
Boltzmann model
Algorithms

Technical matters

Effective Boltzmann sampling

Carine Pivoteau

based on work by P. Duchon, P. Flajolet, E. Fusy,
G. Louchard, C. Pivoteau and G. Schaeffer

colors to disconnect certain edges at their extremity, so as to leave a ternary
tree.

An irreducible triangulation of the 4-gon is rooted by choosing one of its 4 border
edges and orienting this edge with the infinite face on its right. This well known
operation eliminates symmetries of the triangulation.

Corollary 2. The closure induces a 4-to-(2n+2) correspondence between the set
An of rooted ternary trees with n inner nodes and the set Tn of rooted irreducible
triangulations of the 4-gon with n inner vertices. In other words, An×{1, . . . , 4}
is in bijection with Tn × {1, . . . , 2n + 2}.

As an enumerative consequence, |Tn| = 4
2n+2 |An| = 4(3n)!

(2n+2)!n! .

Proof. The proof follows easily from the bijection stated in Theorem 3 and from
the fact that a ternary tree with n inner nodes has 2n + 2 leaves and an object
of Tn has 4 edges (the 4 border edges) to carry the root.

4.2 Applications

Fig. 5. A triangulation with 200 vertices embedded with Algorithms Transversal-
Draw and CompactTransversalDraw.

The closure-bijection has several applications. A first one is a linear time
algorithm to perform uniform random sampling of objects of Tn, using the fact
that rooted ternary trees with n inner nodes can readily be uniformly sam-
pled using parenthesis words. A thorough study of such sampling algorithms is
given in [12]. In addition, sampled objects of Tn are naturally endowed, through
the closure, with their minimal transversal edge-partition. Hence, we can easily
run face-counting algorithms TransversalDraw and CompactTransver-
salDraw on the sampled objects. Performing simulations on objects of large
size (n ≈ 50000), it was observed by the author that the size of the grid is al-
ways approximately n

2 × n
2 with TransversalDraw and n

2 (1 − α) × n
2 (1 − α)

with CompactTransversalDraw, where α ≈ 0.18. It turns out that the size

Carine Pivoteau Boltzmann sampling 1/47

Boltzmann model
Algorithms

Technical matters

Plan of the talk

1 Boltzmann model

2 Algorithms

3 Technical matters

Carine Pivoteau Boltzmann sampling 2/47

Boltzmann model
Algorithms

Technical matters

Context

Random sampling under Boltzmann model
approximate size sampling,
size distribution spread over the whole combinatorial class,
but uniform for a sub-class of objects of the same size,
control parameter,
automatized sampling: the sampler is compiled from
specification automatically,
very large objects can be sampled.

1. Boltzmann samplers for the random generation of combinatorial structures.
P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.

2. Boltzmann sampling of unlabelled structures. Ph. Flajolet, E. Fusy,
C. Pivoteau. Proceedings of ANALCO07, january 2007.

Carine Pivoteau Boltzmann sampling 3/47

Boltzmann model
Algorithms

Technical matters

Boltzmann model

Carine Pivoteau Boltzmann sampling 4/47

Boltzmann model
Algorithms

Technical matters

Framework: constructible classes

specification ordinary g.f. exponential g.f.
(unlabelled) (labelled)

ε / atom 1 / Z 1 / x 1 / x

Union C = A ∪ B C(x) = A(x) + B(x) Ĉ(x) = A(x) + B(x)

Product C = A× B C(x) = A(x)×B(x) Ĉ(x) = A(x)×B(x)

Sequence C = Seq(A) C(x) = 1
1−A(x) Ĉ(x) = 1

1−A(x)

Set C = Set(A) exp

(∞∑
k=1

(−1)k−1

k
A(zk)

)
Ĉ(x) = exp(A(x))

Multiset C = MSet(A) exp

(∞∑
k=1

1
k

A(zk)

)
–

Cycle C = Cyc(A)
∞∑

k=1

1
k

log
1

1−A(zk)
Ĉ(x) = log 1

1−A(zk)

Carine Pivoteau Boltzmann sampling 5/47

Boltzmann model
Algorithms

Technical matters

Model definition

Definition
In the unlabelled case, Boltzmann model assigns to any object
c ∈ C the following probability:

Px(c) =
x|c|

C(x)

In the labelled case, this probability becomes:

Px(c) =
1

Ĉ(x)
x|c|

|c|!

A Boltzmann sampler ΓC(x) for the class C is a process that
produces objects from C according to this model.

→ 2 object of the same size will be drawn with the same probability.

Carine Pivoteau Boltzmann sampling 6/47

Boltzmann model
Algorithms

Technical matters

Size distribution

The probability of drawing an object of size N is then:

Px(N = n) =
∑
|c|=n

Px(c) =
Cnxn

C(x)
or

Cnxn

n!Ĉ(x)

Then, the expected size of an object drawn by a generator with
parameter x is:

Ex(N) = x
C ′(x)
C(x)

or x
Ĉ ′(x)
Ĉ(x)

Carine Pivoteau Boltzmann sampling 7/47

Boltzmann model
Algorithms

Technical matters

Size distribution – 2

General plane trees Set partitions Surjections

Peaked Bumpy Flat

Carine Pivoteau Boltzmann sampling 8/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Algorithms

Carine Pivoteau Boltzmann sampling 9/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

1 Boltzmann model

2 Algorithms
Basic unlabelled constructions
Labelled classes
Back to unlabelled

3 Technical matters

Carine Pivoteau Boltzmann sampling 10/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Unions, products

Disjoint unions
Boltzmann sampler ΓC for C = A ∪ B:
With probability A(x)

C(x) do ΓA(x) else do ΓB(x) → Bernoulli.

if γ ∈ A then Px(γ) =
x|γ|

A(x)
· A(x)
C(x)

=
x|γ|

C(x)
.

Products
Boltzmann sampler ΓC for C = A× B:
Generate a pair 〈 ΓA(x) , ΓB(x) 〉 → independent calls.

if γ = α× β ∈ C then Px(γ) =
x|α|

A(x)
· x|β|

B(x)
=

x|γ|

C(x)
.

Remark: A(x), B(x) and C(x) are given by an oracle.

Carine Pivoteau Boltzmann sampling 11/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sequences

Sequences

Boltzmann sampler ΓC for C = Seq(A):
Generate k according to a geometric law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉 → independent calls.

Proof.
Recursive equation: C = 1 +AC with +,× constructions.

With proba. A(x), call ΓA(x) and call recursively ΓC(x); else stop.

Number of successful trials of Bern(A(x)) is Geom(A(X)).

Remark: A(x) is given by an oracle.

Carine Pivoteau Boltzmann sampling 12/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Examples of specifications with {∪,×,Seq}

Regular specifications (non recursive).
integer compositions,
polyominos that have rational g.f.: column-convex,

regular languages,
binary words without long runs:

L = Seqm(b)× Seq(a× Seqm(a)× b× Seqm(b))× Seqm(a)

where Seqm(a) = a + aa + · · ·+ am.

...

Carine Pivoteau Boltzmann sampling 13/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Specifications with {∪,×,Seq} and recursion

Context-free specifications.
binary, k-ary, 2–3–4 trees, ...,
triangulations,
general planar rooted trees,
noncrossing graphs,
... 592 P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer

Figure 3. A random connected non-crossing graph of size 50

Example 3 (Secondary structures). This example is inspired by works of Waterman et al.,

themselves motivated by the problem of enumerating secondary RNA structures [36, 62].

To fix ideas, consider rooted binary trees where edges contain 2 or 3 atoms and leaves

(‘loops’) contain 4 or 5 atoms. A specification is W = (Z4 + Z5) + (Z2 + Z3)2 × (W ×
W). A Bernoulli switch will decide whether to halt or not, two independent recursive

calls being made in case it is decided to continue, with the algorithm being sugared with

suitable Bernoulli draws. Here is the complete code:

ΓA(x) =
(
Bern

(
x4

x4 + x5

)
−→ Z4 | Z5

)
,

ΓB(x) =
(
Bern

(
x2

x2 + x3

)
−→ Z2 | Z3

)
,

let p = (x4 + x5)/W (x) = 1
2 (1 +

√
1 − 4x8(1 + x)3),

ΓW (x) =
(
Bern(p) −→ ΓA(x) | ΓB(x); ΓW (x); ΓB(x); ΓW (x)

)
.

The method is clearly universal for this entire class of problems.

Example 4 (Non-crossing graphs). Consider graphs which, for size n, have vertices at

the nth roots of unity, vk = e2ikπ/n, and are connected and non-crossing in the sense that

no two edges are allowed to meet in the interior of the unit circle; see Figure 3 for a

random instance. The generating function of such graphs was first determined by Domb

and Barrett [15], motivated by the investigation of certain perturbative expansions of

statistical physics. Their derivation is not based on methods conducive to Boltzmann

sampling, though. On the other hand, the planar structure of such configurations entails

a neat decomposition, which is described in [24]. At the top level, consider the graph

as rooted at vertex v0. Let vi and vj be two consecutive neighbours of v0; the subgraph

induced on the vertex set {vi, vi+1, . . . , vj} is either a connected graph of D or is formed of

two disjoint components containing vi and vj respectively. Also, if v" is the first neighbour

of v0 and vm is the last neighbour, there are two connected components on {v1, . . . , v"}
and on {vm, . . . , vn−1} respectively. The grammar for connected non-crossing graphs is then

a transcription of this simple decomposition, although its detail is complicated as care

must be exercised to avoid double counting of vertices. The class of all such connected

Boltzmann Samplers for Random Generation 591

Figure 2. Random unbalanced 2–3 trees of 173 and 2522 nodes (in total) produced by a critical
Boltzmann sampler

parameter x set at the critical value ρU = 5
27 . (This critical value can be determined by

methods exposed in Section 7.) In this case, the branching probabilities for a nullary,

binary, and ternary node are found to be, respectively,

p0 =
5

9
, p2 =

1

3
, p3 =

1

9
,

and these three constants are the only ones required by the algorithm. A typical run of

30 Boltzmann samplings produces trees with total number of nodes equal to

3, 6, 1, 1, 6, 7, 33, 1, 1, 1, 9, 1, 1, 3, 1, 3, 169, 1881, 1, 54, 6, 1, 1, 3, 3746, 1, 1, 1, 1, 1, (3.10)

which empirically gives an indication of the distribution of sizes (it turns out to be of

the peaked type, like in Figure 1, bottom). We shall see later in Section 7 that one can

actually characterize the profile of this distribution (it decays like n−3/2) and put to good

use some of its features.

Unary-binary trees (also known as Motzkin trees) are defined by V = Z(1 + V + V2).

General plane trees, G, where all degrees of nodes are allowed, can be specified by the

grammar

G = Z × S(G),

with OGF G(z) = (1 −
√

1 − 4z)/2. Accordingly, the automatically produced sampler is

ΓG(x) = (Z; (Geom(G(x)) =⇒ ΓG(x))),

which corresponds to the well-known fact that such trees are equivalent to trees of a

branching process where the offspring distribution is geometric.

Carine Pivoteau Boltzmann sampling 14/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Binary trees

B = Z + B × B

B(z) = z + B(z)2 =
1−
√

1− 4z

2

Algorithm: ΓB(x)

b← Bern(x/B(x));
if b = 1 then

Return �
else

Return 〈 ΓB(x) , ΓB(x) 〉 ;
end if

Carine Pivoteau Boltzmann sampling 15/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

General planar rooted trees

T = Z × Seq(T)

T (z) =
z

1− T (z)
=

1−
√

1− 4z

2

Algorithm: ΓB(x)

k ← Geom(T (x));
children← the k-tuple 〈 ΓT (x), . . . ,ΓT (x) 〉;
Return �× children ;

Carine Pivoteau Boltzmann sampling 16/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

1 Boltzmann model

2 Algorithms
Basic unlabelled constructions
Labelled classes
Back to unlabelled

3 Technical matters

Carine Pivoteau Boltzmann sampling 17/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Labelled classes

Same algorithms, with exponential g.f.

construction sampler

C = ∅ or Z ΓC(x) := ε or atom

C = A+ B ΓC(x) := Bern Â(x)

Ĉ(x)
−→ ΓA(x) | ΓB(x)

C = A× B ΓC(x) := 〈 ΓA(x) ; ΓB(x) 〉

C = Seq(A) ΓC(x) := Geom Â(x) =⇒ ΓA(x)

Put the labels at the end !

Carine Pivoteau Boltzmann sampling 18/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Labelled sets and cycles

Sets
Boltzmann sampler ΓC for C = Set(A):
Generate k according to a Poisson law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉

Poisson law: P(X = k) = e−λ λk

k
!

Cycles

Boltzmann sampler ΓC for C = Cyc(A):
Generate k according to a logarithmic law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉

Logarithmic law: P(X = k) =
1

log(1− λ)−1

λk

k

Remark: the laws are given by simple sequential algorithms

Carine Pivoteau Boltzmann sampling 19/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Examples of possible labelled classes

permutations, derangements, involutions,
surjections,
set partitions,
necklaces,
labelled (planar) trees,
functional graphs,
...

II. 5. LABELLED TREES, MAPPINGS, AND GRAPHS 125

26

1

2

3

4

5
67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure II.12. A functional graph of size n = 26 associated to the mapping ϕ such
that ϕ(1) = 16, ϕ(2) = ϕ(3) = 11, ϕ(4) = 23, and so on.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z + SET2(M) !⇒ M(z) = 1−
√
1− 2z and Mn = 1 · 3 · · · (2n − 3),

where the counting numbers are now, surprisingly perhaps, the odd factorials. !

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or

“functions”) from [1 . . n] to itself. A mapping f ∈ [1 . . n] &→ [1 . . n] can be repre-
sented by a directed graph over the set of vertices [1 . . n] with an edge connecting x
to f (x), for all x ∈ [1 . . n]. The graphs so obtained are called functional graphs and
they have the characteristic property that the outdegree of each vertex is exactly equal

to 1.

Mappings and associated graphs. Given a mapping (or function) f , upon start-

ing from any point x0, the succession of (directed) edges in the graph traverses the

vertices corresponding to iterated values of the mapping,

x0, f (x0), f (f (x0)),

Since the domain is finite, each such sequence must eventually loop back on itself.

When the operation is repeated, starting each time from an element not previously hit,

the vertices group themselves into components. This leads to a valuable characteriza-

tion of functional graphs (Figure II.12): a functional graph is a set of connected func-

tional graphs; a connected functional graph is a collection of rooted trees arranged

in a cycle. (This decomposition is seen to extend the decomposition of permutations

into cycles, p. 116.)

Thus, with T being as before the class of all Cayley trees, and with K the class of
all connected functional graphs, we have the specification:

(47)






F = SET(K)

K = CYC(T)

T = Z " SET(T)

!⇒






F(z) = eK (z)

K (z) = log
1

1− T (z)

T (z) = zeT (z).

Carine Pivoteau Boltzmann sampling 20/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Theorem (Labelled free Boltzmann samplers)

For a labelled class C specified (poss. recursively) using the
following constructions:

ε, Z, +, ×, Seq, Set, Cyc

The free Boltzmann sampler ΓC(x) operates in linear time in
the size of the object produced.

oracle complexity is not involved,
size is not controlled (yet).

Carine Pivoteau Boltzmann sampling 21/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

1 Boltzmann model

2 Algorithms
Basic unlabelled constructions
Labelled classes
Back to unlabelled

3 Technical matters

Carine Pivoteau Boltzmann sampling 22/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

To begin: MSet2

MSet2(A) ∼= unordered set of two objects of A

C = MSet2(A)

C(z) =
1
2
A2(z) +

1
2
A(z2) [2MSet2(A)=A2+∆A2]

Algorithm: ΓC(x)

if Bern
(

1
2

A2(x)
C(x)

)
= 1 then

Return 〈 ΓA(x),ΓA(x) 〉
else

a← ΓA(x2);
Return 〈a, a〉;

end if

Carine Pivoteau Boltzmann sampling 23/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

A simple example

Unlabelled binary trees
(Otter trees)

B = Z + MSet2(B)Boltzmann model
Algorithms

Technical matters

Basic constructions
Labelled classes
Back to unlabelled

A simple example

B(z) = z + 1
2B(z)2 + 1

2B(z2)

ot← ΓB(x2)

return 〈ot, ot〉
return 〈 ΓB(x),ΓB(x) 〉

Unlabelled binary trees
(Otter trees)

B = Z + MSet2(B)

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Carine Pivoteau Boltzmann sampling 24/47

Boltzmann model
Algorithms

Technical matters

Basic constructions
Labelled classes
Back to unlabelled

A simple example

B(z) = z + 1
2B(z)2 + 1

2B(z2)

ot← ΓB(x2)

return 〈ot, ot〉
return 〈 ΓB(x),ΓB(x) 〉

Unlabelled binary trees
(Otter trees)

B = Z + MSet2(B)

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Carine Pivoteau Boltzmann sampling 24/47

Boltzmann model
Algorithms

Technical matters

Basic constructions
Labelled classes
Back to unlabelled

A simple example

B(z) = z +
1
2
B(z)2 +

1
2
B(z2)

!
ot← ΓB(x2)

return 〈ot, ot〉
return 〈 ΓB(x),ΓB(x) 〉

Unlabelled binary trees
(Otter trees)

B = Z + MSet2(B)

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Carine Pivoteau Boltzmann sampling 24/47

Boltzmann model
Algorithms

Technical matters

Basic constructions
Labelled classes
Back to unlabelled

A simple example

B(z) = z +
1
2
B(z)2 +

1
2
B(z2)

!
ot← ΓB(x2)

return 〈ot, ot〉
return 〈 ΓB(x),ΓB(x) 〉

Unlabelled binary trees
(Otter trees)

B = Z + MSet2(B)

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Le modèle de Boltzmann
Constructions non étiquetées

Complexité

MSet
PSet
Cyc
Restrictions de cardinalité

Un exemple simple

Les arbres binaires non planaires
(arbres d’Otter)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ !
→ "〈 ΓB(x), ΓB(x) 〉
→ ot← ΓB(x2);

return "〈 ot, ot 〉;

Carine Pivoteau Génération aléatoire et modèle de Boltzmann

Carine Pivoteau Boltzmann sampling 24/47

Carine Pivoteau Boltzmann sampling 24/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

MSet: the general case

M = MSet(A) ∼=
∏
γ∈A

Seq(γ) ⇒ M(z) =
∏
γ∈A

(1− z|γ|)−1

M(z) = exp

(∞∑
k=1

1
k

A(zk)

)
=

∞∏
k=1

exp
(

1
k

A(zk)
)

size=3

size=4

size=2

size=1

Carine Pivoteau Boltzmann sampling 25/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

MSet: the general case

M = MSet(A) ∼=
∏
γ∈A

Seq(γ) ⇒ M(z) =
∏
γ∈A

(1− z|γ|)−1

M(z) = exp

(∞∑
k=1

1
k

A(zk)

)
=

∞∏
k=1

exp
(

1
k

A(zk)
)

size=3

size=4

size=2

size=1

Carine Pivoteau Boltzmann sampling 25/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

MSet

Algorithm ΓMSet[A](x)

Draw k, the max. index of a subset, depending on x;
For each index i of a subset until k − 1

Draw the number p of elements to sample, according to a
Poisson law of parameter 1

i A(xi).
Call ΓA(xi) p times, and each time, add i copies of the
result to the multiset.

for index k, draw the number p of elements to generate,
according to a non zero Poisson law.

Proof: begin with the product sampler and use Geom(λ) ≡
P

k Pois(λk

k
).

Carine Pivoteau Boltzmann sampling 26/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

How to compute the max. index for C = MSet(A)

Draw U , uniformly at random in [0, 1] and find k such that:

exp
(∑k−1

i=1
1
i A(xi)

)
C(x)

< U ≤
exp

(∑k
i=1

1
i A(xi)

)
C(x)

with i.e.:
∞∑

i=k+1

1
i
A(xi) < log

1
U
≤

∞∑
i=k

1
i
A(xi)

Algorithm

U ← rand(0, 1); V ← log 1
U ;

p← log C(x); k ← 0;
while V < p do

k ← k + 1; p← p− A(xk)
k ;

Return k;

Carine Pivoteau Boltzmann sampling 27/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 13, 10, 2, 1, 1

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 5, 3, 2

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Sampling of a partition MSet(Z × Seq(Z))

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 1

Carine Pivoteau Boltzmann sampling 28/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Cayley trees

T = Z ×MSet(T)

Carine Pivoteau Boltzmann sampling 29/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

From MSet to PSet

Principle : Use the following non ambiguous decomposition:

MSet(A) = PSet(A)×MSet(A(2))∏
γ

1
1−z|γ| =

∏
γ

1+z|γ|

1−z2|γ| =
∏

γ

(
1 + z|γ|

)∏
γ

1
1−z2|γ|

The algo. ΓPSet[A](x) to sample a powerset of objects of A is:
Sample a multiset with ΓMSet[A](x),
Extract the corresponding powerset :

by removing objects with even multiplicity,
and keeping only one occurrence of objects with odd
multiplicity.

Carine Pivoteau Boltzmann sampling 30/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Trees without twins

T = Z ×PSet(T)

Carine Pivoteau Boltzmann sampling 31/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Cycles

C = Cyc(A) ⇒ C(z) =
∑
k≥1

ϕ(k)
k

log
1

1−A(zk)

m :=

k := 3
j := 5

Carine Pivoteau Boltzmann sampling 32/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Algorithm

ΓCyc[A](x)

Draw the replication order k of the cycle.
Draw the length j of the pattern according to a logarithmic
law of parameter A(xk).
Draw the pattern m, calling ΓA(xk) j times.
Return a cycle composed of k copies of m.

Proof: find Px(γ) for any γ ∈ Cyc(A), using P(k, j) =
ϕ(k)
kj

A(xk)j

C(x)
andP

k|m ϕ(k) = m.

Carine Pivoteau Boltzmann sampling 33/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Cyclic compositions

C = Cyc(Z × Seq(Z))

C(z) =
∞∑

k=1

ϕ(k)
k

log
1

1− zk

1−zk

Carine Pivoteau Boltzmann sampling 34/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Functional graphs

G = Set(C), C = Cyc(T), T = Z ×MSet(T)

Carine Pivoteau Boltzmann sampling 35/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

MSetk(A) et Cyck(A)

Samplers are deduced from the generating functions:

MSetk(A)

Mk(z) = [uk] exp
(

uA(z) +
u2

2
A(z2) +

u3

3
A(z3) + . . .

)
Example: M3(z) = 1

6A(z)3 + 1
2A(z)A(z2) + 1

3A(z3)

Cyck(A)

Ck(z) = [uk]
∞∑
l=1

ϕ(l)
l

log
1

1− ulA(zl)

Example: C4(z) = 1
4A(z)4 + 1

4A(z2)2 + 1
2A(z4)

Carine Pivoteau Boltzmann sampling 36/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Other constraints

MSet<k, PSet<k, Cyc<k

Union over i < k of sets or cycles with i elements.

Example: Cyc<k(A) =
⋃k−1

i=1 Cyci(A)

PSetk, MSet>k, PSet>k, Cyc>k

Rejection.

Carine Pivoteau Boltzmann sampling 37/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Series-parallel circuits

C = P + S + Z
S = Seq≥2(P + Z)
P = MSet≥2(S + Z)

P

S

P

S S
P

S

Carine Pivoteau Boltzmann sampling 38/47

Boltzmann model
Algorithms

Technical matters

Basic unlabelled constructions
Labelled classes
Back to unlabelled

Theorem (Unlabelled free Boltzmann samplers)

For an unlabelled class C specified (poss. recursively) using the
following constructions:

ε, Z, +, ×, Seq, Seqk, MSet, MSetk, Cyc, Cyck

The free Boltzmann sampler ΓC(x) operates in linear time in
the size of the object produced.

Set: not so bad!
if ρ < 1 then the overhead (total size of the discarded elements) is bounded

by a constant.

Carine Pivoteau Boltzmann sampling 39/47

Boltzmann model
Algorithms

Technical matters

Technical matters

Carine Pivoteau Boltzmann sampling 40/47

Boltzmann model
Algorithms

Technical matters

Size control – parameter tuning

Free samplers: produce objects with randomly varying
sizes!
Tuned samplers: choose x so that expected size is n.
Size distribution of free sampler determines complexity.

Peaked Bumpy Flat

Carine Pivoteau Boltzmann sampling 41/47

Boltzmann model
Algorithms

Technical matters

Size control – 2

Cost of tuned Boltzmann samplers for a labelled or unlabelled
class C specified (poss. recursively) using the following
constructions:

ε, Z, +, ×, Seq, Seqk, MSet, MSetk, Cyc, Cyck

Theorem (Bumpy type)

Approximate-size complexity = O(n). Exact size = o(n2).

Theorem (Flat type)

Approximate-size complexity = O(n). Exact-size = o(n2).

Theorem (Peaked type)

Approximate-size complexity = O(n2) → pointing.

Carine Pivoteau Boltzmann sampling 42/47

Boltzmann model
Algorithms

Technical matters

Pointing

If A is a class, then C = A• is the set of objects with one atom
pointed, and

Cn = nAn, C(z) = z
d

dz
A(z).

Uniformity at given size is preserved, but size profile is altered.
Transforms peaked (inefficient) to flat (efficient).
For example, binary trees B:

B = Z + B × B =⇒
{
B = Z + B × B
B• = Z• + B• × B + B × B•.

It works for all simple families of trees.

Carine Pivoteau Boltzmann sampling 43/47

Boltzmann model
Algorithms

Technical matters

Singular samplers

critical sequences

Boltzmann Samplers for Random Generation 613

Literally taken, the Boltzmann sampler ΓC of Section 3 taken with x = ρC loops forever

and generates objects of infinite size, as it produces a number of components equal to

a ‘Geom(1)’. This prevents us from using the rejection algorithm µC(x; n, ε) with x = ρ.

However, one may adapt the idea by halting execution as soon as the target size has been

attained. Precisely, the early-interrupt singular sequence sampler is defined as follows:

function σC(ρ; n); {Early-interrupt singular sequence sampler}
i := 0; repeat i := i + 1; γi := ΓA(ρ) until |(γ1, . . . , γi)| > n;

return((γ1, . . . , γi)); end.

The principle of the algorithm can be depicted as ‘leapfrogging’ over n:

The singular early-interrupt sampler determined by the choice x = ρC has excellent prob-

abilistic and complexity-theoretic characteristics summarized in the following statement.

There, we assume without loss of generality that A(z) is aperiodic in the sense that the

quantity d := gcd{n | An != 0} satisfies d = 1. (If d ! 2, a linear change of the size functions

brings us back to the aperiodic case.)

Theorem 7.1. Consider a sequence construction, C = S(A) that is supercritical and aperi-

odic. Then the early-interrupt singular sequence generator, σC(ρC ; n) is a valid sampler for C.

It produces an object of size n + O(1) in one trial with high probability. For a specifiable

class A, exact-size random generation in C is achievable from this generator by rejection in

expected time O(n).

Proof. Let Xn denote the random variable giving the size of the output of the early-

interrupt singular sequence generator with target size n. The analysis of Xn can be treated

by classical renewal theory [20, Section XIII.10], but we opt for a direct approach based

on generating functions, which integrates smoothly within our general formalism.

The bivariate (probability) generating function with variable z marking the target size

n and variable u marking the size Xn of the actually generated object is

F(z, u) :=
∑

n!1

∑

m!n

P(Xn = m) znum.

A trial decomposes into a sequence of samples of ΓA(ρ) ending by a sample that brings

the total over n, which implies

F(z, u) =
1

1 − A(ρzu)
L[A(ρzu)] =

z

1 − z

A(ρu) − A(ρzu)

1 − A(ρzu)
.

There L[f(z)] := z(f(1) − f(z))/(1 − z) is a linear operator, and, e.g.,

L
[

1

1 − zu

]
= z(u + u2 + · · ·) + z2(u2 + u3 + · · ·) + z3(u3 + u4 + · · ·) + · · · ,

so that all powers of the form znu% with % ! n are produced.

exact-size: O(n).
regular languages
if the automaton recognizing L is strongly connected:
exact-size: O(n).
trees
with early interrupted execution:
approx-size: O(n), exact-size: O(n2).

Carine Pivoteau Boltzmann sampling 44/47

Boltzmann model
Algorithms

Technical matters

Concluding remarks

Carine Pivoteau Boltzmann sampling 45/47

Boltzmann model
Algorithms

Technical matters

Already done

BaNi06 Accessible and deterministic automata: enumeration and Boltzmann
samplers, by F. Bassino C. Nicaud. In Fourth Colloquium on
Mathematics and Computer Science.

BoFuPi06 Random sampling of plane partitions, by O. Bodini, E. Fusy, and C.
Pivoteau. In GASCOM-2006.

DaSo07 Degree distribution of random Apollonian network structures and
Boltzmann sampling, by A. Darrasse and M. Soria. In International
Conference on Analysis of Algorithms, 2007, DIMACS.

Fusy05 Quadratic exact-size and linear approximate-size random sampling of
planar graphs, by E. Fusy. In International Conference on Analysis of
Algorithms, 2005, DMTCS Conference Volume AD (2005), pp. 125-138.

PaWe07 Properties of Random Graphs via Boltzmann Samplers, by K.
Panagiotou and A. Weißl. In International Conference on Analysis of
Algorithms, 2007, DIMACS.

Ponty06 Modélisation de séquences génomiques structurées, génération aléatoire
et application, by Yann Ponty, PhD Thesis, Université Paris-Sud, 2006.

...

Carine Pivoteau Boltzmann sampling 46/47

Boltzmann model
Algorithms

Technical matters

Coming soon...?

other constructions: box operator, shuffle, ...
multivariate Boltzmann samplers,
automatic oracle, singularities,
discrete samplers,
specialized samplers,
new applications,
...

Carine Pivoteau Boltzmann sampling 47/47

	Boltzmann model
	Algorithms
	Basic unlabelled constructions
	Labelled classes
	Back to unlabelled

	Technical matters
	

