > True == True

True

A>'a' == 'b'
False

A > '"abc" == "abc"
True

A> 2.5 ==5.2
False

56

Basic classes

Eq — Equality types

A> (ta'y, 1) == ('b', 1)
False

A> (1, 2, 3) == (1, 2)
<interactive>:120:14: error:
o Couldn't match expected type: (a0, b0, cO0)
with actual type: (al, bl)

A> [1,2,3] == [1,2,3,4]
False

A > cos == cos
<interactive>: error:
o No instance for (Eq (Double -> Double))

arising from a use of '=='

56

Basic classes

Ord — Ordered types

This class contains types that are instances of the equality class Eq,
but in addition these values are totally ordered, and as such can be
compared using the following six methods:

(<) a -> a -> Bool
(<=) a —> a —> Bool
>) a -> a -> Bool
(>=) :: a -> a -> Bool
min a->a->a
max a->a->a

All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Ord class.

57

Basic classes

Ord — Ordered types

A > False < True
True

A > "elegant" < "elephant"

True

)\ > llall < llabll
True

A> Ibl > Ial
True

A> [1,2,3] <= [1,2]
False

A> [< [1]
True 57

Basic classes

Ord — Ordered types
A> (1,2) < (1,3)

True

A> (1,2,3) < (1,1)
<interactive>: error:
o Couldn't match expected type: (a0, b0, cO)
with actual type: (al, bl)

A > [True] < [False,False]
False

A > (False,False) <= (False,True)

True

57

Basic classes

Ord — Ordered types
A >

A> min ('a',2) ('a',1)
('a',1)

A> max ('a',2) ('a',1)
('a',2)

A > sin < cos
<interactive>: error:
o No instance for (Ord (Double -> Double))

arising from a use of '<'

A> (1, sin) > (2, cos)
<interactive>: error:
o No instance for (Ord (Double -> Double))
arising from a use of '>' 57

Basic classes

Show — Showable types

This class contains types that can be converted into strings of char-
acters using the following method:

show :: a -> String

All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Show class.

58

Basic classes

Show — Showable types

A > show True
HTrueH

A > show

HlaIH

A > show "abc"
H\HabC\H”

A > show [1,2,3]
H[1,2,3]”

A > show (1, True, [1,2,3])
"(1,True, [1,2,3])"

58

Basic classes

Read — Readable types
This class is dual to Read and contains types whose values can be
converted from string of characters using the following method:

read :: String -> a
All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Read class.

59

Basic classes

Read — Readable types

A > read "False" :: Bool

False

A> read "'a'" :: Char

lal

A > read "\"abc\"" :: String

"abC"

A> read "[1,2,3]" :: [Int]

[1,2,3]

A > read "(1, True, [1,2,3]1)" :: (Int, Bool, [Int])

(1,True, [1,2,3])

59

Basic classes

Num — Numeric types
This class contains types whose values are numeric, and as such can
be processed using the following six methods:

(+) :: a->a->a
(=) :: a->a->a
(¥*) :: a->a->a
negate :: a -> a
abs tra —> a
signum :: a —> a

Note that the Num class does not provide a division method.

60

Basic classes

Num — Numeric types

A> 142
3

A> 1-2
-1

A> 1.0+2.0
3.0

A > 2%3
6

A> 2.0%3.0
6.0

60

Basic classes

Num — Numeric types

A > negate 3.0
-3.0

A > negate (-2)
2

A > abs(-1.5)
1.5

A > signum 3
1

A > signum (-3)
-1

60

Basic classes

Integral — Integral types

This class contains types that are instances of the numeric class Num,
but in addition whose values are integers, and as such support the
method of integer division and integer remainder:

div :: a -> a —> a

mod :: a -> a -> a

61

Basic classes

Integral — Integral types
A> div 7 2

3
A> 7 “div’ 2
A> 8 “div™ 2

A> 7 “mod” 2

A> 8 “mod” 2

61

Basic classes

Integral — Integral types
A> (=7) “div® 2
-4

A> (-7) “div™ (-2)
3

A> (=7) “mod> 2
1

A> (-7) “mod” (-2)
-1

61

Basic classes

Fractional — Fractional types

This class contains types that are instances of the numeric class Num,
but in addition whose values are non-integral, and as such support
the method of integer fractional division and fractional reciprocation:
(/) :: a->a->a

recip :: a -> a —> a

The basic types Float and Double are instances of the Fractional
class.

62

Basic classes

Fractional — Fractional types

A> 7.0/ 2.0
3.5

A> 2.0/ 7.0
0.2857142857142857

A> recip 2.0
0.5

A > recip 1.0
1.0

62

Defining functions

Defining functions

63

New from old

even :: Integral a => a -> Bool
even n = n “mod’ == 0
odd :: Integral a => a —> Bool

oddn=n "mod> 2 /=0

recip :: Fractional a => a -> a

recipn=1/n

64

Conditional expressions

For processing conditions, the if-then-else syntax was defined
in Haskell98.

if <condition> then <true-value> else <false-value>

if is an expression (which is converted to a value) and not a
statement (which is executed) as in many imperative languages.
As a consequence, the else is mandatory in Haskell. Since if is
an expression, it must evaluate to a result whether the condition is

true or false, and the else ensures this.

65

Conditional expressions

abs :: Int -> Int

abs n = if n >= 0 then n else -n

signum :: Int -> Int
signum n = if n < O then -1 else
if n == 0 then O else 1

describeletter :: Char -> String
describeletter ¢ = if ¢ >= 'a' && c <= 'z'
then "Lower case"
else if ¢ >= 'A' && c <= 'Z'
then "Upper case"
else "Not an ASCII letter"

66

Conditional expressions

addOneIfEvenl :: Integral a => a —> a

addOnelfEvenl n = if even n then n+l else n

addOneIfEven2 :: Integral a => a -> a

addOneIfEven2 n = n + if even n then 1 else O

addOneIfEven3 :: Integral a => a -> a
addOneIfEven3 n = (if even n then (+ 1) else (+ 0)) n

addOneIfEven4 :: Integral a => a -> a
addOneIfEven4 n = (if even n then (+ 1) else id) n

67

Conditional expressions

Remember that

isNullLength :: Foldable t => t a -> Bool
isNulllLength xs = if length xs == 0 then True else False

is nothing but

isNullLength :: Foldable t => t a -> Bool
isNullLength xs = length xs ==

or (as we we shall see soon ...but not really better here!)
isNullLength :: Foldable t => t a -> Bool

isNullLength = (== 0) . length

68

Guarded expressions

As an alternative to using conditional expressions, functions can
also be defined using guarded expressions, in which a sequence of
logical expressions called guards is used to choose between a
sequence of results of the same type.

e If the first guard is True, then the first result is chosen.

e Otherwise, if the second guard is True, then the second result

is chosen.

e And so on.

69

Guarded expressions

absl :: Int -> Int

absl n = if n >= 0 then n else -n

abs2 :: Int -> Int
abs2 n
| n>=0

1]
=]

| otherwise -n

70

Guarded expressions

signuml :: Int -> Int
signuml n = if n < O then -1 else
if n == 0 then 0 else 1

signum2 :: Int -> Int
signum2 n
| n <O = -1

]
o

|n==

| otherwise

70

Guarded expressions

describeletterl :: Char -> String
describeletterl ¢ = if ¢ >= 'a' && c <= 'z'
then "Lower case"
else if ¢ >= 'A' && c <= 'Z'
then "Upper case"
else "Not an ASCII letter"

describeletter2 :: Char -> String

describeletter2 c

| ¢ >= 'a' && c <= 'z' = "Lower case"
| ¢ > '"A'" && c <= 'Z' = "Upper case"
| otherwise = "Not an ASCII letter"

70

Guarded expressions

fact :: (Eq t, Num t) => t -> t
fact n

1

| otherwise = n * fact (n-1)

|n==

mult :: (Eq t, Num t, Num a) => a -> t -> a

mult n m

0

| otherwise = n + mult n (m - 1)

|m==

71

Pattern matching

Many functions have a simple and intuitive definition using pattern
matching, in which a sequence of syntactic expressions called
patterns is used to choose between a sequence of results of the

same type.

The wildcard pattern _ matches any value.

o If the first pattern is matched, then the first result is chosen.

e Otherwise, if the second pattern is matched, then the second

result is chosen.

e And so on...

72

Pattern matching

-- conditional expression
not :: Bool —-> Bool
not b = if b == True then False else True

-- guarded function
not :: Bool -> Bool
not b

| b == True = False

| otherwise = True

-- pattern matching
not :: Bool -> Bool
not False = True
not True = False

73

Pattern matching

(&%) :: Bool

True && True
True && False
False && True
False && False

(&&) :: Bool
True && True

&&

(&&) :: Bool

True && b
False && _

-> Bool -> Bool

= True

False

False

False

-> Bool -> Bool
= True

= False

-> Bool -> Bool
b

False

73

Pattern matching

guess
guess
guess
guess

guess

Int -> String
0 = "I am zero"
1 ="1 am one"
2 ="T am two"
_ ="1 am at least three"
careful with the wildcard pattern

Int -> String
_ ="1 am at least three"
0 ="I am zero"
1 ="1T am one"
2 ="1 am two"

73

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding

patterns in order.

first :: (a, b, c) > a

first (x, _, _) =x

second :: (a, b, c) > b

second (_, y, _) =y

third :: (a, b, ¢c) -> ¢
third (_, _, z) = z

74

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding
patterns in order.

Functions £st and snd are defined in the module Data. Tuple:

A > :type fst

fst :: (a, b) > a
A> fst (1,2)
1

A > :type snd
snd :: (a, b) > b
A> snd (1,2)

2

74

Pattern matching — List patterns

A list of patterns is itself a pattern, which matches any list of the
same length whose components all match the corresponding
patterns in order.

! !

-— three characters beginning with the letter 'a
test :: [Char] -> Bool
test ['a',_,_] = True
test = False

-— four characters ending with the letter 'z'
test :: [Char] -> Bool

test [_,_,_,'z'] = True

test = False

75

Pattern matching — Lambda expression

e An anonymous function is a function without a name.

e |t is a Lambda abstraction and might look like this:
\x -> x + 1.

(That backslash is Haskell's way of expressing a A and is
supposed to look like a Lambda.)

A> :type (\x —> x+1)
(\x => x+1) :: Num a => a -> a

A> (\x —> x+1) 2
3

76

Pattern matching — Lambda expression

The definition

add :: Int -> Int -> Int -> Int
add x y z = xt+y+z

can be understood as meaning

add :: Int -> Int -> Int -> Int
add = \x > (\y > (\z -> x+y+z))

which makes precise that add is a function that takes an integer x
and returns a function which in turn takes another integer y and
returns a function which in turn takes another integer z and
returns the result x+y+z.

7

Pattern matching — Lambda expression

A-expressions are useful when defining functions that returns
function as results by their very nature, rather than a consequence

of currying.

const :: a -> b -> a

const x _ = X

-- emphasis const :: a -> (b -> a)
const :: a -> b -> a

const x = _ —> x

78

Pattern matching — Lambda expression

A closure (the opposite of a combinator) is a function that makes
use of free variables in its definition. It closes around some portion

of its environment.
f :: Num a => a -> a -> a
fx=\y >x+y

f returns a closure, because the variable x, which is bounded
outside of the lambda abstraction is used inside its definition.

]
Hh
[

A> g
A> g
3

N

A> g3
4
79

Pattern matching — Operator sections

e Functions such as + that are written between their two
arguments are called section

e Any operator can be converted into a curried function by
enclosing the name of the operator in parentheses, such as
(+) 1 2.

e More generally, if o is an operator, then expression of the form
(0), (x o) and (o y) are called sections whose meaning as
functions can be formalised using A-expressions as follows:

(@ =\x > (\y > x 0 y))
(xo0) =\y >xo0y
(oy) =\x >xo0y

80

Pattern matching — Operator sections

(+) is the addition function \x -> (\y -> x+y).

(1 +) is the successor function \y -> 1+y.

(1 /) is the reciprocation function \y -> 1/y.

(x 2) is the doubling function \x -> x*2.

(/ 2) is the halving function \x -> x/2.

81

Pattern matching — Bindings

e A where clause is used to divide the more complex logic or
calculation into smaller parts, which makes the logic or
calculation easy to understand and handle

e A where clause is bound to a surrounding syntactic construct,
like the pattern matching line of a function definition.

e A where clause is a syntactic construct

82

Pattern matching — Bindings

bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height
| weight / height ~ 2 <= 18.5
| weight / height =~ 2 < 25.0

"Underweight"
"Healthy weight"

| weight / height =~ 2 < 30.0 = "Overweight"
| otherwise = "Obese"
bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height
| bmi <= 18.5 = "Underweight"

[bmi < 25.0 = "Healthy weight"
| bmi < 30.0 = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ~ 2 83

Pattern matching — Bindings

bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height

| bmi <= underweight
[bmi < healthy

"Underweight"
"Healthy weight"

| bmi < overweight = "Overweight"
| otherwise = "Obese"
where

bmi = weight / height ~ 2

underweight = 18.5

healthy = 25

overweight = 30

84

Pattern matching — Bindings

e A let binding binds variables anywhere and is an expression
itself, but its scope is tied to where the let expression appears.

e if a let binding is defined within a guard, its scope is local and
it will not be available for another guard.

e A let binding can take global scope overall pattern-matching
clauses of a function definition if it is defined at that level.

85

Pattern matching — Bindings

cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
let sideArea = 2 * pi * r * h
topArea = pi * r "2

in sideArea + 2*topArea

86

Pattern matching — Bindings

A> let zoot x y 2 = x*y + z
A > :type zoot
zoot :: Num a => a -> a -> a -> a

A > zoot 3 9 2
29

A > let boot x y z = x*y + z in boot 3 9 2
29

A > :type boot
<interactive>: error:

o Variable not in scope: boot

87

Pattern matching — Bindings

A> let a
3

2 in a + b

I
-
o’

Il

A> leta=1; b=a+2ina+b
4
A> let a =2 in a

<interactive>:: error:

I
-
o))

Conflicting definitions for 'a

A> let a=1; b = 2+a; ¢ = 3+a+b in (a, b, c)
(1,3,7)

88

Pattern matching — Bindings

A> let a=11in let a =2; b = 3+a in b

5

A> let a =1 in let a = a+2 in let b = 3+a in b
“CIlnterrupted.

A> let f xy=x+ty+l in £ 3 5
9

A> let fxy=xty; gx=1fx (xt1) in g 5
11

89

Pattern matching — Bindings

dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) =
let xdist = x2 - x1
y2 -yl
Z*Z

ydist

sqr z

in sqrt ((sqr xdist) + (sqr ydist))

dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) = sqrt((sqr xdist) + (sqr ydist))

where
xdist = x2 - x1
ydist = y2 - yi1
sqQr z = z*z

90

Pattern matching — Bindings

We can pattern match with let bindings. E.g., we can dismantle a
tuple into components and bind the components to names.

A> f xyz = let (sx,sy,sz) = (x*x,y*y,z*z) in (sx,sy,sz)
A> f 123
(1,4,9)

A> gxy=let (sx,) = (x*x,y*y) in sx
A> g23
4

A> h x = let ((sx,cx),qx) = ((x*x,x*x*x),x*x*x*x) in (sx,cx,qx.
A> h 2
(4,8,16)

91

Pattern matching — Bindings

let bindings are expressions.

A> 1 + let x = 2 in x*x
5

A> (let x = 2 in x*x) + 1
5

A> (let (x,y,z) = (1,2,3) in x+y+z) * 100
A> (let x =2 in (+ x)) 3

A > let x=3 in x*x + let x=4 in x*x
25

92

Some functions

Some functions

93

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

94

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFactl :: Integral a => a -> a
dblFactl n = go n
where

pm= (even n && even m) || (odd n &% odd m)
go 0 =1
go m
| pm
| otherwise = go (m-1)

m * go (m-1)

94

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact2 :: Integral a => a -> a
dblFact2 n = go n
where

nParity2 = n "mod” 2
pm=m mod 2 == nParity2
go 0 =1

go m

| pm =m * go (m-1)

| otherwise = go (m-1)

94

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact3 :: (Eq a, Num a) => a -> a

dblFact3 0 = 1
dblFact3 1 = 1
dblFact3 n = n * dblFact3 (n-2)

94

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact4 :: (Num a, Enum a) => a -> a
dblFact4 n = product [n,n-2..1]

94

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,_1 is even
u, =

"\ Bup1 41 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26, 13, 40, 20, 10, 5,16, 8,4,2, 1.

95

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,_1 is even
u, =

"\ Bup1 41 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26,13, 40, 20, 10,5,16,8,4,2,1

collatzl 1 win

collatzl n = collatzl (if even n
then n “div™ 2
b

else 3*n + 1)

95

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,_1 is even
u, =

"\ Bup1 41 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26,13, 40, 20, 10,5,16,8,4,2,1

collatz2 :: Integral a => a -> String
collatz2 1 = "win"
collatz2 n

collatz2 (n ~div’ 2)

| otherwise = collatz2 (3*n + 1)

| even n

95

Ackermann—Péter function

A(0, n) =n+1
A(m+1,0) =A(m,1)
Alm+1,n+1) =A(m,A(m+1,n))

aP :: (Num a, Eq a, Num b, Eq b) => a -> b > D
aP 0 n = n+1

aPmO=aP (m-1) 1

aP (m-1) (aP m (n-1))

aPmn

96

Prime numbers

A prime number (or a prime) is a natural number greater than 1

that is not a product of two smaller natural numbers.

-— very naive

isPrime :: Integral a => a -> Bool
isPrime 0 = False
isPrime 1 = False

isPrime n = go 2

where
go k
| kK >=n = True
n "mod” k /= 0 && go (k+1)

| otherwise

97

Ping-pong programming

-— odd number predicate

is0dd :: (Eq a, Num a) => a -> Bool
is0dd O
is0dd 1
isOdd n = isEven (n-1)

False

True

-— even number predicate

isEven :: (Eq a, Num a) => a -> Bool

isEven O True
isEven 1 = False

is0dd (n-1)

isEven n

98

IIHHIiHHHHII

factl :: (Eq a, Num a) => a -> a
factl n = if n == 0 then 1 else n * factl (n-1)

fact2 :: (Eq a, Num a) => a -> a
fact2 n

| otherwise = n * fact2 (n-1)

99

IIHHIiHHHHII

fact3 :: (0rd a, Num a) => a -> a
fact3 = go 1
where
go m n
| m>n =1
| otherwise = m * go (m+l) n

fact4 :: (Eq t, Num t) => t > t
fact4 n =go 1 n

where

go acc 0 = acc

go acc m = go (acc*m) (m-1)

99

IIHHIiHHHHII

facts :: (Enum a, Num a) => a -> a

facts n = product [1..n]

99

Pascal triangle

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
pT :: (Num a, Ord a, Num b) => a -> a -> b
pT r c
| r == 1 && c == =1
[c<1 |l c>r

=0
| otherwise = pT (r-1) (c-1) + pT (r-1) c

100

	Functional programming concepts
	First steps
	Types and classes
	Defining functions
	Some functions

