
Real-Time Global Illumination using Topological

Information
Laurent Noël and Venceslas Biri

Abstract— Indirect Illumination is a key element to achieve

realistic rendering. Unfortunately, since computing this effect is

costly, there are few methods that render it with real-time frame

rates. In this paper we present a new method based on virtual

point lights and topological information about the scene to render

indirect illumination in real-time.

Keywords- real time rendering, global illumination, topology,

interactive simulations

I. INTRODUCTION

Interactive 3D applications such as video games have
become a lot more realistic last years due to the introduction of
programmable hardware and the possibility to implement new
kinds of algorithms based on global illumination techniques.
Global illumination consists in the simulation of all light
exchanges in a virtual scene, allowing the rendering of indirect
illumination. It adds a lot of realism by simulating effects such
as color bleeding or caustics. In some configurations, like
indoor scenes, indirect illumination becomes the only way to
light some parts of the scene (Fig. 1).

Unfortunately, such indirect, global, illumination remains a
difficult challenge to compute for two reasons. First, the
indirect luminance on any visible point has to be correctly
evaluated. Secondly, and in order to compute correctly this
luminance, visibility information between each couple of
points (i.e. knowing if they are mutually visible) of the scene
must be available.

Many methods have attempted to achieve real time global
illumination, but recently a regain of interest has been noticed
for methods based on Virtual Point Lights [1]. Such techniques

send virtual rays from primary light sources. These rays
intersect the virtual 3D scene and, on intersection points, create
secondary lights called Virtual Points Light (VPLs). The
higher the number of secondary lights, the better the global
illumination is. Unfortunately, interactive evaluation of the
illumination coming from a large set of VPLs remains
challenging, especially when the application needs to include
shadow computations (i.e. to evaluate the visibility between
VPLs and points viewed by the camera).

In this paper we present a new method to render a scene
illuminated by a large set of VPLs in real-time. We
approximate visibility using a clustering of the VPLs obtained
thanks to a segmentation of the scene in approximately convex
areas. The segmentation is built using a curvilinear skeleton of
the empty space of the scene that must be pre-computed. A set
of disk that separate these convex areas are also computed and
used to associate pixels with far away VPLs that potentially
light them. The shadows are therefore rendered implicitly using
this association.

Our contributions in this paper are:

 A new 3D segmentation of a 3D virtual scene based
on quasi-convex area

 The definition of a new topological data structure
(“Visibility Gates”) based on the previous 3D
segmentation that can handle visibility between any
pair of points.

 The use of previous data structures to achieve the
rendering, in real-time, of global illumination in a
rendering engine.

We first present previous work related to our method, then
give a global overview of our method before detailing each

Figure 1. The left image is a rendering showing only direct illumination. The right image adds indirect illumination computed with our method. We can see new
features that appear, only illuminated by indirect light like the left wall or the back of the pillars.

step. We finish by discussing our results and giving insights
about future work.

II. PREVIOUS WORK

Global illumination in games is still a real challenge.
Indeed, global illumination aims to compute all the light
exchanges between surfaces of a 3D virtual scene. Of course,
offline techniques exist able to render photorealistic image as
pure classical Path-tracing using Monte Carlo [2, 3], Photon
Mapping [4, 5, 6] or Metropolis Light Transport [7]. But none
of these algorithms is able to produce images in real-time i.e. at
30 frames per seconds.

Therefore, strategies exist to approximate this global
illumination in order to achieve real-time rendering. For
example, parts of the global illumination can be pre-computed
using any offline method and introduced at rendering thanks to
classical light mapping or more recently using pre-computed
radiance transfer [8]. For example the graphic engine of Halo
[9] is based on the pre-computation of the global illumination
using photon mapping [4] and a decomposition of the incident
light into spherical harmonics [10]. Unfortunately these
techniques are limited to static scene or static lighting and are
therefore not suitable for games with dynamic lights. Other
methods focus on the first bounce of the light source. This
leads to efficient algorithms like Reflective Shadow Maps
(RSM) [11] that can produce, in real-time, all illumination with
two bounces of light on surfaces. Since efficient, this technique
use a lot of memory per primary light which prevent its use for
massive lighting. Reflective Shadow Maps has been use in the
graphic engine of Crytek, the CryEngine 3, with Light
Propagation Volume.

Indeed, Crytek presented a new technique [12] based on the
RSM and on light propagation volume that use the GPU to
compute diffuse indirect lighting from a bunch of secondary
light inside a cascade of volume. Once again, this technique is
impressive but has several limitation especially with secondary
shadows (shadows casted by secondary light sources) and also
by the fact that the indirect light scatter very quickly. For its
part, the Unreal graphic engine uses a technique called voxel
cone tracing in a sparse voxel octree [13]. This technique
which is difficult to implement works in real-time and offer
secondary bounces of light. But it produces coarse indirect
illumination especially when dealing with secondary shadows
and is limited to two bounces of lights.

Finally, several techniques use the scalability of VPLs [14].
Indeed, this method allows the use of massive lighting, and is
not limited in the number of bounce used to create secondary
point lights. The number of VPLs usable is configurable what
gives its scalability. Some methods focus on photorealistic
rendering [15, 16, 17] whereas some deal with real-time
rendering like [18, 19]. We focus on this last technique which
uses deferred shading, a technique that store geometric
information viewed from the camera, and perform a per-pixel
lighting with clusters of VPLs. Secondary shadows are
computed using a special algorithm called imperfect shadow
maps. Compared to this approach, our algorithm doesn't use
any kind of shadow maps for indirect illumination. Instead we
choose to only use topological information about the scene to

approximate the rendering of shadows, avoiding complex
computation per VPL.

III. OVERVIEW

We start by a global overview of our method before
detailing each step. Some pre-processing, depending only on
the static part of the scene, are only done during initialization
and allow the construction of topological data structure. These
are then used during rendering.

The first part occurs during initialization and computes the
topological data structure. First we voxelize the scene and we
apply a thinning process [20] to compute a centered curvilinear
skeleton from the voxels filling the empty space (where light
travels, see Fig. 2). This thinning step is done only on the static
part of the virtual scene, consisting, for example, on the walls.
Therefore this step can be done once during initialization.

The skeleton is a graph that has the same topology as the
empty space. Each node of this graph stores its position and the
radius of the maximal ball contained in the empty space
centered in this node. This radius gives us geometrical
information about the scene (see Fig. 6). By using this
information for all nodes, we are able to build clusters of nodes
of the skeleton such that each cluster represents a portion of the
scene approximately convex. We call these clusters Visibility
Clusters. In the rendering pass we avoid visibility test between
points of the same clusters by relying on the quasi-convexity
property of the clusters.

Finally, based on the skeleton and the visibility clusters we
compute a set of disks that separate the clusters. Those disks
are later used in the rendering step to approximate the lighting
that occurs between different neighbor clusters. We call them
Visibility Gates.

The second part of our technique occurs during rendering
and exposes the use of previous computed data structure to
achieve real-time global illumination. Our rendering step
implements a deferred shading pipeline to separate the
processing of geometry and lights.

We approximate indirect illumination by a finite set of
Virtual Point Lights. The segmentation of the scene into
visibility clusters allows us to efficiently assign subsets of
VPLs to pixels such that there is a high probability that the
view sample (i.e. a point visible from the camera) of a pixel is
visible from each VPL assigned to that pixel. To improve
performances for this assignment, we use a recent method
called Clustered Shading [21]. This technique groups view
samples with similar properties (3D-positions and visibility
cluster in our case). A list of VPLs is then assigned to each of

Figure 2. An illustration of the voxelization of the scene Sponza and the

curvilinear skeleton of its empty space.

these groups, based on the chosen properties. This saves us the
need to do the association for each couple pixel-VPL, which is
too slow.

After this assignment pass, we compute final gathering
using, for each pixel, the VPLs that have been assigned to its
group. To get a complete rendering, we sum our result with
direct illumination. For this step we use shadow maps
computed at primary light source positions.

IV. TOPOLOGICAL CONSTRUCTIONS

Our method is based on topological data built from a
voxelized representation of the scene. In this section we detail
the pre-processing steps to compute these data.

A. Voxelization and Thinning

As said previously, the scene is first voxelized. This can be
done with any state-of-the-art real-time method on the GPU by
exploiting the rasterization pipeline [22]. For our algorithm we
only need a binary voxelization.

A curvilinear skeleton is then computed from the empty
space of the voxelization (voxels that does not cover surfaces)
with a thinning process. We guaranty that the skeleton is
centered and has the same topology that the empty space by
using an algorithm that process in the cubical complex
framework [20]. The thinning process outputs a graph
embedded in 3D space and a 3D grid that gives for each voxel
the index of the nearest node of the skeleton (with respect to
the geometry of the empty space). This grid allows us to obtain
the nearest node of the skeleton for any 3D position of the
scene in constant time. For each node we also get the radius of
the maximal ball contained in the empty space (see the left
image of Fig. 6). This radius will be used later to build
visibility clusters mentioned in the overview.

B. Clustering of the skeleton

The next step is to compute the visibility clusters. A
visibility cluster is a set of nodes from the skeleton such that
the union of the maximal balls centered in these nodes is quasi-
convex. We have developed an ad-hoc method to compute
such clusters based on the radius of maximal balls and
curvature along the graph of the skeleton. This construction is
divided in two steps: a segmentation of the skeleton to keep
few nodes that contains the essential geometrical and
topological information; then the clustering that we apply
based on the segmented skeleton.

1) Segmentation of the skeleton

The goal of the segmentation is to keep few nodes from the

original skeleton that contains most of the geometrical and
topological information of the skeleton. To segment the
skeleton, we classify each node based on the topology, on the
curvature and on the coverage by maximal balls. At the end,
nodes that have not been classified are removed (see Fig. 6).
This section details the algorithm that classifies nodes.

First, each node of degree different than two is classified as
a topology node (Fig. 3). The degree of a node is its number of
neighbors. Such nodes encode connections in the graph and

removing them can alter topology of the graph, so we classify
them to ensure they are kept in the segmented skeleton.

Then we regroup nodes of degree two by lines. A line is a
sequence 𝐿 = (𝑛1, 𝑛2, … , 𝑛𝑘) of nodes such that 𝑛𝑖 is a
neighbor of 𝑛𝑖+1 and 𝑛1and 𝑛𝑘 have both a neighbor of degree
different than two respectively called extrema of 𝐿 and denoted
by 𝐿1 and 𝐿𝑘 (Fig. 5). These nodes are both topology nodes
that have been identified in the first step. Such a sequence can
be replaced by an edge between 𝐿1and 𝐿𝑘 without changing the
topology of the graph. But doing so can remove too much
geometric information: some edges will pass through walls and
important variations in the radius of maximal balls can be lost.
We want to identify these nodes.

Let 𝑛𝑖 be a node of a line 𝐿. We define the curvature of 𝑛𝑖

by 𝑐𝑢𝑟𝑣(𝑛𝑖) =
𝑑𝑖𝑠𝑡(𝑛𝑖,𝐿1𝐿𝑘)

𝑚𝑎𝑥𝑏𝑎𝑙𝑙(𝑛𝑖)
 where 𝑑𝑖𝑠𝑡(𝑛𝑖 , 𝐿1𝐿𝑘) is the

shortest-distance from 𝑛𝑖 to the straight-line 𝐿1𝐿𝑘 and
𝑚𝑎𝑥𝑏𝑎𝑙𝑙(𝑛𝑖) is the radius of the maximal ball centered in
𝑛𝑖contained in the empty space. Intuitively, the higher
𝑐𝑢𝑟𝑣(𝑛𝑖) is, the farthest 𝑛𝑖 is from 𝐿1𝐿𝑘 compared to its
distance to the scene. If 𝑐𝑢𝑟𝑣(𝑛𝑖) > 1, then the straight-line
𝐿1𝐿𝑘 does not even intersect the maximal ball of 𝑛𝑖 and, in that
case, replacing 𝐿 by an edge means replacing a curve by a
straight-line. It has a high probability to produce an edge
passing through a wall. For any line that contains a node with
curvature greater than one, we classify this node as a curvature
node (Fig. 4). Then we build two new lines by setting this node
as an extremum and apply recursively the process until no
curvature node can be found on the two new lines.

At the end of the process we get a new set of lines such that
each extremum is a curvature node or a topology node. At this
point replacing lines with edges can still make us loose too
much geometric information. Indeed, some lines are relatively
straight but may contain nodes with a lot of little maximal
balls. We want to keep a good coverage of edges of the
segmented skeleton by maximal balls. To respect that criterion
we check if the nodes of each line are contained in at least one
maximal ball centered in the extrema of the line. If a node does
not respect that criterion, we classify it as a coverage node
(Fig. 5). Then we apply the same procedure than for curvature
nodes to cut the line until there is no more coverage node in
unclassified nodes.

Figure 3. A topology node is a node of the skeleton with a number of neighbors

that is not two.

Finally we get a new segmented skeleton by removing all
unclassified nodes (Fig. 6). The segmented skeleton has a set of
nodes that is a subset of the nodes of the original skeleton and
each node of the original skeleton can be associated with a
node of the segmented skeleton by taking the nearest extrema
on the line containing that node.

2) Construction of Visibility Clusters

Giving the segmented skeleton, we build the visibility

clusters above it using a greedy ad-hoc algorithm. We
developed the algorithm such that the union of maximal balls
represented by a cluster is quasi-convex.

First we sort the nodes of the segmented skeleton by radius
of maximal balls (bigger first). Then for each node 𝑛 in that
order, if 𝑛 is not already clustered, we build a new visibility
cluster 𝐶 and put 𝑛 in a stack.

While this stack is not empty we pop a node 𝑚 from it and
add it to the cluster 𝐶. Then we add all neighbors of 𝑚 that are
not curvature nodes and for which radius of maximal balls does
not differ more than 𝛼 % of the maximal radius contained in
the cluster. The parameter 𝛼 controls how similar two maximal
balls must be to cluster their corresponding nodes (we used
𝛼 = 20 for our tests). That way we cluster nodes with similar
maximal balls but we avoid breaking too much the convexity
by not taking curvature nodes.

We also add to the stack all nodes contained in the maximal
ball of 𝑚 that are accessible from it (by applying a traversal
algorithm starting at 𝑚).

At the end of the process, all nodes must have been
clustered. By construction, each visibility cluster is a connected
component of the segmented skeleton.

C. Visibility Gates

Visibility clusters can be used to avoid doing visibility test:
if a viewed surface point is in the same cluster than a VPL, it is
very likely that they are mutually visible and therefore we can
light it without any visibility test. But VPL of a cluster can also
illuminate points from other clusters. To simulate this and
avoid losing too much illumination, we developed the concept
of visibility gates (Fig. 7). For each edge (𝑛1, 𝑛2) of the
segmented skeleton such that 𝑛1 and 𝑛2 are in different
visibility clusters, we build a disk called visibility gate
separating the two clusters. We place that disk at the middle of
the edge (𝑛1, 𝑛2), orthogonal to it, with radius
𝑚𝑖𝑛(𝑚𝑎𝑥𝑏𝑎𝑙𝑙(𝑛1), 𝑚𝑎𝑥𝑏𝑎𝑙𝑙(𝑛2)). A subset of light rays
coming from VPLs of one cluster pass through that disk to
illuminate points of the second cluster. We will use these gates
during the rendering pass to build light cones coming from
VPLs to illuminate from one cluster to the other (see Fig. 11).

Figure 4. Sequence of steps to compute the Visibility Clusters from the detailed skeleton. The left image is the original skeleton (we also show the maximal ball

centered in some nodes). Then nodes are classified using geometrical and topological information. We only keep classified nodes to get a segmented skeleton that

contains most of the information of the detailed skeleton. Finally we compute Visibility Clusters from the segmented skeleton such that each cluster represents a part

approximately convex of the scene.

Figure 4. A curvature node n is such that its distance to the straight line

𝑳𝟏𝑳𝟐 is shorter than the radius of its maximal ball

Figure 5. A coverage node is not contained in any of the maximal balls

centered in extremum points of its line

V. RENDERING

The rendering step uses the pre-computed topological and
geometrical information and a set of VPLs to illuminate the
scene at real-time frame rate for a reasonable number of VPLs
(see section VI for rendering times).

As mentioned previously, indirect illumination can be
approximated by a finite set of Virtual Point Lights. The VPL
concept was first introduced in the Instant Radiosity method
[14]. To compute VPLs, we trace paths from the light sources
and create a VPL at each intersection point (see Fig. 8). The
intensity of a VPL depends on the intensity of the primary light
source and all reflections that have occurred before reaching
the intersection.

VPLs can be computed using monte carlo path-tracing [2,
23, 24] or with rasterization [11]. This last method can achieve
real-time frame rates for the generation step but limits the
number of bounces that can easily be done.

To illuminate a view sample point 𝑃 with 𝑛 VPLs 𝑃1, …,
𝑃𝑛, we apply the following equation:

𝐿(𝑃 → 𝑉) = ∑ 𝑓𝑟(𝑃𝑖 → 𝑃 → 𝑉)𝐺(𝑃𝑖 , 𝑃)𝑉(𝑃𝑖 , 𝑃)𝐿(𝑃𝑖)

𝑛

𝑖=1

where 𝐿(𝑃 → 𝑉) is the light reflected by 𝑃 towards the
view point 𝑉, 𝑓𝑟(𝑃𝑖 → 𝑃 → 𝑉) represents the bidirectional
reflectance distribution function (BRDF) at the point 𝑃,
𝐺(𝑃𝑖 , 𝑃) is the geometric term between, 𝑃𝑖 and 𝑃, 𝑉(𝑃𝑖 , 𝑃) is 1
if 𝑃𝑖 is visible from 𝑃 (0 if not) and 𝐿(𝑃𝑖) is the intensity of the
VPL 𝑃𝑖 .

In the equation, the term that is the most costly to compute
is the visibility term 𝑉(𝑃𝑖 , 𝑃). With a path-tracing approach it
can be computed by tracing a shadow ray. When using a
rasterization pipeline, a shadow map can be used for each VPL
but it would require to render the scene multiple times.

A common approximation used to achieve real-time

rendering is to simply ignore the visibility term for indirect

lighting since direct lighting is generally the most important

part of illumination. Where light is mostly indirect this

strategy overestimates the contribution of VPLs and the result

differs greatly from reality (see Fig. 12).

The goal of our method is to use the pre-computed

topological information to quickly decide if a view sample can
see a VPL. This approximation can be large but produces a
coherent indirect illumination.

Two types of indirect illumination will be applied using the
VPLs. Let P be a VPL and C its visibility cluster. All view
samples in C will be directly illuminated by P. For others, we
will build a set of cones by combining P with visibility gates
separating C from neighbor clusters (Fig. 11). These cones will
be tested against view samples contained in other clusters to
decide if the VPL illuminates them.

Since doing this test for each couple view sample-VPL is
too costly, it can't be done each frame without optimization.
We can note that a few number of view samples can be
affected by a cone in regard to the total number of them. To
reduce the number of tests we implemented the recent clustered
shading technique [21] that allows us to reject quickly large
group of view samples that does not intersect the cone created
from a VPL and a gate. To make the distinction with our
visibility clusters, we will call geometry clusters the clusters
computed by the clustered shading method.

In this section we detail each step of the rendering step. It
follows a deferred shading algorithm but can also be
implemented with forward rendering and early depth test.

A. Geometry Pass (GP)

The geometry pass of deferred rendering classically build a
Geometry Buffer (GBuffer). A GBuffer is composed of
multiple textures containing geometrical information for each
pixel of the scene. Our GBuffer contains the following
information:

 Normal in view space

 Depth, to reconstruct position

Figure 8. Here three random paths are traced from the primary light source.

Each intersection with the scene is used to create a Virtual Point Light.

Figure 5. This figure illustrates the position of some gates in the Sponza scene

 Diffuse color

 Glossy color and exponent

 Index of the visibility cluster

 Index of the geometry cluster needed for clustered
shading

To be able to compute the index of visibility cluster of each
pixel, we store our topological data in GPU memory. More
specifically the data sent to the GPU is the segmented skeleton
(position, radius of maxball and list of neighbors for each
node), the 3D grid that gives for each voxel the nearest node of
the segmented skeleton and an array giving for each node the
index of its visibility cluster (see Fig. 9 for an illustration of the
last two textures of the GBuffer).

B. Identification of unique Geometry Clusters (IUGC)

You can refer to [21] to get more detail about this step. By
exploiting compute ability of modern GPU, we identify unique
geometry clusters that can be seen by the camera and re-index
them from 0 to the total number of them. We choose to
implement the local-sort strategy for its simplicity and the
possibility to compute the bounding box of each geometry
cluster at the same time. We also add on top of it a new
constraint: all fragments of a geometry cluster must have the
same visibility cluster. This will be used in the next step to
assign VPLs to geometry clusters.

C. Light assignement pass (LA)

For each geometry cluster this step identifies the VPLs that

potentially affects its fragments and build a list of those VPLs.

There is two cases: if the VPL is contained in the same

visibility cluster that the one associated to the geometry

cluster, we trivially add the VPL to the list. Else, we compute

a bounding sphere for the geometry cluster (enclosing the

bounding box of this one). This sphere is used to test for

intersection against all cones created from the combination of

the VPL and a visibility gate. If we find a cone that intersects

the bounding sphere, we store both the VPL and the index of

the gate for final test in the fragment shader. All this pass is

again implemented using a compute shader.

D. Indirect Lighting (IL)

This step consists of a final gathering of VPL contributions
using VPLs assigned to the geometry cluster of each fragment
during the previous step. For each fragment we loop through
the list of VPLs stored in the light assignment pass for the
geometry cluster of the fragment. If a visibility gate has also
been stored (which occurs when the view sample belongs to a
different visibility cluster than the VPL), we test that the view

Figure 9. This figure illustrates two points of view. The second row presents the

segmentation in visibility clusters. The third row shows the segmentation in

geometry clusters.

Figure 10. This image exposes the bounding spheres of each geometry cluster.

These spheres are used to quickly reject group of view samples that are not

affected by a cone.

Figure 11. In this figure, two VPLs (on the right wall) are combined with a

visibility gate (blue line at the center of the image) to produce a cone (in
3D). These cones are used to illuminate the neighbor visibility cluster that

does not contain the two VPLs.

sample is contained in the cone resulting from the combination
of the VPL and the gate.

E. Direct Lighting

This classical last step uses primary light sources with

shadow maps to add direct light in the final rendered image.

VI. RESULTS AND DISCUSSION

We evaluated the performance of our method on the scene

Sponza (Crytek version, 262,267 triangles). All measurements

were performed on an NVIDIA GTX 670 Ti GPU. We also

show a result computed from the scene Sibenik (75,284

triangles) to discuss the rendering of glossy reflections.

As mentioned before, the scene must be pre-computed to

get topological data. In our current implementation this step is

done on the CPU but we plan for getting it done on the GPU

and eventually reach real-time rates for this pre-computation

step. All views are rendered with a 1024x512 pixels frame-

buffer.

A. Precomputation

The pre-computation of topological data is actually a
weakness of our method because it can't be done each frame.
This constraints the method to compute the indirect
illumination only on the static part of the scene. Dynamic
meshes can still be illuminated but doesn’t produce indirect
illumination. Dynamic lights can be used as long as a real-time
method is implemented to generate the VPLs [11].

In our implementation all this pre-computation is done on
CPU. We plan to implement our thinning algorithm on GPU,
expecting strong improvement in performance due to the
parallel nature of the algorithm [20].

For our tests we used a 256x256x256 voxel grid. The
voxelization can be computed in real-time using recent GPU
methods [22]. In the case of Sponza, the thinning of the empty
space takes 109 seconds with an Intel Xeon 1,2Ghz CPU, using
a non-optimized implementation.

B. Rendering

Fig. 1, Fig. 12, Fig. 13 and Fig. 14 show results of our
method on the scene Sponza from multiple points of view and
for different light configurations. All reference images are

computed on the CPU using the same set of VPLs using
shadow rays for visibility tests.

For each configuration we compare the result of our
method with two kind of rendering:

 direct illumination only, to show how indirect
illumination improves the quality of the result

 direct illumination + indirect illumination but without
taking into account shadows for the VPLs.

Not taking into account shadows for indirect illumination is a
well-known solution to approximate global illumination. But as
it can be seen in Fig. 12, it strongly overestimates illumination
compared to the reference, especially when illumination is
mostly indirect.

Our method produces results closer to the reference in term
of illumination. While producing some artifacts (due to the
discrete association from surface points to visibility clusters,

Figure 13. Here is a result computed with our method. We can see color

bleeding in red frames. This effect can only be simulated using indirect

illumination.

Figure 12. We compare the result of our method with a rendering that ignore shadows for the virtual point lights. When illumination is mostly indirect, like in this
case, doing such an approximation can drastically affects the final image. Our method gives a result close to the reference by using a subset of VPLs well-chosen to

illuminate each view sample.

see Fig. 14 on the round pillar for example), these one are
strongly attenuated by adding direct illumination.

Color bleeding is an effect resulting from the reflection of

light coming from close colored textures. You can see it in

Fig. 13 and in the indirect illumination snapshot of Fig. 14.

Methods based on VPLs are not good to simulate glossy

reflections. Indeed, using a discrete set of points to

approximate incident indirect illumination does not allow the

evaluation of incident luminance in every direction (which is

required to get good approximation of glossy reflections). Fig.

15 shows a view of the Sibenik scene which exposes glossy

reflections. We used 4192 indirect VPLs to get that result.

With that number of VPLs, our method is no longer real-time

but stays interactive (3.7 frames per second in that case). A

more appropriate method to simulate glossy reflections in real-

time is [13] but is limited to two bounces of light.

Our results are slightly darker than the reference images.

This is due to the nature of gates which only accounts for a
subset of the illumination that occurs between visibility
clusters. A good improvement to the method would be to use
polygon instead of disks to better match the shape of separation
between clusters. Unfortunately these polygons can be tricky to
compute and to use efficiently during rendering. Oversizing the
disks could also be a solution but can produce the opposite
behavior for some configurations (i.e. produce results lighter
than the references).

Table 1 gives times in milliseconds of each step of the
rendering pass for different numbers of VPLs. We see that we
reach real-time frame rate for a number of VPLs less than 512.
We stay interactive for few thousands of VPLs.

Table 2 presents mean square errors (MSE) computed for two
different configurations. The table shows a lower error for our
method than for direct lighting or indirect lighting without
indirect shadows. Configuration 2 is the one of Fig. 14. Since
there is few indirect illumination on this configuration

(compared to direct lighting), the error produced by computing
direct lighting only is really closed to the one produced by our
result.

We implemented the light assignment pass using a brute
force algorithm on GPU (each geometry cluster is tested in
parallel against each light). This pass can be optimized using
acceleration data structures on lights.

The performance of our algorithm depends on light and view
configuration: if all VPLs are in the same cluster, then
rendering take much longer if the camera look at a lot of points
from this cluster (due to the association). The rendering times
given in the table are obtained with the view point and primary
light source position of Fig. 11.

Finally, it can also be a good solution to remove lighting
using visibility gates. That way we just keep indirect
illumination that occur inside visibility clusters. This solution
loses some long range lighting but also improve the
performances of the algorithm by removing small
contributions.

Figure 14. Here we show how visibility gates can affect the indirect illumination. Most of the light on the floor is produced by virtual point lights that are not in the
same cluster. By using visibility gates, we can find for each view sample a subset of these virtual points lights that certainly illuminate it. Since gates are only

disks, we still miss a lot of VPLs, producing darker results than the reference in some part of the result. Other parts are over evaluated due to shadow tests that are

ignored inside visibility clusters. Still, our result is a better match of the reference image than when we totally ignore shadows for virtual point lights.

TABLE I. RENDERING TIMES (MS)

VPLs GP IUGC LA IL Total

512 6.1 4.3 12.3 10.9 33.6

1024 6.1 4.3 24.5 22.1 57

2048 6.1 4.3 49.0 44.2 103.6

 TABLE II. MEAN SQUARE ERROR

Config. Direct light No shadows

on indirect

Our method

1 111.96 69.1091 33.1041

2 39.7544 170.121 39.6128

VII. CONCLUSION

We presented a new method to illuminate a scene at real-
time rate with a set of VPLs. By using information about the
topology and geometry of the scene we presented a new 3D
segmentation of the scene in clusters such that each one is
quasi-convex, making us able to avoid any visibility test
between points of the same cluster. To compute illumination
between points of different clusters, we also developed the
concept of visibility gates, built from the visibility clusters and
the skeleton of the empty space of the scene. These visibility
gates allow us to compute a coarse approximation of the light
emitted by one VPL toward other clusters.

Our method generates artifacts at the separation between
clusters due to the potential change of illumination. These
artifacts would disappear if the visibility gates were perfects
manifolds separating clusters. One perspective for our future
work is to attenuate these artifacts using filtering strategies.

Another perspective for future research is to use our
concepts of visibility cluster and visibility gate for
photorealistic rendering, for example in path-tracing or photon
mapping. Indeed we can quickly compute coarse repartition of
light in clusters and try to guide rays toward most illuminated
clusters.

REFERENCES

[1] Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree,

Bruce Walter, and Jan Novák, “Scalable Realistic Rendering with Many-
Light Methods”, EUROGRAPHICS State of the Art Reports, 2013

[2] T.Kajiya,” The Rendering Equation”, Computer Graphics (ACM
SIGGRAPH '86 Proceedings), 1986

[3] Veach, Eric and Guibas, Leonidas J., “Optimally combining sampling
techniques for Monte Carlo rendering”, Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques,
SIGGRAPH '95, 1995

[4] Henrik Wann Jensen, “Global Illumination using Photon Maps”, 7th
Eurographics Workshop on Rendering, Technical Rendering’96, 1996

[5] Henrik Wann Jensen, “Realistic Image Synthesis Using Photon
Mapping”, 2001

[6] Hachisuka, Toshiya and Ogaki, Shinji and Jensen, Henrik Wann,
“Progressive photon mapping”, ACM Trans. Graph., 2008

[7] Veach, Eric and Guibas, Leonidas J., “Metropolis light transport”
SIGGRAPH '97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, 1997

[8] Sloan, Peter-Pike and Kautz, Jan and Snyder, John, “Precomputed
radiance transfer for real-time rendering in dynamic, low-frequency
lighting environments”, ACM Trans. Graph., 2002

[9] Chen, Hao and Liu, Xinguo, “Lighting and material of Halo 3”, ACM
SIGGRAPH 2008 Games, SIGGRAPH '08, 2008

[10] Ramamoorthi, Ravi and Hanrahan, Pat, “An efficient representation for
irradiance environment maps”, Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH '01, 2001

[11] Dachsbacher, Carsten and Stamminger, Marc, “Reflective shadow
maps”, Proceedings of the 2005 symposium on Interactive 3D graphics
and games, I3D '05, 2005

[12] Kaplanyan, Anton and Dachsbacher, Carsten, “Cascaded light
propagation volumes for real-time indirect illumination”, Proceedings of
the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and
Games, I3D '10, 2010

[13] Crassin, Cyril and Neyret, Fabrice and Sainz, Miguel and Green, Simon
and Eisemann, Elmar, “Interactive Indirect Illumination Using Voxel
Cone Tracing”, Computer Graphics Forum (Proceedings of Pacific
Graphics 2011), 2011

[14] Keller, Alexander, “Instant radiosity”, Proceedings of the 24th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH '97, 1997

[15] Walter, Bruce and Fernandez, Sebastian and Arbree, Adam and Bala,
Kavita and Donikian, Michael and Greenberg, Donald P., “Lightcuts: a
scalable approach to illumination”, ACM Trans. Graph., 2005

[16] Ou, Jiawei and Pellacini, Fabio, “LightSlice: matrix slice sampling for
the many-lights problem”, Proceedings of the 2011 SIGGRAPH Asia
Conference, SA '11, 2011

[17] Georgiev, Iliyan and Křivánek, Jaroslav and Popov, Stefan and
Slusallek, Philipp, “Importance Caching for Complex Illumination”,
Comp. Graph. Forum, 2012

[18] Laine, Samuli and Saransaari, Hannu and Kontkanen, Janne and
Lehtinen, Jaakko and Aila, Timo, “Incremental instant radiosity for real-
time indirect illumination”, Proceedings of the 18th Eurographics
conference on Rendering Techniques, EGSR'07, 2007

[19] Ritschel, T. and Grosch, T. and Kim, M. H. and Seidel, H.-P. and
Dachsbacher, C. and Kautz, J., “Imperfect shadow maps for efficient
computation of indirect illumination”, ACM Trans. Graph., 2008

[20] John Chaussard, Laurent Noël, Venceslas Biri, Michel Couprie, “A 3D
Curvilinear Skeletonization Algorithm with Application to Path
Tracing”, DGCI 2013

[21] Olsson, Ola and Billeter, Markus and Assarsson, Ulf, “Tiled and
Clustered Forward Shading”, SIGGRAPH '12: ACM SIGGRAPH 2012
Talks, 2012

[22] Elmar Eisemann, Xavier Décoret, “Fast Scene Voxelization and
Applications”, ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, 2006

[23] Benjamin Segovia and Jean-Claude Iehl and Bernard Péroche,
“Metropolis Instant Radiosity”, Computer Graphics Forum, 2007

[24] Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard
Péroche, “Bidirectional Instant Radiosity”, Proceedings of the 17th
Eurographics Workshop on Rendering, 2006

Figure 15. This view of Sibenik church demonstrates glossy reflections on the stained glass. A high number of VPLs must be used to get correct glossy reflections

(here 4192 VPLs were used). There exists other methods which are more appropriated to compute that kind of effect.

http://www.bibsonomy.org/author/Segovia
http://www.bibsonomy.org/author/Iehl
http://www.bibsonomy.org/author/Mitanchey
http://www.bibsonomy.org/author/P%C3%A9roche
http://www.bibsonomy.org/author/P%C3%A9roche

Laurent Noël is a Ph.D. student at

the LIGM laboratory of Paris Est

University. He focuses on

developing new rendering methods

by using topological and

geometrical information extracted

from the scene to render.

Complementary to his research, he

also teaches computer graphics,

physical simulation and OpenGL

programming at his university.

Venceslas Biri is a full professor at

the LIGM laboratory of Paris Est

University. He is specialized in real-

time rendering and global

illumination, and has good

knowledge in virtual reality. He also

served as headmaster of the higher

school of engineer called IMAC

(Image, Multimedia, Audiovisual

and Communication) from 2006 to

2011. Former engineer student of

ENSIMAG, he also teaches

mathematics and computer graphics.

