Effective Boltzmann sampling

Carine Pivoteau

based on work by P. Duchon, P. Flajolet, E. Fusy, G. Louchard, C. Pivoteau and G. Schaeffer

Plan of the talk

- Boltzmann model
- 2 Algorithms
- 3 Technical matters

Context

Random sampling under Boltzmann model

- approximate size sampling,
- size distribution spread over the whole combinatorial class, but uniform for a sub-class of objects of the same size,
- control parameter,
- automatized sampling: the sampler is compiled from specification automatically,
- very large objects can be sampled.
- Boltzmann samplers for the random generation of combinatorial structures.
 P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer. Combinatorics, Probability and Computing, 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.
- Boltzmann sampling of unlabelled structures. Ph. Flajolet, E. Fusy, C. Pivoteau. Proceedings of ANALCO07, january 2007.

Boltzmann model

Framework: constructible classes

	specification	ordinary g.f.	exponential g.f.
		(unlabelled)	(labelled)
ε / atom	1 / Z	1 / x	1 / x
Union	$\mathcal{C} = \mathcal{A} \cup \mathcal{B}$	C(x) = A(x) + B(x)	$\hat{C}(x) = A(x) + B(x)$
Product	$\mathcal{C} = \mathcal{A} imes \mathcal{B}$	$C(x) = A(x) \times B(x)$	$\hat{C}(x) = A(x) \times B(x)$
Sequence	$\mathcal{C} = \operatorname{Seq}(\mathcal{A})$	$C(x) = \frac{1}{1 - A(x)}$	$\hat{C}(x) = \frac{1}{1 - A(x)}$
Set	$\mathcal{C} = \operatorname{Set}(\mathcal{A})$	$\exp\left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} A(z^k)\right)$	$\hat{C}(x) = \exp(A(x))$
Multiset	$\mathcal{C} = \mathrm{MSet}(\mathcal{A})$	$\exp\left(\sum_{k=1}^{\infty} \frac{1}{k} A(z^k)\right)$	_
Cycle	C = Cyc(A)	$\sum_{k=1}^{\infty} \frac{1}{k} \log \frac{1}{1 - A(z^k)}$	$\hat{C}(x) = \log \frac{1}{1 - A(z^k)}$

Model definition

Definition

In the unlabelled case, Boltzmann model assigns to any object $c \in \mathcal{C}$ the following probability:

$$\mathbb{P}_x(c) = \frac{x^{|c|}}{C(x)}$$

In the labelled case, this probability becomes:

$$\mathbb{P}_x(c) = \frac{1}{\hat{C}(x)} \frac{x^{|c|}}{|c|!}$$

A Boltzmann sampler $\Gamma C(x)$ for the class \mathcal{C} is a process that produces objects from \mathcal{C} according to this model.

 \rightarrow 2 object of the same size will be drawn with the same probability.

Size distribution

The probability of drawing an object of size N is then:

$$\mathbb{P}_x(N=n) = \sum_{|c|=n} \mathbb{P}_x(c) = \frac{C_n x^n}{C(x)} \quad \text{or} \quad \frac{C_n x^n}{n! \hat{C}(x)}$$

Then, the expected size of an object drawn by a generator with parameter x is:

$$\mathbb{E}_x(N) = x \frac{C'(x)}{C(x)}$$
 or $x \frac{\hat{C}'(x)}{\hat{C}(x)}$

Size distribution -2

Basic unlabelled construction abelled classes Back to unlabelled

Algorithms

- Boltzmann model
- 2 Algorithms
 - Basic unlabelled constructions
 - Labelled classes
 - Back to unlabelled
- 3 Technical matters

Unions, products

Disjoint unions

Boltzmann sampler ΓC for $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$:

With probability $\frac{A(x)}{C(x)}$ do $\Gamma A(x)$ else do $\Gamma B(x) \longrightarrow \text{Bernoulli.}$

if
$$\gamma \in \mathcal{A}$$
 then $\mathbb{P}_x(\gamma) = \frac{x^{|\gamma|}}{A(x)} \cdot \frac{A(x)}{C(x)} = \frac{x^{|\gamma|}}{C(x)}$.

Products

Boltzmann sampler ΓC for $\mathcal{C} = \mathcal{A} \times \mathcal{B}$:

Generate a pair $\langle \Gamma A(x), \Gamma B(x) \rangle$

 \rightarrow independent calls.

if
$$\gamma = \alpha \times \beta \in \mathcal{C}$$
 then $\mathbb{P}_x(\gamma) = \frac{x^{|\alpha|}}{A(x)} \cdot \frac{x^{|\beta|}}{B(x)} = \frac{x^{|\gamma|}}{C(x)}$.

Remark: A(x), B(x) and C(x) are given by an **oracle**.

Sequences

Sequences

Boltzmann sampler ΓC for $\mathcal{C} = \text{Seq}(\mathcal{A})$:

Generate k according to a geometric law of parameter A(x)

Generate a k-tuple $\langle \Gamma A(x), \ldots, \Gamma A(x) \rangle \rightarrow \text{independent calls.}$

Proof.

Recursive equation: C = 1 + AC with $+, \times$ constructions.

With proba. A(x), call $\Gamma A(x)$ and call recursively $\Gamma C(x)$; else stop.

Number of successful trials of Bern(A(x)) is Geom(A(X)).

Remark: A(x) is given by an **oracle**.

Examples of specifications with $\{\cup, \times, \mathbf{Seq}\}$

Regular specifications (non recursive).

- integer compositions,
- polyominos that have rational g.f.: column-convex,

- regular languages,
- binary words without long runs:

$$\mathcal{L} = \operatorname{Seq}_m(b) \times \operatorname{Seq}(a \times \operatorname{Seq}_m(a) \times b \times \operatorname{Seq}_m(b)) \times \operatorname{Seq}_m(a)$$

where
$$Seq_m(a) = a + aa + \cdots + a^m$$
.

...

Specifications with $\{\cup, \times, \mathbf{Seq}\}$ and recursion

Context-free specifications.

- binary, k-ary, 2–3–4 trees, ...,
- triangulations,
- general planar rooted trees,
- noncrossing graphs,
- •

Binary trees

$$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B}$$

$$B(z) = z + B(z)^2 = \frac{1 - \sqrt{1 - 4z}}{2}$$


```
Algorithm: \Gamma B(x)
```

end if

```
b \leftarrow \operatorname{Bern}(x/B(x));
if b = 1 then
Return •
else
Return \langle \Gamma B(x), \Gamma B(x) \rangle;
```

Carine Pivoteau

General planar rooted trees

$$\mathcal{T} = \mathcal{Z} \times \text{SeQ}(\mathcal{T})$$

$$T(z) = \frac{z}{1 - T(z)} = \frac{1 - \sqrt{1 - 4z}}{2}$$

Algorithm: $\Gamma B(x)$

$$k \leftarrow \text{Geom}(T(x));$$

 $children \leftarrow \text{the } k\text{-tuple } \langle \Gamma T(x), \dots, \Gamma T(x) \rangle;$

Return $\blacksquare \times children$;

- Boltzmann model
- 2 Algorithms
 - Basic unlabelled constructions
 - Labelled classes
 - Back to unlabelled
- 3 Technical matters

Labelled classes

Same algorithms, with exponential g.f.

construction	sampler
$C = \emptyset$ or Z	$\Gamma C(x) := \varepsilon \text{ or atom}$
C = A + B	$\Gamma C(x) := \operatorname{Bern} \frac{\hat{A}(x)}{\hat{C}(x)} \longrightarrow \Gamma A(x) \mid \Gamma B(x)$
$\mathcal{C} = \mathcal{A} imes \mathcal{B}$	$\Gamma C(x) := \langle \Gamma A(x) ; \Gamma B(x) \rangle$
$\mathcal{C} = \operatorname{Seq}(\mathcal{A})$	$\Gamma C(x) := \operatorname{Geom} \hat{A}(x) \Longrightarrow \Gamma A(x)$

Put the labels at the end!

Labelled sets and cycles

Sets

Boltzmann sampler ΓC for $\mathcal{C} = \text{Set}(\mathcal{A})$:

Generate k according to a Poisson law of parameter A(x)

Generate a k-tuple $\langle \Gamma A(x), \ldots, \Gamma A(x) \rangle$

Poisson law: $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k}!$

Cycles

Boltzmann sampler ΓC for $\mathcal{C} = \text{Cyc}(\mathcal{A})$:

Generate k according to a logarithmic law of parameter A(x)

Generate a k-tuple $\langle \Gamma A(x), \ldots, \Gamma A(x) \rangle$

Logarithmic law:
$$\mathbb{P}(X = k) = \frac{1}{\log(1 - \lambda)^{-1}} \frac{\lambda^k}{k}$$

Remark: the laws are given by simple sequential algorithms

Examples of possible labelled classes

- permutations, derangements, involutions,
- surjections,
- set partitions,
- necklaces,
- labelled (planar) trees,
- functional graphs,
- ٥

Theorem (Labelled free Boltzmann samplers)

For a labelled class C specified (poss. recursively) using the following constructions:

$$\varepsilon$$
, \mathcal{Z} , +, ×, Seq, Set, Cyc

The free Boltzmann sampler $\Gamma C(x)$ operates in linear time in the size of the object produced.

- oracle complexity is not involved,
- size is not controlled (yet).

- Boltzmann model
- 2 Algorithms
 - Basic unlabelled constructions
 - Labelled classes
 - Back to unlabelled
- 3 Technical matters

To begin: MSet₂

 $MSet_2(A) \cong unordered set of two objects of A$

$$\mathcal{C} = \text{MSet}_2(\mathcal{A})$$

$$C(z) = \frac{1}{2}A^2(z) + \frac{1}{2}A(z^2)$$

$$\left[2\text{MSet}_2(\mathcal{A}) = \mathcal{A}^2 + \Delta \mathcal{A}^2 \right]$$

```
Algorithm: \Gamma C(x)

if Bern\left(\frac{1}{2}\frac{A^2(x)}{C(x)}\right) = 1 then

Return \langle \Gamma A(x), \Gamma A(x) \rangle

else
a \leftarrow \Gamma A(x^2);

Return \langle a, a \rangle;

end if
```

A simple example

Unlabelled binary trees (Otter trees)

$$\mathcal{B} = \mathcal{Z} + \mathrm{MSet}_2(\mathcal{B})$$

$$B(z) = z + \frac{1}{2}B(z)^{2} + \frac{1}{2}B(z^{2})$$

$$ot \leftarrow \Gamma B(x^{2})$$

$$return \langle \Gamma B(x), \Gamma B(x) \rangle$$

MSet: the general case

$$\mathcal{M} = \text{MSet}(\mathcal{A}) \cong \prod_{\gamma \in \mathcal{A}} \text{Seq}(\gamma) \implies M(z) = \prod_{\gamma \in \mathcal{A}} (1 - z^{|\gamma|})^{-1}$$
$$M(z) = \exp\left(\sum_{k=1}^{\infty} \frac{1}{k} A(z^k)\right) = \prod_{k=1}^{\infty} \exp\left(\frac{1}{k} A(z^k)\right)$$

MSet: the general case

$$\mathcal{M} = \text{MSET}(\mathcal{A}) \cong \prod_{\gamma \in \mathcal{A}} \text{SEQ}(\gamma) \implies M(z) = \prod_{\gamma \in \mathcal{A}} (1 - z^{|\gamma|})^{-1}$$

$$M(z) = \exp\left(\sum_{k=1}^{\infty} \frac{1}{k} A(z^k)\right) = \prod_{k=1}^{\infty} \exp\left(\frac{1}{k} A(z^k)\right)$$

$$\text{size-1}$$

$$\text{size-2}$$

$$\text{size-3}$$

$$\text{size-3}$$

MSet

Algorithm $\Gamma MSet[\mathcal{A}](x)$

- Draw k, the max. index of a subset, depending on x;
- For each index i of a subset until k-1
 - Draw the number p of elements to sample, according to a Poisson law of parameter $\frac{1}{i}A(x^i)$.
 - Call $\Gamma A(x^i)$ p times, and each time, add i copies of the result to the multiset.
- for index k, draw the number p of elements to generate, according to a non zero Poisson law.

Proof: begin with the product sampler and use $\operatorname{Geom}(\lambda) \equiv \sum_k \operatorname{Pois}(\frac{\lambda^k}{k})$.

How to compute the max. index for $\mathcal{C} = \mathbf{MSet}(\mathcal{A})$

Draw U, uniformly at random in [0,1] and find k such that:

$$\frac{\exp\left(\sum_{i=1}^{k-1}\frac{1}{i}A(x^i)\right)}{C(x)} < U \leq \frac{\exp\left(\sum_{i=1}^{k}\frac{1}{i}A(x^i)\right)}{C(x)}$$

with i.e.:

$$\sum_{i=k+1}^{\infty} \frac{1}{i} A(x^i) < \log \frac{1}{U} \le \sum_{i=k}^{\infty} \frac{1}{i} A(x^i)$$

Algorithm

$$U \leftarrow \operatorname{rand}(0,1); \ V \leftarrow \log \frac{1}{U};$$

 $p \leftarrow \log C(x); \ k \leftarrow 0;$

while
$$V < p$$
 do

$$k \leftarrow k+1; p \leftarrow p - \frac{A(x^k)}{k};$$

Return k;

Sampling of a partition $\overline{MSet}(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1:$

Sampling of a partition $\overline{MSet}(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1;$

Sampling of a partition $MSet(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1;$
 $\rightarrow 13, 10, 2, 1, 1$

Sampling of a partition $\overline{MSet}(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1:$

Sampling of a partition $MSet(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1;$

 $\rightarrow 5, 3, 2$

Sampling of a partition $\overline{MSet}(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1;$

Sampling of a partition $MSet(\mathcal{Z} \times Seq(\mathcal{Z}))$

$$k = 3;$$

 $p_1 = 5;$
 $p_2 = 3;$
 $p_3 = 1;$
 $\rightarrow 1$

Cayley trees

From MSet to PSet

Principle: Use the following non ambiguous decomposition:

$$\begin{array}{rcl} \mathrm{MSet}(\mathcal{A}) & = & \mathrm{PSet}(\mathcal{A}) \times \mathrm{MSet}(\mathcal{A}^{(2)}) \\ \prod_{\gamma} \frac{1}{1 - z^{|\gamma|}} = \prod_{\gamma} \frac{1 + z^{|\gamma|}}{1 - z^{2|\gamma|}} & = & \prod_{\gamma} \left(1 + z^{|\gamma|} \right) \prod_{\gamma} \frac{1}{1 - z^{2|\gamma|}} \end{array}$$

The algo. $\Gamma PSet[\mathcal{A}](x)$ to sample a powerset of objects of \mathcal{A} is:

- Sample a multiset with $\Gamma MSet[\mathcal{A}](x)$,
- Extract the corresponding powerset :
 - by removing objects with even multiplicity,
 - and keeping only one occurrence of objects with odd multiplicity.

Trees without twins

$$\mathcal{T} = \mathcal{Z} \times \mathrm{PSet}(\mathcal{T})$$

Cycles

$$C = \text{Cyc}(A)$$
 \Rightarrow $C(z) = \sum_{k \ge 1} \frac{\varphi(k)}{k} \log \frac{1}{1 - A(z^k)}$

Algorithm

$\Gamma Cyc[\mathcal{A}](x)$

- Draw the replication order k of the cycle.
- Draw the length j of the pattern according to a logarithmic law of parameter $A(x^k)$.
- Draw the pattern m, calling $\Gamma A(x^k)$ j times.
- Return a cycle composed of k copies of m.

Proof: find $\mathbb{P}_x(\gamma)$ for any $\gamma \in \text{CYC}(\mathcal{A})$, using $\mathbb{P}(k,j) = \frac{\varphi(k)}{kj} \frac{A(x^k)^j}{C(x)}$ and $\sum_{k|m} \varphi(k) = m$.

Cyclic compositions

$$C = \text{Cyc}(\mathcal{Z} \times \text{Seq}(\mathcal{Z}))$$

$$C(z) = \sum_{k=1}^{\infty} \frac{\varphi(k)}{k} \log \frac{1}{1 - \frac{z^k}{1 - z^k}}$$

Functional graphs

$$\mathcal{G} = \operatorname{Set}(\mathcal{C}), \, \mathcal{C} = \operatorname{Cyc}(\mathcal{T}), \, \mathcal{T} = \mathcal{Z} \times \operatorname{MSet}(\mathcal{T})$$

$\mathbf{MSet}_k(\mathcal{A})$ et $\mathbf{Cyc}_k(\mathcal{A})$

Samplers are deduced from the generating functions:

• $MSet_k(A)$

$$M_k(z) = [u^k] \exp\left(uA(z) + \frac{u^2}{2}A(z^2) + \frac{u^3}{3}A(z^3) + \dots\right)$$

Example:
$$M_3(z) = \frac{1}{6}A(z)^3 + \frac{1}{2}A(z)A(z^2) + \frac{1}{3}A(z^3)$$

• $Cyc_k(A)$

$$C_k(z) = [u^k] \sum_{l=1}^{\infty} \frac{\varphi(l)}{l} \log \frac{1}{1 - u^l A(z^l)}$$

Example:
$$C_4(z) = \frac{1}{4}A(z)^4 + \frac{1}{4}A(z^2)^2 + \frac{1}{2}A(z^4)$$

Other constraints

• $MSet_{\leq k}$, $PSet_{\leq k}$, $Cyc_{\leq k}$

Union over i < k of sets or cycles with i elements.

Example:
$$Cyc_{< k}(A) = \bigcup_{i=1}^{k-1} Cyc_i(A)$$

• $PSet_k$, $MSet_{>k}$, $PSet_{>k}$, $Cyc_{>k}$ Rejection.

Series-parallel circuits

$$C = \mathcal{P} + \mathcal{S} + \mathcal{Z}$$

$$\mathcal{S} = \operatorname{Seq}_{\geq 2}(\mathcal{P} + \mathcal{Z})$$

$$\mathcal{P} = \operatorname{MSet}_{\geq 2}(\mathcal{S} + \mathcal{Z})$$

Theorem (Unlabelled free Boltzmann samplers)

For an unlabelled class C specified (poss. recursively) using the following constructions:

$$\varepsilon$$
, \mathcal{Z} , +, ×, Seq, Seq_k, MSet, MSet_k, Cyc, Cyc_k

The free Boltzmann sampler $\Gamma C(x)$ operates in linear time in the size of the object produced.

Set: not so bad!

if $\rho < 1$ then the overhead (total size of the discarded elements) is bounded by a constant.

Technical matters

Size control – parameter tuning

- Free samplers: produce objects with randomly varying sizes!
- Tuned samplers: choose x so that expected size is n.
- Size distribution of free sampler determines complexity.

Bumpy

Carine Pivoteau

Peaked

Boltzmann sampling

Flat

Size control - 2

Cost of tuned Boltzmann samplers for a labelled or unlabelled class \mathcal{C} specified (poss. recursively) using the following constructions:

$$\varepsilon$$
, \mathcal{Z} , +, ×, Seq, Seq_k, MSet, MSet_k, Cyc, Cyc_k

Theorem (Bumpy type)

Approximate-size complexity = $\mathcal{O}(n)$. Exact size = $o(n^2)$.

Theorem (Flat type)

Approximate-size complexity = $\mathcal{O}(n)$. Exact-size = $o(n^2)$.

Theorem (Peaked type)

Approximate-size complexity = $\mathcal{O}(n^2)$

 \rightarrow pointing.

Pointing

If \mathcal{A} is a class, then $\mathcal{C} = \mathcal{A}^{\bullet}$ is the set of objects with one atom pointed, and

$$C_n = nA_n,$$
 $C(z) = z\frac{d}{dz}A(z).$

Uniformity at given size is preserved, but size profile is altered. Transforms peaked (inefficient) to flat (efficient). For example, binary trees \mathcal{B} :

$$\mathcal{B} = \mathcal{Z} + \mathcal{B} \times \mathcal{B} \quad \Longrightarrow \quad \left\{ \begin{array}{lcl} \mathcal{B} & = & \mathcal{Z} + \mathcal{B} \times \mathcal{B} \\ \mathcal{B}^{\bullet} & = & \mathcal{Z}^{\bullet} + \mathcal{B}^{\bullet} \times \mathcal{B} + \mathcal{B} \times \mathcal{B}^{\bullet}. \end{array} \right.$$

It works for all simple families of trees.

Singular samplers

• critical sequences

exact-size: $\mathcal{O}(n)$.

- regular languages if the automaton recognizing \mathcal{L} is strongly connected: exact-size: $\mathcal{O}(n)$.
- trees with early interrupted execution: approx-size: $\mathcal{O}(n)$, exact-size: $\mathcal{O}(n^2)$.

Concluding remarks

Already done

- BaNi06 Accessible and deterministic automata: enumeration and Boltzmann samplers, by F. Bassino C. Nicaud. In Fourth Colloquium on Mathematics and Computer Science.
- **BoFuPi06** Random sampling of plane partitions, by O. Bodini, E. Fusy, and C. Pivoteau. In GASCOM-2006.
 - DaSo07 Degree distribution of random Apollonian network structures and Boltzmann sampling, by A. Darrasse and M. Soria. In International Conference on Analysis of Algorithms, 2007, DIMACS.
 - Fusy05 Quadratic exact-size and linear approximate-size random sampling of planar graphs, by E. Fusy. In International Conference on Analysis of Algorithms, 2005, DMTCS Conference Volume AD (2005), pp. 125-138.
 - PaWe07 Properties of Random Graphs via Boltzmann Samplers, by K.
 Panagiotou and A. Weißl. In International Conference on Analysis of Algorithms, 2007, DIMACS.
 - Ponty06 Modélisation de séquences génomiques structurées, génération aléatoire et application, by Yann Ponty, PhD Thesis, Université Paris-Sud, 2006.

...

Coming soon...?

- other constructions: box operator, shuffle, ...
- multivariate Boltzmann samplers,
- automatic oracle, singularities,
- discrete samplers,
- specialized samplers,
- new applications,
- ...