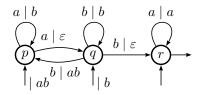
Université de Marne-la-Vallée

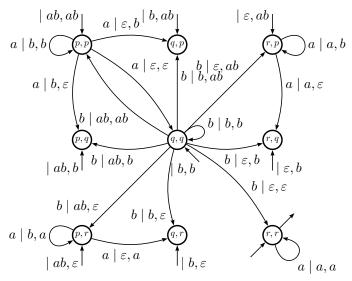
Master Science Informatique 2ème année. Tronc commun Examen d'algorithmique et automates (Lombardy) Corrigé 15 novembre 2006. Durée : 1h30

Exercice 1.

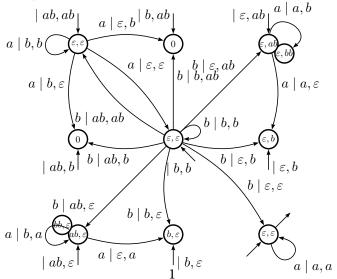
1) u = aab et v = abb. w = sufpref(u, v) est donc égal à ab et v' = b. D'après le tableau, on doit donc ajouter à \mathcal{T}_0 une transition de p à p avec entrée a et sortie b:



Calculons le carré de ce transducteur :

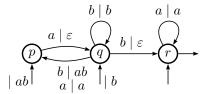


Tous les états sont initiaux, mais l'unique état final est (r,r). Les seuls états à partir desquels on peut aller en (r,r) sont (p,p) et (q,q). La partie émondée du produit est donc restreinte à ces trois états, donc l'automate support est non ambigu et le transducteur réalise une fonction. Pour savoir si il s'agit d'une fonction séquentielle, on calcule la valeur associée à chaque état.

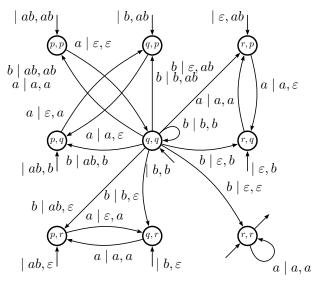


Il y a un conflit pour attribuer une valeur aux états (p,r) et (r,p), donc leur valeur est 0; ce sont des états accessibles dans des ciruits dont la sortie n'est pas vide. Le transducteur ne réalise donc pas de fonction séquentielle.

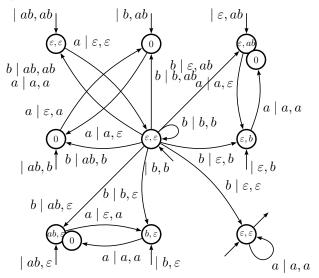
2) u = aab et v = ba. w = sufpref(u, v) est donc égal à b et v' = a. D'après le tableau, on doit donc ajouter à \mathcal{T}_0 une transition de q à p avec entrée a et sortie a:



Calculons le carré de ce transducteur :



Tous les états sont initiaux, mais l'unique état final est (r,r). Les seuls états à partir desquels on peut aller en (r,r) sont (p,p) et (q,q). La partie émondée du produit est donc restreinte à ces trois états, donc l'automate support est non ambigu et le transducteur réalise une fonction. Pour savoir si il s'agit d'une fonction séquentielle, on calcule la valeur associée à chaque état.



Les états (p,r), (r,p), (p,q) et (q,p) ont une valeur 0; ce sont des états accessibles dans des ciruits dont la sortie n'est pas vide. Le transducteur ne réalise donc pas de fonction séquentielle.

3) Dans l'exemple de l'exercice 1, avec u = aab, v = abb, w = ab, u' = a, on constate que l'image de a^nab par le transducteur \mathcal{T}_v est $ab.b^n$. Par contre, l'image de a^n par \mathcal{T}_v est a^n .

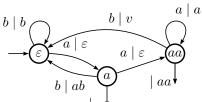
Dans l'exemple de l'exercice 2, avec u = aab, v = ba, w = b, u' = aa, on constate que l'image de $(aa)^n b$ par le transducteur \mathcal{T}_v est $ab.a^n$. Par contre, l'image de $(aa)^n$ par \mathcal{T}_v est $(aa)^n$.

De façon plus générale, comme u = aab, w peut prendre trois valeurs :

- si $w=ab,\,u'=a,\,v=ab.v'$ et l'image de a^nab par le transducteur est $ab.v'^n$; l'image de a^n par \mathcal{T}_v est a^n .
- si w=b, u'=aa, v=b.v' et l'image de $(aa)^nb$ par le transducteur est $b.v'^n$; l'image de $(aa)^n$ par \mathcal{T}_v est $(aa)^n$.
- si $w = \varepsilon$, $u' = aab \ v = v'$ et l'image de $(aab)^n$ par le transducteur est v^n .

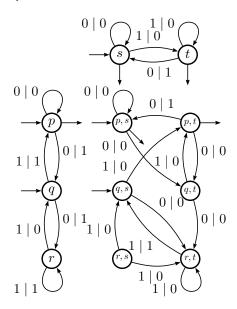
Dans les 2 premiers cas, on voit qu'il existe des mots à distance préfixe bornée $(d(u'^n w, u'^n) = |w|)$ dont les images sont à distance non bornée $(d(ab.v'^n, a^n) = n(1 + |v'|)$ et $d(b.v'^n, (aa)^n) = 1 + n(2 + |v'|)$). Dans ces deux cas, la fonction réalisée n'est donc pas séquentielle.

Si $w=\varepsilon$, la fonction réalisée consiste à repérer les facteurs u dans l'entrée et à les remplacer par v en recopiant les autres lettres, ce qui peut se faire de manière séquentielle :



4) Soit x non vide tel que u = x.u'' et v = v''.x. Alors l'image de u.u'' par \mathcal{T}_v est v.u'' = v''.x.u'' = v''.u et contient donc un facteur u.

Exercice 2. 1)



2) Cette construction, comme le produit d'automate, a pour complexité O(nm), où n et m sont les tailles des transducteurs de départ.

3) Si \mathcal{T}_1 et \mathcal{T}_2 sont séquentiels, \mathcal{T}_1 a un unique état initial p et \mathcal{T}_2 a un unique état initial q, donc $\mathcal{T}_2 \circ \mathcal{T}_1$ a pour unique état initial (p,q).

Pour tout état (p,q) de $\mathcal{T}_2 \circ \mathcal{T}_1$, pour toute lettre d'entrée a, comme \mathcal{T}_1 est séquentiel, il y a au plus une transition partant de p avec entrée a; soit b la sortie de cette transition, comme \mathcal{T}_2 est séquentiel, il y a au plus une transition partant de p avec entrée b (soit c la sortie de cette transition). Donc il y a au plus une transition dans $\mathcal{T}_2 \circ \mathcal{T}_1$ partant de (p,q) avec entrée a (sa sortie est c).

Donc $\mathcal{T}_2 \circ \mathcal{T}_1$ est séquentiel.

4) Soit $u=u_1u_2...u_n$ un mot dans le domaine de f_1 , donc accepté par \mathcal{T}_1 . Donc il existe un calcul partant d'un état initial p_0 jusqu'à un état final p_n dont l'entrée est u et la sortie de tout calcul étiqueté par u est $f_1(u)=v=v_1v_2...v_n$. On a donc

$$\rightarrow p_0 \xrightarrow{u_1|v_1} p_1 \dots p_{n-1} \xrightarrow{u_n|v_n} p_n \rightarrow$$

Si v est dans le domaine de f_2 , v est accepté par \mathcal{T}_2 , et tout calcul d'entrée v a pour sortie $f_2(v)=w=w_1w_2...w_n$; il existe donc un état initial q_0 et un état final q_n tel que :

$$\rightarrow q_0 \xrightarrow{v_1|w_1} q_1 \dots q_{n-1} \xrightarrow{v_n|w_n} q_n \rightarrow$$

Donc dans $\mathcal{T}_2 \circ \mathcal{T}_1$, on a le calcul

$$\rightarrow (p_0, q_0) \xrightarrow{u_1 \mid w_1} (p_1, q_1) \dots (p_{n-1}, q_{n-1}) \xrightarrow{u_n \mid w_n} (p_n, q_n) \rightarrow$$

Donc $\mathcal{T}_2 \circ \mathcal{T}_1$ réalise une relation qui contient $f_2 \circ f_1$.

Réciproquement, si $\mathcal{T}_2 \circ \mathcal{T}_1$ contient un calcul

$$\rightarrow (p_0, q_0) \xrightarrow{u_1 \mid w_1} (p_1, q_1) \dots (p_{n-1}, q_{n-1}) \xrightarrow{u_n \mid w_n} (p_n, q_n) \rightarrow,$$

alors il existe un mot $v = v_1 v_2 ... v_n$ tel que

$$\to p_0 \xrightarrow{u_1|v_1} p_1 \dots p_{n-1} \xrightarrow{u_n|v_n} p_n \to$$

est un calcul de T_1 et

$$\rightarrow q_0 \xrightarrow{v_1|w_1} q_1 \dots q_{n-1} \xrightarrow{v_n|w_n} q_n \rightarrow$$

est un calcul de \mathcal{T}_2 . Donc la relation réalisée par $\mathcal{T}_2 \circ \mathcal{T}_1$ est contenue dans $f_2 \circ f_1$. En conclusion, $\mathcal{T}_2 \circ \mathcal{T}_1$ réalise $f_2 \circ f_1$.