
Branch Prediction Analysis of
Morris-Pratt and Knuth-Morris-Pratt

Algorithms

Carine Pivoteau

with Cyril Nicaud and Stéphane Vialette

LIGM - Université Gustave Eiffel

CPM - June 2025

Model for analysis of algorithms

Classical (theoretical)

vs. Reality (execution)

Worst case

▷ Average case can be quite different from the worst, it depends
a lot on the data

Unit cost operations (comparisons, accesses, arithmetic, ...)

▷ The latency of an operation depends heavily on the processor
(ALU, cache, ...)

Sequential execution

▷ Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 1 / 12

Model for analysis of algorithms

Classical (theoretical) vs. Reality (execution)

Worst case

▷ Average case can be quite different from the worst, it depends
a lot on the data

Unit cost operations (comparisons, accesses, arithmetic, ...)

▷ The latency of an operation depends heavily on the processor
(ALU, cache, ...)

Sequential execution

▷ Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 1 / 12

Model for analysis of algorithms

Classical (theoretical) vs. Reality (execution)

Worst case

▷ Average case can be quite different from the worst, it depends
a lot on the data

Unit cost operations (comparisons, accesses, arithmetic, ...)

▷ The latency of an operation depends heavily on the processor
(ALU, cache, ...)

Sequential execution

▷ Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 1 / 12

Model for analysis of algorithms

Classical (theoretical) vs. Reality (execution)

Worst case

▷ Average case can be quite different from the worst, it depends
a lot on the data

Unit cost operations (comparisons, accesses, arithmetic, ...)

▷ The latency of an operation depends heavily on the processor
(ALU, cache, ...)

Sequential execution

▷ Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 1 / 12

Model for analysis of algorithms

Classical (theoretical) vs. Reality (execution)

Worst case

▷ Average case can be quite different from the worst, it depends
a lot on the data

Unit cost operations (comparisons, accesses, arithmetic, ...)

▷ The latency of an operation depends heavily on the processor
(ALU, cache, ...)

Sequential execution

▷ Instructions are parallelized in different ways (pipeline, SIMD,
multi-core processors...)

In general, only the first point can change the complexity, but the last two points
can have an big impact on execution time.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 1 / 12

Pipeline, hazards, and branch prediction

(Modern) processors use a pipeline to
create instruction-level parallelism.

Various hazards can stall a pipeline. For
instance branching instructions (e.g., if,
if-then-else, while, ...) may need the
previous one to finish its execution.

Solution : anticipating the outcome of a
branch instruction by using a predictor.

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
pe

lin
e

Completed
instructions

0 1 2 3 4 5 6 7 8
Clock cycle

Illustration: Wikipedia

A dynamic branch predictor uses runtime information (specifically,
the branch execution history) for accuracy.

local: independent history for each conditional jump =⇒
predictions based on the behavior of that specific instruction

global: shared history of all jumps =⇒ capture correlations
and improve prediction accuracy

Since the 2000s, processors use a combination of local and global

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 2 / 12

Pipeline, hazards, and branch prediction

(Modern) processors use a pipeline to
create instruction-level parallelism.

Various hazards can stall a pipeline. For
instance branching instructions (e.g., if,
if-then-else, while, ...) may need the
previous one to finish its execution.

Solution : anticipating the outcome of a
branch instruction by using a predictor.

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
pe

lin
e

Completed
instructions

0 1 2 3 4 5 6 7 8
Clock cycle

Illustration: Wikipedia

A dynamic branch predictor uses runtime information (specifically,
the branch execution history) for accuracy.

local: independent history for each conditional jump =⇒
predictions based on the behavior of that specific instruction

global: shared history of all jumps =⇒ capture correlations
and improve prediction accuracy

Since the 2000s, processors use a combination of local and global

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 2 / 12

Pipeline, hazards, and branch prediction

(Modern) processors use a pipeline to
create instruction-level parallelism.

Various hazards can stall a pipeline. For
instance branching instructions (e.g., if,
if-then-else, while, ...) may need the
previous one to finish its execution.

Solution : anticipating the outcome of a
branch instruction by using a predictor.

Waiting
instructions

Stage 1: Fetch

Stage 2: Decode

Stage 3: Execute

Stage 4: Write-back

Pi
pe

lin
e

Completed
instructions

0 1 2 3 4 5 6 7 8
Clock cycle

Illustration: Wikipedia

A dynamic branch predictor uses runtime information (specifically,
the branch execution history) for accuracy.

local: independent history for each conditional jump =⇒
predictions based on the behavior of that specific instruction

global: shared history of all jumps =⇒ capture correlations
and improve prediction accuracy

Since the 2000s, processors use a combination of local and global

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 2 / 12

Our model: classical local branch predictor

2-bit saturated counter:

branch Taken

branch Not taken

ν ν τ τN

N N N

T T T

T

State = prediction:

ν and ν predicts not taken

τ and τ predicts taken

Transition = actual outcome: the branch is Taken or Not taken

▷ How well does it work during the execution of an algorithm?

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 3 / 12

Our model: classical local branch predictor

2-bit saturated counter:

branch Taken

branch Not taken

ν ν τ τN

N N N

T T T

T

State = prediction:

ν and ν predicts not taken

τ and τ predicts taken

Transition = actual outcome: the branch is Taken or Not taken

▷ How well does it work during the execution of an algorithm?

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 3 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch
Prediction

PAUL BIGGAR1, NICHOLAS NASH1, KEVIN WILLIAMS2 and DAVID GREGG

Trinity College Dublin

Sorting is one of the most important and well studied problems in Computer Science. Many good
algorithms are known which offer various trade-offs in efficiency, simplicity, memory use, and
other factors. However, these algorithms do not take into account features of modern computer
architectures that significantly influence performance. Caches and branch predictors are two such
features, and while there has been a significant amount of research into the cache performance
of general purpose sorting algorithms, there has been little research on their branch prediction
properties. In this paper we empirically examine the behaviour of the branches in all the most
common sorting algorithms. We also consider the interaction of cache optimization on the pre-
dictability of the branches in these algorithms. We find insertion sort to have the fewest branch
mispredictions of any comparison-based sorting algorithm, that bubble and shaker sort operate
in a fashion which makes their branches highly unpredictable, that the unpredictability of shell-
sort’s branches improves its caching behaviour and that several cache optimizations have little
effect on mergesort’s branch mispredictions. We find also that optimizations to quicksort – for
example the choice of pivot – have a strong influence on the predictability of its branches. We
point out a simple way of removing branch instructions from a classic heapsort implementation,
and show also that unrolling a loop in a cache optimized heapsort implementation improves the
predicitability of its branches. Finally, we note that when sorting random data two-level adaptive
branch predictors are usually no better than simpler bimodal predictors. This is despite the fact
that two-level adaptive predictors are almost always superior to bimodal predictors in general.

Categories and Subject Descriptors: E.5 [Data]: Files—Sorting/Searching; C.1.1 [Computer
Systems Organization]: Processor Architectures, Other Architecture Styles—Pipeline proces-
sors

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Sorting, Branch Prediction, Pipeline Architectures, Caching

1. MOTIVATION

Classical analyses of algorithms make simplifying assumptions about the cost of
different machine instructions. For example, the RAM model used for establishing

1Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET).
2Supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) and
IBM.

Corresponding author’s address: David Gregg, Department of Computer Science, University of
Dublin, Trinity College, Dublin 2, Ireland. David.Gregg@cs.tcd.ie.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–38.

20 ·

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

In
st

ru
ct

io
ns

 p
er

 k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 2

 4

 6

 8

 10

 12

 2097152 524288 131072 32768 8192

Br
an

ch
 m

is
pr

ed
ic

tio
ns

 p
er

 k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort (bimodal)
Insertion multi-mergesort (two-level adaptive)

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2097152 524288 131072 32768 8192

Le
ve

l 2
 m

is
se

s
pe

r k
ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2097152 524288 131072 32768 8192

C
yc

le
s

pe
r k

ey

Set size in keys

Insertion 3-way mergesort
Insertion 6-way mergesort
Insertion 10-way mergesort
Insertion 12-way mergesort
Insertion multi-mergesort

(c) (d)

Fig. 8. (a) Shows the instruction counts for the insertion d-way mergesort algorithms, for a variety
of values of d. It also shows the much lower instruction count of our cache-optimized insertion
multi-mergesort variation compared to these algorithms. (b) Shows the branch mispredictions
per key for the algorithms, all results show bimodal predictor results, except for cache-optimized
insertion multi-mergesort, for which we also show results when using a two-level adaptive predictor
with a 10-bit history register and 4096 table entries, since for this algorithm the two-level adaptive
predictor is significantly better than the bimodal predictor. (c) Shows the level 2 cache misses of
the algorithms when operating on a 2 MB direct mapped cache with 32-byte cache lines. These
results were gathered using sim-cache and sim-bpred. Finally (d) shows the cycles per key of the
algorithms, measured using Pentium 4 hardware performance counters. Despite cache-optimized
insertion multi-mergesort’s heightened cache misses and branch mispredictions, its low instruction
count enables it to out-perform the insertion d-way mergesort algorithms.

substantially mitigate the high instruction count of the technique by varying the
value of d depending on the number of keys which remain to be sorted. In addition,
for small values of d the insertion merge should be special-cased. It is also likely that
the cache performance of the algorithm could be substantially improved by copying
blocks of keys (for example, as many keys as fit in a cache-line) to small buffers
when appending keys from subarrays to the destination buffer. We leave a fuller
investigation into determining the best trade-offs between reducing the instruction
count of the algorithm, improving its locality and maintaining a modest number of
branch mispredictions to future work.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

0

20

40

60

80

100

medianinsertionji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

insertionji
%

 B
ra

nc
he

s

Correct
Taken

(a) Basic quicksort (b) Memory-tuned quicksort

0

20

40

60

80

100

insertionbinary rightbinary leftji

%
 B

ra
nc

he
s

Correct
Taken

0

20

40

60

80

100

sequentialinsertionji

%
 B

ra
nc

he
s

Correct
Taken

(c) Multi-quicksort (binary search) (d) Multi-quicksort (sequential search)

Fig. 9. Overview of branch prediction behaviour in our quicksort implementations. Every figure
shows the behaviour of the i and j branches when using a median-of-3 pivot. As described in
Section 8.2, these branches are about 60% biased and 64% predictable when using the median-of-3.
In (a) the median branch is the combined results of the branches which compute the median-of-3
(these branches are also executed for (b), (c) and (d)). Comparing (a) with (b), (c) and (d), we
see that the insertion branch associated with its insertion sort is slightly less predictable than in
the other variations. This is due to it running as a post-pass. Finally, comparing (c) with (d) we
see that the binary search branches of (c), binary left and binary right, are very unpredictable
compared to the sequential branch of (d).

pv = a[l];

i = l, j = r + 1;

while(true)

{

while(a[++i] < pv) ; // i-loop

while(a[--j] > pv) ; // j-loop

if(i >= j) break;

swap(a[i], a[j]);

}

swap(a[l], a[j]);

Fig. 10. Quicksort’s partition inner-loop. We refer to the inner while loops as the i and j loops.
We refer to their associated branches as the i and j branches respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

How Branch Mispredictions Affect Quicksort

Kanela Kaligosi1 and Peter Sanders2

1 Max Planck Institut für Informatik
Saarbrücken, Germany

kaligosi@mpi-sb.mpg.de
2 Universität Karlsruhe, Germany

sanders@ira.uka.de

Abstract. We explain the counterintuitive observation that finding
“good” pivots (close to the median of the array to be partitioned) may
not improve performance of quicksort. Indeed, an intentionally skewed
pivot improves performance. The reason is that while the instruction
count decreases with the quality of the pivot, the likelihood that the
direction of a branch is mispredicted also goes up. We analyze the ef-
fect of simple branch prediction schemes and measure the effects on real
hardware.

1 Introduction

Sorting is one of the most important algorithmic problems both practically and
theoretically. Quicksort [1] is perhaps the most frequently used sorting algo-
rithm since it is very fast in practice, needs almost no additional memory, and
makes no assumptions on the distribution of the input. Hence, quicksort, its
analysis and efficient implementation is discussed in most basic courses on al-
gorithms. When we take a random pivot, the expected number of comparisons
is 2n lnn ≈ 1.4n lg n. One of the most well known optimizations is that taking
the median of three elements reduces the expected number of comparisons to
12
7 n lnn ≈ 1.2n lg n [2]. Indeed, by using the median of a larger random sample,
the expected number of comparisons can be made as close to n lg n as we want
[3]. For sufficiently large inputs, the increased overhead for pivot selection is
negligible. At first glance, counting comparisons makes a lot of practical sense
since in quicksort, the number of executed instructions and cache faults grow
proportionally with this figure.

However, in comparison based sorting algorithms like quicksort or mergesort,
neither the executed instructions nor the cache faults dominate execution time.
Comparisons are much more important, but only indirectly since they cause
the direction of branch instructions depending on them to be mispredicted.
In modern processors with long execution pipelines and superscalar execution,
dozens of subsequent instructions are executed in parallel to achieve a high peak
throughput. When a branch is mispredicted, much of the work already done
on the instructions following the predicted branch direction turns out to be
wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes. Unfortunately, we are facing a

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 780–791, 2006.
c⃝ Springer-Verlag Berlin Heidelberg 2006

788 K. Kaligosi and P. Sanders

of branch mispredictions. In Fig. 5 we see the number of instructions that are
executed. These are proportional to the number of comparisons and therefore
we see that the exact median is the best, followed by the median of 3, then the
random pivot and finally the 1/10-skewed pivot. Observe that the curves in this
figure are very flat and smooth in contrast to the curves in Fig. 3. Therefore, it
is not only the number of executed instructions that plays a major role in the
running time. The fluctuations in Fig. 3 indicate architectural effects. Observe
that for n = 216 the number of branch mispredictions of random pivot drop and
for this n we also see a significant drop in its running time. Having a closer look at
the curves we see that the curves of time and those of the branch mispredictions
have the same shape, in the sense that when the branch mispredictions drop, the
running time drops too and when the branch mispredictions increase the running
time increases too. Note that the branch mispredictions only slowly approach

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 3. Time / n lg n for random pivot, median of 3, exact median, 1/10-skewed pivot

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 10 12 14 16 18 20 22 24 26

#b
ra

nc
h

m
is

se
s

/ n
 lg

 n

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 4. Number of branch mispredictions / n lg n for random pivot, median of 3, exact
median, 1/10-skewed pivot

784 K. Kaligosi and P. Sanders

Table 1. Number of branch mispredictions

random pivot α-skewed pivot

static predictor ln 2
2

n lg n + O(n), ln 2
2

≈ 0.3466 α
H(α)

n lg n + O(n), α < 1/2
1−α
H(α)

n lg n + O(n), α ≥ 1/2

1-bit predictor 2 ln 2
3

n lg n + O(n), 2 ln 2
3

≈ 0.4621 2α(1−α)
H(α)

n lg n + O(n)

2-bit predictor 28 ln 2
45

n lg n + O(n), 28 ln 2
45

≈ 0.4313 2α4−4α3+α2+α
(1−α(1−α))H(α)

n lg n + O(n)

with static predictor there is no such assumption and for the entry α-skewed
with static predictor we give a worst case analysis.

In Fig. 2 we see the α-dependent coefficients of n lg n for the case of the α-skewed
pivot. As expected they are maximized for α = 0.5 and their value decreases as
we move towards smaller or larger α’s. Moreover, the best curve is the one for
the static predictor, followed by the one for the 2-bit predictor and then the one
for the 1-bit predictor.

3.1 Static Prediction Scheme

Next we analyze the number of branch mispredictions quicksort could achieve
with static branch prediction if somebody would tell the predictor whether the
pivot is smaller or larger than the median. We can judge dynamic branch pre-
diction by comparing its performance with this “best possible” prediction. We
consider the random pivot and the α-skewed pivot case. For the former we give

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

(#
br

an
ch

 m
is

se
s

-
O

(n
))

 /
 n

 lg
 n

α

static predictor
1-bit predictor
2-bit predictor

Fig. 2. The α-dependent coefficients of n lg n for varying α

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Analysis of Branch Misses in Quicksortú

Conrado Martínez† Markus E. Nebel‡§ Sebastian Wild‡

November 11, 2014

Abstract
The analysis of algorithms mostly relies on count-
ing classic elementary operations like additions,
multiplications, comparisons, swaps etc. This ap-
proach is often su�cient to quantify an algorithm’s
e�ciency. In some cases, however, features of mod-
ern processor architectures like pipelined execution
and memory hierarchies have significant impact on
running time and need to be taken into account to
get a reliable picture. One such example is Quick-
sort: It has been demonstrated experimentally that
under certain conditions on the hardware the clas-
sically optimal balanced choice of the pivot as me-
dian of a sample gets harmful. The reason lies in
mispredicted branches whose rollback costs become
dominating.

In this paper, we give the first precise ana-
lytical investigation of the influence of pipelining
and the resulting branch mispredictions on the ef-
ficiency of (classic) Quicksort and Yaroslavskiy’s
dual-pivot Quicksort as implemented in Oracle’s
Java 7 library. For the latter it is still not fully
understood why experiments prove it 10 % faster
than a highly engineered implementation of a clas-
sic single-pivot version. For di�erent branch pre-
diction strategies, we give precise asymptotics for
the expected number of branch misses caused by
the aforementioned Quicksort variants when their

úPart of this research was done during a visit at UPC, for which
the second and third authors acknowledge support by project
TIN2007-66523 Formal methods and algorithms for system de-
sign (FORMALISM) of the Spanish Ministry of Economy and
Competitiveness

†Department of Computer Science, Univ. Politècnica de
Catalunya, Email: conrado@cs.upc.edu

‡Computer Science Department, University of Kaiserslautern,
Email: {wild,nebel}@cs.uni-kl.de

§Department of Mathematics and Computer Science, Univer-
sity of Southern Denmark

pivots are chosen from a sample of the input. We
conclude that the di�erence in branch misses is too
small to explain the superiority of the dual-pivot
algorithm.

1 Introduction
Quicksort (QS) is one of the most intensively used
sorting algorithms, e.g., as the default sorting
method in the standard libraries of C, C++, Java
and Haskell. Classic Quicksort (CQS) uses one
element of the input as pivot P according to which
the input is partitioned into the elements smaller
than P and the ones larger than P , which are then
sorted recursively by the same procedure.

The choice of the pivot is essential for the ef-
ficiency of Quicksort. If we always use the small-
est or largest element of the (sub-)array, quadratic
runtime results, whereas using the median gives an
(asymptotically) comparison-optimal sorting algo-
rithm. Since the precise computation of the median
is too expensive, sampling strategies have been in-
vented: out of a sample of k randomly selected
elements of the input, a certain order statistic is se-
lected as the pivot— the so-called median-of-three
strategy is one prominent example of this approach.

In theory, Quicksort can easily be generalized
to split the input into s Ø 2 partitions around s≠1
pivots. (CQS corresponds to s = 2). However,
the implementations of Sedgewick and others did
not perform as well in running time experiments as
classic single-pivot Quicksort [15]; it was common
belief that the overhead of using several pivots is
too large in practice. In 2009, however, Vladimir
Yaroslavskiy proposed a new dual-pivot variant
of Quicksort which surprisingly outperformed the
highly engineered classic Quicksort of Java 6, which

ar
X

iv
:1

41
1.

20
59

v1
 [

cs
.D

S]
 7

 N
ov

 2
01

4

⁄ 1

0

xa(1 ≠ x)b
1 ≠ x(1 ≠ x) dx = ≠

b≠1ÿ

i=0
B(a ≠ i, b ≠ i) +

Âa≠b
3 Êÿ

i=1
(≠1)i≠1! 1

(a≠b)≠3i+2 + 1
(a≠b)≠3i+1

"
+ fl1(a ≠ b). (a Ø b)

⁄ 1

0

xa(1 ≠ x)b
1
2 ≠ x(1 ≠ x)

dx = ≠
b≠1ÿ

i=0
2≠iB(a ≠ i, b ≠ i) + 2≠b

Âa≠b
4 Êÿ

i=1

!≠1
4
"i≠1! 1

(a≠b)≠4i+3 + 1
(a≠b)≠4i+2 + 1/2

(a≠b)≠4i+1
"

+ 2≠bfl2(a ≠ b).

fl1(d) = (≠1)Âd3Ê

Y
]
[

2fi

3
Ô

3 if d © 0 (mod 3)
fi

3
Ô

3 if d © 1 (mod 3)
1 ≠ fi

3
Ô

3 if d © 2 (mod 3)
, fl2(d) =

!
≠ 1

4

"Âd4Ê

Y
__]
__[

fi if d © 0 (mod 4)
fi/2 if d © 1 (mod 4)
1 if d © 2 (mod 4)
3
2 ≠ fi

4 if d © 3 (mod 4)

.

Figure 4: Explicit expressions for the integrals involved in “(1)
a,b and “(2)

a,b. The formulas are only valid for
a Ø b, but since the integrals are symmetric, one can simply use aÕ = max{a, b} and bÕ = min{a, b}. The proof
consists in finding recurrences for the polynomial long division of the integrand, solving these recurrences and
integrating them summand by summand. Details are given in Appendix C.

2 4 6 8 10 12 14
t

0.62

0.64

0.66

0.68

0.70

0.72
BM

Figure 5: Branch mispredictions, as a function
of t, in CQS (black) and YQS (red) with 1-bit
branch prediction (fat), 2-bit saturating counter
(thin solid) and 2-bit flip-consecutive (dashed) using
symmetric sampling: tCQS = (3t + 2, 3t + 2) and
tYQS = (2t + 1, 2t + 1, 2t + 1)

· the Dir(t + 1) distribution degenerates to a
deterministic vector, i.e., D æ · in probability.
By the continuous mapping theorem, we also have
the limit (in probability) f(D1) æ f(·1) and thus
E[f(D1)] æ f(·1). ⇤

6 Discussion
Table 2 (page 10) summarizes the leading factor
(the constant in front of n lnn) in the total ex-
pected number of branch mispredictions for both
CQS and YQS under the various branch prediction
schemes and di�erent pivot sampling strategies.

In practice, classic Quicksort implementations
typically use median-of-3 sampling, while in Ora-
cle’s YQS from Java 7 the chosen pivots are the
second and the fourth in a sample of 5 (tertiles-of-
5). With 1-bit prediction, this results in approx-

2 4 6 8 10 12 14
t

0.2

0.3

0.4

0.5

0.6

BM

Figure 6: Branch mispredictions, as a function of t,
in CQS (black) and YQS (red) with 1-bit (fat), 2-
bit sc (thin solid) and 2-bit fc (dashed) predictors,
using extremely skewed sampling: tCQS = (0, 6t+4)
and tYQS = (0, 6t + 3, 0)

imately 0.6857n lnn vs. 0.6867n lnn BMs in the
asymptotic average; for the other branch predic-
tion strategies the di�erence is similar. It is very
unlikely that the substantial di�erences in running
times between CQS and YQS are caused by this
tiny di�erence in the number of branch misses.

6.1 BM-Optimal Sampling. Figure 5 shows
the leading factor of BMs as a function of t, where
pivots are chosen equidistantly from samples of size
k = 6t + 5, i.e., in CQS we use the median as
pivot, in YQS the tertiles. Notice that, contrary to
many other performance measures, sampling can
be harmful with respect to branch mispredictions.
In particular, notice that with symmetric sampling
(i.e., median-of-(2t+1) for CQS, tertiles-of-(3t+2)
for YQS) the expected number of BMs increases

9

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

Good Predictions Are Worth a Few Comparisons
Nicolas Auger, Cyril Nicaud, and Carine Pivoteau

Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France

Abstract
Most modern processors are heavily parallelized and use predictors to guess the outcome of
conditional branches, in order to avoid costly stalls in their pipelines. We propose predictor-
friendly versions of two classical algorithms: exponentiation by squaring and binary search in a
sorted array. These variants result in less mispredictions on average, at the cost of an increased
number of operations. These theoretical results are supported by experimentations that show
that our algorithms perform significantly better than the standard ones, for primitive data types.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases branch misses, binary search, exponentiation by squaring, Markov chains

1 Introduction

As an introductory example, consider the simple problem of computing both the minimum
and the maximum of an array of size n. The naive approach is to compare each entry to the
current minimum and maximum, which uses 2n comparisons. A better solution, in terms of
number of comparisons, is to look at the elements of the array two by two, and to compare
the smallest to the current minimum and the greatest to the current maximum. This uses
only 3n/2 comparisons, which is optimal.1

Figure 1 Execution time of simultaneous
minimum and maximum searching.

In order to observe the benefit of this
optimization, we implemented both versions
(see Figure 3) and measured their execution
time2 for large arrays of uniform random float
in [0, 1]. The results are given in Figure 1 and
are very far from what was expected, since the
naive implementation is almost twice as fast
as the optimized one. Clearly, counting com-
parisons can not explain these counterintuitive
performances. An obvious explanation could
be a di!erence in the number of cache misses.
However, both implementations make the same
memory accesses, in the same order. Instead,
we turn our attention to the comparisons them-
selves. Most modern processors are heavily parallelized and use predictors to guess the out-
come of conditional branches in order to avoid costly stalls in their pipelines. Every time
a conditional is used in a program, there is a mechanism that tries to predict whether the
corresponding conditional jump will be taken or not. The cost of a misprediction can be
quite large compared to a basic instruction, and should be taken into account in order to
explain accurately the behavior of algorithms that use a fair amount of comparisons.

1 More precisely, an adversary argument can be used to establish a lower bound of → 3n
2 ↑↓2 comparisons,

in the “decision tree with comparisons” model of computation [12].
2 We used a Linux machine with a 3.40 GHz Intel Core i7-2600 CPU.

© Nicolas Auger, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Good Predictions Are Worth a Few Comparisons
Nicolas Auger, Cyril Nicaud, and Carine Pivoteau

Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France

Abstract
Most modern processors are heavily parallelized and use predictors to guess the outcome of
conditional branches, in order to avoid costly stalls in their pipelines. We propose predictor-
friendly versions of two classical algorithms: exponentiation by squaring and binary search in a
sorted array. These variants result in less mispredictions on average, at the cost of an increased
number of operations. These theoretical results are supported by experimentations that show
that our algorithms perform significantly better than the standard ones, for primitive data types.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases branch misses, binary search, exponentiation by squaring, Markov chains

1 Introduction

As an introductory example, consider the simple problem of computing both the minimum
and the maximum of an array of size n. The naive approach is to compare each entry to the
current minimum and maximum, which uses 2n comparisons. A better solution, in terms of
number of comparisons, is to look at the elements of the array two by two, and to compare
the smallest to the current minimum and the greatest to the current maximum. This uses
only 3n/2 comparisons, which is optimal.1

Figure 1 Execution time of simultaneous
minimum and maximum searching.

In order to observe the benefit of this
optimization, we implemented both versions
(see Figure 3) and measured their execution
time2 for large arrays of uniform random float
in [0, 1]. The results are given in Figure 1 and
are very far from what was expected, since the
naive implementation is almost twice as fast
as the optimized one. Clearly, counting com-
parisons can not explain these counterintuitive
performances. An obvious explanation could
be a di!erence in the number of cache misses.
However, both implementations make the same
memory accesses, in the same order. Instead,
we turn our attention to the comparisons them-
selves. Most modern processors are heavily parallelized and use predictors to guess the out-
come of conditional branches in order to avoid costly stalls in their pipelines. Every time
a conditional is used in a program, there is a mechanism that tries to predict whether the
corresponding conditional jump will be taken or not. The cost of a misprediction can be
quite large compared to a basic instruction, and should be taken into account in order to
explain accurately the behavior of algorithms that use a fair amount of comparisons.

1 More precisely, an adversary argument can be used to establish a lower bound of → 3n
2 ↑↓2 comparisons,

in the “decision tree with comparisons” model of computation [12].
2 We used a Linux machine with a 3.40 GHz Intel Core i7-2600 CPU.

© Nicolas Auger, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

N. Auger, C. Nicaud, and C. Pivoteau 7

S. NT NT T S. T

NT

T

NT

T

NT

T

NT

T

S. NT NT T S. T

1/4
3/4

1/4

3/4

1/4

3/4

1/4

3/4

Figure 6 The saturating counter and its associated Markov chain for the first conditional of
GuidedPow. The bold edges correspond to mispredictions.

whenever an edge labeled by “taken” (resp. “not taken”) is used from a state that predicts
“not taken” (resp. “taken”). We also need to know the initial state of the predictor, but it
has no influence on our asymptotic results, as we shall see.

Hence, we reduced our problem to counting the number of times some particular edges
are taken in a Markov chain, when we perform a random walk of (random) length Lk. We
can therefore conclude using the classical Ergodic Theorem [10], which we restated bellow
in order to fit our needs.

↭ Theorem 2 (Ergodic Theorem). Let (M,ω0) be a primitive and aperiodic Markov Chain
on the finite set S. Let ω be its stationary distribution. Let E be a set of edges of M , that
is, a set of pairs (i, j) → S2 such that M(i, j) > 0.

For any nonnegative integer n, let Ln be a random variable on nonnegative integers such
that limn→↑ E[Ln] = +↑. Let Xn be the random variable that counts the number of edges in
E that are used during a random walk of length Ln in M (starting from the initial distribution
ω0). Then the following asymptotic equivalence holds: E[Xn] ↓ E[Ln]

∑
(i,j)↓E ω(i)M(i, j).

When considering a given predictor, under the model where the condition is satisfied with
probability p, we denote by Mp its transition matrix, by ωp its stationary vector and by µ(p)
its expected misprediction probability defined by µ(p) =

∑
(i,j)↓E ωp(i)Mp(i, j), where E is

the set of edges corresponding to mispredictions. As shown in [11], if we denote by µ1(p),
µ2(p) and µ↔

2(p) the expected misprediction probability of the 1-bit, 2-bit saturating counter
and the flip-on-consecutive 2-bit, then we have:

µ1(p) = 2p(1 ↔ p); µ2(p) = p(1 ↔ p)
1 ↔ 2p(1 ↔ p) ; µ↔

2(p) = 2p2(1 ↔ p)2 + p(1 ↔ p)
1 ↔ p(1 ↔ p) . (1)

Similarly, the expected misprediction probability µ3(p) of the 3-bit saturated counter is

µ3(p) = p(1 ↔ p) (1 ↔ 3p(1 ↔ p))
1 ↔ 2p(1 ↔ p) (2 ↔ p(1 ↔ p)) . (2)

Applying these mathematical tools to GuidedPow yields the following results. The theorem
is stated for values of N that are not powers of 4, which is more complicated since the bits
are not exactly 0’s and 1’s with probability 1

2 (and not independent). In Section 5 we show
how to deal with the cases where we slightly deviate from the ideal case.

↭ Theorem 3. Assume that n is taken uniformly at random in {0, . . . , N ↔ 1}. The ex-
pected number of conditional tests in ClassicalPow and UnrolledPow is asymptoti-
cally equivalent to log2 N , whereas it is asymptotically equivalent to 5

4 log2 N for Guided-
Pow. The expected number of mispredictions is asymptotically equivalent to 1

2 log2 N for
ClassicalPow and UnrolledPow, for any kind of predictor. For GuidedPow, it is
asymptotically equivalent to ε log2 N , where ε = 1

2µ(3/4)+ 3
4µ(2/3), where µ is the expected

misprediction probability associated to the local predictor.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

These algorithms heavily relies on branch instructions, but most of
them are independent. What happens when they are correlated ?

This happens in pattern matching algorithms, e.g., MP and KMP.

How can we study the impact of branch prediction on them ?

Can we observe it on the execution time ?

Note: the classical average analysis of the number of comparisons for a random

text and a random pattern was done by M. Regnier an W. Szpankowski in the 90s

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Past and present work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

Kaligosi and Sanders, 2006 : mispredictions and quicksort

Mart́ınez, Nebel and Wild, 2014 : mispredictions and quicksort

Auger, Nicaud, Pivoteau 2016 : average (trade-off) analysis for
min/max, exponentiation and binary search

These algorithms heavily relies on branch instructions, but most of
them are independent. What happens when they are correlated ?

This happens in pattern matching algorithms, e.g., MP and KMP.

How can we study the impact of branch prediction on them ?

Can we observe it on the execution time ?

Note: the classical average analysis of the number of comparisons for a random

text and a random pattern was done by M. Regnier an W. Szpankowski in the 90s

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 4 / 12

Branches in MP and KMP

W = text of length n , X = pattern of length m,

1 i, j, nb← 0, 0, 0
2 while j < n do
3 while i ≥ 0 and X[i] ̸= W [j] do
4 i← B[i]

5 i, j ← i+ 1, j + 1
6 if i = m then

7 i← B[i]

X = ababb

8 nb← nb+ 1

B = -1 0 0 1 2 mp

9 return nb

B = -1 0 -1 0 2 kmp

B = pre-computed border table of X:

mp : B[i] = size of longest border u of X[0..i− 1]
kmp: B[i] = size of longest border u of X[0..i− 1]

+ u followed by X[i] is not a prefix of X

B :

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 5 / 12

Branches in MP and KMP

W = text of length n , X = pattern of length m,

1 i, j, nb← 0, 0, 0
2 while j < n do
3 while i ≥ 0 and X[i] ̸= W [j] do
4 i← B[i]

5 i, j ← i+ 1, j + 1
6 if i = m then

7 i← B[i] X = ababb

8 nb← nb+ 1 B = -1 0 0 1 2 mp

9 return nb B = -1 0 -1 0 2 kmp

B :

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 5 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a ba

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a ba

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a bb

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a ba

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a bb

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a ba

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a bb

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X a b a b b kmp: skipped

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a ba

W a a b a b a b b a b a a b a ...
↑

X a b a b b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Branches in MP and KMP

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1

if i = m then
i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

W a a b a b a b b a b a a b a ...
↑

X

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 6 / 12

Expected number of mispredictions

Local predictor for MP/KPM on a random text

while j < n do ← super easy: at most 3

while i ≥ 0 and X[i] ̸= W [j] do
i← B[i]

i, j ← i+ 1, j + 1

if i = m then ← almost easy: ∼ nb. of occurrences of X

i← B[i]
nb← nb+ 1

Analysis of the mispredictions caused by letter comparisons:

depends on the pattern X

probability measure on A such that for all α ∈ A, 0 < π(α) < 1

transducer for the (mis)predictions + Markov chain

same kind of ideas for i ≥ 0

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 7 / 12

Expected number of mispredictions

Local predictor for MP/KPM on a random text

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do ← this talk

i← B[i]

i, j ← i+ 1, j + 1
if i = m then

i← B[i]
nb← nb+ 1

Analysis of the mispredictions caused by letter comparisons:

depends on the pattern X

probability measure on A such that for all α ∈ A, 0 < π(α) < 1

transducer for the (mis)predictions + Markov chain

same kind of ideas for i ≥ 0

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 7 / 12

Expected number of mispredictions

Local predictor for MP/KPM on a random text

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do ← this talk

i← B[i]

i, j ← i+ 1, j + 1
if i = m then

i← B[i]
nb← nb+ 1

Analysis of the mispredictions caused by letter comparisons:

depends on the pattern X

probability measure on A such that for all α ∈ A, 0 < π(α) < 1

transducer for the (mis)predictions + Markov chain

same kind of ideas for i ≥ 0

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 7 / 12

Results: number of mispredictions per symbol

Asymptotic expected number of mispredictions per symbol in KMP
with Σ = {a, b} and p := π(a) = 1− π(b).

X i = m i >= 0 X[i] != T[j]

aa too large 1− p
p(1− p)

1− 2p+ 2p2

ab p(1− p) (1− p)2
p(3− 7p+ 7p2 − 2p3)

1− p+ 2p2 − p3

aaa p3(1− p)(1 + p)2 1− p
p(1− p)

1− 2p+ 2p2

aab p2 (1− p) (1− p)2(1 + p)
p(1− 2p2 − p3 + 5p4 − 3p5 + p6)

1− 2p+ 3p2 − 2p3 + p4

aba p2 (1− p) (1− p)2
p(3− 7p+ 7p2 − 2p3)

1− p+ 2p2 − p3

abb p(1− p)2 (1− p)3 p(4− 13p+ 21p2 − 16p3 + 6p4 − p5)

Last column for x = abab :

πa(−π3
aπb + 2π2

aπ
3
b + 4π2

aπ
2
b + 3π2

aπb + π2
a − 5πaπ2

b − 4πaπb − 2πa + 2πb + 1)

(1− πa)(π2
aπ

2
b + π2

aπb − πaπb − πa + 1)

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 8 / 12

Results: number of mispredictions per symbol

Asymptotic expected number of mispredictions per input symbol in a
random text, with uniform distribution over alphabets of size 2 or 4.

|A| = 2 |A| = 4

X i=m i>=0 algo X[i]!=T[j] Total i=m i>=0 algo X[i]!=T[j] Total

aa 0.283 0.5
mp 0.571 1.353

0.073 0.75
mp 0.295 1.117

kmp 0.5 1.283 kmp 0.3 1.123

ab 0.25 0.25 both 0.571 1.321 0.062 0.688 both 0.375 1.186

aaa 0.14 0.5
mp 0.563 1.202

0.018 0.75
mp 0.293 1.06

kmp 0.5 1.14 kmp 0.3 1.068

aab 0.125 0.375
mp 0.605 1.23

0.015 0.734
mp 0.322 1.086

kmp 0.542 1.166 kmp 0.322 1.086

aba 0.125 0.25
mp 0.708 1.083

0.015 0.688
mp 0.367 1.068

kmp 0.571 0.946 kmp 0.375 1.076

abb 0.125 0.125 both 0.547 0.921 0.015 0.672 both 0.397 1.098

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 8 / 12

Analysis of letter comparisons

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1
if i = m then

i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a b a b

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 9 / 12

Analysis of letter comparisons

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1
if i = m then

i← B[i]
nb← nb+ 1

mp

kmp

⊥ ε a ab aba ababa, b
a : N b : N a : N b : N

T T

T
T T

T T

T T
T

Transducer following if the branch is taken or not.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 9 / 12

Analysis of letter comparisons

while j < n do

while i ≥ 0 and X[i] ̸= W [j] do

i← B[i]

i, j ← i+ 1, j + 1
if i = m then

i← B[i]
nb← nb+ 1

ε a ab aba abab
a : N

b : T

b : N

a : TN

a : N

b : T

a : TTN (mp)
a : TN (kmp)

b : N

a : TN

b : N

Transducer following the branches for each letter read in W .

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 9 / 12

Number of comparisons (X[i]!=T[j])

ε a ab aba abab
a : N

b : T

b : N

a : TN

a : N

b : T

a : TTN (mp)
a : TN (kmp)

b : N

a : TN

b : N

State and letter probabilities
with uniform distribution

4/16 6/16 3/16 2/16 1/16

1
2

: 1

1
2 : 1

1
2

: 1

1
2 : 2

1
2

: 1

1
2
: 1

1
2 : 3 (mp)
1
2 : 2 (kmp)

1
2

: 1

1
2 : 2

1
2 : 1

Lemma (proba. of being in state u after reading j letters of W)

pX(j, u) = pX(u) := π(u)−∑
state v∈QX

bord(v)=u

π(v)

Proposition

The expected number of letter comparisons performed by (K)MP on a random
text of length n and a pattern X is asymptotically equivalent to CX · n as n → ∞,
where

CX =
∑

u∈QX

pX(u)
∑
a∈A

π(a) ·
∣∣∣output(u a−→

)∣∣∣ , and 1 ≤ CX ≤ 2.

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 10 / 12

Number of mispredictions (X[i]!=T[j])

ε, ν

ε, ν

ε, τ

ε, τ

a, ν

a, ν

a, τ

ab, ν

ab, ν

aba, ν abab, ν

b : 1

b : 1

b : 0

b : 0

a : 1

a : 1

a : 0

a : 0

a : 1

a : 2

a : 1

b : 0

b : 0

b : 1

b : 1

b : 1

a : 0

a : 0

a : 1 (kmp)

a : 3 (mp)

a : 1

b : 0

b : 0

Proposition

The expected number of mispredictions caused by letter comparisons in KMP on
a random text of length n and a pattern X, is asymptotically equivalent to LX · n,
with

LX =
∑

u∈QX

∑
λ∈{ν,ν,τ,τ}

π0(u, λ)×
∑
α∈A

π(α) · output((u, λ) α−→)

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 11 / 12

The end... is just the beginning

X = abab

Today: a first theoretical exploration of pattern matching
algorithms, considering local branch prediction.

Future: analysis of global predictors to capture correlations.
In our simulations, the actual number of mispredictions is
roughly divided by |A| in practice.

Other possible direction: enhanced probabilistic distributions
for texts, other than memoryless sources (e.g. Markovian sources
should be manageable within our model).

C. Nicaud, C. Pivoteau, S. Vialette Branch Prediction Analysis of (K)MP 12 / 12

Example of global (or mixed) predictor

History of the ℓ last branches of a whole program

Each possible global history is associated with a 2-bit
saturated counter

N. Auger, C. Nicaud, and C. Pivoteau 11

0000...00

0000...01
...

1111...11

Ω≠ ¸ ≠æ Figure 10 A fully global predictor scheme: The
history table of size 2¸ keeps track of the outcomes
of the last ¸ branches encountered during the ex-
ecution, the last one corresponding to the right-
most bit. To each sequence of ¸ branches is asso-
ciated a global 2-bit predictor (shared by all the
conditional branches).

I Theorem 6. Let Cn and Mn be the number of comparisons and mispredictions per-
formed in our model of randomness. For BinarySearch, E[Cn] ≥ 1

log 2 logn and E[Mn] ≥
1

2 log 2 logn. For BiasedBinarySearch, E[Cn] ≥ 4
4 log 4≠3 log 3 logn and E[Mn] ≥ µ(1

4)E[Cn].
For SkewSearch, E[Cn] ≥ 7

6 log 2 logn and E[Mn] ≥
! 4

7µ(1
4)+ 3

7µ(1
3)

"
E[Cn], where µ is the

expected misprediction probability associated with the predictor.

5.4 Analysis of the global predictor for skewSearch
In this section we intend to give hints about the behavior of a global branching predictor,
such as the one depicted on Figure 10 (see also Section 2), for the algorithm SkewSearch.
Notice in particular that the predictor of each entry is a 2-bit saturated counter. This is not
the only possible choice of a global predictor, but it is simple enough without being trivial.
We make the analysis in the idealized framework that resemble the real case su�ciently well,
by ignoring the rounding e�ects of dealing with integers. We saw in the previous section
why these approximations still give the correct result for the first order asymptotic.

In our idealized model we only consider the sequence of taken / not taken produced by
the two conditional tests of SkewSearch. We deliberately do not consider the conditional
induced by the test within the “while” loop, which would be always not taken in our settings
(except for the very last step). Adding it would complicate the model without adding
interesting information to the branch predictor.10 We encode a taken conditional by a 1
and a not taken conditional by a 0. The trace of an execution of the algorithm is thus a
non-empty word on the binary alphabet B = {0, 1}. Because of the way the two conditional
tests are nested within the algorithm, we can keep track of the current “if” by the use of
the simple deterministic automaton Aif with two states depicted in Figure 11: main stands
for the first conditional and nested for the second one. In our model, main is taken with
probability 1

4 and nested with probability 1
3 . As done in Section 4, Aif can be changed into

a Markov chain Mif using this transition probabilities. A direct computation shows that its
stationary vector fiif satisfies fiif(main) = 4

7 and fiif(nested) = 3
7 .

(Aif) main nested1

0

0, 1

(Mif) main nested1: 14

0: 34

0 : 2
3 , 1 : 1

3

Figure 11 On the left, the automaton Aif. On the right, the Markovian automaton Mif of
transition probabilities P(1 | main) = 1

4 , P(0 | main) = 3
4 , P(0 | nested) = 2

3 and P(1 | nested) = 1
3 .

10 Also, most modern architectures have “loop detectors” that are used to identify such conditionals.

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson

	Introduction

