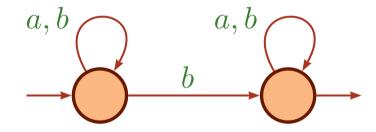
Conjugaison, équivalence et revêtements d'automates

Sylvain Lombardy IGM - Université Marne-la-Vallée

Marie-Pierre Béal IGM - Université Marne-la-Vallée Jacques Sakarovitch LTCI - ENST/CNRS

Automate... avec multiplicité

\mathbb{B}	automates "classiques"		
\mathbb{N} , \mathbb{Z}	compter les chemins		
Corps			
$Rat(B^*)$	transducteurs		
max-plus, min-plus	automates de distance ou de coût		

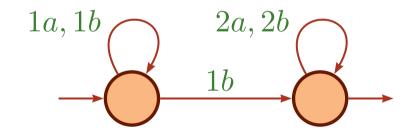


Booléen: accepte les mots qui ont un b.

Sur \mathbb{N} : compte le nombre de b.

Automate... avec multiplicité

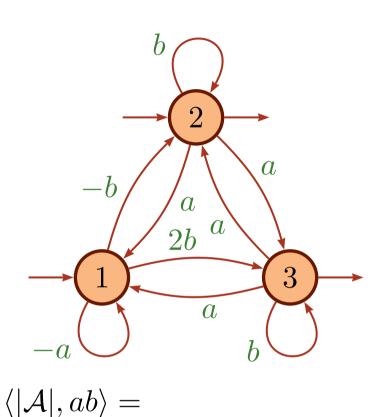
\mathbb{B}	automates "classiques"		
\mathbb{N},\mathbb{Z}	compter les chemins		
Corps			
$Rat(B^*)$	transducteurs		
max-plus, min-plus	automates de distance ou de coût		



Sur №: valeur du nombre écrit en base 2.

Sur $(\mathbb{N}, \min, +)$:

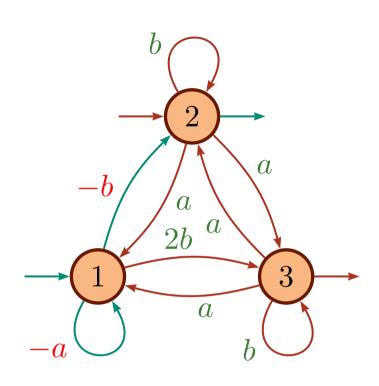
longueur du mot + nbe de a à la fin



$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

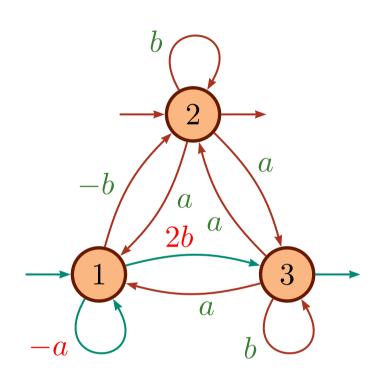
$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$



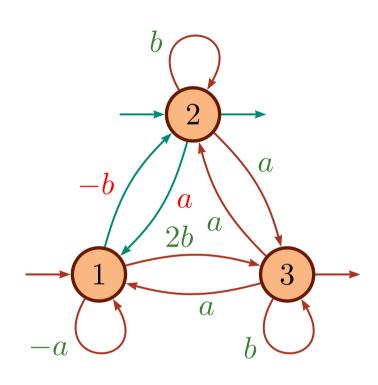
$$\langle |\mathcal{A}|, ab \rangle = 1$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$
 $M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$
 $T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$



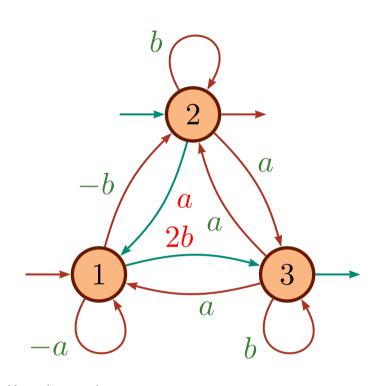
$$\langle |\mathcal{A}|, ab \rangle = 1 - 2$$

$$I = \left[egin{array}{cccc} 1 & 1 & 0 \end{array}
ight]$$
 $M = \left[egin{array}{cccc} -a & -b & 2b \ a & b & a \ a & a & b \end{array}
ight]$
 $T = \left[egin{array}{cccc} 0 \ 1 \ 1 \end{array}
ight]$



$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1$$

$$I = \left[egin{array}{cccc} 1 & 1 & 0 \end{array}
ight]$$
 $M = \left[egin{array}{cccc} -a & -b & 2b \ a & b & a \ a & a & b \end{array}
ight]$
 $T = \left[egin{array}{cccc} 0 \ 1 \ 1 \end{array}
ight]$

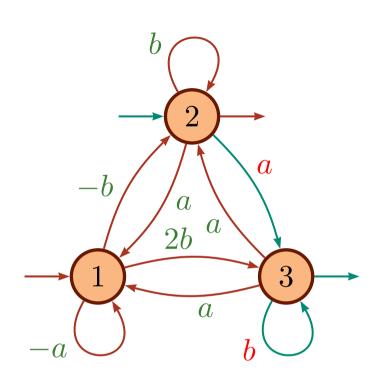


$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

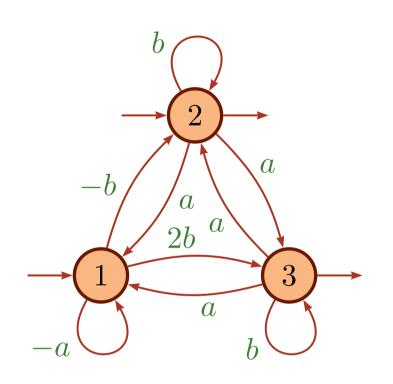


$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2 + 1 = 1$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$



$$I = \left[\begin{array}{cccc} 1 & 1 & 0 \end{array} \right]$$

$$\mu(a) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mu(b) = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T = \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array}
ight]$$

$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2 + 1 = 1 = I\mu(a)\mu(b)T$$

Équivalence

Deux automates sont équivalents s'ils réalisent la même série. La décidabilité dépend du semi-anneau ou de la forme des automates:

Booléens	décidable		
Multiplicité dans un corps	décidable		
Transducteurs	indécidable	fonctionnel	décidable
Tropicaux	indécidable	non ambigu	décidable

$$\mathcal{A}=(I,M,T)$$
, $\mathcal{B}=(J,N,U)$. $\mathcal{A}\overset{X}{\Longrightarrow}\mathcal{B}$:
$$\overbrace{IX=J,\quad MX=XN,\quad \text{et}\quad T=XU}.$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$(IX = J, \quad MX = XN, \quad \text{ et } \quad T = XU.$$

Pour tout w, on a:

$$I\mu(w_1)...\mu(w_n)T = I\mu(w_1)...\mu(w_n)XU$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$(IX = J, \quad MX = XN, \quad \text{ et } \quad T = XU.$$

Pour tout w, on a:

$$I\mu(w_1)...\mu(w_n)T = I\mu(w_1)...X\nu(w_n)U$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$(IX = J, MX = XN, \text{ et } T = XU.)$$

Pour tout w, on a:

$$I\mu(w_1)...\mu(w_n)T = IX\nu(w_1)...\nu(w_n)U$$

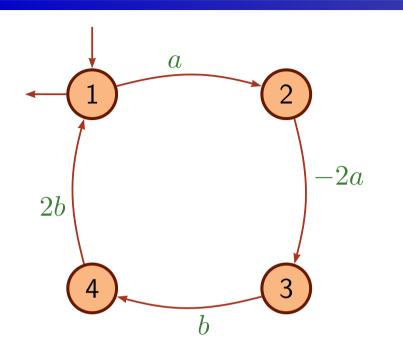
$$\mathcal{A}=(I,M,T)$$
, $\mathcal{B}=(J,N,U)$. $\mathcal{A}\overset{X}{\Longrightarrow}\mathcal{B}$:
$$\overbrace{IX=J,\quad MX=XN,\quad \text{et}\quad T=XU}.$$

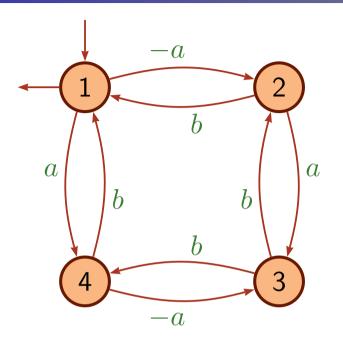
Pour tout w, on a:

$$I\mu(w_1)...\mu(w_n)T = J\mu(w_1)...\mu(w_n)U$$

 $\Rightarrow \mathcal{A}$ et \mathcal{B} sont équivalents.

La conjugaison n'est pas une relation d'équivalence. C'est un pré-ordre.



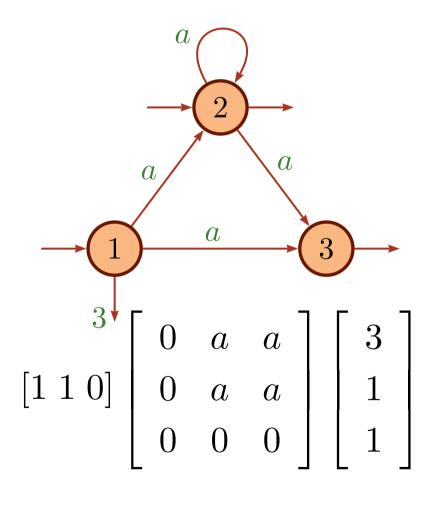


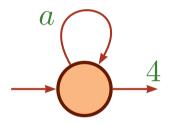
Conjugués dans Z:

$$\left[\begin{array}{ccccc} 0 & a & 0 & 0 \\ 0 & 0 & -2a & 0 \\ 0 & 0 & 0 & b \\ 2b & 0 & 0 & 0 \end{array}\right]$$

$$\begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 0 & -2a & 0 \\ 0 & 0 & 0 & b \\ 2b & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -a & 0 & a \\ b & 0 & a & 0 \\ 0 & b & 0 & b \\ b & 0 & -a & 0 \end{bmatrix}$$

Deux automates équivalents ne sont pas forcéments conjugués.





Conjugaison et équivalence

Théorème 1: Soit A et B

deux automates booléens,

deux \mathbb{N} -automates,

deux \mathbb{Z} -automates,

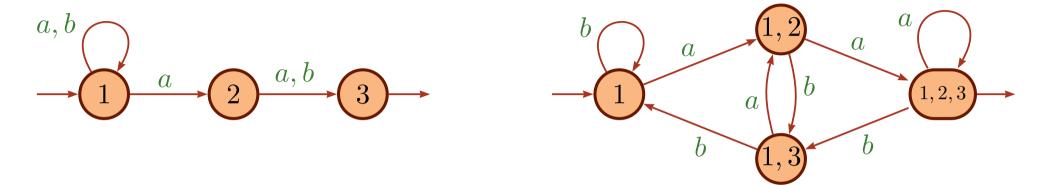
deux \mathbb{K} -automates, avec \mathbb{K} corps,

deux transducteurs fonctionnels.

Si \mathcal{A} et \mathcal{B} sont équivalents, il existe \mathcal{C} tel que $\mathcal{A} \stackrel{X}{\longleftarrow} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}$.

Booléens: conjugaison et déterminisation

$$\det(\mathcal{A}) \stackrel{X}{\Longrightarrow} \mathcal{A}$$



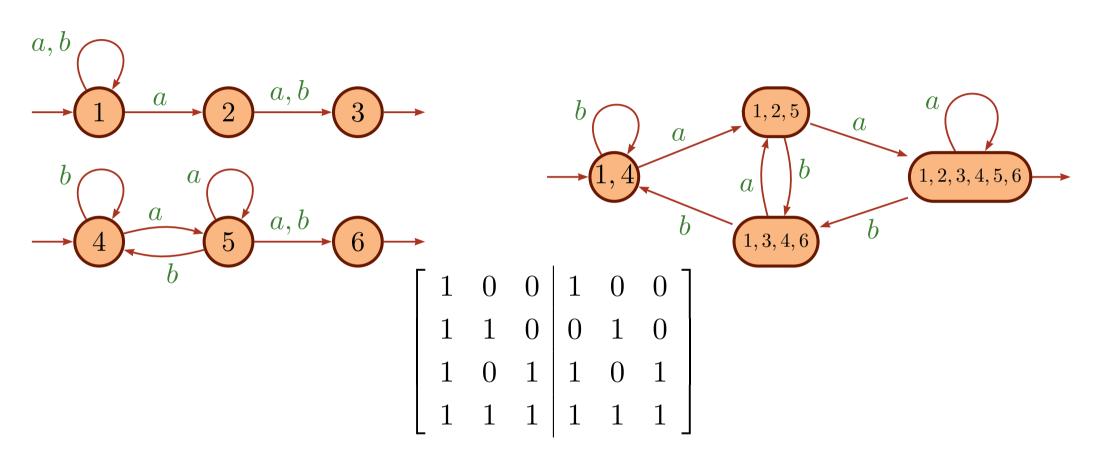
Chaque état de det(A) est un vecteur $I\mu(w)$.

Matrice de conjugaison: $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ le même

De même: $A \stackrel{X}{\Longrightarrow} \operatorname{codet}(A)$

Booléens: conjugaison et déterminisation

 \mathcal{A} , \mathcal{B} équivalents. Soit $\mathcal{C} = \det(\mathcal{A} \cup \mathcal{B})$



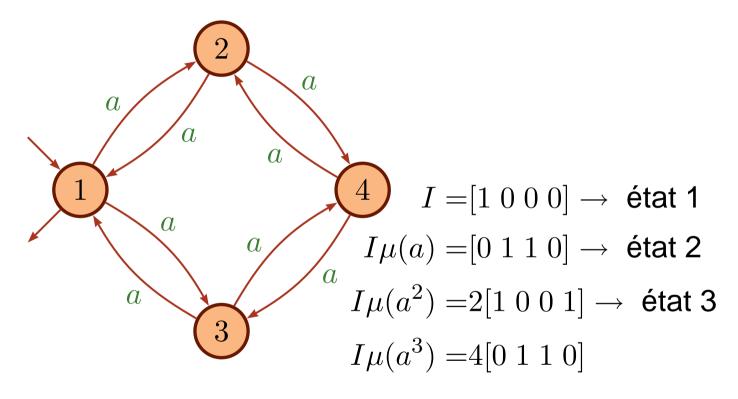
On a $\mathcal{C} \stackrel{[X|Y]}{\Longrightarrow} \mathcal{A} \cup \mathcal{B}$.

Finalement, on obtient $\mathcal{C} \stackrel{X}{\Longrightarrow} \mathcal{A}$ et $\mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}$.

→ Théorème 1 pour les booléens.

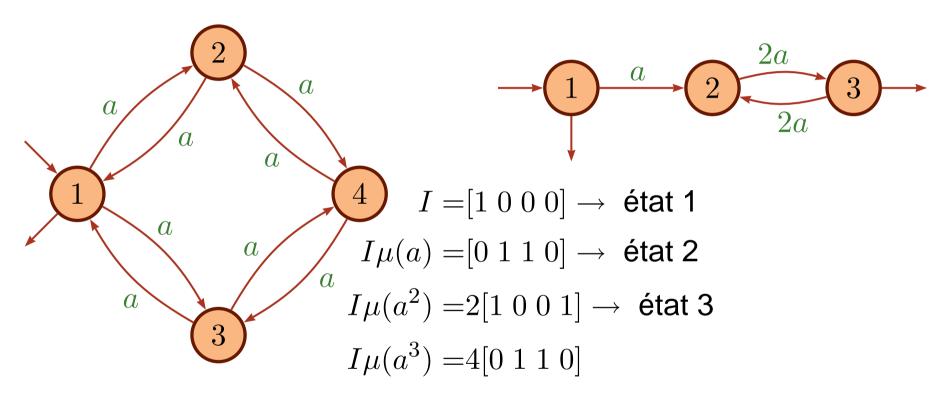
$$\mathcal{A} = (I, \mu, T)$$

Réduction à gauche: calculer une base de $\langle I\mu(w)\rangle$.



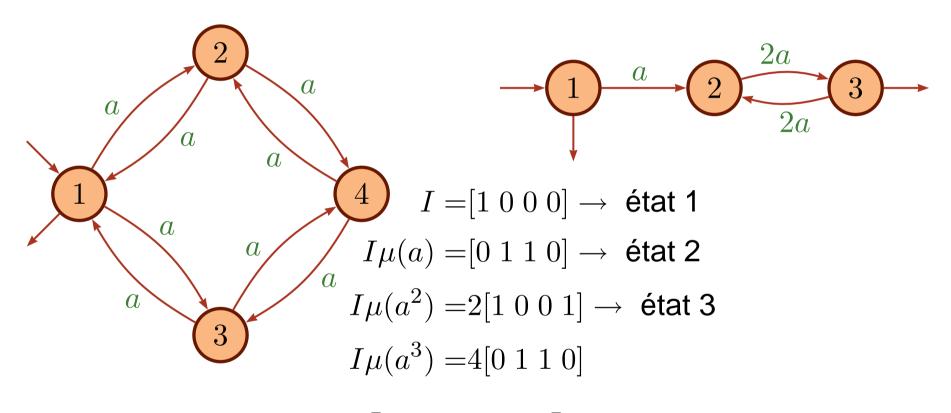
$$\mathcal{A} = (I, \mu, T)$$

Réduction à gauche: calculer une base de $\langle I\mu(w)\rangle$.



$$\mathcal{A} = (I, \mu, T)$$

Réduction à gauche: calculer une base de $\langle I\mu(w)\rangle$.



$$\operatorname{red}_g(\mathcal{A}) \stackrel{X}{\Longrightarrow} \mathcal{A}, \operatorname{avec} X = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array} \right]$$

De même $\mathcal{A} \stackrel{X}{\Longrightarrow} \operatorname{red}_d(\mathcal{A})$.

Remarques:

- $-\operatorname{red}_g(\operatorname{red}_d(\mathcal{A}))$ est un automate réduit (nombre d'états minimum);
- tous les automates réduits sont conjugués dans les deux sens avec une matrice de transformation inversible (changement de base).

A, B équivalents. Soit $C = red_g(A + B)$

On a
$$\mathcal{C} \stackrel{[X|Y]}{\Longrightarrow} \mathcal{A} + \mathcal{B}$$
.

$$\mathcal{C} = (I, M, T)$$
; posons $\mathcal{C}' = (I, M, T/2)$.

On obtient
$$\mathcal{C}' \stackrel{X}{\Longrightarrow} \mathcal{A}$$
 et $\mathcal{C}' \stackrel{Y}{\Longrightarrow} \mathcal{B}$.

→ Théorème 1 pour les corps.

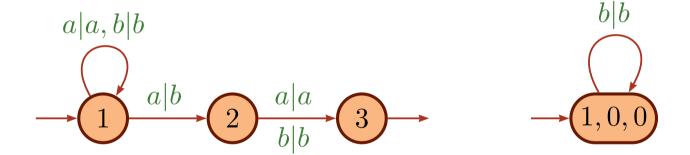
Cas des entiers

Pour \mathbb{Z} , tout fonctionne comme dans les corps; on calcule une base du \mathbb{Z} -module $\langle I\mu(w)\rangle$.

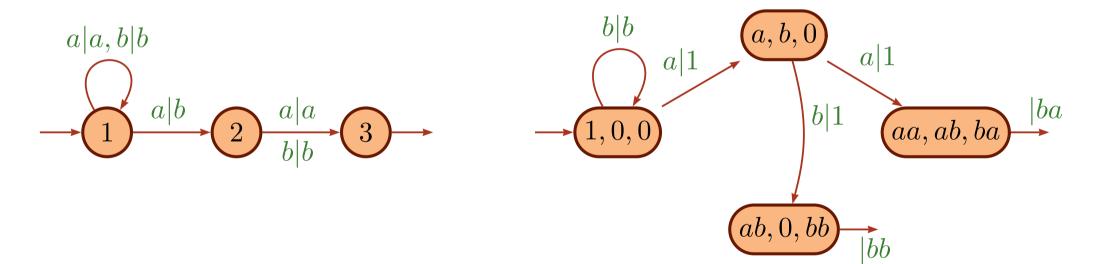
Pour \mathbb{N} , on calcule un ensemble générateur d'un \mathbb{N} -semi-module contenant les $I\mu(w)$ en utilisant les bonnes propriétés de \mathbb{N}^k .

Soit $\mathcal{A}=(I,\mu,T)$ et $\mathcal{B}=(J,\nu,U)$ équivalents de dim. resp. r et s. Quand on "réduit" $\mathcal{A}+\mathcal{B}$, on n'a pas le droit d'utiliser n'importe quel vecteur générateur de \mathbb{N}^{r+s} ; on ne manipule que des vecteurs $[x\mid y]$ tels que x.T=y.U.

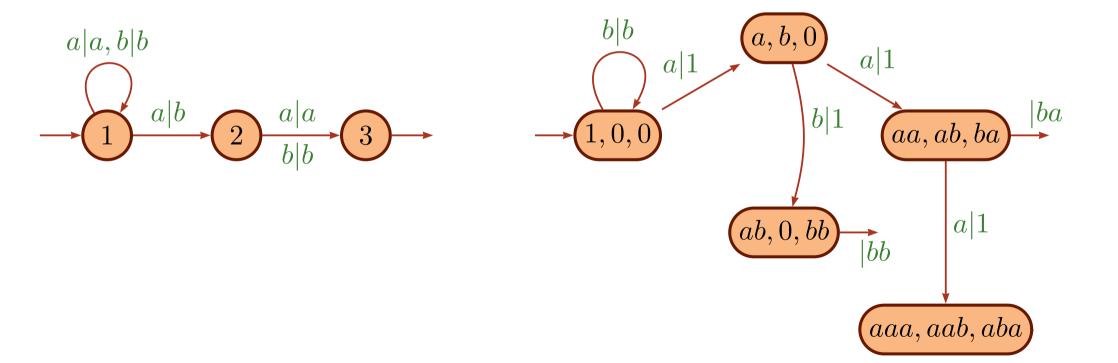
$$I = [1 \ 0 \ 0], \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



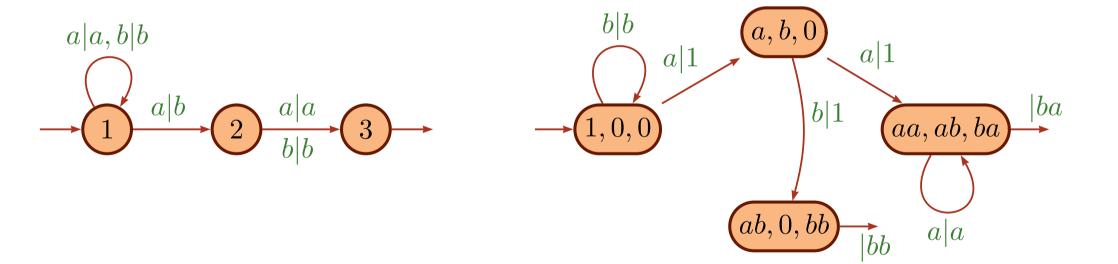
$$I = [1 \ 0 \ 0], \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



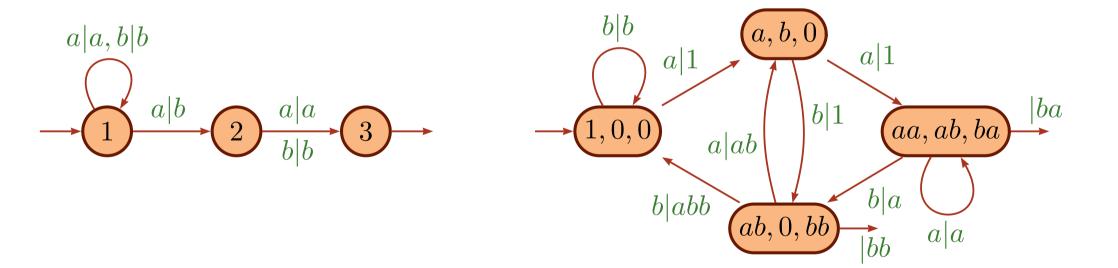
$$I = [1 \ 0 \ 0], \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



$$I = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



$$I = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



 $\mathcal{T} = (I, \mu, T)$ transducteur fonctionnel

Séquentialisation: α vecteur de mots

 $\overset{\circ}{\alpha}$: plus grand préfixe commun

$$\overline{\alpha} = \overset{\circ}{\alpha}^{-1} \alpha$$

$$\operatorname{seq}(\mathcal{T})\text{:} \quad \stackrel{\circ}{|I|} \overline{\alpha} \overline{I}$$
, avec $\beta = \overline{\alpha}\mu(a)$

 $\bigwedge \mathcal{T}$ non séquentialisable $\Longrightarrow \operatorname{seq}(\mathcal{T})$ infini

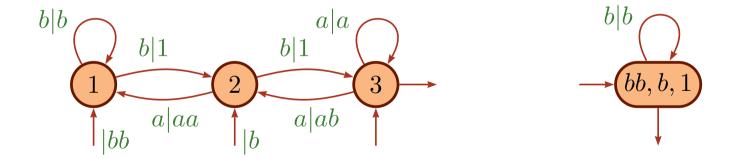
Transducteurs fonctionnels: séquentialisation avec échec

Idée: si les composantes de α sont trop différentes, elles ne servent pas pour les mêmes mots.

→On impose:

- chaque $\overline{\alpha}$ doit contenir le mot vide
- si α_i non minimal, il existe α_j , préfixe de α_i tel que $|\alpha_i| |\alpha_j| < K(\mathcal{T})$

Sinon, on décompose α en union de vecteurs à supports disjoints qui respectent ces propriétés et on construit un transducteur qui n'est plus séquentiel. $\rightarrow qseq(\mathcal{T})$



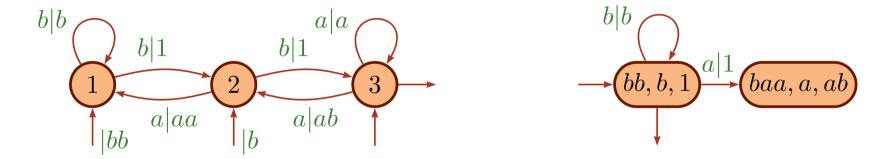
Transducteurs fonctionnels: séquentialisation avec échec

Idée: si les composantes de α sont trop différentes, elles ne servent pas pour les mêmes mots.

→On impose:

- chaque $\overline{\alpha}$ doit contenir le mot vide
- si α_i non minimal, il existe α_j , préfixe de α_i tel que $|\alpha_i| |\alpha_j| < K(\mathcal{T})$

Sinon, on décompose α en union de vecteurs à supports disjoints qui respectent ces propriétés et on construit un transducteur qui n'est plus séquentiel. $\rightarrow qseq(\mathcal{T})$



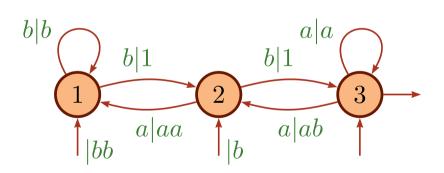
Transducteurs fonctionnels: séquentialisation avec échec

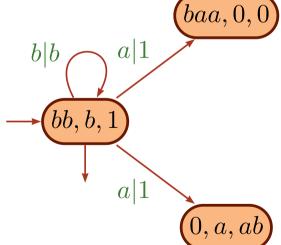
Idée: si les composantes de α sont trop différentes, elles ne servent pas pour les mêmes mots.

→On impose:

- chaque $\overline{\alpha}$ doit contenir le mot vide
- si α_i non minimal, il existe α_j , préfixe de α_i tel que $|\alpha_i| |\alpha_j| < K(\mathcal{T})$

Sinon, on décompose α en union de vecteurs à supports disjoints qui respectent ces propriétés et on construit un transducteur qui n'est plus séquentiel. $\rightarrow qseq(\mathcal{T})$





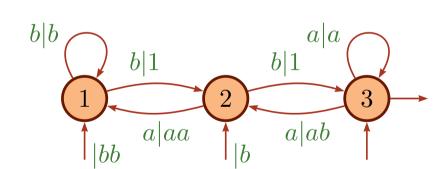
Transducteurs fonctionnels: séquentialisation avec échec

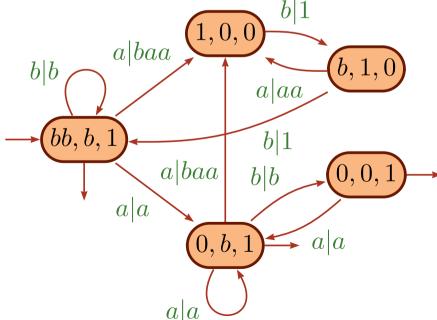
Idée: si les composantes de α sont trop différentes, elles ne servent pas pour les mêmes mots.

→On impose:

- chaque $\overline{\alpha}$ doit contenir le mot vide
- si α_i non minimal, il existe α_j , préfixe de α_i tel que $|\alpha_i| |\alpha_j| < K(\mathcal{T})$

Sinon, on décompose α en union de vecteurs à supports disjoints qui respectent ces propriétés et on construit un transducteur qui n'est plus séquentiel. $\rightarrow \operatorname{qseq}(\mathcal{T})$





Transducteurs fonctionnels: séquentialisation avec échec

Idée: si les composantes de α sont trop différentes, elles ne servent pas pour les mêmes mots.

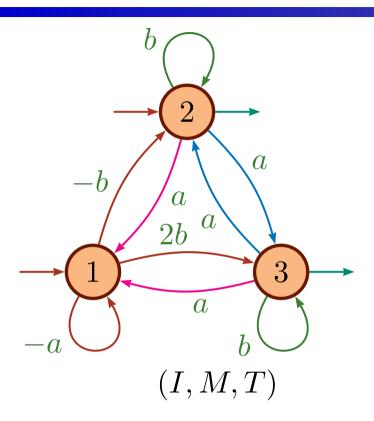
→On impose:

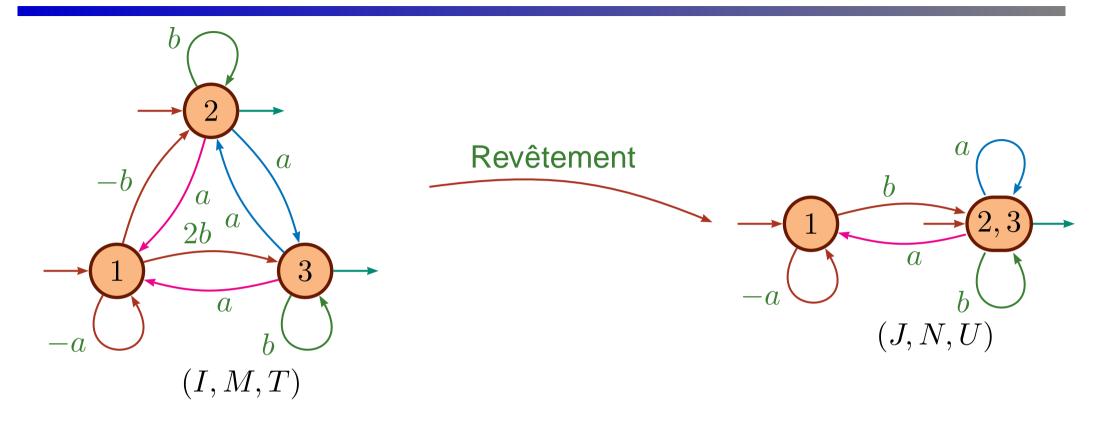
- chaque $\overline{\alpha}$ doit contenir le mot vide
- si α_i non minimal, il existe α_j , préfixe de α_i tel que $|\alpha_i| |\alpha_j| < K(\mathcal{T})$

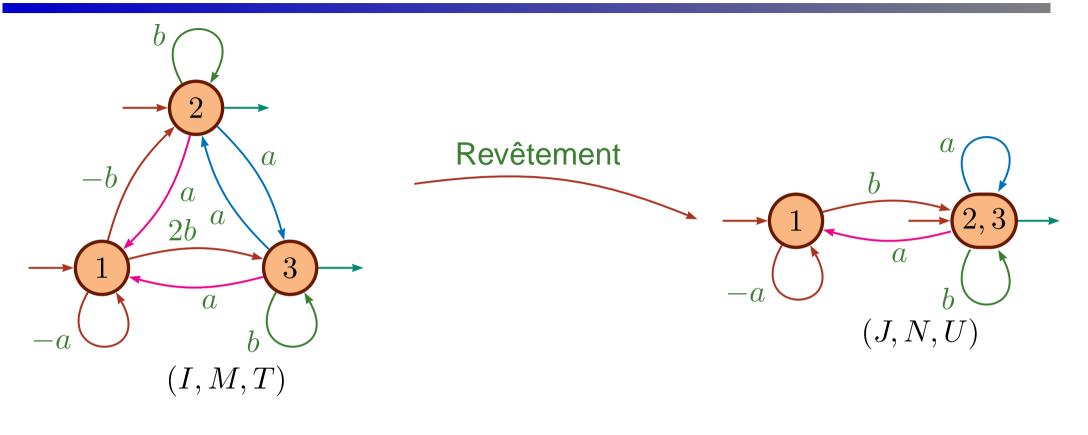
Sinon, on décompose α en union de vecteurs à supports disjoints qui respectent ces propriétés et on construit un transducteur qui n'est plus séquentiel. $\rightarrow qseq(\mathcal{T})$

À quoi ça sert?

- Le transducteur obtenu est non ambigu
- $-\operatorname{\mathsf{qseq}}(\mathcal{T}) \stackrel{X}{\Longrightarrow} \mathcal{T}$
- qseq $(T \cup T')$ est conjugué à T et à T' (s'ils sont équivalents)
 - → Théorème 1 pour les transducteurs.







$$\begin{bmatrix} -a & -\overline{b} & \overline{2b} \\ a & b & a \\ a & a & b \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$-\circ -$$

$$\begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -\overline{b} & \overline{2b} \\ a & b & \overline{a} \\ a & \overline{a} & b \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -b & 2b \\ \mathbf{a} & b & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -a & b \\ \mathbf{a} & \mathbf{a} + b \end{bmatrix}$$

Initial:
$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, Final: $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Définition: A = (I, M, T) et B = (J, N, U), \mathbb{Z} -automata.

 $\mathcal A$ est un *revêtement* de $\mathcal B$ s'il existe une matrice d'amalgamation X telle que $\mathcal B$ est un *quotient* de $\mathcal A$

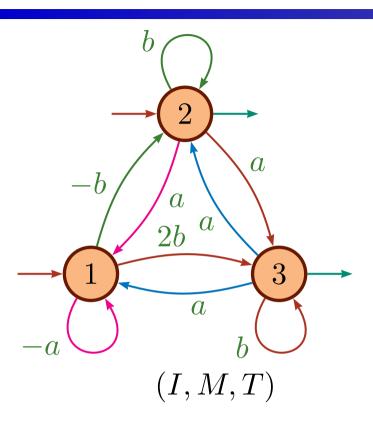
$$IX = J$$
, $MX = XN$, et $T = XU$.

Définition: A = (I, M, T) et B = (J, N, U)

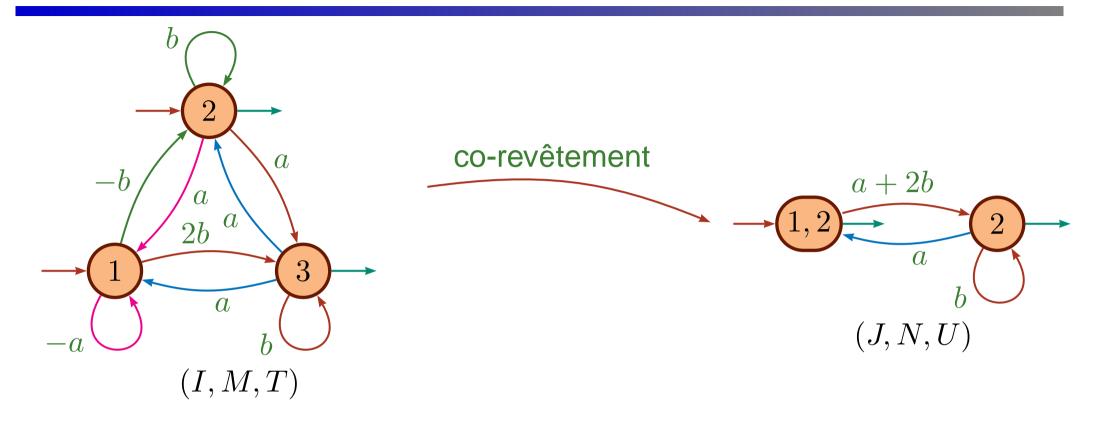
 ${\cal A}$ est un ${\it co-revêtement}$ de ${\cal B}$ s'il existe une matrice d'amalgamation X tq

$$I = J^t X$$
, ${}^t X M = N^t X$, et ${}^t X T = U$.

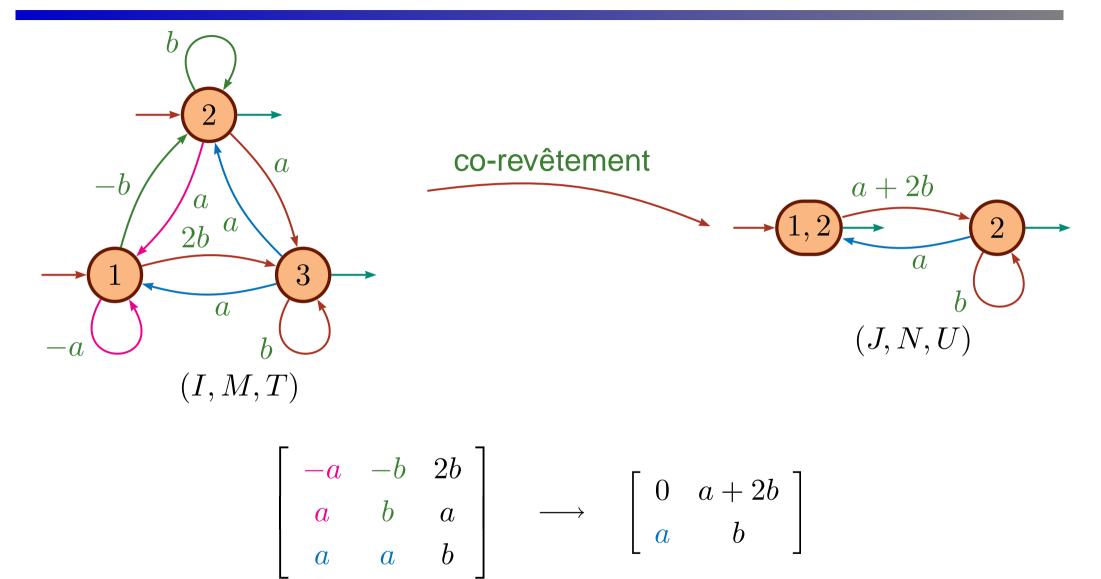
co-revêtement / co-quotient

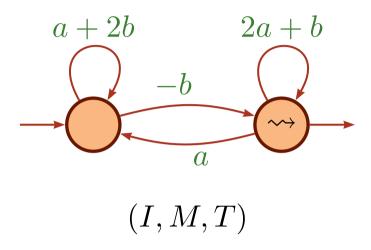


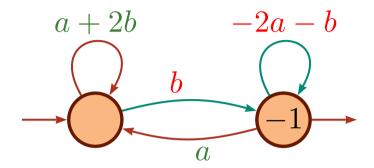
co-revêtement / co-quotient

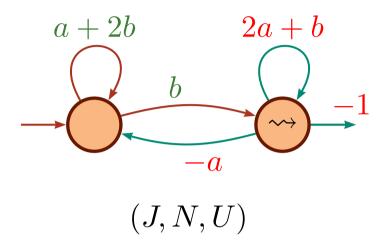


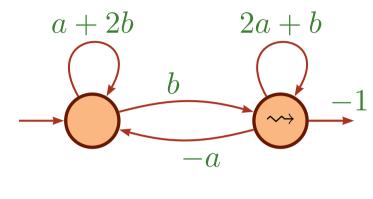
co-revêtement / co-quotient









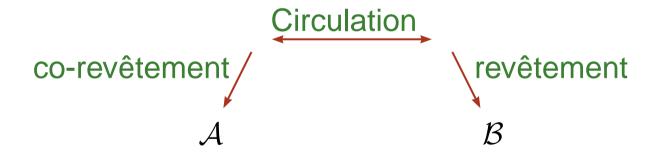


$$I\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = J, \quad M\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} N, \quad T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} U$$

Théorème 2: Soit \mathcal{A} et \mathcal{B}

deux ℤ-automates deux ℝ-automates, avec ℝ corps deux transducteurs fonctionnels émondés

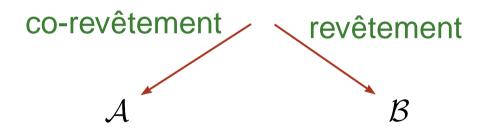
Si $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$, alors

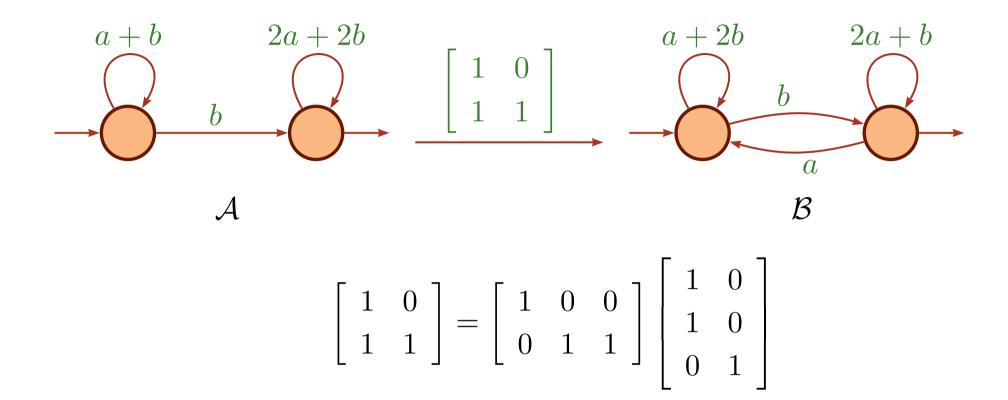


Théorème 2: Soit \mathcal{A} et \mathcal{B}

deux automates booléens émondés deux N-automates émondés

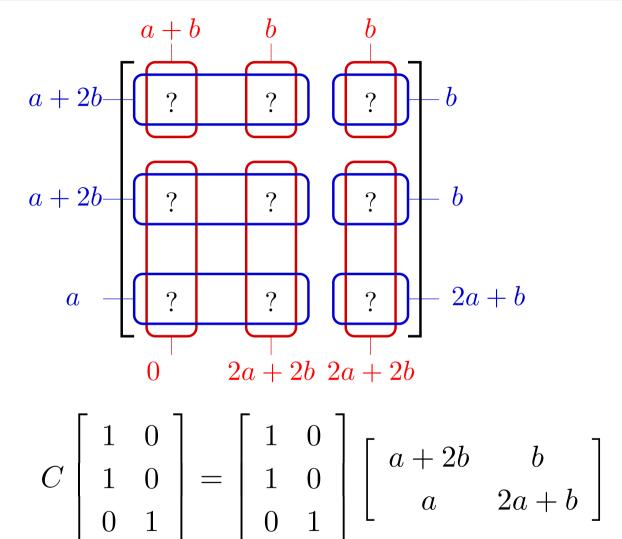
Si $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$, alors



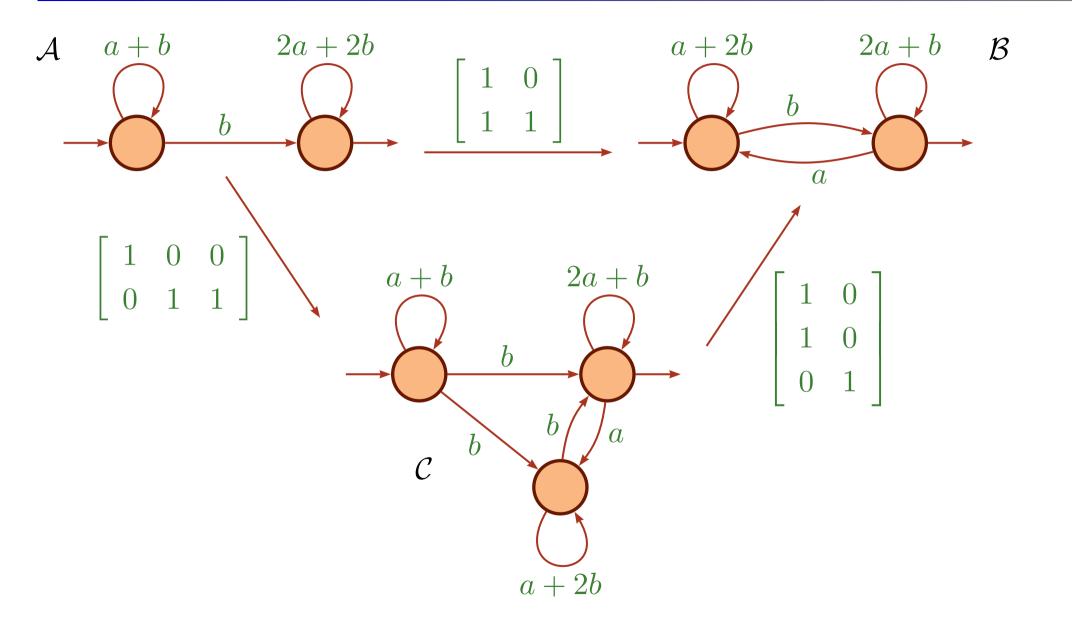


On construit $\mathcal{C} = (K, C, V)$ tel que \mathcal{C} revêtement \mathcal{C} revêtement \mathcal{B}

$$\begin{bmatrix} a+b & b \\ 0 & 2a+2b \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} C$$



$$\begin{bmatrix} a+b & b & b \\ 0 & a+2b & b \\ 0 & a & 2a+2b \end{bmatrix}$$



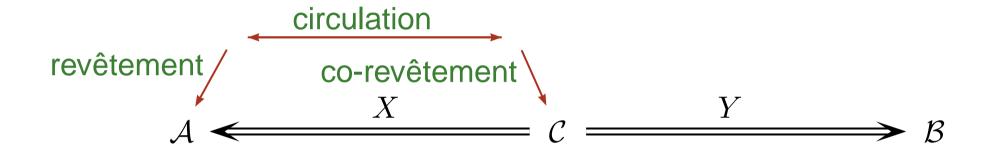
$$|\mathcal{A}| = |\mathcal{B}|$$

Théorème 1:

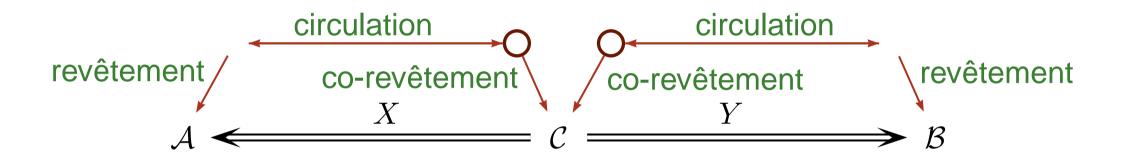
$$A \longleftarrow X \longrightarrow C \longrightarrow Y$$

$$|\mathcal{A}| = |\mathcal{B}|$$

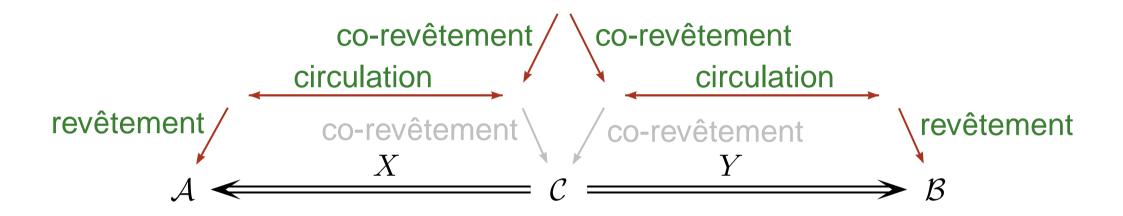
Théorème 2:

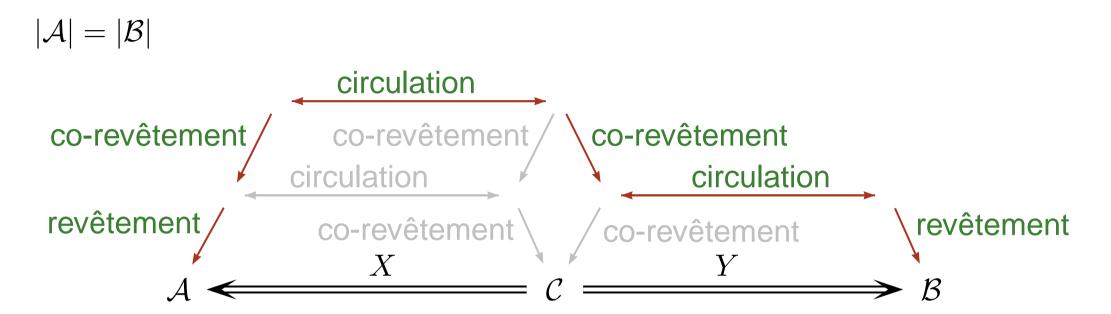


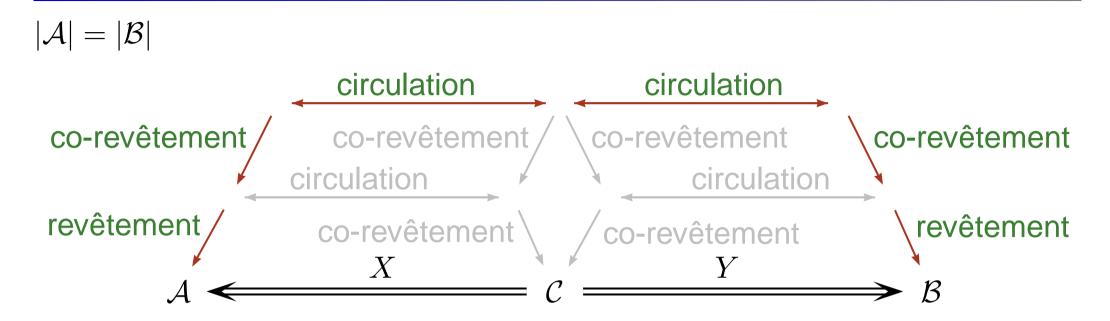
$$|\mathcal{A}| = |\mathcal{B}|$$



$$|\mathcal{A}| = |\mathcal{B}|$$

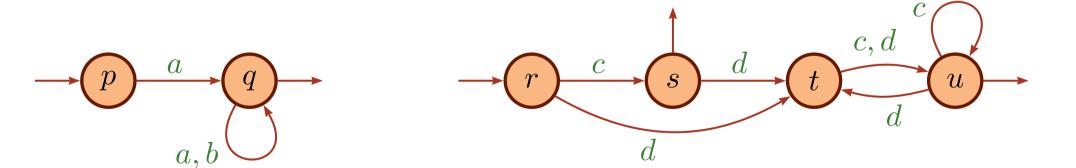






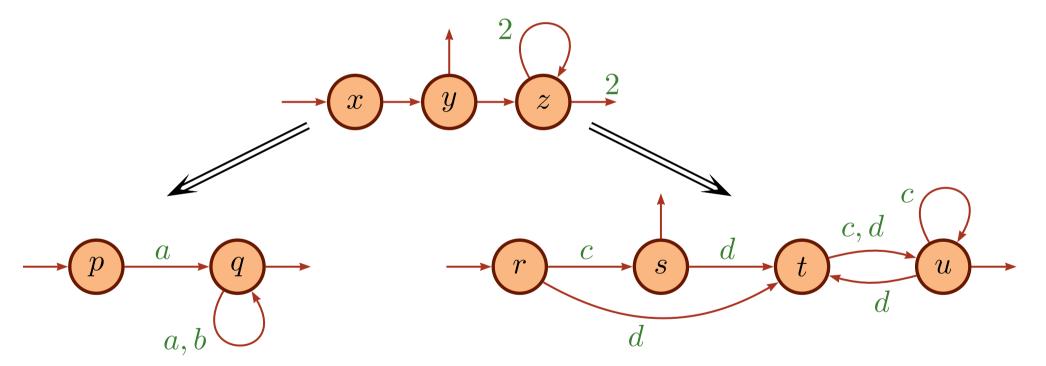
Proposition: Si deux langages rationnels ont la même fonction de croissance, il existe entre eux une bijection réalisée par un transducteur lettre à lettre.

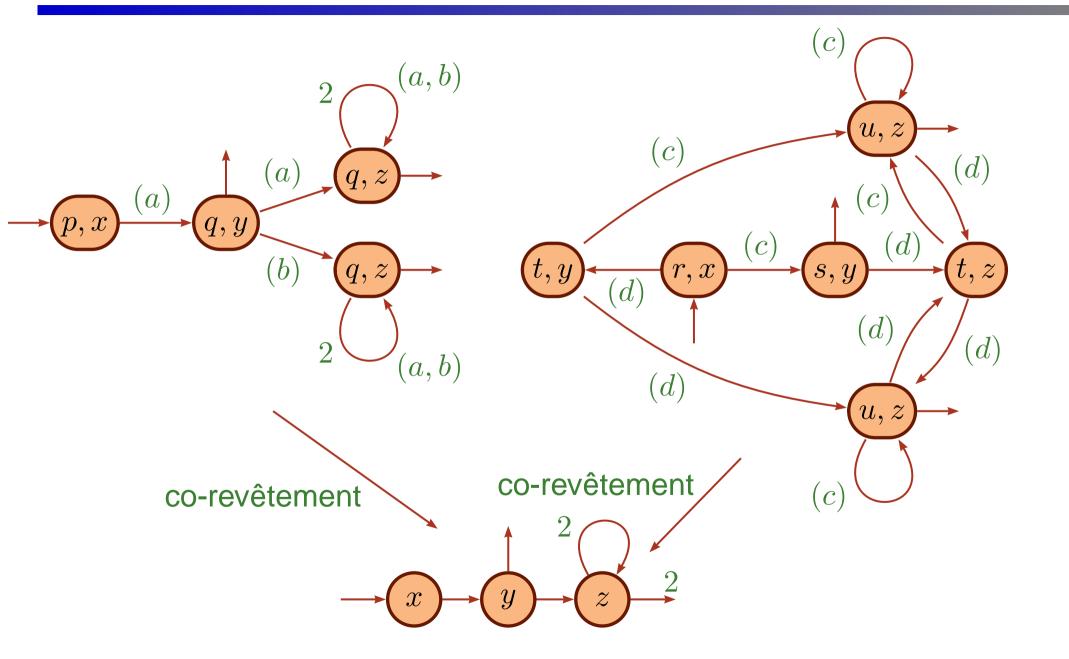
Exemple: $L_1 = a(a+b)^*$ et $L_2 = (c+dc+dd)^* \setminus cc(c+d)^*$:

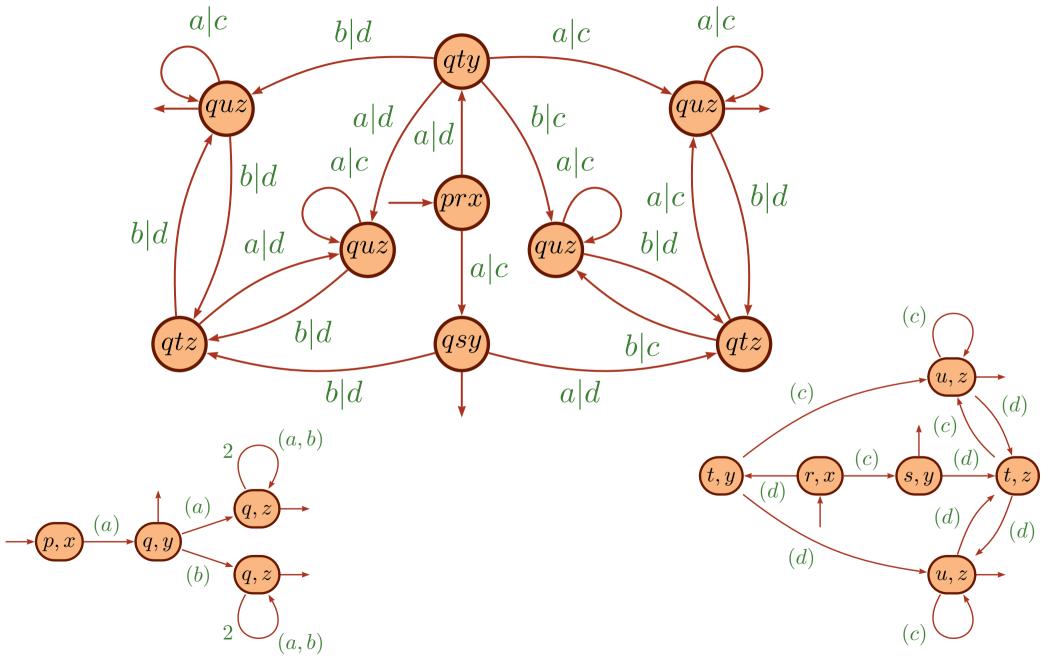


Proposition: Si deux langages rationnels ont la même fonction de croissance, il existe entre eux une bijection réalisée par un transducteur lettre à lettre.

Exemple: $L_1 = a(a+b)^*$ et $L_2 = (c+dc+dd)^* \setminus cc(c+d)^*$:







LITIS - 14 décembre 2006 - p. 30/32

Conjugaison et systèmes dynamiques

Théorème de l'équivalence finie (Parry):

Deux sous-shifts sofiques sont images par une application bloc-map finite-to-one du même sous-shift de type fini si et seulement si ils ont la même entropie.

preuve:

Lemme de Furstenberg: X, Y même entropie $\Rightarrow XF = FY$, $F \geqslant 0$, $F \neq 0$ $XF = FY \Rightarrow$ existence des applications $bloc\text{-}map\ finite\text{-}to\text{-}one$

Conclusion

- Travail en cours...
- Statut des transducteurs non fonctionnels, des automates tropicaux, etc.
- Liens entre décidabilité de l'équivalence et décidabilité de la conjugaison