Average Analysis of Glushkov Automata under a BST-Like Model

C. Nicaud, C. Pivoteau, B. Razet

FSTTCS, December 2010
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?

5. Why is this question interesting?
Introduction

What is the average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?
5. Why is this question interesting?
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?
5. Why is this question interesting?
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?
5. Why is this question interesting?
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?

5. Why is this question interesting?
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?

Why is this question interesting?
Introduction

What is the...

average number of transitions in large Glushkov automata?

1. What is a Glushkov automata?
2. What does mean average number of transitions?
3. What is the shape of a large random regular expression?
4. What is the appropriate probabilistic distribution on regular expressions?

Why is this question interesting?
Motivations

Why are we interested in ...

- **... the number of transitions in Glushkov automata?**
 - bounds on time and space complexity of the algorithm compiling the Glushkov automaton
 - to compare different algorithms compiling regular expressions into automata

- **... average analysis?**
 - average analysis of algorithms
 - to give more relevant information on practical running times of algorithms (in comparison with worst case analysis)

- **... the BST-like model?**
 - easy random sampling
 - often used in practice
 - better modeling of regular expressions
 - e.g. the number of nested stars in expressions
Random regular expressions
Random unary-binary trees: the BST-like model

Size: number of \square-nodes.

BST-like distribution of probabilities over unary-binary trees:

\[
\begin{cases}
\mathbb{P}(\square) &= \mathbb{P}\left(\begin{array}{c}
\square
\end{array}\right) = 1 \\
\mathbb{P}\left(\begin{array}{c}
\square \\
T
\end{array}\right) &= q \cdot \mathbb{P}(T) \\
\mathbb{P}\left(\begin{array}{c}
\square \\
T_1 \cap T_2
\end{array}\right) &= (1 - q) \cdot \frac{1}{n-2} \cdot \mathbb{P}(T_1) \cdot \mathbb{P}(T_2) \text{ if } |T_1| + |T_2| + 1 = n
\end{cases}
\]
The BST-like distribution is not uniform

\[T_1 = \quad T_2 = \]

\[
\begin{align*}
\text{Uniform: } & \Pr(T_1) = \Pr(T_2) \\
\text{BST-like: } & \frac{(1 - q)^2}{3} \neq \frac{1 - q}{3} \rightarrow \text{No solution!}
\end{align*}
\]

Uniform random unary-binary tree (1021 nodes) \(\triangleright \)
\(\sim \) height: \(\Theta(\sqrt{n}) \) [Flajolet, Odlyzko 82]

\(\triangledown \) BST-like random unary-binary tree (1000 nodes)
\(\sim \) height: \(\Theta(\log n) \) [Robson79, Devroye86, Drmota01]
Random regular expressions

Proba. of a random size \(n \) reg. exp. in the BST-like model:

\[
P(T^*) = P(T) \quad \text{if } n = 2
\]
\[
P(T^*) = q \cdot P(T) \quad \text{if } n > 2
\]
\[
P(T_1 \cup T_2) = P(T_1 \circ T_2) = \frac{1}{2} \frac{1-q}{n-2} P(T_1)P(T_2) \quad \text{if } |T_1| + |T_2| + 1 = n
\]

When \(n=1 \) (for the leaves): \(P(\varepsilon) = p_\varepsilon \) and \(\sum_{a \in A} P(a) = 1 - p_\varepsilon \).

\[
\text{RE}(n) \quad \text{--- Random Sampler ----}
\]
\[
\text{if } n=1 \text{ then return } \varepsilon \text{ with proba } p_\varepsilon \text{ or a letter } \ell \text{ with proba } P(\ell)
\]
\[
\text{if } n=2 \text{ then return } (\text{RE}(1))^*
\]
\[
\text{else, choose "unary" with proba } q \text{ or "binary" with proba } 1-q
\]
\[
\text{if "unary" then return } (\text{RE}(n-1))^*
\]
\[
\text{else choose } k \text{ uniformly at random between } 1 \text{ and } n-2
\]
\[
\text{return } \text{RE}(k) \cup \text{RE}(n-k-1) \text{ with proba } 1/2
\]
\[
\text{or return } \text{RE}(k) \circ \text{RE}(n-k-1) \text{ with proba } 1/2
\]
\[
\text{---}
\]
Glushkov Automaton
Glushkov Automaton

Glushkov (1961); McNaughton and Yamada (1960); Berry and Sethi (1986).

\[T = b^* \cdot (a \cup b \cdot b)^* \quad \xrightarrow{\text{Relabeling}} \quad \tilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^* \]

First \((T) \) = \{ \(\alpha_j \mid \text{a word of } L(\tilde{T}) \text{ begins with } \alpha_j \} \]

Last \((T) \) = \{ \(\alpha_j \mid \text{a word of } L(\tilde{T}) \text{ ends with } \alpha_j \} \]

Follow \((T, \alpha) \) = \{ \(\beta_j \mid \beta_j \text{ can follow } \alpha \text{ in a word of } L(\tilde{T}) \} \]
Glushkov Automaton for $\widetilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$
Glushkov Automaton for $\widetilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$

First $(T) = \{b_1, a_2, b_3\}$
Glushkov Automaton for $\widetilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$

Follow$(T, b_1) = \{b_1, a_2, b_3\}$
Glushkov Automaton for $\tilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$

Follow(T, a_2) = \{a_2, b_3\}
Glushkov Automaton for $\tilde{T} = b_1^* \bullet (a_2 \cup b_3 \bullet b_4)^*$

Follow $(T, b_3) = \{b_4\}$

![Diagram of Glushkov Automaton](image-url)
Glushkov Automaton for $\widetilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$

$\text{Follow}(T, b_4) = \{a_2, b_3\}$
Glushkov Automaton for $\tilde{T} = b_1^* \cdot (a_2 \cup b_3 \cdot b_4)^*$

Last (T) = \{b_1, a_2, b_4\}
Average analysis
Average number of transitions

Theorem

In the **BST-like model**, the **average number of transitions** in the Glushkov automaton of a size n regular expression is quadratic, i.e., in $\Theta(n^2)$.

Rmk: in the worst case, the number of transitions is also quadratic.

Recall that:

Theorem (Nicaud 09)

*The average number of transitions of the Glushkov automaton associated to a regular expression of size n, for the uniform distribution, is in $\Theta(n)$.***
Sketch of proof

The (non initial) transitions in the Glushkov Automaton of T:

\[
\begin{align*}
\text{Edges}(\varepsilon) &= \text{Edges}(a) = 0 \\
\text{Edges}(T^*) &= \text{Edges}(T) \cup \text{Last}(T) \times \text{First}(T) \\
\text{Edges}(T_1 \cup T_2) &= \text{Edges}(T_1) \cup \text{Edges}(T_2) \\
\text{Edges}(T_1 \cdot T_2) &= \text{Edges}(T_1) \cup \text{Edges}(T_2) \cup \text{Last}(T_1) \times \text{First}(T_2)
\end{align*}
\]

- The number of new transitions produced by $T_1 \cdot T_2$ is $|\text{Last}(T_1)| \cdot |\text{First}(T_2)|$

- The average size of First (or Last) is linear.

\triangleright There is a non zero probability that a size n expression leads to an automaton with at least βn^2 transitions, $\beta > 0$.

\triangleright By Markov inequality: $\mathbb{E}[X] \geq a \cdot \mathbb{P}(X \geq a)$, the average number of transitions is in $\Omega(n^2)$.
Analytic Combinatorics

- Study of the **asymptotic behavior of counting sequences** of the form: \((a_n)_{n \in \mathbb{N}}\)
- Use its **generating function** \(A(z)\), the formal power series defined by

 \[
 A(z) = \sum_{n \in \mathbb{N}} a_n z^n.
 \]
- **Recursive descriptions** of sequences can **automatically** be translated into (differential) equations on generating functions.
- Many powerful results of Analytic Combinatorics to compute asymptotic estimates for the coefficients (the \(a_n\)'s).
The average size of First is linear

Theorem

The average size of First for a size n regular expression, according to the BST-like model, is asymptotically equivalent to Kn, for some real constant $K \in]0, 1[$.

\[
\begin{align*}
\text{First} \left(\begin{array}{c} \bullet \\ T_1 & T_2 \end{array} \right) &= \text{First}(T_1) \cup \text{First}(T_2) \quad \forall T_1, T_2 \in T, \varepsilon \in L(T_1) \\
\text{First} \left(\begin{array}{c} \bullet \\ T_1 & T_2 \end{array} \right) &= \text{First}(T_1) \quad \forall T_1, T_2 \in T, \varepsilon \notin L(T_1).
\end{align*}
\]

f_n : average size of First(T) when $|T| = n$.
$f_1 = f_2 = 1 - p_\varepsilon$

\[
f_{n+2} = qf_{n+1} + \frac{2(1 - q)}{n} \sum_{\ell=1}^{n} f_\ell - \frac{1 - q}{2n} \sum_{\ell=1}^{n} r_\ell f_{n+1-\ell}, \quad n \geq 1.
\]

▶ differential equation for $F(z)$ ▶ asymptotic estimate of f_n.
The size of First (and Last) is highly related to the probability of recognizing the empty word.

Theorem

A large random regular expression recognizes the empty word with high probability. More precisely, in the BST-like model, the probability that a size n regular expression does not recognize ε is asymptotically equivalent to

$$r_n \sim \frac{C}{n^q}$$

with $C = \frac{(1-p_\varepsilon)}{e^{1-q} \Gamma(1-q)} \left(1 - \int_0^1 \frac{e^{(1-q)t}(1-t)^{1-q-1}}{t^2} \, dt \right)$.

r_n : the probability that a size n regular expression does not recognize ε ($r_0 = 0$)
When does a regular expression recognize the empty word?

The sequence \((r_n)_{n \in \mathbb{N}}\) satisfies \(r_1 = 1 - p_\varepsilon, r_2 = 0\) and

\[
r_{n+2} = \frac{1 - q}{n} \sum_{\ell=1}^{n} r_\ell, \quad n \geq 1.
\]

▷ differential equation for \(R(z) = \sum_{n \in \mathbb{N}} r_n z^n\);
▷ asymptotic equivalent for \(r_n\).
Experiments

- x-axis: size of expressions defined on the alphabet \{a, b\}
- y-axis: number of transitions of Glushkov automata
- parameters: $q = \frac{1}{3}$, $p_\varepsilon = \frac{1}{100}$ and $P(a) = P(b)$
Perspectives

- Study of regular expressions where the Kleene Star operator \ast has been replaced by a $+$ operator: prove the linear behavior empirically observed (work in progress).

- Consider average analysis of other constructions related to Glushkov automata, such as:
 - the Follow automaton by Ilie and Yu,
 - Antimirov automaton.