
Outilex platform - user guide

Olivier Blanc and Matthieu Constant

Jan. 29, 2006

2

Contents

1 Introduction 1

2 Getting started 3
2.1 System Requirements . 3
2.2 Outilex directory . 3
2.3 Installation procedure . 4
2.4 Launch Outilex . 4

2.4.1 Starting command . 4
2.4.2 UI general description 5
2.4.3 Projects . 5

3 Dictionaries 7
3.1 DELA format . 7
3.2 XML format . 8

3.2.1 Description . 8
3.2.2 Lingdef . 9

3.3 Operations . 10
3.3.1 Editing a dictionary 10
3.3.2 Converting DELA in XML 10
3.3.3 Indexing dictionaries 11
3.3.4 Add selected dictionary to project 11

4 Grammars 13
4.1 A simple graph . 13
4.2 Subgraphs . 13
4.3 Ouputs and weights . 13
4.4 Normalization graphs . 14
4.5 Decoration graphs . 14

5 Text FSA 17

i

ii CONTENTS

6 Text processing 19
6.1 Text segmentation . 19
6.2 Dictionary application . 20
6.3 Normalize text automaton . 20
6.4 Grammar application . 20
6.5 Locate pattern . 20

7 C++ Programs 21
7.1 apply-dic . 21
7.2 concordancer . 21
7.3 decore-fsa . 22
7.4 dela-index . 22
7.5 delaf2xml.sh . 22
7.6 dic-index . 23
7.7 make-concord-html . 23
7.8 make-wrtn . 23
7.9 tfsa2dot . 23
7.10 tokenization . 24
7.11 transduct-fsa . 24
7.12 wrtn-flatten . 24
7.13 wrtn-txt-transduct . 24

8 API library 27

Chapter 1

Introduction

Outilex is a 4-year-research project funded by the French Industry Ministery.
It gathers 4 academic institutions and 6 industrial organizations:

• Institut Gaspard Monge (IGM), Universite de Marne-la-Vallee (coor-
dinator)

• Thales R&D

• Systran

• Lingway

• Thales Com

• LORIA

• Laboratoire d’Informatique de Paris 6 (LIP6)

• Universite de Rouen

• Centre de l’Energie Atomique (CEA)

• Langage Communication Information (LCI)

Started in October 2002, this project aims at developing a platform devoted
to Natural Language Processing.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Getting started

2.1 System Requirements

To compile the C++ programs, you need

• tool jam (de chez Perforcce)

• library C++ Boost (www.boost.org)

• library libxml (standard library)

• library ICU from IBM

To compile the Systran C++ tokenization module, you need an old ver-
sion of flex 2.5.4 (package flex-old). Newer versions do not work.

To run the User Interface, you need the Java Run time Environment
(1.5).

To vizualize text automata generated by the programs, you need to in-
stall AT&T Graphviz programs (especially, the program dot).

2.2 Outilex directory

Outilex directory includes the following files and directories:

• file README.txt (to get started)

• file install-outilex (script to compile and install C++ programs)

• file outilexUI.jar (to run user interface)

• file clean-outilex (scipt to clean compiled programs)

3

4 CHAPTER 2. GETTING STARTED

• directory bin (C++ compiled programs)

• directory data (some linguistic data provided with the platform)

• directory docs (documentation)

• directory lingdef (linguistic definitions of the set of tags used in dic-
tionaries and graphs)

This directory also contains a log file (outilex.log) that includes all
commands that have been launched from the interface. This can help users
getting used with the syntax of the commands of the different programs.

2.3 Installation procedure

To install Outilex platform, you need to follow the steps described below:

• Go to Outilex directory;

• Run compilation by typing:

./install-outilex

Warning: You might have to change some environment parameters
depending on you local system.

• Set LINGDEF environment variable by typing:

LINGDEF=${OUTILEX_HOME}/lingdef/french/lingdef.xml
export LINGDEF

with ${OUTILEX_HOME} the path of Outilex directory

To avoid doing this operation everytime you want to run Outilex-
platform, you should put these commands in your .bashrc file.

Note: this operation is temporary and should be removed in the next
versions of the Outilex platform.

2.4 Launch Outilex

2.4.1 Starting command

Outilex platform User Interface (UI) can be launched by typing:
java -jar outilexUI.jar

2.4. LAUNCH OUTILEX 5

2.4.2 UI general description

The UI is composed of:

• a menu (on top), (Tool bar, coming soon...)

• a process/resource panel (on the left): to create personal processing
chain with available linguistic resources,

• a content panel (on the right): to display linguistic resources and
processing results

Important note:
Many functionalities can be run via popup menus (right-click on the

mouse). Double-clicking on a resource (in the left panel), makes it display
on the rightpanel.

2.4.3 Projects

Outilex platform works with a system of project. Each project is composed
of a set of resources (texts, dictionaries and grammars). The Menu Project
allows users to create, open and save projects. A project is associated with
one language. This language selects a linguistic definition file. Presently,
language is forced to ”French”. For example, if ’french’ is the project lan-
guage, the set of linguistic tags that will be used in the processings is defined
in the file lingdef/french/lingdef.xml.

6 CHAPTER 2. GETTING STARTED

Chapter 3

Dictionaries

Dictionaries are sets of lexical entries associated with morphological, syn-
tactic and semantic information. Lexical entries are either simple words or
multiword units. Outilex platform allows users to edit their own dictionaries.
There are several formats:

• an editable textual format: DELA format encoded in UTF-8 (exten-
sion .dic)

• an exchange format in XML (extension .dic.xml.gz)

• a binary format used by programs (extension .idx)

The different operations on dictionaries are gathered in the Dictionary
menu of the platform.

3.1 DELA format

The DELA format has been defined in [?, ?].

Syntax of an entry

An entry is defined on a single line as it is shown in the following examples:

car,.N+Conc:s/this is an example
eats,eat.V:P3s
Tony Blair,.N+Npr+Hum:ms
sincerely,.ADV

7

8 CHAPTER 3. DICTIONARIES

• The first element is the inflected form and is obligatory (car and
eats).

• The second element (between symbols ’,’ and ’.’) is the lemma and is
optional (e.g. eat). If it is not present, the lemma is considered to be
the same as the inflected form (e.g. car).

• The third element is the part-of-speech and is obligatory (e.g. ADV
for adverb, N for noun).

• The elements following symbol ’+’ are syntactic and semantic infor-
mation and are optional (e.g. Conc for concrete, Npr for proper name,
Hum for human).

• The character sequence following symbol ’:’ is a set of morphological
information and are optional; each character stands for a piece of in-
formation (e.g. P3s stands for present [P] at the third person [3] of
singular [s]).

• The sequence following symbol ’/’ is an optional comment (e.g. this
is an example).

The tagset is free, as long as the writer follows the syntax defined above.
This editable dictionaries are encoded in UTF-8 and their file extension is
.dic.

3.2 XML format

3.2.1 Description

Outilex uses an UTF-8 XML exchange format (file extension .dic.xml).
Tagset is defined in the lingdef (cf. section 3.2.2. All tags used must be
defined in the lindef file.

Hereby is an example of an entry :

<entry>
<lemma>abaissable</lemma>
<pos name=’adj’/>
<inflected>
<form>abaissable</form>
<feat name=’gender’ value=’masculine’/>
<feat name=’number’ value=’singular’/>

3.2. XML FORMAT 9

</inflected>
<inflected>

<form>abaissable</form>
<feat name=’gender’ value=’feminine’/>
<feat name=’number’ value=’singular’/>

</inflected>
<inflected>

<form>abaissables</form>
<feat name=’gender’ value=’masculine’/>
<feat name=’number’ value=’plural’/>

</inflected>
<inflected>

<form>abaissables</form>
<feat name=’gender’ value=’feminine’/>
<feat name=’number’ value=’plural’/>

</inflected>
</entry>

To avoid memory space feeding, XML dictionaries are compressed and
their file extension is .dic.xml.gz.

3.2.2 Lingdef

The Lingdef file defines the tagset that can be used in Outilex XML dic-
tionaries. It is also encoded in XML. This file is located in the directory
<language> (e.g. french) of the directory lingdef.

Hereby is an example of the definition of the tagset used for nouns:

<!-- nouns -->

<attrtype name=’nounsubcat’ type=’enum’>
<value name=’pred’ alias=’Pred’/>
<value name=’conc’ alias=’Conc,concret’/>
<value name=’abst’ alias=’Abst,abstract,abs’/>
<value name=’hum’ alias=’Hum,human’/>
<value name=’anl’ alias=’Anl,animal’/>
<value name=’tps’ alias=’Tps,temporal’/>
<value name=’top’ alias=’Top,toponym’/>
<value name=’unit’ alias=’Unit’/>
<value name=’num’ alias=’Nnum,numeral’/>
<value name=’dnom’ alias=’Dnom,detnom’/>

10 CHAPTER 3. DICTIONARIES

</attrtype>

<attrtype name=’collective’ type=’bool’>
<true alias=’Coll’/>

</attrtype>

<attrtype name=’proper’ type=’bool’>
<true alias=’pr,Pr,Prenom’/>

</attrtype>

<pos name=’noun’ cutename=’N’>
<attribute name=’subcat’ type=’nounsubcat’ shortcut=’yes’/>
<attribute name=’gender’ type=’gender’ shortcut=’yes’/>
<attribute name=’number’ type=’number’ shortcut=’yes’/>
<attribute name=’proper’ type=’proper’ default=’false’ shortcut=’yes’/>
<attribute name=’coll’ type=’collective’ shortcut=’yes’/>

</pos>

3.3 Operations

3.3.1 Editing a dictionary

For editing a new or existing dictionary, you need to click on items new or
open in the menu Dictionary. Then a text editor containing the dictionary
will appear in the content part of the UI. After having edited the dictio-
nary, you can save it by clicking on save or save as in the same menu.
Dictionaries are saved in UTF-8.

3.3.2 Converting DELA in XML

Converting a DELA dictionary into an XML one requires the definition of
the file delaf-corresp that defines the correpondance between tags used
in the DELA dictionary and tags used in the XML dictionary. This file is
located in the directory <language> (e.g. french) of the directory lingdef.

Below is a sample of this file:

POS A adj
POS ADV adverb
POS DET det
POS N noun
POS PREP prep

3.3. OPERATIONS 11

POS PREPADJ prepadj
POS PREPDET prepdet
POS PREPPRO preppro
POS PRO pronoun
POS V verb

flex f PREPDET,DET,PRO,A,N,V form gender e feminine
flex m PREPDET,DET,PRO,A,N,V form gender e masculine
flex p PREPDET,DET,PRO,A,N,V form number e plural
flex s PREPDET,DET,PRO,A,N,V form number e singular

flex 1 PRO,V form person e 1
flex 2 PRO,V form person e 2
flex 3 PRO,V form person e 3

....

For converting a DELA dictionary into an XML dictionary, you need
to click on item Transcode/DELA -> XML in the menu Dictionary. The
selected DELA dictionary will then be converted in a compressed XML
format and be displayed in the content part of the UI. (Program used:
delaf2xml.sh, cf. section 7.5).

3.3.3 Indexing dictionaries

To be used in the Outilex text processes, the dictionaries must be indexed
into binary files that represent the dictionaries in the form of minimized
finite-state transducers. These files have the extension .idx.

To do so, you need to click on item indexing in the menu Dictionary.
The C++ program that is launched is either dic-index for compressed
XML dictionaries (cf. section 7.6) or dela-index for DELA dictionaries
(cf. section 7.4).

This process through the interface will produce a file <name>.idx if input
dictionaries are named <name>.dic or <name>.dic.xml.gz.

3.3.4 Add selected dictionary to project

You can add the selected dictionary to your current project by clicking on
item Add to project in the menu Dictionary, ONLY IF IT HAS AL-
READY BEEN INDEXED.

12 CHAPTER 3. DICTIONARIES

Chapter 4

Grammars

Grammars used in Outilex are equivalent to Recursive Transition Networks
[?]. They are in the form of graphs. Their symbols used can be lexical
values, lexical masks or call to sub-graphs. They can also contain outputs
and weights. Outilex platform includes a graph editor developed from Unitex
sources [?].

Temporary, for more details on graph edition, see the Unitex
manual (file manuelunitex.pdf)

4.1 A simple graph

4.2 Subgraphs

4.3 Ouputs and weights

If you want to associate an output with a box (input), you need to use the
output text field. As in the input, symbol ’+’ can play the role of a ”line
breaker”. Weights can also be added with the following syntax in the the
output text field:

<output>/<weight>

where <output> is a string defining the output associated with an input,
<input> is a positive real number. For instance,

Noun/3.0

The weight of a path of a graph is the sum of all its weights. By default,
if the weight of an input label is missing, its value is 0.

13

14 CHAPTER 4. GRAMMARS

For instance, the graph in figure 4.1 recognizes sequences noun-adj. But
when a compound noun (noun+comp) is also recognized on the same sequence
of text, a priority is given to this last analysis because it is assigned a weight
of 1 (0 for the other).

Figure 4.1: Use of weights

4.4 Normalization graphs

A normalization graph is a graph such that when applied to a text-automaton
it normalizes some sequences like de as shown in the following example:

4.5 Decoration graphs

A decoration graph is a graph such that when applied to a text automaton,
new transitions corresponding to new analyses are added to the initial text
automaton.

Below are two examples:
These graphs have a special format. Linguistic entities that have to be

analysed must be delimited in the graph by square brackets in the output
like in the graphs shown above. The part-of-speech (e.g. N for ”noun” in
figure 4.3, CV for ”verbal complex” in figure 4.4 PPV for ”preverbal pronoun”
in figure 4.4) to be assigned to these entities must be put just after the
opening square brackets. Attributes to this part-of-speech can also be added
by adding outputs with the following syntax +<attribute> (e.g. +Npr

4.5. DECORATION GRAPHS 15

Figure 4.2: Normalization graph

means ”proper name” in figure 4.3). For instance, the graph in figure 4.3
recognizes named entities which are tagged N+Npr.

A complex entity can inherit from attributes from its elements (e.g.
lemma, mode, gender, and so on.). This can be indicated in the decora-
tion graph as an output with the following syntax +^<attribute>. Such
an example is shown in figure 4.4: when recognized in a text, the pattern
<avoir.verb> <verb+ppast>1 is analysed as a CV (verbal complex) whose
mode is the mode of avoir and whose lemma is the one of the verb at the
past participle. For instance, the sequence a lu would be analysed as a CV
whose mode is ind (for indicative) and whose lemma is lire.

1the verb avoir followed by a verb at the past participle

16 CHAPTER 4. GRAMMARS

Figure 4.3: Recognition of named entities

Figure 4.4: Recognition of verbal complexes

Chapter 5

Text FSA

The Text FSA is used to represent text ambiguity. For each sentence, there
is an automaton that represents its possible analyses. Grammar application
programs all use it as input.

17

18 CHAPTER 5. TEXT FSA

Chapter 6

Text processing

Outilex platform allows users to process texts using linguistic resources such
as dictionaries and grammars. The left part of the UI permits to create your
own desired chain.

Processing a text is:

• segment text in tokens and sentences (check box segmentation),

• applying dictionaries on segmented text and obtaining a text automa-
ton representing the possible analyses for each sentence (check box
apply dictionaries),

• normalizing text-fsa by applying normalization graphs (check box normalize).

• apply a cascadus of grammars in the form of graphs on the text au-
tomaton, resulting to a new text automaton (check box apply graph
cascadus),

• applying a grammar to the text automaton to obtain a concordance or
a modified text (e.g. an annotated text) (check box locate pattern).

6.1 Text segmentation

The text segmentation process creates a directory associated to the text
(<text>.dir) and outputs a segmented text <text>.segmentation put in
this directory.

19

20 CHAPTER 6. TEXT PROCESSING

6.2 Dictionary application

You must insert and select dictionaries you need (click on button more,
click on button less to close). The process will generate a text automa-
ton,<text>.fsa, in the text directory. A copy of it is also made (file
<text>-0.fsa)

6.3 Normalize text automaton

This operation must be run after dictionary application and text-automaton
construction. It applies the graph Norm.xgrf in the directory lingdef/<language>
where <language> is the current language. This process generates a new
”normalized” text-automaton (file <text>-norm.fsa).

6.4 Grammar application

You need to define a list of graphs that will be applied in cascadus on
<text>.fsa. Each iteration j will generate a new text automaton <text>-j.fsa.
The final automaton is <text>-final.fsa. A copy of it is made in file
<text>.fsa;

<text>.fsa is actually the current text automaton to be processed.

6.5 Locate pattern

You need to select a graph to be applied and the type of result you want.

Chapter 7

C++ Programs

The Outilex platform is made of a set of independant C++ programs. This
chapter defines their different prototypes.

7.1 apply-dic

apply-dic -dic <dic1> [<prio1>] [-dic <dic2> [<prio2>] ...]
[-imaj][-icase] [-imark][-l <lingdef>][-o <out>] <tokfile>

This program applies a set of dictionaries <dicj> (extension .idx) with
different priorities <prioj> (real numbers, by default, 10) to a segmented
text <tokfile>. It outputs a text-fsa <out> (by default, the name of the
text file with the extension .fsa). It uses a lingdef file <lingdef>. Options
could be:

• -imaj: ignore case in texts but not in dictionaries;

• -icase: ignore case in dictionaries and in texts;

• -imark: ignore diacritics in texts and in dictionaries.

7.2 concordancer

concordancer -l <lingdef> -gram <gram> [-v][-longest-match]
[-tags][-tree][-w][-m][-ipath][-iout][-o <outputres>] <txtfsa>

with options :
<txtfsa> : input text fsa
-gram <gram> : wrtn grammar to apply

21

22 CHAPTER 7. C++ PROGRAMS

-o <concord> : name of the resulting concordance index file (default to
concord.idx)

-longest-match : keep only longest matching sequences
-tags : display morpho-syntactic tags
-tree : display syntactic tree
-w : display weights of matching sequences
-m : merge grammar’s outputs into concordances
-all : shortcut for : -tags -tree -w -m
-ipath : keep only one concordance for the same text segment (can be a

lot faster for ambigous grammars)
-v : verbose mode (for debugging)
It applies a compiled wrtn grammar <gram> (extension .wrtn) to a text

fsa <txtfsa> and saves the matching sequences index into a file <outputres>
(default to concord.idx), which can be processed by make-concord-html.
There exist different options that are described above.

7.3 decore-fsa

decore-fsa -l <lingdef> -rtn <fst> [-v][-ipath][-iout][-o <outputres>]
<txtfsa>

This program applies a compiled decoration grammar fst (extension
.wrtn) to the text-fsa <txtfsa>. It outputs a new version of txtfsa,<outputres>,
with new transitions whenever new analyses have been found by applying
grammar fst. It requires the lingdef file <lingdef>.

7.4 dela-index

dela-index <dela> -corresp <corresp> [-r <ratio>][-o <index>]

This program compresses an UTF-8 DELA dictionary <dela> into into
an IDX dictionary using the tag correspondance file <corresp>. The output
file is <index>.

7.5 delaf2xml.sh

delaf2xml.sh -c <corresp> <dela>

7.6. DIC-INDEX 23

This program converts an UTF-8 DELA dictionary <dela> (extension
.dic) into a compressed XML dictionary (<dela>.xml) using the tag cor-
respondance file <corresp>.

7.6 dic-index

dic-index [-validate] [-ratio <r>] <dicofile>

This program compresses the dictionary <dicofile> (extension .dic.xml.gz)
into an IDX dictionary. The output file is the name of <dicofile> with
the extension (.idx). For instance, if <dicofile> is dico.dic.xml.gz, the
output would be dico.dic.idx.

7.7 make-concord-html

make-concord-html <concordidx>
[-left <left-size>][-right <right-size>][-o <res>][-dontsort]

It constructs an html concordance from the index concordance file <concordidx>
with a left context of <left-size> characters (default: 50) and a right con-
text of <right-size> characters (default: 80). Optionally, the concordance
can be put in the text order (option -dontsort); by default, it is sorted.
The result is put in the file <res> (default: concord.html).

7.8 make-wrtn

make-wrtn [-l <lingdef>] <axiom>

This program compiles the grammar defined by the main XGRF graph
<axiom> and its sub-graphs into a unique XML file representing a Weighted
Recursive Transition Network (WRTN) with the extension .wrtn. It uses
the lingdef file <lingdef> to interpret semantically the symbols of the
graphs. For instance, if <axiom> is main.xgrf, the output would be main.wrtn.

7.9 tfsa2dot

tfsa2dot -l <lingdef> [-o <output>] <txtfsa> -n <sentenceno>

24 CHAPTER 7. C++ PROGRAMS

This program converts the <sentenceno>-th sentence of text-fsa txtfsa
(extension .fsa) into the file <output> describing an automaton with the
DOT format, using the lingdef file <lingdef>. By default, the output file
is named sentence-<sentenceno>.dot.

7.10 tokenization

tokenization <text>

This program is used to segment a text <text> in tokens, sentences
and paragraphs. <text> is the input text file name and can be either
in TXT format or HTML format. Outputs are <text>.segmentation,
<text>.tokenization and <text>.postfilter.

7.11 transduct-fsa

transduct-fsa -l <lingdef> -gram <fst>
[-lgst][-ipath][-iout][-dontsurf][-o <outputres>] <txtfsa>
This program applies a normalization wrtn transducer <fst> on a text-

fsa <txtfsa>. It produces a new text-fsa <outputres>.

7.12 wrtn-flatten

wrtn-flatten <rtn> [-maxdepth <N>]

This program flattens a compiled grammar <rtn> into a finite state au-
tomaton (or transducer). Whenever not possible, it makes an approximation
by limiting the maximum depth (<N>).

7.13 wrtn-txt-transduct

wrtn-txt-transduct -l <lingdef> -gram <fst>
[-ipath|-iout][-html|-txt][-m|-r|-i][-o <outputres>] <txtfsa>

This program applies wrtn transducer <fst> to a text fsa <txtfsa> and
generates a new text from the orignal one depending on the chosen option:

• -m for merging outputs in the text when finding matching sequences;

7.13. WRTN-TXT-TRANSDUCT 25

• -r for replacing matching sequences by the associated outputs in the
new text;

• -i for ignoring outputs: new text is the original one (USELESS!!!).

The output text <outputres> can be either in HTML (-html) or in TXT
(-txt). It requires the lingdef file <lingdef>.

26 CHAPTER 7. C++ PROGRAMS

Chapter 8

API library

27

28 CHAPTER 8. API LIBRARY

