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Model for analysis of algorithms

Classical (theoretical)
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@ Unit cost operations (comparisons, accesses, arithmetic, ...)

@ Sequential execution
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Model for analysis of algorithms

Classical (theoretical) vs. Reality (execution)

@ Worst case
> Average case can be quite different from the worst, it depends
a lot on the data

@ Unit cost operations (comparisons, accesses, arithmetic, ...)

> The latency of an operation depends heavily on the processor
(ALU, cache, ...)

@ Sequential execution
> Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.
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Pipeline, hazards, and branch prediction

Clock cycle
1 2 3 4 5 6 7 8

@ (Modern) processors use a pipeline to
create instruction-level parallelism.

Waiting
instructions
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@ Various hazards can stall a pipeline. For
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@ Solution : anticipating the outcome of a instructions | E

branch instruction by using a predictor. Tllustration: Wikipedia

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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@ Various hazards can stall a pipeline. For e
instance branching instructions (e.g., if,
if-then-else, while, ...) may need the

previous one to finish its execution.
. o . . Completed
@ Solution : anticipating the outcome of a instructions

branch instruction by using a predictor. Tllustration: Wikipedia

Pipeline
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A dynamic branch predictor uses runtime information (specifically,
the branch execution history) for accuracy.

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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Pipeline, hazards, and branch prediction

Clock cycle

@ (Modern) processors use a pipeline to
create instruction-level parallelism.

Waiting
instructions

@ Various hazards can stall a pipeline. For
instance branching instructions (e.g., if,
if-then-else, while, ...) may need the
previous one to finish its execution.

Completed

@ Solution : anticipating the outcome of a instructions
branch instruction by using a predictor.

Illustration: Wikipedia
A dynamic branch predictor uses runtime information (specifically,
the branch execution history) for accuracy.
@ local: independent history for each conditional jump =
predictions based on the behavior of that specific instruction

@ global: shared history of all jumps = capture correlations
and improve prediction accuracy

@ Since the 2000s, processors use a combination of local and global

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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Our model: classical local branch predictor

2-bit saturated counter:

branch Taken

(4

T T T
ve(el XL Joer
N N N

N branch Not taken

State = prediction:
e v and v predicts not taken

o 7 and 7 predicts taken

Transition = actual outcome: the branch is Taken or Not taken
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Our model: classical local branch predictor

2-bit saturated counter:

branch Taken

(4

T T T
ve(el XL Joer
N N N

N branch Not taken

State = prediction:
e v and v predicts not taken

o 7 and 7 predicts taken

Transition = actual outcome: the branch is Taken or Not taken

> How well does it work during the execution of an algorithm?
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Past and present work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Tradeoffs Between Branch Mispredictions and
Comparisons for Sorting Algorithms

Gerth Stglting Brodal':* and Gabriel Moruz'

, Department of Computer Science, University of Aarhus,
IT Parken, Abogade 34, DK-8200 Arhus N, Denmark
{gerth, gabi}edaimi.an.dk

Abstract. Branch mispredictions is an important factor affecting the
running time in practice. In this paper we consider tradeoffs between

the number of branch and the number of for

sorting

algorit Measure[Comparisons Branch mispredictions

misprec Dis  |O(dn(1 + log(1 + Dis))) 2(nloga(1 + Dis))

by adog O(dn(1 + Exclog(1 + Exc))) [2(nExclogg(1 + Exc))

tions. F O(dn(1 + log(1 + Enc))) 2(nlogy(1 + Enc))

rithm p O(dn(1+log(1 + Inv/n)))  |2(nlogg(1 + Inv/n))

Q(nlog O(dn(1 + log(1 + Max))) 2(nlogy(1 + Max))
O(dn(1 + log(1+ Ose/n)))  [2(nlogy(1 + Ose/n))
O(dn(1 + log(1 + Reg))) 2(nloga(1 + Reg))
O(dn(1 + Rem log(1 + Rem)))|2(nRem logy(1 + Rem))
O(dn(1 +log(1 + Runs)))  |2(nlogy(1 + Runs))
O(dn(1+log(1+SMS)))  |2(nlogg(1 +SMS))
|O(dn(1 + log(1 + SUS))) 2(nlogy(1 + SUS))

Fig. 4. Lower bounds on the number of branch mispredictions for deterministic com-
parison based adaptive sorting algorithms for different measures of presortedness, given
the upper bounds on the number of comparisons
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Past and present work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

@ Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch
Prediction

PAUL BIGGAR', NICHOLAS NASH!, KEVIN WILLIAMS? and DAVID GREGG
Trinity College Dublin

Prediction Analysis of (K)MP
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Past and present work
: mispredictions and (adaptive) sorting

@ Brodal & Moruz, 2005 :
@ Biggar et al, 2008 : experimental, branch prediction and sorting

@ Kaligosi and Sanders, 2006 : mispredictions and quicksort

How Branch Mispredictions Affect Quicksort

Kanela Kaligosi' and Peter Sanders?
Table 1. Number of branch mispredictions

" Max Planck Ir
arbriic

kaligosig|

random pivot a-skewed pivot

nlgn + O(n).

2 Universitiit
2nlgn + O(n), 132 ~ 03466
Tnlgn+O(n)

sanders|
static predictor

a0l ig 0+ O(n)

21 1 O(n), 22 % 0.4621

Abstract.
1-bit predictor

2-bit predictor

72
’ “ & u
0w w6 w m = m m
an
Fig. 3. Time / nlgn for random pivot, median of 3, exact median, 1/10-skewed pivot
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Past and present work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting
@ Kaligosi and Sanders, 2006 : mispredictions and quicksort

@ Martinez, Nebel and Wild, 2014 : mispredictions and quicksort

Analysis of Branch Misses in Quicksort*

Conrado Martfnez’ Markus E. Nebel ' Sebastian Wild*

November 11, 2014

Abstract pivots are chosen fro mple of the input. We
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Past and present work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting
@ Kaligosi and Sanders, 2006 : mispredictions and quicksort

@ Martinez, Nebel and Wild, 2014 : mispredictions and quicksort

@ Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

Good Predictions Are Worth a Few Comparisons
Nicolas Auger, Cyril Nicaud, and Carine Pivoteau

Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France

Abstract
Most modern processors are heavily parallelized and use predictor
conditional branches, in order to
friendly version

oid costly stalls in their pipelir _**
f two classi

sorted array. T
number of ope

that our algorithm: guificantly better than the standard on

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms ¢ ot

Keywords and phrases branch misses, binary search, exponentiation by squaring, Markov chains
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Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting
@ Kaligosi and Sanders, 2006 : mispredictions and quicksort

@ Martinez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

These algorithms heavily relies on branch instructions, but most of
them are independent. What happens when they are correlated ?

This happens in pattern matching algorithms, e.g., MP and KMP.

@ How can we study the impact of branch prediction on them ?

@ Can we observe it on the execution time ?

Note: the classical average analysis of the number of comparisons for a random

text and a random pattern was done by M. Regnier an W. Szpankowski in the 90s
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Branches in MP and KMP

W = text of length n , X = pattern of length m,

L 4,j,nb <+ 0,0,0

2 while j <n do

3 while ¢ > 0 and X[i] # W[j] do
4

| i+ Bli]
5 iji+1,j+1
6 if i = m then
. LieB[i]
8 nb<«nb+1

9 return nb

B = pre-computed border table of X:
e mp : BJ[i] = size of longest border u of X|[0..i — 1]
e kmp: BJi] = size of longest border u of X|[0..i — 1]
+ u followed by X[i] is not a prefix of X
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Branches in MP and KMP

W = text of length n , X = pattern of length m,

L i.j.nb <+ 0,0,0

2 while j <n do

3 while i > 0 and X[i] # W[j] do
4

| i+ Bli]
5 L,j+i+1,7+1
6 if i = m then
7 i + B X = ababb
8 nb <+ nb+1 BZI-I‘O‘O‘ 1‘2‘111})
9 return nbd B:’—l\O\—l\O\Z‘kmp
........................................ mp
pe e b “ |
B: a,b*ff >l a Jabl Iaba| |abab|
\\‘\\“\\\\:><:’// ’,—’//V\‘;__"/// kmp
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Branches in MP and KMP

while |3 <n do

while ¢ >0 and [ X[i| # W[j] do
| i+ Bli]

Lj—i+1,7+1

if i=m then

i < B
nb <+ nb+1

L = e mp
.7 a,b *!_’EI—' a [ b ,-aba
kmp
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Branches in MP and KMP

while |3 <n do
while ¢ >0 and [ X[i| # W[j] do
| i+ Bli]
,j<1+1,7+1
if i =m then
i < B
nb<nb+1

L e e e, mp
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Branches in MP and KMP

while |3 <n do
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| i+ Bli]
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if i =m then
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nb<+ nb+1
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Branches in MP and KMP

while |3 <n do
while ¢ >0 and [ X[i| # W[j] do
| i+ Bli]
,j<1+1,7+1
if i =m then
i < B
nb<nb+1

L LTI e i, mp
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Branches in MP and KMP

while j <n do

while 4 >0 and X[i] # W[j] do
| i+ Bli]

,j<1+1,7+1

if i =m then

Lﬂ—B[i]

nb<+ nb+1
L = e mp
TS 5 . )
f a,b>le - a E‘ ab - a4 aba
\“*\; \\\\:.»:’_’/’ arl—”’V\‘—"/_(/ kmp
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Branches in MP and KMP

while 7 <n do

while i >0 and X[i] # W[j] do
| i+ Bli]

,j<1+1,7+1

if i =m then

Lﬂ—B[i]

nb<+ nb+1
L = e mp
TS 5 . )
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Expected number of mispredictions

Local predictor for MP/KPM on a random text

while ] <n|do <— super easy: at most 3

while i > 0 and X[i] # W[j] do

| i+ B[]

1,1+ 1,j+1

if i = m then <— almost easy: ~ nb. of occurrences of X
L i < B[]

nb<+ nb+1

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP



Expected number of mispredictions

Local predictor for MP/KPM on a random text

while j < n do

while ¢ > 0 and [ X[i] # W[j] do < this talk
| i+ B[i]

,j—1i+1,j+1

if i = m then
L i < Bli]

nb <+ nb+1

Analysis of the mispredictions caused by letter comparisons:

@ depends on the pattern X
@ probability measure on A such that for all o € 4, 0 < () < 1

@ transducer for the (mis)predictions + Markov chain
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Expected number of mispredictions

Local predictor for MP/KPM on a random text

while j < n do

while ¢ >0 and | X[i] # W|[j] do < this talk
| i+ B[i]

,j—1i+1,j+1

if i = m then

L i < Bli]

nb <+ nb+1

Analysis of the mispredictions caused by letter comparisons:

@ depends on the pattern X
@ probability measure on A such that for all o € 4, 0 < () < 1
@ transducer for the (mis)predictions + Markov chain

@ same kind of ideas for i > 0

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP



Results: number of mispredictions per symbol

Asymptotic expected number of mispredictions per symbol in KMP
with ¥ = {a,b} and p := w(a) =1 — 7(b).

X i=m i>=0 X[i] != T[j]
1—
aa too large 1—p M
1—2p + 2p?
p(3—7p+ Tp* — 2p°)
ab 1— 1—p)?
p(1—p) (1-p) 2"
3 2 p(l—p)
1—p)(1 1— A S
aaa  p°(1—p)(1+p) P ot
1—2p* —p® +5p? — 3p° +p)
aab 2(1— 1-p)2(1+ a
p*(1-p) (1-p)*1+p) 1 op 3% -2 4 ph
3-T 2 — 2p°
aba p2 (l—p) (1_p)2 p( p+7p p)
1—p+2p? —p?
abb p(1— p)2 1- p)3 p(4—13p+ 21p2 — 16p° + 6p* — p5)

Last column for z = abab :
a(—m3my + 2m273 + dw2n2 + 3nmy, + w2 — BmamE — dmamy — 2mq + 2mp + 1)
(1- 7ra)(7rg7r§ + m2mp — Mamp — Ta + 1)

Branch Prediction Analysis of (K)YMP 8 /12
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Results: number of mispredictions per symbol

Asymptotic expected number of mispredictions per input symbol in a
random text, with uniform distribution over alphabets of size 2 or 4.

|Al =2 |A| =4

X i=m i>=0 algo [X[i]!=T[j] Total i=m i>=0 algo |X[il!=T[j] Total

mp 0.571 1.353 mp 0.295 1.117
0.073  10.75
kmp 0.5 1.283 kmp 0.3 1.123

aa  0.283 0.5

ab  0.25 0.25  both 0.571 1.321 0.062 0.688  both 0.375 1.186

ana 014 05 mp 0.563 1.202 0.018 075 mp 0.293 1.06
kmp 0.5 1.14 kmp 0.3 1.068

aab  0.125  0.375 mp 0.605 1.23 0.015 0.734 mp 0.322 1.086
kmp 0.542 1.166 kmp 0.322 1.086

aba 0125 025 mp 0.708 1.083 0.015 0.688 mp 0.367 1.068
kmp 0.571 0.946 kmp 0.375 1.076

abb 0.125 0.125 both 0.547 0.921 0.015 0.672 both 0.397 1.098

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP



Analysis of letter comparisons

while j < n do

while ¢ > 0 and | X[¢] # W[j] do
| i+ B[]

L,j<—t+1,7+1

if i = m then

LM—B[Z’]

nb <+ nb+1

RETITETTTI e mp
R e 1 ) e T S PP
Tl - - T /,,/’\A/‘*--——"// kmp
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Analysis of letter comparisons

while j < n do

while ¢ > 0 and | X[i] # W[j] do
| i+ B[i]

Lj—i+1,7+1

if i = m then

i < BIi]
nb <+ nb+1
T T : . S mp
4 : 40 4 ' N N
aab?5:\a N/E b:N @‘a |aba|b N|abab|
\\\I\\~_:_\_\Ti:==:iz_/_:/__——”’:A/\\:f"// kmp
T T

Transducer following if the branch is taken or not.
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Analysis of letter comparisons

while j < n do

while i > 0 and | X[i] # W[j] do
| i< BJi]

L,j+i+1,57+1

if + = m then

Li%B[i]

nb<+ nb+1

Transducer following the branches for each letter read in W.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 9/12



Number of comparisons ( x[i]'=T[;j] )

a: TTN (mp)
b:T a:TNa:TN(kmp) a:TN
) ; : 1.
%a.N% ' N Py AL s 12.5(171,]))
- 1.9 35:2 (kmp)
b:T ] 2 % 12
— |4/16 |—»| 6/16 |—»| 3/16 |—»| 2/16 | |1/16|
State and letter probabilities U 3L
with uniform distribution 1 % 1 1.1
3:1 5

Lemma (proba. of being in state u after reading j letters of W)

px (j;u) = px (u) :=7(u) — Zséatz(v)eczx m(v)

Proposition

The expected number of letter comparisons performed by (K)MP on a random

text of length n and a pattern X is asymptotically equivalent to Cx -n as n — oo,
where

Cx = Z px (u) Z m(a) - ’output (u i))‘ ,and 1 < Cx < 2.
uEQ x a€A
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Number of mispredictions ( x[ilt=rj1 )

Proposition

The expected number of mispredictions caused by letter comparisons in KMP on
a random text of length n and a pattern X, is asymptotically equivalent to Lx - n,

with
Ly = Z Z 7o (u, A) X Z m(a) - output((u, \) =)

w€Qx Ae{y,v,7,1} acA
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The end... is just the beginning

X = abab

number of mispredictions / text symbol

2.00

a

3

B

9
3

°
<

°
3

°
B

°
2
3

— XI[il!= W[j] (KMP)
=== Xli]'= W[j] (MP)
— >=0

— ab

aba
—— abab
—— ababa
—— ababab
—— abababb

— i=m
— total (KMP)
=== total (MP)

08

total number of mispredictions / text symbol

0.7
0.0 0.2 0.4 0.6 08 10 0.0 02 04 06 08 10
probability of letter a probability of letter a

Today: a first theoretical exploration of pattern matching
algorithms, considering local branch prediction.

Future: analysis of global predictors to capture correlations.
In our simulations, the actual number of mispredictions is
roughly divided by |A| in practice.

Other possible direction: enhanced probabilistic distributions
for texts, other than memoryless sources (e.g. Markovian sources
should be manageable within our model).
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Example of global (or mixed) predictor

e History of the ¢ last branches of a whole program

o Each possible global history is associated with a 2-bit
saturated counter

—{—

0000...00 | = OO0 0=
0000...01 | BOBOBe~

1111...11 | T OO0 0=

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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