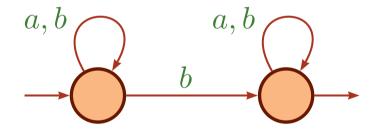
Conjugacy, Equivalence and Coverings of Automata

Sylvain Lombardy IGM - Université Marne-la-Vallée

Marie-Pierre Béal IGM - Université Marne-la-Vallée Jacques Sakarovitch LTCI - ENST/CNRS

Automaton... with multiplicity

\mathbb{B}	"classical" automata		
\mathbb{N},\mathbb{Z}	counting paths		
Fields			
$Rat(B^*)$	transducers		
max-plus, min-plus	distance or cost automata		

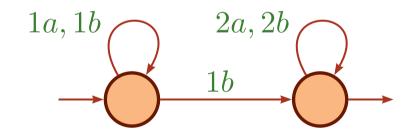


Boolean: accepts words with at least one b.

Over \mathbb{N} : counts the number of b's.

Automaton... with multiplicity

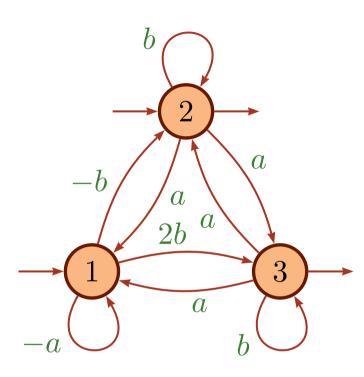
\mathbb{B}	"classical" automata		
\mathbb{N} , \mathbb{Z}	counting paths		
Fields			
$Rat(B^*)$	transducers		
max-plus, min-plus	distance or cost automata		



Over \mathbb{N} : value of the number written in base 2.

Over $(\mathbb{N}, \min, +)$:

length of the word + nber of a's at the end

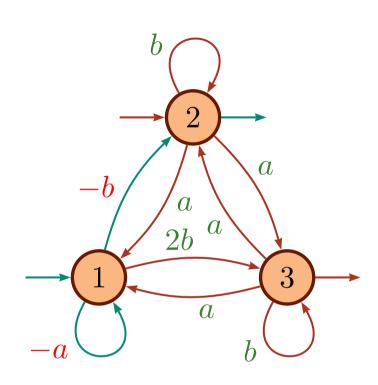


$$\langle |\mathcal{A}|, ab \rangle =$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

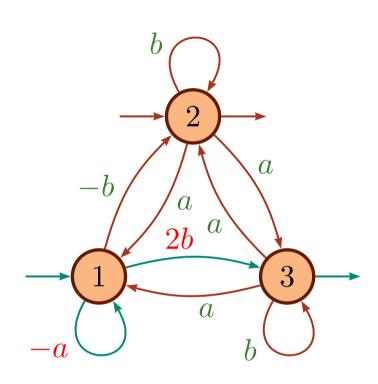


$$\langle |\mathcal{A}|, ab \rangle = 1$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

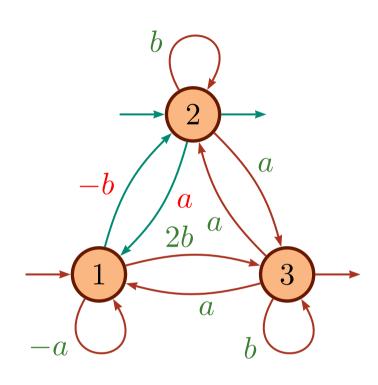
$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$



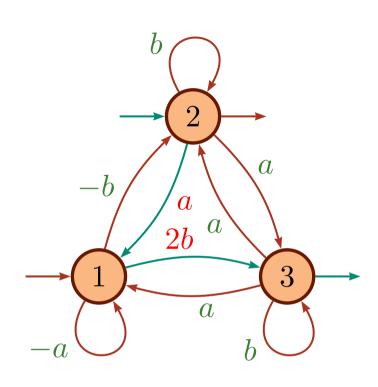
$$\langle |\mathcal{A}|, ab \rangle = 1 - 2$$

$$I = \left[egin{array}{cccc} 1 & 1 & 0 \end{array}
ight]$$
 $M = \left[egin{array}{cccc} -a & -b & 2b \ a & b & a \ a & a & b \end{array}
ight]$
 $T = \left[egin{array}{cccc} 0 \ 1 \ 1 \end{array}
ight]$



$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1$$

$$I = \left[egin{array}{cccc} 1 & 1 & 0 \end{array}
ight]$$
 $M = \left[egin{array}{cccc} -a & -b & 2b \ a & b & a \ a & a & b \end{array}
ight]$
 $T = \left[egin{array}{cccc} 0 \ 1 \ 1 \end{array}
ight]$

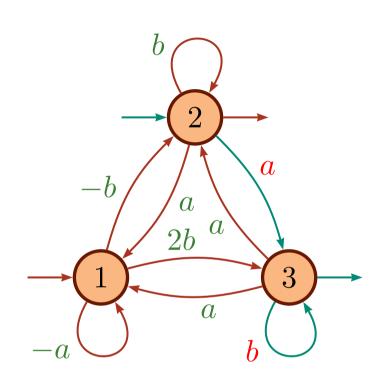


$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2$$

$$I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

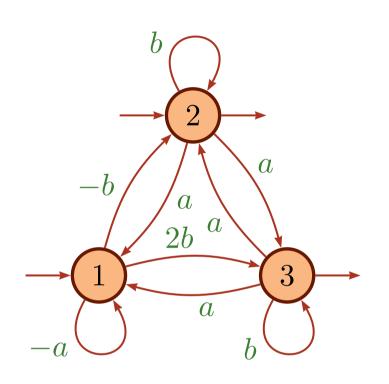
$$M = \begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$



$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2 + 1 = 1$$

$$I = \left[egin{array}{cccc} 1 & 1 & 0 \end{array}
ight]$$
 $M = \left[egin{array}{cccc} -a & -b & 2b \ a & b & a \ a & a & b \end{array}
ight]$
 $T = \left[egin{array}{cccc} 0 \ 1 \ 1 \end{array}
ight]$



$$I = \left[\begin{array}{cccc} 1 & 1 & 0 \end{array} \right]$$

$$\mu(a) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \mu(b) = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T = \left[egin{array}{c} 0 \\ 1 \\ 1 \end{array}
ight]$$

$$\langle |\mathcal{A}|, ab \rangle = 1 - 2 - 1 + 2 + 1 = 1 = I\mu(a)\mu(b)T$$

Equivalence

Two automata are equivalent if they realize the same power series. Decidability of equivalence depends on the semiring or on the particular form of automata:

Boolean	decidable		
Field	decidable		
Transducers	undecidable	functional	decidable
(min/max,+)	undecidable	unambiguous	decidable

$$\mathcal{A}=(I,M,T)$$
, $\mathcal{B}=(J,N,U)$. $\mathcal{A}\overset{X}{\Longrightarrow}\mathcal{B}$:
$$\overbrace{IX=J,\quad MX=XN,\quad \text{et}\quad T=XU}.$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$(IX = J, MX = XN, \text{ et } T = XU.)$$

For every w,

$$I\mu(w_1)...\mu(w_n)T = I\mu(w_1)...\mu(w_n)XU$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$IX = J$$
, $MX = XN$, et $T = XU$.

For every w,

$$I\mu(w_1)...\mu(w_n)T = I\mu(w_1)...X\nu(w_n)U$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

$$(IX = J, \quad MX = XN, \quad \text{ et } \quad T = XU.)$$

For every w,

$$I\mu(w_1)...\mu(w_n)T = IX\nu(w_1)...\nu(w_n)U$$

$$\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U). \mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$$
:

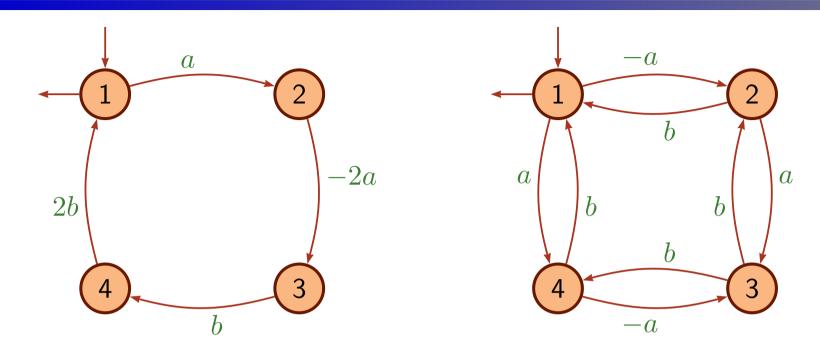
$$IX = J$$
, $MX = XN$, et $T = XU$.

For every w,

$$I\mu(w_1)...\mu(w_n)T = J\mu(w_1)...\mu(w_n)U$$

 $\Rightarrow \mathcal{A}$ and \mathcal{B} are equivalent.

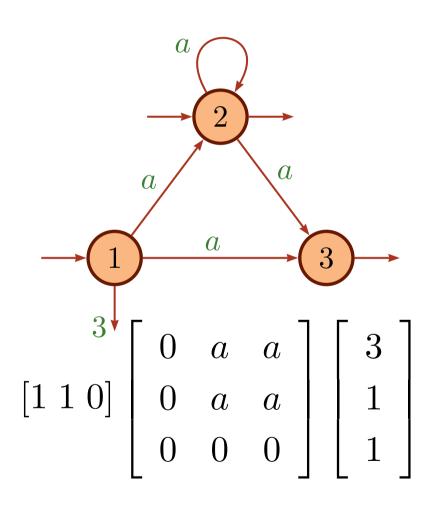
Conjugacy is not an equivalence relation. It is a pre-order.

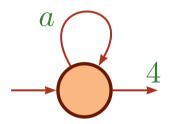


Conjugated in \mathbb{Z} :

$$\begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 0 & -2a & 0 \\ 0 & 0 & 0 & b \\ 2b & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -a & 0 & a \\ b & 0 & a & 0 \\ 0 & b & 0 & b \\ b & 0 & -a & 0 \end{bmatrix}$$

Two equivalent automata may be not conjugated.





$$[1][a][4]$$

Conjugacy and equivalence

Theorem 1: Let \mathcal{A} and \mathcal{B} be

two automata, two ℕ-automata,

two \mathbb{Z} -automata,

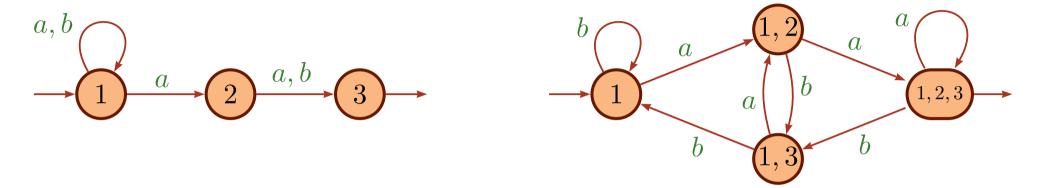
two \mathbb{K} -automata, with \mathbb{K} field,

two functional transducers.

If \mathcal{A} and \mathcal{B} are equivalent, there exists \mathcal{C} such that $\mathcal{A} \stackrel{X}{\longleftarrow} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}$.

Boolean: conjugacy and determinization

$$\det(\mathcal{A}) \stackrel{X}{\Longrightarrow} \mathcal{A}$$



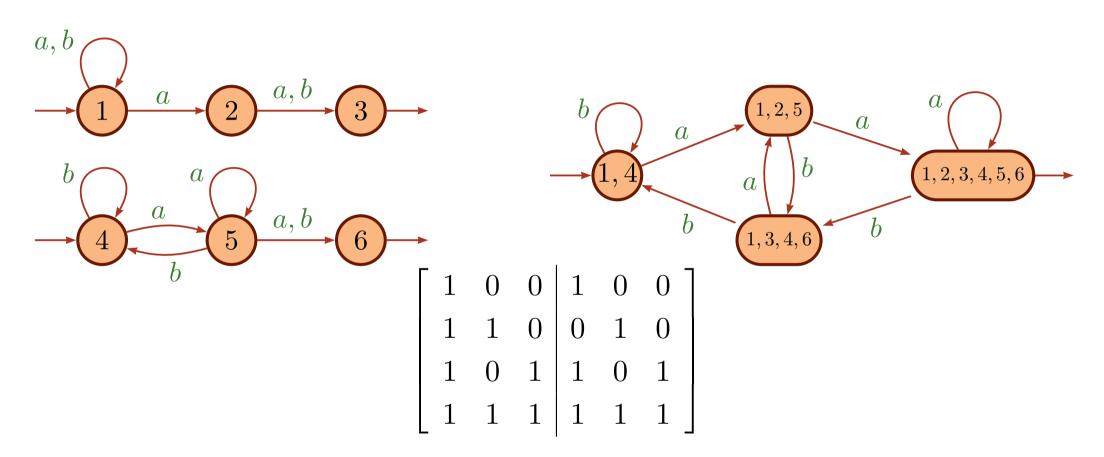
Every state of det(A) is a row vector $I\mu(w)$.

Conjugacy matrix: $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ kewiso: 1

Likewise: $A \stackrel{X}{\Longrightarrow} \operatorname{codet}(A)$

Boolean: conjugacy and determinization

 \mathcal{A} , \mathcal{B} equivalent. Let $\mathcal{C} = \det(\mathcal{A} \cup \mathcal{B})$



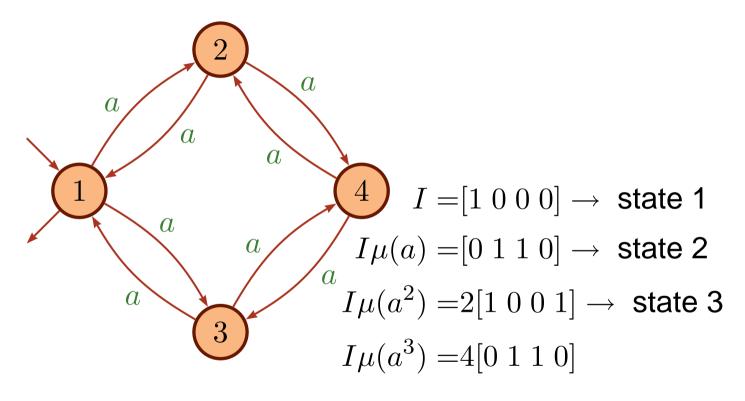
Thus $\mathcal{C} \stackrel{[X|Y]}{\Longrightarrow} \mathcal{A} \cup \mathcal{B}$.

Finally, $\mathcal{C} \stackrel{X}{\Longrightarrow} \mathcal{A}$ and $\mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}$.

→ Theorem 1 holds for Boolean.

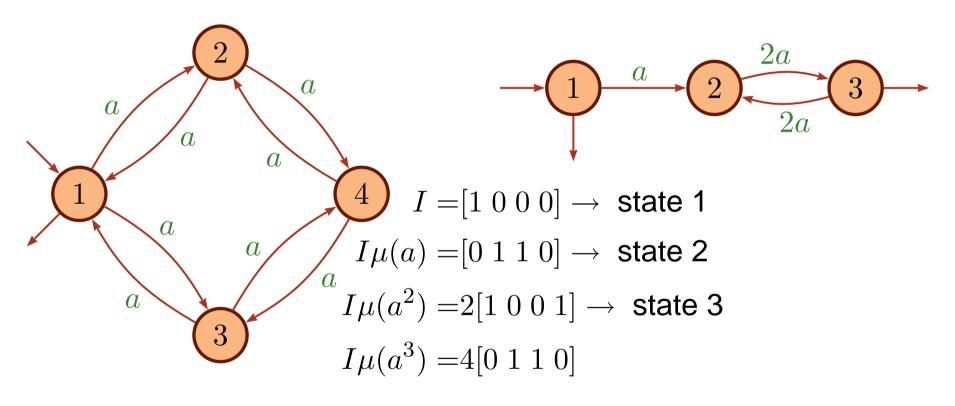
$$\mathcal{A} = (I, \mu, T)$$

Left reduction : computing a basis of $\langle I\mu(w)\rangle$.



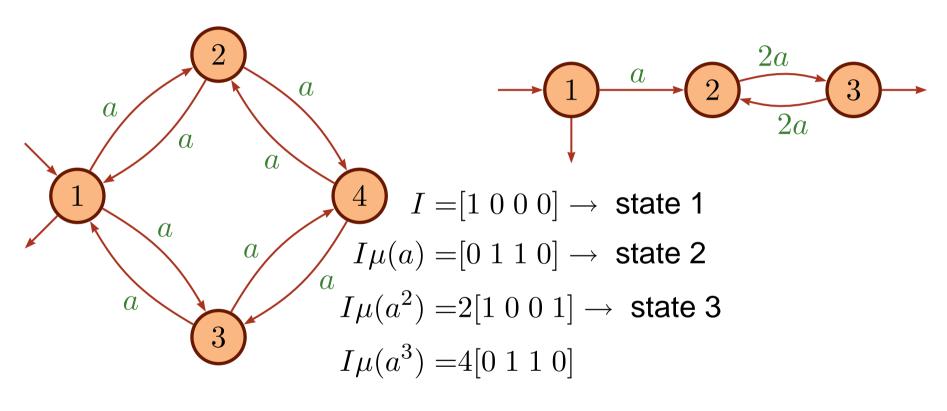
$$\mathcal{A} = (I, \mu, T)$$

Left reduction : computing a basis of $\langle I\mu(w)\rangle$.



$$\mathcal{A} = (I, \mu, T)$$

Left reduction : computing a basis of $\langle I\mu(w)\rangle$.



$$\operatorname{red}_g(\mathcal{A}) \stackrel{X}{\Longrightarrow} \mathcal{A}, \text{ with } X = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array} \right]$$

Likewise $\mathcal{A} \stackrel{X}{\Longrightarrow} \operatorname{red}_d(\mathcal{A})$.

Remarks:

- $-\operatorname{red}_q(\operatorname{red}_d(\mathcal{A}))$ is a reduced automaton (minimal number of states);
- all reduced automata are conjugated both ways with an invertible matrix (change of basis).

A, B equivalent. Let $C = red_g(A + B)$

Thus
$$\mathcal{C} \stackrel{[X|Y]}{\Longrightarrow} \mathcal{A} + \mathcal{B}$$
.

$$\mathcal{C} = (I, M, T)$$
; set $\mathcal{C}' = (I, M, T/2)$.

Finally,
$$C' \stackrel{X}{\Longrightarrow} A$$
 and $C' \stackrel{Y}{\Longrightarrow} B$.

→ Theorem 1 holds on fields.

Integers case

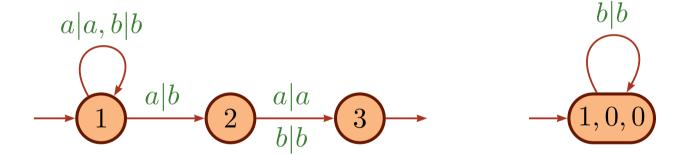
Over \mathbb{Z} , every thing works like over fields: a basis of the \mathbb{Z} -module $\langle I\mu(w)\rangle$ is computed.

Over \mathbb{N} , a generator set of the \mathbb{N} -semi-module containing the vectors $I\mu(w)$ is computed using the good properties of \mathbb{N}^k .

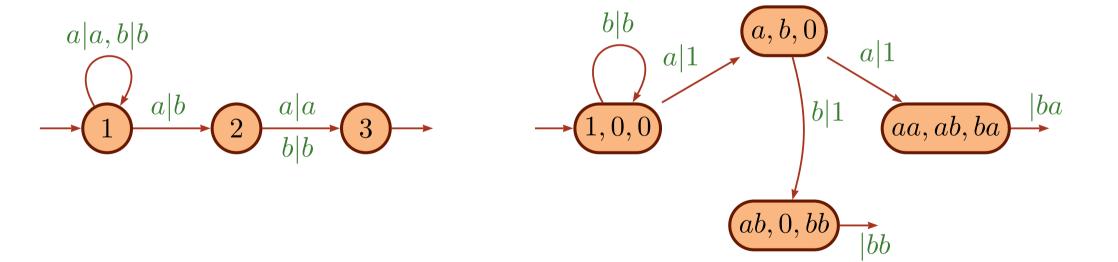
Let $\mathcal{A}=(I,\mu,T)$ and $\mathcal{B}=(J,\nu,U)$ be equivalent \mathbb{N} -automata with resp. dim. r and s.

During the common reduction of A + B, only vectors $[x \mid y]$ such that x.T = y.U can be used in the generator set.

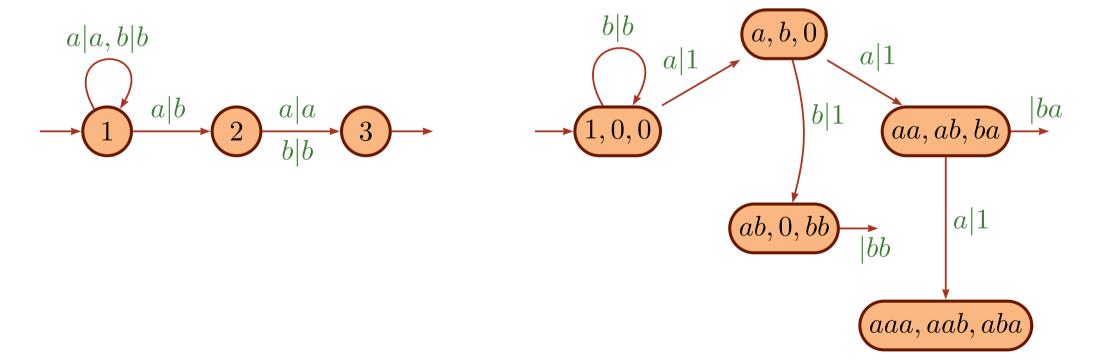
$$I = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \ \mu(a) = \begin{bmatrix} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}, \ \mu(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{bmatrix}, \ T = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



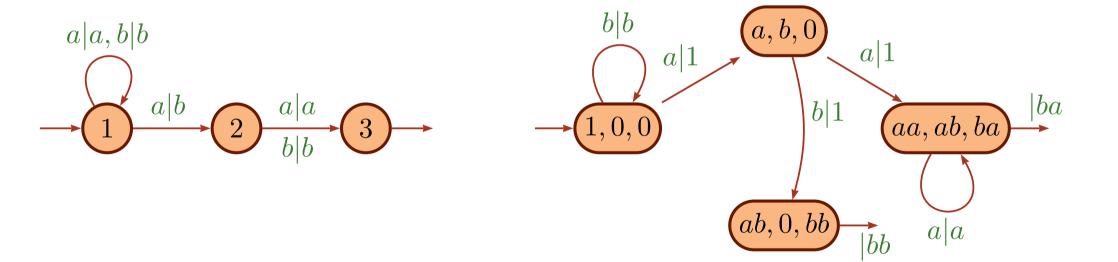
$$I = [1 \ 0 \ 0], \ \mu(a) = \left[egin{array}{ccc} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{array}
ight], \ \mu(b) = \left[egin{array}{ccc} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{array}
ight], \ T = \left[egin{array}{ccc} 0 \\ 0 \\ 1 \end{array}
ight]$$



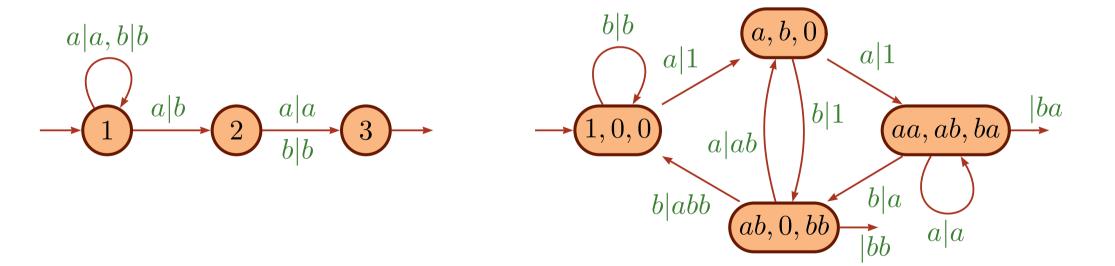
$$I = [1 \ 0 \ 0], \ \mu(a) = \left[egin{array}{ccc} a & b & 0 \ 0 & 0 & a \ 0 & 0 & 0 \end{array}
ight], \ \mu(b) = \left[egin{array}{ccc} b & 0 & 0 \ 0 & 0 & b \ 0 & 0 & 0 \end{array}
ight], \ T = \left[egin{array}{ccc} 0 \ 0 \ 1 \end{array}
ight]$$



$$I = [1 \ 0 \ 0], \ \mu(a) = \left[egin{array}{ccc} a & b & 0 \ 0 & 0 & a \ 0 & 0 & 0 \end{array}
ight], \ \mu(b) = \left[egin{array}{ccc} b & 0 & 0 \ 0 & 0 & b \ 0 & 0 & 0 \end{array}
ight], \ T = \left[egin{array}{ccc} 0 \ 0 \ 1 \end{array}
ight]$$



$$I = [1 \ 0 \ 0], \ \mu(a) = \left[egin{array}{cccc} a & b & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{array}
ight], \ \mu(b) = \left[egin{array}{cccc} b & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{array}
ight], \ T = \left[egin{array}{cccc} 0 \\ 0 \\ 1 \end{array}
ight]$$



 $\mathcal{T} = (I, \mu, T)$ functional transducer

Sequentialization: α words vector

 $\overset{\circ}{\alpha}$: largest common prefix

$$\overline{\alpha} = \overset{\circ}{\alpha}^{-1} \alpha$$

$$\operatorname{seq}(\mathcal{T}) \colon \stackrel{\circ}{\overline{I}} \overline{\overline{I}} = \overline{\alpha} \mu(a)$$

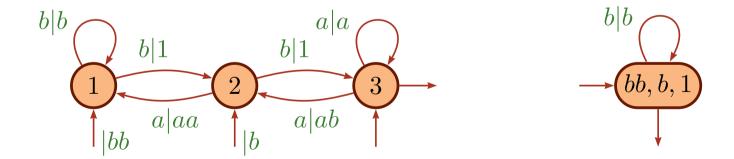
 \triangle \mathcal{T} non sequentializable \Longrightarrow seq (\mathcal{T}) infinite

Idea: if components of α are too different, they cannot be used for the same words.

- →We require:
 - every $\overline{\alpha}$ has to contain the empty word
 - if α_i is non minimal, there exists α_j , prefix of α_i such that

$$|\alpha_i| - |\alpha_j| < K(\mathcal{T})$$

Otherwise α is split into a union of disjoint support vectors that fit these properties. The transducer that follows is not sequential. \rightarrow qseq(\mathcal{T})

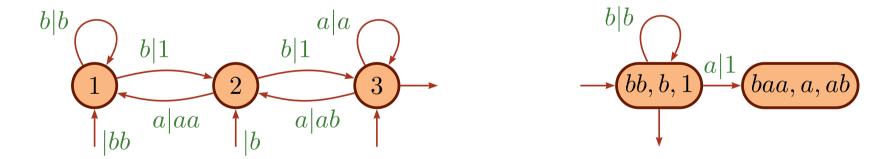


Idea: if components of α are too different, they cannot be used for the same words.

- →We require:
 - every $\overline{\alpha}$ has to contain the empty word
 - if α_i is non minimal, there exists α_j , prefix of α_i such that

$$|\alpha_i| - |\alpha_j| < K(\mathcal{T})$$

Otherwise α is split into a union of disjoint support vectors that fit these properties. The transducer that follows is not sequential. \rightarrow qseq(\mathcal{T})

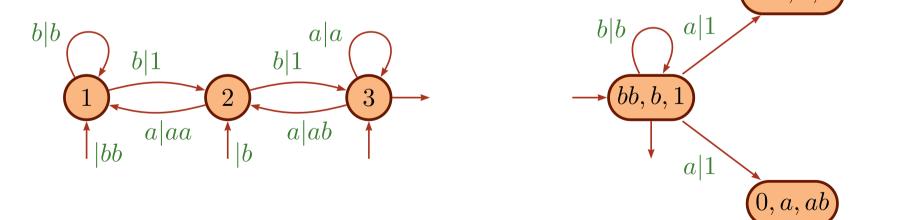


Idea: if components of α are too different, they cannot be used for the same words.

- →We require:
 - every $\overline{\alpha}$ has to contain the empty word
 - if α_i is non minimal, there exists α_j , prefix of α_i such that

$$|\alpha_i| - |\alpha_j| < K(\mathcal{T})$$

Otherwise α is split into a union of disjoint support vectors that fit these properties. The transducer that follows is not sequential $\max_{baa,\,0,\,0} q(\mathcal{T})$



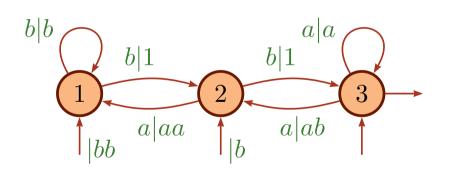
Functional transducers: quasi-sequentialization

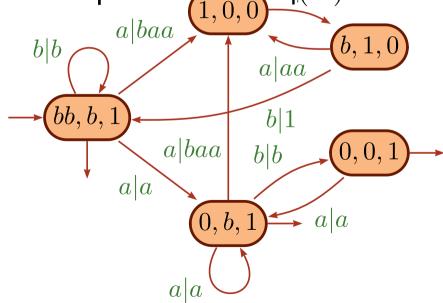
Idea: if components of α are too different, they cannot be used for the same words.

- →We require:
 - every $\overline{\alpha}$ has to contain the empty word
 - if α_i is non minimal, there exists α_j , prefix of α_i such that

$$|\alpha_i| - |\alpha_j| < K(\mathcal{T})$$

Otherwise α is split into a union of disjoint support vectors that fit these properties. The transducer that follows is not sequential α





Functional transducers: quasi-sequentialization

Idea: if components of α are too different, they cannot be used for the same words.

→We require:

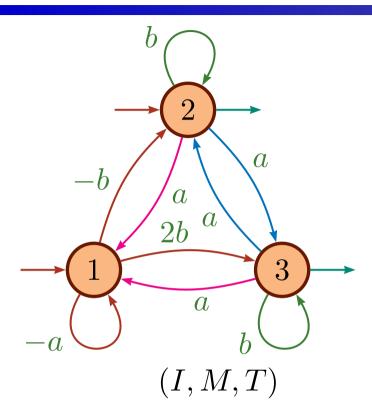
- every $\overline{\alpha}$ has to contain the empty word
- if α_i is non minimal, there exists α_j , prefix of α_i such that

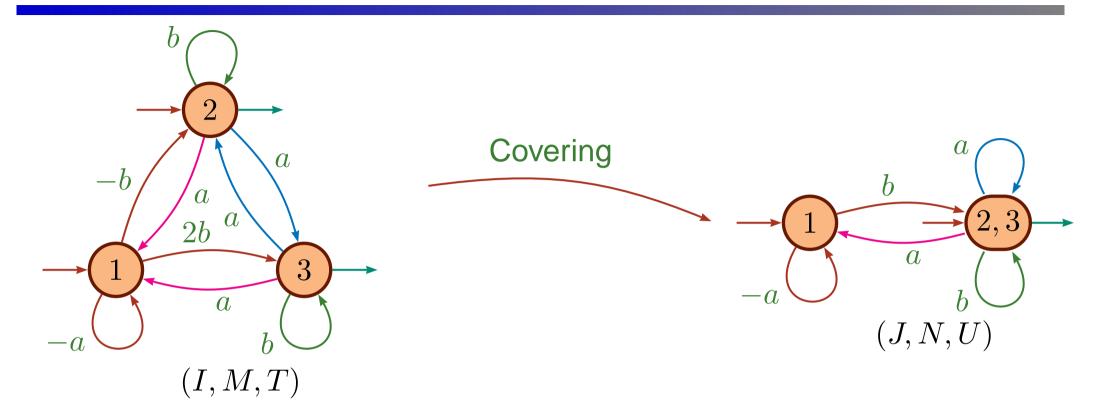
$$|\alpha_i| - |\alpha_j| < K(\mathcal{T})$$

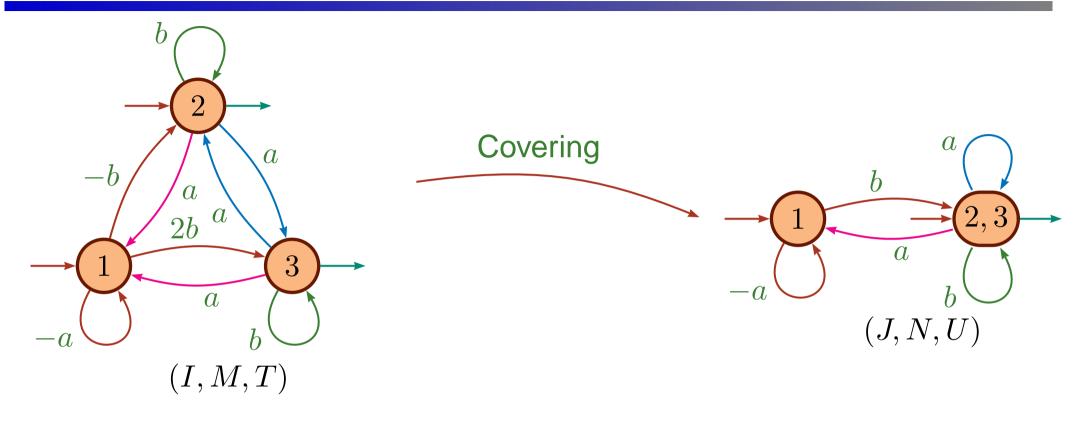
Otherwise α is split into a union of disjoint support vectors that fit these properties. The transducer that follows is not sequential. \rightarrow qseq(\mathcal{T})

What is the mean?

- The transducer is unambiguous
- $-\operatorname{\mathsf{qseq}}(\mathcal{T}) \stackrel{X}{\Longrightarrow} \mathcal{T}$
- qseq $(T \cup T')$ is conjugated to T and à T' (if they are equivalent).
 - → Theorem 1 holds for functional transducers.







$$\begin{bmatrix} -a & -\overline{b} & \overline{2b} \\ a & b & a \\ a & a & b \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$-\circ -$$

$$\begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -\overline{b} & \overline{2b} \\ a & b & \overline{a} \\ a & \overline{a} & \overline{b} \end{bmatrix} \longrightarrow \begin{bmatrix} -a & b \\ a & a+b \end{bmatrix}$$

$$\begin{bmatrix} -a & -b & 2b \\ \mathbf{a} & b & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & b \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -a & b \\ \mathbf{a} & \mathbf{a} + b \end{bmatrix}$$

Initial:
$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix},$$
 Final:
$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Definition: A = (I, M, T) and B = (J, N, U), \mathbb{Z} -automata.

A is a *covering* of B is a *quotient* of A

if there exists an amalgamation matrix X such that

$$IX = J$$
, $MX = XN$, et $T = XU$.

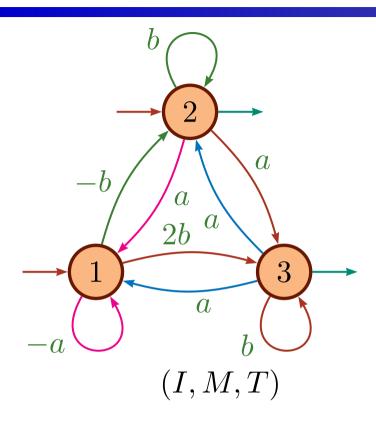
Definition: A = (I, M, T) and B = (J, N, U)

 \mathcal{A} is a **co-covering** of \mathcal{B} \mathcal{B} is a **co-quotient** of \mathcal{A} that

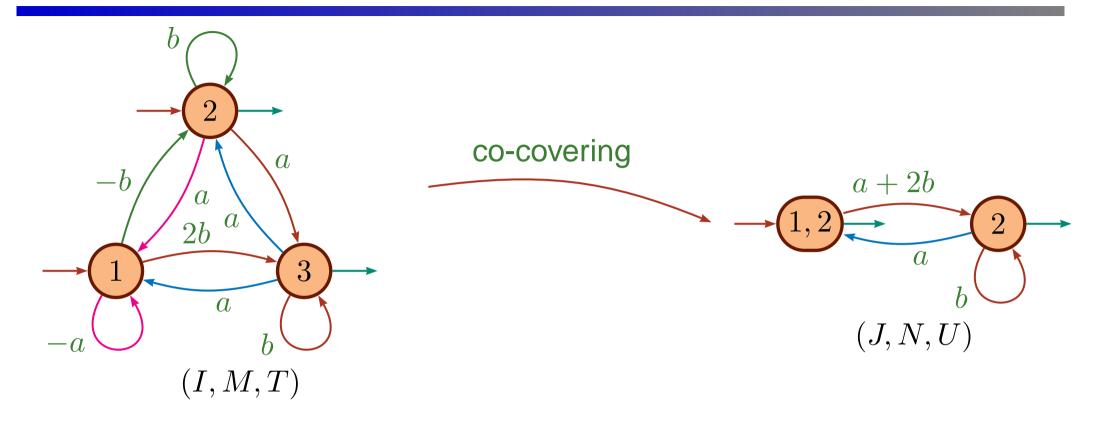
if there exists an amalgamation matrix \boldsymbol{X} such

$$I = J^t X$$
, ${}^t X M = N^t X$, et ${}^t X T = U$.

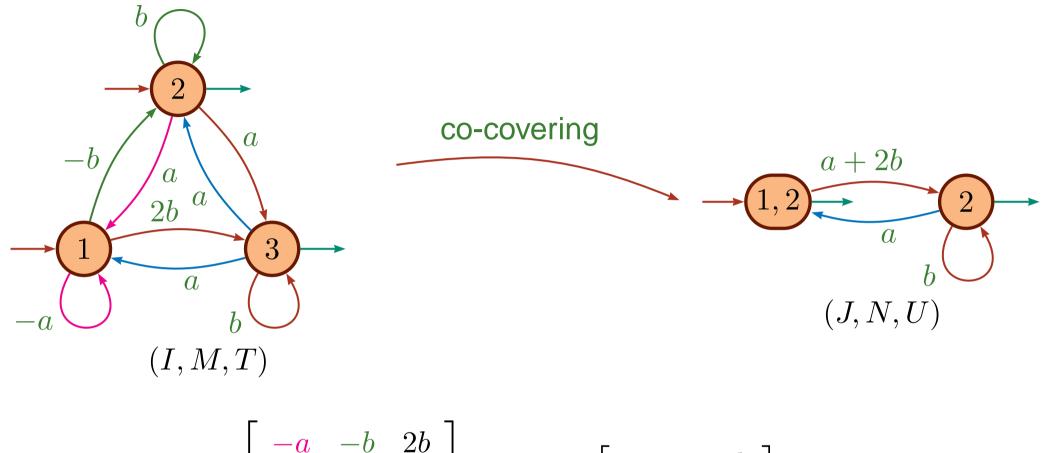
co-covering / co-quotient



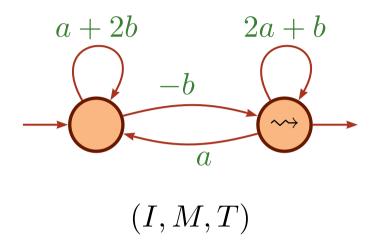
co-covering / co-quotient

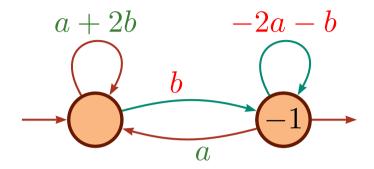


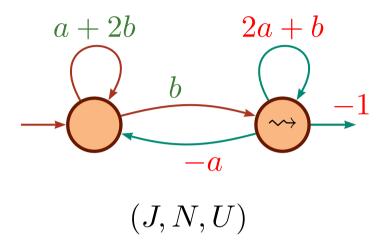
co-covering / co-quotient

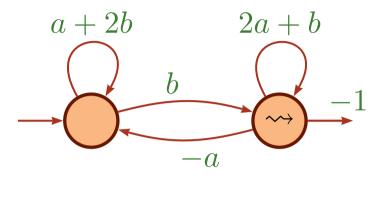


$$\begin{bmatrix} -a & -b & 2b \\ a & b & a \\ a & a & b \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & a+2b \\ a & b \end{bmatrix}$$







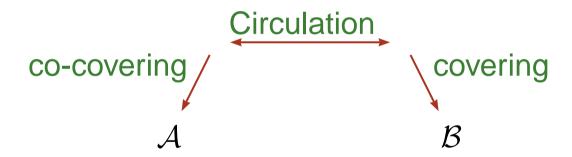


$$I\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = J, \quad M\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} N, \quad T = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} U$$

Theorem 2: Let \mathcal{A} and \mathcal{B} be

two \mathbb{Z} -automata two \mathbb{K} -automata, where \mathbb{K} field two functional trim transducers

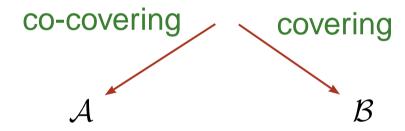
If $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$, then

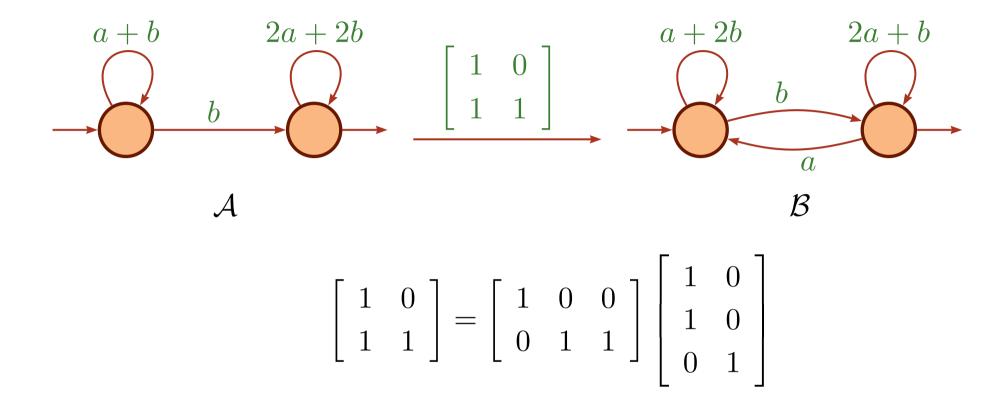


Theorem 2: Let \mathcal{A} and \mathcal{B} be

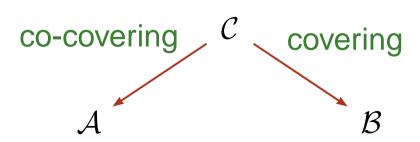
two trim automata two trim N-automata

If $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$, then

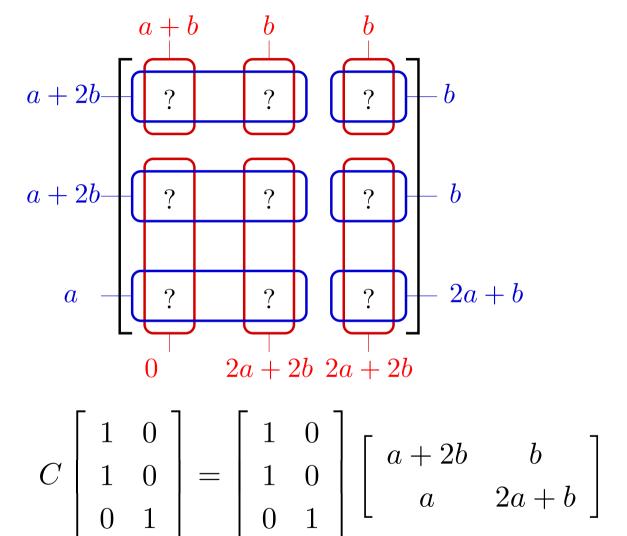




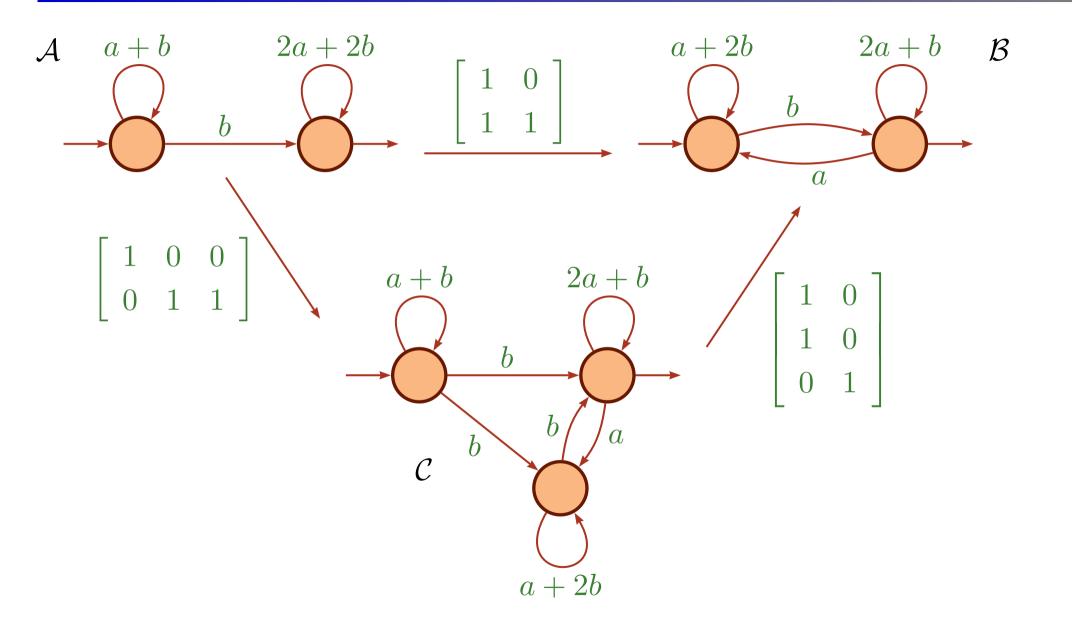
Let build C = (K, C, V) such that



$$\begin{bmatrix} a+b & b \\ 0 & 2a+2b \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} C$$



$$\begin{bmatrix} a+b & b & b \\ 0 & a+2b & b \\ 0 & a & 2a+2b \end{bmatrix}$$



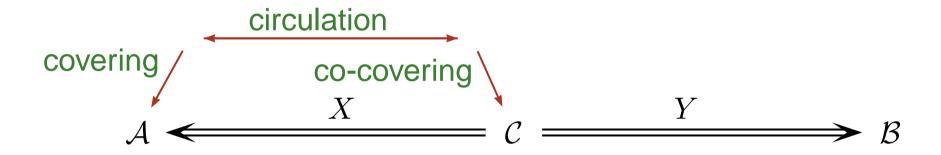
$$|\mathcal{A}| = |\mathcal{B}|$$

Theorem 1:

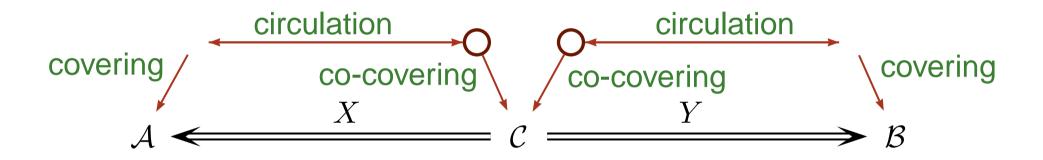
$$A \longleftarrow X \longrightarrow C \longrightarrow Y$$

$$|\mathcal{A}| = |\mathcal{B}|$$

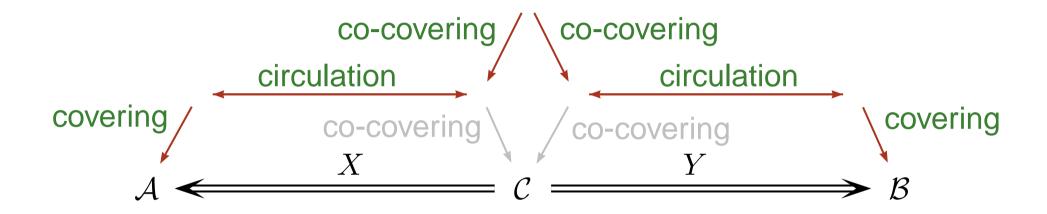
Theorem 2:



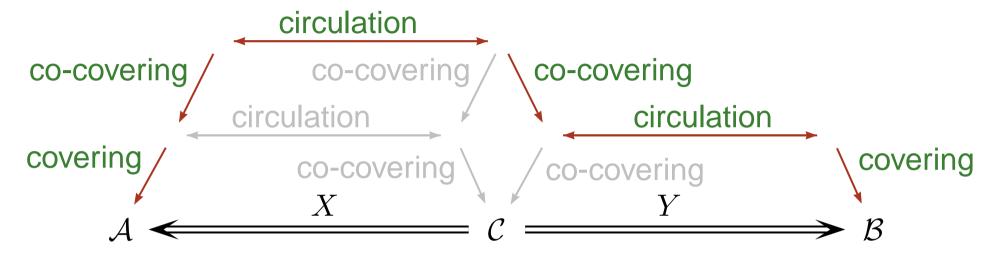
$$|\mathcal{A}| = |\mathcal{B}|$$



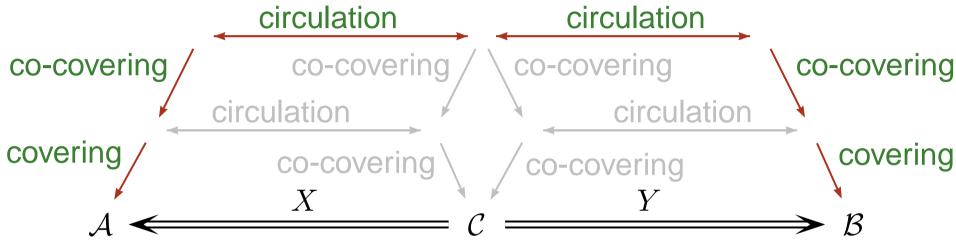
$$|\mathcal{A}| = |\mathcal{B}|$$



$$|\mathcal{A}| = |\mathcal{B}|$$

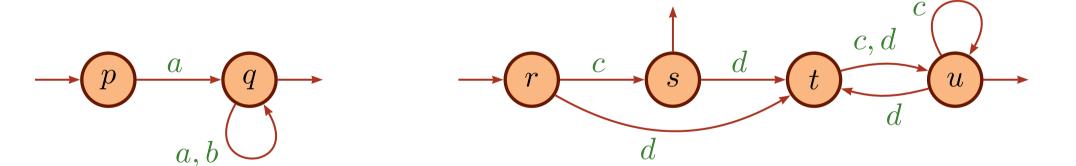


$$|\mathcal{A}| = |\mathcal{B}|$$



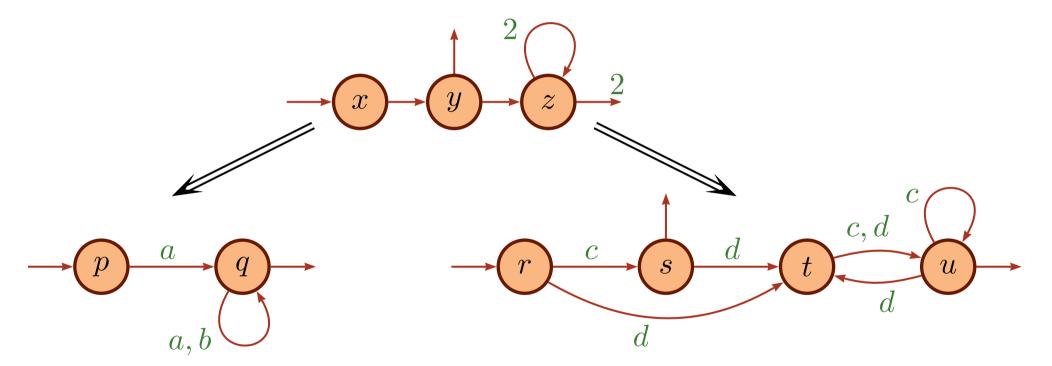
Proposition: If two rational languages have the same growth function, there exists between them a letter-to-letter rational bijection.

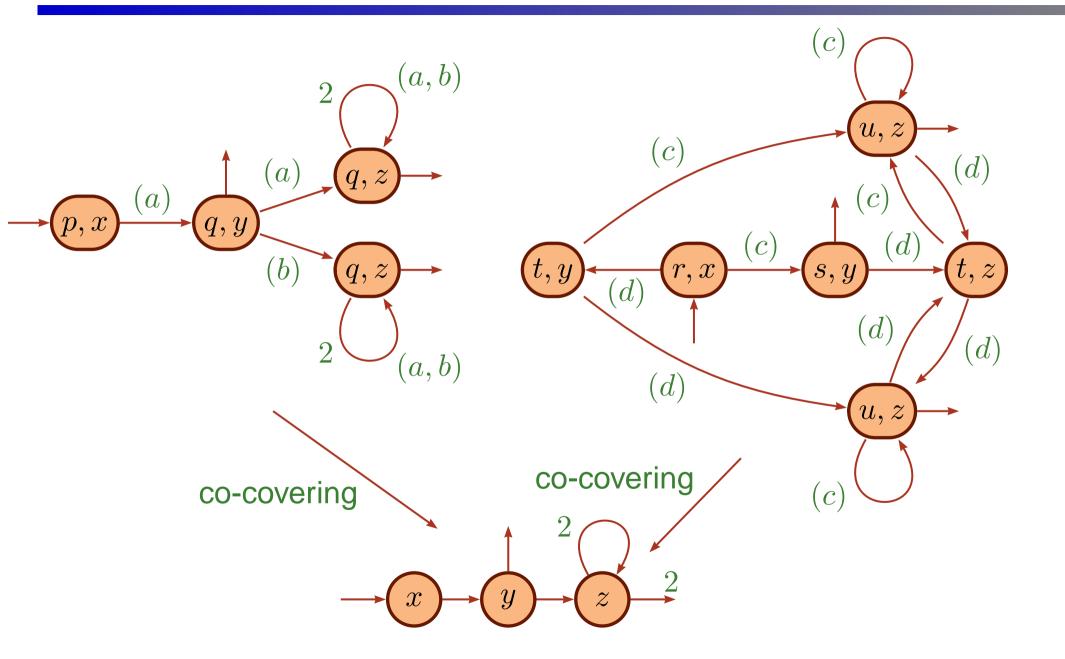
Example: $L_1 = a(a + b)^*$ and $L_2 = (c + dc + dd)^* \setminus cc(c + d)^*$:

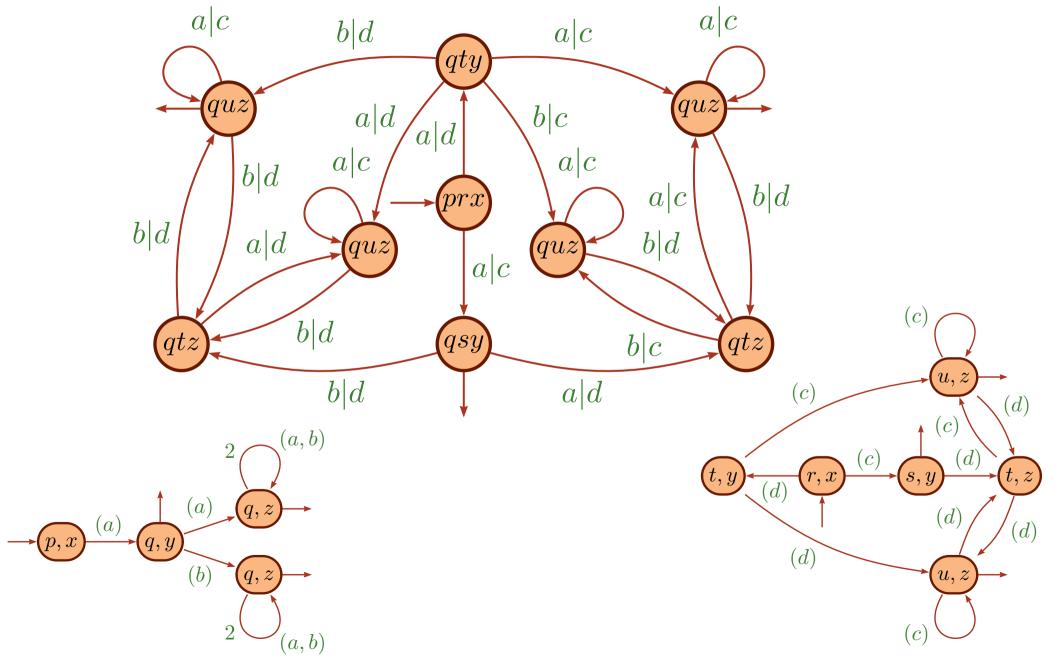


Proposition: If two rational languages have the same growth function, there exists between them a letter-to-letter rational bijection.

Example: $L_1 = a(a + b)^*$ and $L_2 = (c + dc + dd)^* \setminus cc(c + d)^*$:







LITIS - 14 december 2006 - p. 30/32

Conjugacy and dynamical systems

Finite Equivalence Theorem (Parry):

Two sofic subshifts are image by a $bloc-map\ finite-to-one$ mapping of the same finite type subshift iff they have the same entropy.

proof (very sketchy):

Furstenberg Lemma: X, Y same entropy $\Rightarrow XF = FY$, $F \geqslant 0$, $F \neq 0$ $XF = FY \Rightarrow$ existence of $bloc\text{-}map\ finite\text{-}to\text{-}one\ mappings}$

Conclusion

- Work in progress...
- What can we say about non functional transducers, (max/min,+) automata, etc. ?
- What is the link between the decidability of equivalence and the decidability of conjugacy?