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Context

Random sampling under Boltzmann model
@ approximate size sampling,
o size distribution spread over the whole combinatorial class,
but uniform for a sub-class of objects of the same size,
@ control parameter,

o automatized sampling: the sampler is compiled from
specification automatically,

e very large objects can be sampled.

1. Boltzmann samplers for the random generation of combinatorial structures.
P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.
2. Boltzmann sampling of unlabelled structures. Ph. Flajolet, E. Fusy,
C. Pivoteau. Proceedings of ANALCOO07, january 2007.
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Boltzmann model

Boltzmann model
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Boltzmann model

Framework: constructible classes

specification ordinary g.f. exponential g.f.
(unlabelled) (labelled)
e / atom 1/ 2 1/ 1/ =z
Union C=AUB C(z) = A(z) + B(x) C(z) = A(z) + B(z)
Product C=AxB C(z) = A(z) x B(x) C(z) = A(z) x B(x)
Sequence | C = SEQ(A) C(z) = 1_1}1@) C’(x) = 1—1}1(95)
1

Set C =SET(A) | exp <§: (=D

k
Multiset | C = MSET(A) exp Z ;A(zk)>

Cycle C =Cyc(A) Z % log _
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Boltzmann model

Model definition

In the unlabelled case, Boltzmann model assigns to any object
¢ € C the following probability:

el

F(0) = o)

In the labelled case, this probability becomes:

1 gl
P.(c) = %W

A Boltzmann sampler I'C(x) for the class C is a process that
produces objects from C according to this model.

— 2 object of the same size will be drawn with the same probability.
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Boltzmann model

Size distribution

The probability of drawing an object of size N is then:

Cpa™ Cnz"
B(N=n)= D Bd=Fny o LA

|e]=n

Then, the expected size of an object drawn by a generator with
parameter x is:
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Boltzmann model

Size distribution — 2
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Algorithms Labelled classes

Back to unlabelled

Algorithms

Carine Pivoteau mann sampling /4T



Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

© Algorithms
@ Basic unlabelled constructions
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Unions, products

Disjoint unions
Boltzmann sampler I'C for C = AU B:

With probability ég; do T'A(z) else do I'B(x) — Bernoulli.

ol x z
if v € A then P,(y) = A(;) : ggx; = C’(;)

Boltzmann sampler I'C' for C = A x B:
Generate a pair ( 'A(x) , I'B(z) ) — independent calls.

|a| 18] h

Remark: A(z), B(z) and C(z) are given by an oracle.
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Sequences

Sequences

Boltzmann sampler I'C' for C = SEQ(A):
Generate k according to a geometric law of parameter A(x)
Generate a k-tuple ( TA(x) ,..., 'A(z) ) — independent calls.

Proof.
Recursive equation: C = 1 + AC with +, X constructions.

With proba. A(z), call TA(z) and call recursively I'C(x); else stop.
Number of successful trials of Bern(A(z)) is Geom(A(X)).

Remark: A(x) is given by an oracle.
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Examples of specifications with {U, x, Seq}

Regular specifications (non recursive).
@ integer compositions,

@ polyominos that have rational g.f.: column-convex,

e regular languages,
@ binary words without long runs:

L = SEQ,, (b) X SEQ(a X SEQ,,(a) X b x SEQ,,(b)) X SEQ,,(a)

where SEQ,, (a) =a +aa+---+a™.
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Specifications with {U, x,Seq} and recursion

Context-free specifications.
@ binary, k-ary, 2-3—4 trees, ...,
o triangulations,
@ general planar rooted trees,
@ noncrossing graphs,
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Binary trees

A
Ja

B = Z+BxB
) _1-VI—dz

S

B(z) = z+ B(z)

Algorithm: I'B(z)
b «— Bern(z/B(x));

if b =1 then
Return W
else
Return ( I'B(z) , I'B(x) ) ;
end if )
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

General planar rooted trees

z 1—+v1—4z
@) = o1 2

Algorithm: T'B(x)

k — Geom(T(x));
children « the k-tuple ( I'T'(x),...,I'T(z) );
Return B x children ;
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

© Algorithms

o Labelled classes
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Labelled classes

Same algorithms, with exponential g.f.

construction | sampler

C=0or Z |TC(z):=¢ or atom

C=A+B |TC(z):=Bem <$§ —T'A(z) | IB(z)

(
C=AxB |TIC(z):=(TA(z); I'B(z) )

C=SEQ(A) | I'C(z) := Geom A(z) = TA(z)

Put the labels at the end !
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Labelled sets and cycles

Sets

Boltzmann sampler I'C' for C = SET(.A):
Generate k according to a Poisson law of parameter A(x)
Generate a k-tuple ( TA(x) ,..., TA(x) )

k
Poisson law: P(X = k) = e—/\)‘_

| w
N

Cycles

Boltzmann sampler I'C' for C = Cyc(A):
Generate k according to a logarithmic law of parameter A(x)
Generate a k-tuple ( TA(x) ,..., TA(x) )

1 AP

Logarithmic law: P(X = k) = W?

\

Remark: the laws are given by simple sequential algorithms
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Examples of possible labelled classes

permutations, derangements, involutions,
surjections,

set partitions,
necklaces,

labelled (planar) trees,

functional graphs,

e 6 66 6 o o o
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Theorem (Labelled free Boltzmann samplers)

For a labelled class C specified (poss. recursively) using the
following constructions:

e, Z, +, X, SEQ, SET, CYC

The free Boltzmann sampler I'C(x) operates in linear time in
the size of the object produced.

@ oracle complexity is not involved,

@ size is not controlled (yet).
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

© Algorithms

@ Back to unlabelled
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

To begin: MSet,

MSET2(A) = unordered set of two objects of A

C = MSET2(A)
1 1
Cz) = §A2(z) + iA(ZQ) [ 2MSET2(A)=A2+AA? ]

Algorithm: I'C(x)

if Bern (%’2,2(%)) =1 then

Return ( I'A(z),['A(x) )
else

a « T A(z?);

Return (a, a);
end if )
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

A simple example

Unlabelled binary trees
(Otter trees)

B = Z + MSETy(B)

1 1 )
B(z)=z+ 53(2)2 + iB(zz)
./ ot «— I'B(z?)
return {ot, ot)

return ( I'B(z),T'B(z) )
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

MSet: the general case

M =MSeT(A) = ] SEQ(y) = M(z)= [Ja-=2")""

yeA yeA

M(z) = exp (g ;A(f)) = ﬁexp (;A(z’“))
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

MSet: the general case
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Algorithm I'M Set[A](:

@ Draw k, the max. index of a subset, depending on z;
@ For each index ¢ of a subset until & — 1

e Draw the number p of elements to sample, according to a
Poisson law of parameter +A(z?).

o Call 'A(z") p times, and each time, add 7 copies of the
result to the multiset.

o for index k, draw the number p of elements to generate,
according to a non zero Poisson law.

Proof: begin with the product sampler and use Geom(\) = >, Pois(%),
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

How to compute the max. index for C = MSet(A)

Draw U, uniformly at random in [0, 1] and find k such that:

exp (L1 A(2) oxp (i, $A()
( e )<U< ( C() )

with i.e.:

Z A ) < log % i%A(ml)
i=k

= k+1

Algorithm

U « rand(0,1); V « log %;

p —logC(x); k < 0;

while V < p do
k<—k+1;p<—p—%k);

Return k;
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))

ﬁ_‘ﬁ
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Algorithms

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))

k = 3;
p1 = 95;

ﬁ_‘ﬁ
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))

k = 3;
p1 = 9;

— 13,10, 2, 1, 1

o
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))

o
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Sampling of a partition MSet(Z x Seq(Z))

Carine Pivoteau Boltzmann sampling 28/47



Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))

Carine Pivoteau Boltzmann sampling 28/47



Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z x Seq(Z))
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Cayley trees

’T ZxMSETT

WG R
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

From MSet to PSet

Principle : Use the following non ambiguous decomposition:

MSET(A) = PSET(A) x MSET(A®)
Poked
H’Y l—ih\ = H'y 11jz2\w| = H'y (1 + ZM)HV ﬁ

The algo. I'PSet[A](z) to sample a powerset of objects of A is:
e Sample a multiset with T'M Set[A](z),

o Extract the corresponding powerset :

e by removing objects with even multiplicity,
e and keeping only one occurrence of objects with odd
multiplicity.
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Trees without twins

’T:ZXPSET(T)‘
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

k:=3

j=5 > - )

m=@ ®® O @ o )
.\_/O
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Algorithm

I'CyclAl(x)
o Draw the replication order k of the cycle.

o Draw the length j of the pattern according to a logarithmic
law of parameter A(zF).

o Draw the pattern m, calling TA(z¥) j times.

@ Return a cycle composed of k copies of m.

kyi
Proof: find P, () for any v € Cyc(A), using P(k,j) = %?) Aéazx;7

S 2 (k) = m.

and
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Cyclic compositions

C = Cyc(Z x SEQ(2))
Clz) = Z cp; log - ! "
k=1 1—2zF
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Functional graphs

G =SET(C),C=CvC(7), T = Z x MSET(T)

T [
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Basic unlabelled constructions

Algorithms Labelled classes
Back to unlabelled

MSet;(A) et Cyc;(A)

Samplers are deduced from the generating functions:

e MSET,(A)
u? u3
My (2) = [u*] exp (uA(z) + ?A(zz) + ?A(Z:i) +.. >

Ezample: Ms(z) = tA(2)3 + 2 A(2)A(2%) + $A(2?)

° CYCk(A)
_ e 2 1
=3 g L
Ezample: Cy(z) = 2A(2)* + $A(22)? + L A(2Y)
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Basic unlabelled constructions
Algorithms Labelled classes
Back to unlabelled

Other constraints

@ MSET.k, PSET g, CYCk
Union over i < k of sets or cycles with i elements.

Ezample: Cyci(A) = Ui:ll Cyc;(A)

o PSETE, MSET~, PSET-, CYCsp

Rejection.
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Series-parallel circuits

SEQ>2(P + 2Z)
P = MSETZQ(S + Z)

o= g

S
T )
= P P
I /T

==s S S %

%)
|

P NN
i p

/N

—
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Basic unlabelled constructions
Algorithms Labelled classes

Back to unlabelled

Theorem (Unlabelled free Boltzmann samplers)

For an unlabelled class C specified (poss. recursively) using the

following constructions:

g, Z, +, X, SEQ, SEQi, MSET, MSET;, Cvyc, CYC

The free Boltzmann sampler T'C'(x) operates in linear time in
the size of the object produced.

SET: not so bad!
if p < 1 then the overhead (total size of the discarded elements) is bounded

by a constant.
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Technical matters

Technical matters
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Technical matters

Size control — parameter tuning

o Free samplers: produce objects with randomly varying
sizes!

o Tuned samplers: choose x so that expected size is n.

@ Size distribution of free sampler determines complexity.
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Technical matters

Size control — 2

Cost of tuned Boltzmann samplers for a labelled or unlabelled
class C specified (poss. recursively) using the following
constructions:

e, Z, +, X, SEQ, SEQ, MSET, MSET:, Cvc, CycCyg

Theorem (Bumpy type)

Approximate-size complezity = O(n). Ezact size = o(n?).

Theorem (Flat type)

Approzimate-size complexity = O(n). Ezact-size = o(n?).

Theorem (Peaked type)

Approzimate-size complexity = O(n?) — pointing.
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Technical matters

Pointing

If A is a class, then C = A® is the set of objects with one atom
pointed, and

Cu=ndn  C2) = 22 A2)

=n z) = z—A(2).
n T dZ

Uniformity at given size is preserved, but size profile is altered.
Transforms peaked (inefficient) to flat (efficient).
For example, binary trees B:

B = Z+BxB

B=Z+BxB = {B' = Z*+B*xB+BxB.

It works for all simple families of trees.
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Technical matters

Singular samplers

o critical sequences

Flatate ]
W\/_\ -
1
T

n

exact-size: O(n).
e regular languages
if the automaton recognizing L is strongly connected:
exact-size: O(n).
@ trees
with early interrupted execution:
approx-size: O(n), exact-size: O(n?).
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Concluding remarks
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Already done

BalNi06

BoFuPi06

DaSo07

Fusy05

PaWe07

Ponty06

Accessible and deterministic automata: enumeration and Boltzmann
samplers, by F. Bassino C. Nicaud. In Fourth Colloguium on
Mathematics and Computer Science.

Random sampling of plane partitions, by O. Bodini, E. Fusy, and C.
Pivoteau. In GASCOM-2006.

Degree distribution of random Apollonian network structures and
Boltzmann sampling, by A. Darrasse and M. Soria. In International
Conference on Analysis of Algorithms, 2007, DIMACS.

Quadratic exact-size and linear approrimate-size random sampling of
planar graphs, by E. Fusy. In International Conference on Analysis of
Algorithms, 2005, DMTCS Conference Volume AD (2005), pp. 125-138.

Properties of Random Graphs via Boltzmann Samplers, by K.
Panagiotou and A. WeiBll. In International Conference on Analysis of
Algorithms, 2007, DIMACS.

Modélisation de séquences génomiques structurées, génération aléatoire
et application, by Yann Ponty, PhD Thesis, Université Paris-Sud, 2006.
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Coming soon...?7

other constructions: box operator, shuffle, ...
multivariate Boltzmann samplers,

automatic oracle, singularities,

discrete samplers,

specialized samplers,

new applications,
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