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Boltzmann sampling

Carine Pivoteau

LIP6 – UPMC

based on work by P. Duchon, P. Flajolet, E. Fusy,
G. Louchard, C. Pivoteau and G. Schaeffer

colors to disconnect certain edges at their extremity, so as to leave a ternary
tree.

An irreducible triangulation of the 4-gon is rooted by choosing one of its 4 border
edges and orienting this edge with the infinite face on its right. This well known
operation eliminates symmetries of the triangulation.

Corollary 2. The closure induces a 4-to-(2n+2) correspondence between the set
An of rooted ternary trees with n inner nodes and the set Tn of rooted irreducible
triangulations of the 4-gon with n inner vertices. In other words, An×{1, . . . , 4}
is in bijection with Tn × {1, . . . , 2n + 2}.

As an enumerative consequence, |Tn| = 4
2n+2 |An| = 4(3n)!

(2n+2)!n! .

Proof. The proof follows easily from the bijection stated in Theorem 3 and from
the fact that a ternary tree with n inner nodes has 2n + 2 leaves and an object
of Tn has 4 edges (the 4 border edges) to carry the root.

4.2 Applications

Fig. 5. A triangulation with 200 vertices embedded with Algorithms Transversal-
Draw and CompactTransversalDraw.

The closure-bijection has several applications. A first one is a linear time
algorithm to perform uniform random sampling of objects of Tn, using the fact
that rooted ternary trees with n inner nodes can readily be uniformly sam-
pled using parenthesis words. A thorough study of such sampling algorithms is
given in [12]. In addition, sampled objects of Tn are naturally endowed, through
the closure, with their minimal transversal edge-partition. Hence, we can easily
run face-counting algorithms TransversalDraw and CompactTransver-
salDraw on the sampled objects. Performing simulations on objects of large
size (n ≈ 50000), it was observed by the author that the size of the grid is al-
ways approximately n

2 × n
2 with TransversalDraw and n

2 (1 − α) × n
2 (1 − α)

with CompactTransversalDraw, where α ≈ 0.18. It turns out that the size
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Random generation: different approaches

Fixed size random uniform generation:
Ad hoc methods

bijections, surjections, ...
A = φ(B) and ΓB(n) ⇒ random sampler ΓA(n)
an = f(an−1) ⇒ incremental algorithm ΓA(n)

rejection
A ⊂ B and ΓB(n) ⇒ random sampler ΓA(n)

Recursive method : counting + recursive process
Nijenhuis, Wilf, 1978
Flajolet, Zimmermann, Van Cutsem, 1994

preprocessing time (to compute g.f. coefficients): O(n2)
random generation time : O(n log n)

Approximate size random uniform generation:
Boltzmann sampling...

Carine Pivoteau Boltzmann sampling 3/28



Introduction
Boltzmann model
Effective samplers

Constructible classes [Flajolet, Sedgewick]

decomposable combinatorial structures
grammar : E , Z, +, ×, sequence, cycle, set (labelled or unlabelled)

Set(Seq(Z, # ≥ 1)) integer partitions unlabelled
PSet(Seq(Z, # ≥ 1)) integer partitions without repetition unlabelled(
S = Seq≥2(P + Z)

P = Set≥2(S + Z)
series-parallel graphs labelled

B = Z + B × B plane binary trees (un)labelled
T = Z × PSet(T )) general nonplane trees (un)labelled(
G = MSet(Cyc(T ))

T = Z ×MSet(T ))
functional graphs (un)labelled

size function
automatic generating functions
g.f. of a combinatorial class C: C(z) =

X
n≥0

cnzn Ĉ(z) =
X
n≥0

cn
zn

n!

where cn is the number of objects of C which have size n.

Carine Pivoteau Boltzmann sampling 4/28



Introduction
Boltzmann model
Effective samplers

Constructible classes – summary

specification ordinary g.f. exponential g.f.
(unlabelled) (labelled)

ε / atom 1 / Z 1 / x 1 / x

Union C = A ∪ B C(x) = A(x) + B(x) Ĉ(x) = A(x) + B(x)

Product C = A× B C(x) = A(x)×B(x) Ĉ(x) = A(x)×B(x)

Sequence C = Seq(A) C(x) = 1
1−A(x) Ĉ(x) = 1

1−A(x)

PowerSet C = PSet(A) exp

( ∞∑
k=1

(−1)k−1

k
A(xk)

)
Ĉ(x) = exp(A(x))

Multiset C = MSet(A) exp

( ∞∑
k=1

1
k

A(xk)

)
–

Cycle C = Cyc(A)
∞∑

k=1

ϕ(k)
k

log
1

1−A(xk)
Ĉ(x) = log 1

1−A(x)
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Basic constructions
Labelled sets ans cycles
Back to unlabelled

Boltzmann model
and

free samplers
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Basic constructions
Labelled sets ans cycles
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Boltzmann method

Random sampling under Boltzmann model
approximate size sampling,
size distribution spread over the whole combinatorial class,
but uniform for a sub-class of objects of the same size,
control parameter,
automatized sampling: the sampler is compiled from
specification automatically,
very large objects can be sampled.
→ large scale simulations
→ observation of random structures limit properties...

Boltzmann samplers for the random generation of combinatorial structures.
P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer. Combinatorics, Probability
and Computing, 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.

Boltzmann sampling of unlabelled structures. Ph. Flajolet, E. Fusy, C. Pivoteau.
Proceedings of ANALCO07, january 2007.
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Basic constructions
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Model definition

Definition
In the unlabelled case, Boltzmann model assigns to any object
c ∈ C the following probability:

Px(c) =
x|c|

C(x)

In the labelled case, this probability becomes:

Px(c) =
1

Ĉ(x)
x|c|

|c|!

A free Boltzmann sampler ΓC(x) for the class C is a process
that produces objects from C according to this model.

→ 2 objects of the same size will be drawn with the same probability.
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Basic constructions
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Back to unlabelled

Unlabelled unions, products, sequences

Suppose ΓA(x) and ΓB(x) are given:

Disjoint unions
Boltzmann sampler ΓC for C = A ∪ B:
With probability A(x)

C(x) do ΓA(x) else do ΓB(x) → Bernoulli.

Products
Boltzmann sampler ΓC for C = A× B:
Generate a pair 〈 ΓA(x) , ΓB(x) 〉 → independent calls.

Sequences

Boltzmann sampler ΓC for C = Seq(A):
Generate k according to a geometric law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉 → independent calls.

Remark: A(x), B(x) and C(x) are given by an oracle.

Carine Pivoteau Boltzmann sampling 8/28



Introduction
Boltzmann model
Effective samplers

Basic constructions
Labelled sets ans cycles
Back to unlabelled

Binary trees

B = Z + B × B

B(z) = z + B(z)2 =
1−
√

1− 4z

2

Algorithm: ΓB(x)

b← Bern(x/B(x));
if b = 1 then

Return �
else

Return 〈 ΓB(x) , ΓB(x) 〉 ;
end if
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Basic constructions
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Examples of specifications with {∪,×,Seq}
Regular specifications (non recursive).

integer compositions, permutations,...
polyominos that have rational g.f.: column-convex,

regular languages,

Context-free specifications.
any algebraic language,
tree-like structures

k-ary, 2–3–4 trees, ...,
triangulations,
noncrossing graphs,
general planar rooted trees,
...
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Back to unlabelled

Labelled classes

Same algorithms, with exponential generating functions

construction sampler

C = ∅ or Z ΓC(x) := ε or atom

C = A+ B ΓC(x) := Bern Â(x)

Ĉ(x)
−→ ΓA(x) | ΓB(x)

C = A× B ΓC(x) := 〈 ΓA(x) ; ΓB(x) 〉

C = Seq(A) ΓC(x) := Geom Â(x) =⇒ ΓA(x)

Put the labels at the end !
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Labelled sets and cycles

Sets
Boltzmann sampler ΓC for C = PSet(A):
Generate k according to a Poisson law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉

Poisson law: P(X = k) = e−λ λk

k!

Cycles

Boltzmann sampler ΓC for C = Cyc(A):
Generate k according to a logarithmic law of parameter A(x)
Generate a k-tuple 〈 ΓA(x) , . . . , ΓA(x) 〉

Logarithmic law: P(X = k) =
1

log(1− λ)−1

λk

k

Remark: the laws are given by simple sequential algorithms
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Examples of possible labelled classes

permutations, derangements, involutions,
surjections,
set partitions,
necklaces,
labelled (planar) trees,
functional graphs,
...

II. 5. LABELLED TREES, MAPPINGS, AND GRAPHS 125
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Figure II.12. A functional graph of size n = 26 associated to the mapping ϕ such
that ϕ(1) = 16, ϕ(2) = ϕ(3) = 11, ϕ(4) = 23, and so on.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z + SET2(M) !⇒ M(z) = 1−
√
1− 2z and Mn = 1 · 3 · · · (2n − 3),

where the counting numbers are now, surprisingly perhaps, the odd factorials. !

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or

“functions”) from [1 . . n] to itself. A mapping f ∈ [1 . . n] &→ [1 . . n] can be repre-
sented by a directed graph over the set of vertices [1 . . n] with an edge connecting x
to f (x), for all x ∈ [1 . . n]. The graphs so obtained are called functional graphs and
they have the characteristic property that the outdegree of each vertex is exactly equal

to 1.

Mappings and associated graphs. Given a mapping (or function) f , upon start-

ing from any point x0, the succession of (directed) edges in the graph traverses the

vertices corresponding to iterated values of the mapping,

x0, f (x0), f ( f (x0)), . . . .

Since the domain is finite, each such sequence must eventually loop back on itself.

When the operation is repeated, starting each time from an element not previously hit,

the vertices group themselves into components. This leads to a valuable characteriza-

tion of functional graphs (Figure II.12): a functional graph is a set of connected func-

tional graphs; a connected functional graph is a collection of rooted trees arranged

in a cycle. (This decomposition is seen to extend the decomposition of permutations

into cycles, p. 116.)

Thus, with T being as before the class of all Cayley trees, and with K the class of
all connected functional graphs, we have the specification:

(47)






F = SET(K)

K = CYC(T )

T = Z " SET(T )

!⇒






F(z) = eK (z)

K (z) = log
1

1− T (z)

T (z) = zeT (z).
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To begin: MSet2 (repetitions allowed)

MSet2(A) ∼= unordered set of two objects of A

C = MSet2(A)

C(z) =
1
2
A2(z) +

1
2
A(z2)  

1
k
A(zk)

Algorithm: ΓC(x)

if Bern
(

1
2

A2(x)
C(x)

)
= 1 then

Return 〈 ΓA(x),ΓA(x) 〉
else

a← ΓA(x2);
Return 〈a, a〉;

end if

Unlabelled binary trees

B = Z + MSet2(B)

(Otter tree)
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MSet: the general case (repetitions allowed)

M = MSet(A) ∼=
∏
γ∈A

Seq(γ) ⇒ M(z) =
∏
γ∈A

(1− z|γ|)−1

M(z) = exp

( ∞∑
k=1

1
k

A(zk)

)
=

∞∏
k=1

exp
(

1
k

A(zk)
)

size=3

size=4

size=2

size=1
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MSet (repetitions allowed)

Algorithm ΓMSet[A](x)

Draw k, the max. index of a subset, depending on x;
For each index i of a subset until k − 1

Draw the number p of elements to sample, according to a
Poisson law of parameter 1

i A(xi).
Call ΓA(xi) p times, and each time, add i copies of the
result to the multiset.

for index k, draw the number p of elements to generate,
according to a non zero Poisson law.

index k is drawn according to the probability distribution:

Pr(K ≤ k) =
Y
j≤k

exp

„
1

j
A(xj)

«
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Cayley trees

T = Z ×MSet(T )
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From MSet to PSet (no repetitions)

Principle : Use the following non ambiguous decomposition:

MSet(A) = PSet(A)×MSet(A(2))

The algo. ΓPSet[A](x) to sample a powerset of objects of A is:

Sample a multiset with ΓMSet[A](x),

Extract the corresponding powerset :
by removing objects with even multiplicity,
and keeping only one occurrence of objects with odd
multiplicity.
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Trees without twins

T = Z ×PSet(T )
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Cycles

C = Cyc(A) ⇒ C(z) =
∑
k≥1

ϕ(k)
k

log
1

1−A(zk)

ΓCyc[A](x)

Draw the replication order k of the cycle.
Draw the length j of the pattern according to a logarithmic
law of parameter A(xk).
Draw the pattern m, calling ΓA(xk) j times.
Return a cycle composed of k copies of m.
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Cyclic compositions

C = Cyc(Z × Seq(Z))

C(z) =
∞∑

k=1

ϕ(k)
k

log
1

1− zk

1−zk
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Mappings (functional graphs)

G = Set(C), C = Cyc(T ), T = Z ×MSet(T )
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Series-parallel circuits (cardinality constraints)

C = P + S + Z
S = Seq≥2(P + Z)
P = MSet≥2(S + Z)

P

S

P

S S
P

S
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Theorem (Free Boltzmann samplers [DuFlLo04,FlFuPi07])

For any class C specified (poss. recursively) using the following
labelled/unlabelled constructions:

ε, Z, +, ×, Seq, Seqk, MSet, MSetk, Cyc, Cyck,

and the labelled PSet, the free Boltzmann sampler ΓC(x)
operates in linear time in the size of the object produced.

PSet: not so bad!
if ρ < 1 then the overhead (total size of the discarded elements) is bounded

by a constant.

oracle complexity is not involved,
size is not controlled (yet).
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Effective samplers
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Size control – parameter tuning

Free samplers: produce objects with randomly varying sizes!
Approximate and exact size samplers: use rejection.
Tuned samplers: choose x so that expected size is n.

Ex(N) = x
C ′(x)
C(x)

or x
Ĉ ′(x)
Ĉ(x)

Size distribution determines the cost of rejection.

x=0.2

x=0.25

x=0.3

x=0.35

x=0.4

Bumpy

x=0.38

x=0.48

x=0.58

x=0.68

Flat x=0.05 Peaked

x=0.25

x=0.15
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Oracle [Pivoteau, Salvy, Soria 2008]

Numerical Newton iteration (step by step computation).

Binary plane trees: B(x) = x + xY 2(x), e.g. x = 0.48,

Yk+1 = Yk + 1
1−0.96Yk

(0.48 + 0.48Y 2
k − Yk)

Y0 = 0
Y1 = 0.48
Y2 = 0.68510385756676557863501483679525 . . .
Y3 = 0.74409429531735785069315411659589 . . .
Y4 = 0.74994139686483588184679391778624 . . .
Y5 = 0.74999999411376420459420080511077 . . .
Y4 = 0.74999999999999994060382090306852 . . .
Y5 = 0.74999999999999999999999999999997 . . .

asymptotically quadratic convergence.
Proof based on Newton iteration on combinatorial structures.
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Conclusion
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Existing applications and related work

BaNi06 Accessible and deterministic automata: enumeration and Boltzmann
samplers, by F. Bassino C. Nicaud. In Fourth Colloquium on
Mathematics and Computer Science.

BoFuPi06 Random sampling of plane partitions, by O. Bodini, E. Fusy, and C.
Pivoteau. In GASCOM-2006.

BoJa08 Boltzmann samplers for colored combinatorial objects, by O. Bodini and
A. Jacquot. In GASCOM-2008.

DaSo07 Degree distribution of random Apollonian network structures and
Boltzmann sampling, by A. Darrasse and M. Soria. In International
Conference on Analysis of Algorithms, 2007, DIMACS.

Fusy05 Quadratic exact-size and linear approximate-size random sampling of
planar graphs, by E. Fusy. In International Conference on Analysis of
Algorithms, 2005, DMTCS Conference Volume AD (2005), pp. 125-138.

PaWe07 Properties of Random Graphs via Boltzmann Samplers, by K.
Panagiotou and A. Weißl. In International Conference on Analysis of
Algorithms, 2007, DIMACS.

Ponty06 Modélisation de séquences génomiques structurées, génération aléatoire
et application, by Yann Ponty, PhD Thesis, Université Paris-Sud, 2006.

...
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Coming soon...?

other constructions: box operator, shuffle, ...
multivariate Boltzmann samplers,
oracle and automatic singularities,
discrete samplers,
specialized samplers,
new applications,
...
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