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A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

5/1/4/36/0287 9

min=5
max =5
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A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:

511/4/316/0/2/8/7 9
]

2<min?| |2>max ?

.
min=0

max = 6

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:
51/436028/79
— [

8<min? |8>max?

.
min=0

max = 6

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:
51/436028/79
— /

8<min? |8>max?

.
min=0

max = 8

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm:
5143602879
i

7<min?| |7>max?

.
min=0

max = 8

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

511/4/3/6/02879
——

9<min?| |9>max ?

.
min=0

max = 8

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

511/4/3/6/02879
———

9<min?| |9>max ?

.
min=0

max = 9

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



A case study

Find both the min. and the max. of an array of size n.

Naive Algorithm: 2n comparisons

511/4/3/6/02879
———

9<min?| |9>max ?

.
min=0

max = 9

Can we do better?
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5/1/43602879

min =5
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm:

5/1/4 36012879
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A case study
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)

Naive Algorithm: 2n comparisons
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A case study

Find both the min. and the max. of an array of size n.

Optimized Algorithm: 3n/2 comparisons (optimal)
Naive Algorithm: 2n comparisons

In practice, on uniform random data?
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A case study

Find both the min. and the max. of an array of size n.
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A case study

Find both the min. and the max. of an array of size n.
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What “really” happens in the processor...

optimized min/max search

// RAND_ARRAY: an array of length N
// filled with random integers

min = RAND_ARRAY[0];
max = RAND_ARRAY[O];
for(i=0; i<N; i+=2){ //assume N is even
al = RAND_ARRAY[i];
a2 = RAND_ARRAY[i+1];
if (al < a2) {
if (al < min) min = al;
if (a2 > max) max = a2;

else {
if (a2 < min) min = a2;
if (al > max) max = al;

N. Auger, C. ud, C. Pivoteau Good predictions are worth...



What “really” happens in the processor...

sample of assembly code (gcc -00)

mov esi, dword ptr [rbp - 60]
cmp esi, dword ptr [rbp - 64]
jge LBB2_8

mov eax, dword ptr [rbp - 60]
cmp eax, dword ptr [rbp - 12]
jge LBB2_5

mov eax, dword ptr [rbp - 60]

mov dword ptr [rbp - 12], eax
LBB2_5:

mov eax, dword ptr [rbp - 64]

cmp eax, dword ptr [rbp - 16]

jle LBB2_7
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What “really” happens in the processor...

sample of assembly code (gcc -00)

mov esi, dword ptr [rbp - 60] » Each instruction
cmp esi, dword ptr [rbp - 64] can be decomposed:
jge LBB2_8
J& [F] o [ Ex |MEM] wB
mov eax, dword ptr [rbp - 60]
cmp eax, dword ptr [rbp - 12] » Most modern
j LBB2_5
Jee - processors
mov eax, dword ptr [rbp - 60] are pipelined
mov dword ptr [rbp - 12], eax
LBB2_5: » Instructions
mov eax, dword ptr [rbp - 64] are parallelized
cmp eax, dword ptr [rbp - 16]
jle LBB2_7
IF ID | EX |MEM
i IF ID | EX WB
o IF D MEM| WB
IF EX |MEM| WB
simple 5 stages pipeline: ID | EX |MEM| WB
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What “really” happens in the processor...

sample of assembly code (gcc -00)

mov esi, dword ptr [rbp - 28]

o Paaan g P Irbp - 321 » BEach instruction
mov eax, dword ptr [rbp - 28] Can be decomposed'
cmp eax, dword ptr [rbp - 12]
jge LBB2_.5 —
mov eax, dword ptr [rbp - 28] | ‘ D EX ‘ MEM ‘ WB
mov dword ptr [rbp - 12], eax

LBB2_5:

mov eax, dword ptr [rbp - 32]
cmp eax, dword ptr [rbp - 16]

fle LBB2 7 ———————— » Most modern
mov eax, dword ptr [rbp - 32]

LBBZT?:V dword ptr [rbp - 16], eax prOCGSSOI‘S
jmp LBB2 14— . .

LeBZ & are pipelined

mov eax, dword ptr [rbp - 32]
cmp eax, dword ptr [rbp - 12]
jge LBB2_10

mov eax, dword ptr [rbp - 32] » Instructions
mov dword ptr [rbp - 12], eax

LBB2_10: .
mov eax, dword ptr [rbp - 28] are parallehzed

cmp eax, dword ptr [rbp - 16]
jle LBB2_14

mov eax, dword ptr [rbp - 28]

mov dword ptr [rbp - 16], eax |F |D EX MEM
HBRE eax, dword ptr [rbp - 4] i IF ID EX WB
fov Gword pir [rbp - 4, oax . IF | ID MEM| WB
IF EX |MEM| WB
simple 5 stages pipeline: ID | EX |[MEM| WB
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Branch prediction

Branch predictors are used to avoid stalls on branches!

@ Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

@ A misprediction can be quite expensive!

@ The branch predictor will guess which branch will be
taken (T) or not (NT).

@ Different schemes: static, dynamic, local, global,. ..

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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Branch prediction

Branch predictors are used to avoid stalls on branches!
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Branch prediction

Branch predictors are used to avoid stalls on branches!

2-bit predictor:

not taken

taken

taken

Strongly
Not
Taken

Strongly
Taken

not taken not taken not taken
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Branch prediction

Branch predictors are used to avoid stalls on branches!
Global (or mixed) predictor:

—{—

0000...00 | T— OO0 0=
0000...01 | OO0 0=

1114::.11 - OO0 0=

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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Branch prediction

Branch predictors are used to avoid stalls on branches!

@ Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

@ A misprediction can be quite expensive!

@ The branch predictor will guess which branch will be
taken (T) or not (NT).

@ Different schemes: static, dynamic, local, global,. ..

@ Min and max search is very sensitive to branch prediction...
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@ Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

@ A misprediction can be quite expensive!

@ The branch predictor will guess which branch will be
taken (T) or not (NT).

@ Different schemes: static, dynamic, local, global,. ..

@ Min and max search is very sensitive to branch prediction...

... though we can avoid this using CMOV instructions...
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Branch prediction

Branch predictors are used to avoid stalls on branches!

@ Conditional instructions (such as the “if” statement) yield
branches in the execution of a program

@ A misprediction can be quite expensive!

@ The branch predictor will guess which branch will be
taken (T) or not (NT).

@ Different schemes: static, dynamic, local, global,. ..

@ Min and max search is very sensitive to branch prediction...
... though we can avoid this using CMOV instructions...
. but still ...

Computer Architecture: A Quantitative Approach (5th ed.), Hennessy & Patterson
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Previous Work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Tradeoffs Between Branch Mispredictions and
Comparisons for Sorting Algorithms

Gerth Stglting Brodal'* and Gabriel Moruz'

, Department of Computer Science, University of Aarhus,
[ Parken, Abogade 34, DK-8200 Arhus
{gerth, gabi}edaimi.an.dk

Denmark

Abstract. Branch mispredictions is an important factor affecting the
running time in practice. In this paper we consider tradeoffs between

the number of branch and the numhber of for

sorting

algoritk Measure[Comparisons Branch mispredictions

misprec Dis  |O(dn(1+log(1 + Dis))) 2(nloga(1 + Dis))

by adoy Exc  |O(dn(1 + Exclog(1 + Exc))) |2(nExclogy(1 + Exc)

tions. Enc  |O(dn(1 + log(1 + Enc))) 2(nlogy(1 + Enc))

rithm p Inv O(dn(1 +log(1+Inv/n)))  [2(nlogg(1+ Inv/n))

Q(nlog Max  |O(dn(1 + log(1 + Max))) 2(nlog,(1 + Max))

of inve Osc  |O(dn(1 +log(1+ Osc/n)))  |2(nlogy(1 + Osc/n))

by Esti Reg O(dn(1 + log(1 + Reg))) 2(nloga(1 + Reg))

col and Rem  [O(dn(1 + Remlog(1 + Rem)))|(2(nRem logy(1 + Rem))

misprec Runs  [O(dn(1+log(1+ Runs)))  |2(nlogy(1 + Runs))
SMS  |O(dn(1 +log(1+SMS)))  |2(nlogy(1 + SMS))
SUS _ |O(dn(1 + log(1 + SUS))) 2(nlogy(1 + SUS))

Fig. 4. Lower bounds on the number of branch mispredictions for deterministic com-
parison based adaptive sorting algorithms for different measures of presortedness, given
the upper bounds on the number of comparisons

C. Pivoteau Good predictions are worth



Previous Work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

@ Biggar et al, 2008 : experimental, branch prediction and sorting

An Experimental Study of Sorting and Branch
Prediction

PAUL BIGGAR!, NICHOLAS NASH!, KEVIN WILLIAMS? and DAVID GREGG
Trinity College Dublin

Good predictions are worth...



Previous Work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting

@ Sanders and Winkel, 2004 : quicksort variant without branches

Super Scalar Sample Sort

Peter Sanders' and Sebastian Winkel?

! Max Planck Institut fiir Informatik
Saarbriicken, Germany, sanders@api-sb.zpg.de
2 Chair for Prog. Lang. and Compiler Construction
Saarland University, Saarbriicken, Germany, sewifcs .uni-sb.de

Abstract. Sample sort, a generalization of quicksort that partitions the
input into many pieces, is known as the best practical comparison based
sorting algorithm for distributed memory parallel computers. We show
that E o o T
mic i t:= (8isa, Sk/a, Sak/4: Sky/s: Sakys, Sk, Stkssa---)
cond for i l1tondo [/ locate each element

facili ji=1 //current tree node := root

final  repeat logk times //will be unrolled

ber ¢ =2 + ty) //left or right?

Itani  j J/ bucket index

the (  [bs|++ //count bucket size

quick  ofi):=j //remember oracle

Fig. 2. Finding buckets using implicit search trees. The picture is for k = 8. We adopt
the C convention that “r >y is one if z > y holds, and zero else

C. Pivoteau Good predictions are worth



Previous Work

@ Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
@ Biggar et al, 2008 : experimental, branch prediction and sorting
@ Sanders and Winkel, 2004 : quicksort variant without branches

@ Elmasry et al, 2012 : mergesort variant without branches

Branch Mispredictions Don’t Affect Mergesort*

Amr Elmasry’, Jyrki Katajainen' 2, and Max Stenmark?

Department of Comput
Universitetsparken
* Jyrki
Thorsgade 101

nce, University of Copenhagen
st, Denmark

2200 Copenhagen North, Denmark

Abstract. In quicksort, due to branch mispredictions, a skewed pivot-
selection strategy can lead to a better performance than the exact-
median pivot-select
free. In this paper
the behaviour of m

branches, we can avoid most
dictions. When sorting

Table 3. The execution time [ns], the number of conditional branches, and the mimber
of mispredictions, cach per nlog, n, for two in-situ variants of mergesort

Program|  Tn-situ std: :stablesort To-situ mergesort
Time Branches Mispredicts| Time Branches Mispredicts
n__|Per Ares Per Ares
21 192 207 9.0 208 73 57| 193 0.26
2% |576 350 111 238 1.94 0.15
20 627 385 120 253 |74 57| 192 o1
2 |630 413] 144 262 |76 57| 192 0.09

Good predictions are worth...



Previous Work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting

Biggar et al, 2008 : experimental, branch prediction and sorting

°
°
@ Sanders and Winkel, 2004 : quicksort variant without branches
@ Elmasry et al, 2012 : mergesort variant without branches

°

Kaligosi and Sanders, 2006 : mispredictions and quicksort

How Branch Mispredictions Affect Quicksort

Kanela Kaligosi' and Peter Sanders?

! Max Planck Ir “Table 1. Number of branch mispredictions
arbriic

kaligosig|

2 Universitit F

random pivot askewed pivot

sanders|

Istatic predictor| "3nlgn +O(n), '3 ~0.3466 | % nlgn + O(n),

Lanign +O(),

Abstract.
“good” pive
not impre

1-bit predictor | ' 2nlgn + O(n), %2 ~ 0.4621 iy nlgn + O(n)

pivot imp sz
count dec
direction

g+ O(n), 122 ~ 04313 20"

2-bit predictor

- 1

w12 W e W w2 %
e

Fig.3. Time / nlgn for random pivot, median of 3, exact median, 1/10-skewed pivot

C. Nicaud, C. Pivoteau Good predictions are worth...
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Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
Biggar et al, 2008 : experimental, branch prediction and sorting
Sanders and Winkel, 2004 : quicksort variant without branches
Elmasry et al, 2012 : mergesort variant without branches
Kaligosi and Sanders, 2006 : mispredictions and quicksort

Martinez, Nebel and Wild, 2014 : mispredictions and quicksort

s in Quicksort™

Analysis of Branch Mi

Conrado Martinez" Markus E. Nebel® Sebastian Wild!
November 11, 2014
le of the input. We

branch misses is too
¥ of the dual-pivot

Abstract pivots are chosen frop

algorithms mostly relies on count

clementary operations like add;

efficiency. 1 os

ern process o

and memor 5

running tin

get a reliab 03]

sort: It has o

under certa g DR ¢
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Previous Work

Brodal & Moruz, 2005 : mispredictions and (adaptive) sorting
Biggar et al, 2008 : experimental, branch prediction and sorting
Sanders and Winkel, 2004 : quicksort variant without branches
Elmasry et al, 2012 : mergesort variant without branches
Kaligosi and Sanders, 2006 : mispredictions and quicksort
Martinez, Nebel and Wild, 2014 : mispredictions and quicksort
Brodal and Moruz, 2006 : skewed binary search trees

Skewed Binary Search Trees

Gerth Stolting Brodal'>* and Gabriel Moruz"

BRICS*, Department of Computer Science, University of Aarhus, IT Parken,
Abogade 34, DK-5200 Arhus N, Denmark. E-mail: {gerth. gabi }tdaini .au.dk

Abstract. Tt is well-known ¢
a binary search tree should
shown that a dominating fa
the number of cache faults b
Iayout of a binary search tn
by several hundred percent.

branching to the lef or righ
same cost, e.g. because of be
study the class of skewed bin
binary search tree the ratio t
size of the trec is a fixed con
trees). In this paper we preser Fig. 1. Bound on the expected cost for a random search, where the cost for visiting

2

tree is accessed with a unife (¢
‘many of the memory layonts
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Back to simultaneous min and max search

Ezxpected number of mispredictions, for the uniform distribution,
on arrays of size m:

@ Naive Min Max Search:
~ 4logn for the 1-bit predictor
~ 2logn for the two 2-bit predictors and the 3-bit saturating
counter.
o Optimized Min Max Search:
~ n/4+ O(logn) for all four predictors.

Idea of the proof:
@ asymptotic analysis of the records in a random permutation,

@ use the fundamental bijection that relates the records to the
cycles in permutations,

@ use classical results on the average number of cycles.

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



What if the distribution is not uniform?

Definition (Ewens-like distribution for records)

e To any o € &,,, we associate a weight w(c) = §record(?),

o Let Wy = Y, cq, w(0) = 0™ and P(o) = Lo,

with 6(") =06 +1)...(0+n — 1)

Expected number of mispredictions:

mispredictions

w2 naive algorithm
v: optimized algorithm

3 0 := An.
1 ) E,[u] ~ E,[v] for A\g ~ 0.305.
4 ZEn [P‘] L.
1g, [ But optimized performs less
" comparisons, thus it becomes
i 2 3 A better before Ag.

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



Exponentiation by squaring
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Introducing unnecessary tests to speed up

POW(x,1)

r = 1;
while (m > 0) {
// n ts odd
if (n & 1)
r=r % X;
n /= 2;
X = X ¥ X;
}

x is a floating-point
number, n is an integer
and r is the result.

" = ($2) [n/2] 270
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Introducing unnecessary tests to speed up

POW(x,1)

r = 1;
while (m > 0) {
// n ts odd
if (m& 1) P=3
r=r % X;
n /= 2;
X = X ¥ X;
}

x is a floating-point
number, n is an integer
and r is the result.

" = ($2) [n/2] 270
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n)
r =1; r =1;
while (m > 0) { while (n > 0) {
// n is odd t =x*Xx;
if g 1) P=1 // o == 1
r =T * X; if (n & 1)
n /= 2; r =r * X;
X = X * X} // ng ==
} if (n & 2)
r =1r % t;
x is a floating-point n /= 4;
number, n is an integer X =1t * t;
and r is the result. }
" = ($2) [n/2] 210 = ($4) [n/4] (xQ)”l "o
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n)
r =1; r =1;
while (m > 0) { while (n > 0) {
// n is odd t =x*Xx;
if g 1) P=1 // o == 1 )
r =T * X; if(n&l)P:§
n /= 2; r =r * X;
X = X * X} // g ==
b if & 2) P=3
r =1r % t;
x is a floating-point n /= 4;
number, n is an integer X =1t * t;
and r is the result. }
" = ($2) [n/2] 210 = ($4) [n/4] (xQ)”l "o
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (mn > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =x*xr
if (n & 1) IP’:% // ng ==1 // ning! = 00
T =71 % x; if m& 1) P=3 if (n & 3){
n /= 2; r =71 * X if (n & 1)
X = X * x; // ny == T =71 * x;
} if (n & 2) P:% if (n & 2)
r=r*1t; r=r * t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/Qj 20 xn,:(le)\_n/élj (1‘2)”1 210 }
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (mn > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =x*xr
if (n & 1) IP’:% // ng ==1 // ning! = 00
T =T % x; if m& 1) P=3 if (n&N{P=2
n /= 2; r =71 * X if (n & 1)
X = X * x; // ny == T =71 * x;
} if (n & 2) P:% if (n & 2)
r=r*1t; r=r * t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/Qj 20 xn,:(le)\_n/élj (1‘2)”1 210 }
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (n > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =X*X7
if (n & 1) P:% // ng == // ning! = 00
r =71 % X 1f(n&1)IP’—% if m& N{P=7
n /= 2; r =Tk Xx; if ng 1) P=2
X = X * X; // g ==1 r=r*x;
3 1f(n&2)IP>:§ if n&2) P=2
r=r*1t; r=r % t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/ijnO xn,:(xél)\_n/‘lj (xQ)”ll‘"U ¥
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (n > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =X*X7
if (n & 1) P:% // ng == // ning! = 00
r =71 % X 1f(n&1)IP’—% if m& N{P=7
n /= 2; r =Tk Xx; if ng 1) P=2
X = X * X; // g ==1 r=r*x;
3 1f(n&2)IP>:§ if n&2) P=2
r=r*1t; r=r % t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/ijno " :( )\_n/4j( )nlwng ¥

@ 25 % more comparisons for GUIDED than for UNROLLED
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (n > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =X*X7
if (n & 1) P:% // ng == // ning! = 00
r =71 % X 1f(n&1)IP’—% if m& N{P=7
n /= 2; r =Tk Xx; if ng 1) P=2
X = X * X; // g ==1 r=r*x;
3 1f(n&2)IP>:§ if n&2) P=2
r=r*1t; r=r % t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/ijno " :( )\_n/4j( )nlwng ¥

@ 25 % more comparisons for GUIDED than for UNROLLED
@ GUIDED exponential is 14% faster than the UNROLLED one;
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (n > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =X*X7
if (n & 1) P:% // ng == // ning! = 00
r =71 % X 1f(n&1)IP’—% if m& N{P=7
n /= 2; r =Tk Xx; if ng 1) P=2
X = X * X; // g ==1 r=r*x;
3 1f(n&2)IP>:§ if n&2) P=2
r=r*1t; r=r % t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/ijno " :( )\_n/4j( )nlwng ¥

@ 25 % more comparisons for GUIDED than for UNROLLED
@ GUIDED exponential is 14% faster than the UNROLLED one;

@ GUIDED exponential is 29% faster than the classical one;
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Introducing unnecessary tests to speed up

POW(x,1) UNROLLED(X,n) GUIDED(X,n)
r = 1; r =1; r = 1;
while (n > 0) { while (n > 0) { whlle (n>0) {
// n is odd t =x *x; =X*X7
if (n & 1) IP’:% /) ng == . // ning! = 00
r =71 % X if m& 1) P=3 if m& N{P=7
n /= 2; r =Tk Xx; if ng 1) P=2
X = X * X3 // ng==1 r=r1 % x;
} if (n&Q)P:% if (n&g)p:%
r=r*t; r=r*t;
x is a floating-point n /= 4; }
number, n is an integer X =1t *t; n /= 4;
and r is the result. 3 X =t * t;
" = (xZ)UL/ijno " :( )\_n/4j( )nlwng ¥

25 % more comparisons for GUIDED than for UNROLLED
GUIDED exponential is 14% faster than the UNROLLED one;

GUIDED exponential is 29% faster than the classical one;

yet, the number of multiplications is essentially the same.
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Guided Pow: average number of mispredictions

GUIDED(x,1n)

Theorem r=1;
while (n > 0) {

Compute x™, for random n in {0,..., N —1}. 3;71’]";!":; 00
o Expected nb. of conditionals: if (n & 3) {
~ logy N for classical and unrolled pow lfr(il f i)x;
. glogzN for the guided one ifr(r:1 f 3)1:‘
o Expected nb. of mispredictions: } ’
~ %log2 N for classical and unrolled pow ;‘ £=t4i .
~ (3p(3)+ 2u(2))logy N for guided pow } ’

<

Number of mispredictions (Ergodic Th.):

E[M,] ~ E[Ly,] x pu(p)

L,,: length of the path in the Markov chain,
2 and :U’(p) = Z(z,])e mispred WP(Z)MP(7’7J)
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Guided Pow: average number of mispredictions

GUIDED(x,1)

Theorem r=1;
while (n > 0) {

. t = ;
Compute x", for random n in {0,..., N —1}. Y ,:]‘”Z!X: 00
e Expected nb. of conditionals: ifén(& 832)1;[
~ logy N for classical and unrolled pow ' r Z r % x;
~ glogQN for the guided one if (n & 2)
= x t;
o Expected nb. of mispredictions: } o
~ %log2 N for classical and unrolled pow ;1 i=t4; .
~ 0.45logy N for guided pow (2-bit pred.) } ’
1/4 3/4 g .
3/4 3/4 3/4 @ 25 % more comparisons than unrolled
@ m @ @ unnecessary if : added mispred.
1/4 1/4 1/4 @ other ones : less mispred.

> 5 % less mispred. (2-bit predictor)
(&) — 3 and (2) =2 . . .
v 10 K3 5 > 11 % less mispred. (3-bit predictor)
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Binary Search

N. Auger, C. Nicaud, C. Pivoteau Good predictions are worth...



Unbalancing the binary search

/2 ' /2 BINARYSEARCH

cedecectaa
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Unbalancing the binary search

/2 ' /2 BINARYSEARCH

cedecectaa

" ' 3n4 DBIASEDBINARYSEARCH

cedeacetbha
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Unbalancing the binary search

" w2 BINARYSEARCH
3
L]
4 3n4 DBIASEDBINARYSEARCH
3
L]
wa : In/d SKEWSEARCH

partition
twice

n/4 n/2
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Unbalancing the binary search

Intel Core i7

— binary search
— biased binary search
— skew search

N
o
T

=
[e4]
T

Time (in nsec.)

16

LA

100000 200000 300000 400000 500000
Array size
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Analysis of the local predictor

Theorem

For arrays of size n filled with random uniform integers. Cy, is the
number of comparisons and M, the number of mispredictions.

BINARYSEARCH BIASEDBINARYSEARCH SKEWSEARCH
1 41 71
E[Cn] 1333 (41og 4cigsriog 3) (6 122 g)
1
E[M:] Gl 1(5)E[Cy] (F(3)+ 21(3))E[Ch]

L s the expected misprediction probability associated with the predictor.

Idea of the proof:

@ Get the expected number of times a given conditional is executed
by Roura’s Master Theorem [Rou01].

@ Ensure that our predictors behave almost like Markov chains.
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Analysis of the local predictor

For arrays of size n filled with random uniform integers. C,, is the

number of comparisons and M, the number of mispredictions.

BINARYSEARCH BIASEDBINARYSEARCH SKEWSEARCH
E[Ch] 1.44logn 1.78logn 1.68logn
E[M,)] 0.72logn 0.53logn 0.58logn

with a 2-bit saturated counter.

Idea of the proof:

@ Get the expected number of times a given conditional is executed
by Roura’s Master Theorem [Rou01].

@ Ensure that our predictors behave almost like Markov chains.
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Almost like Markov chains?

Expected number of iterations L(n) of BIASEDBINARYSEARCH:

L b b M| ery [0
L(n)—1+n+1L(an)—|—n+lL(bn),Wlthan—t4J+1,bn—{4—‘

and L(0) =0

But ;2 and fh are not fixed anymore...

The trick...
The probability that the path P taken by BIASEDBINARYSEARCH in
the decomposition tree differs from the one taken in the ideal tree at

one of the first length(P) — v/logn steps is O

logn)
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What about a global predictor?

Global predictor

1 d=0; f=n; — 0 —
2 while (d < £){ I,
3 ml = (3xd+f)/4; 0000. . .00 Wm
4 FF(Ti] o) f = m1; 0000...01| T~ Wm
5 else {
6 m2 = (d+f)/2; c()/‘*
1111...11 ‘./CDD
7 if (TMm2] > x){ -i “M
8 f = m2;
9 d = ml+1;
10 }
11 else d = m2+1;
12 }
13 }
14 return f;
0:%
voms{ e
nested
0:%, 1:%
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