Undecidability of ground reducibility
for word rewriting systems with variables

Gregory KUCHEROV and Michael RUSINOWITCH *

Key words: Theory of Computation; Formal Languages; Term Rewriting Systems;
Pattern Matching

1 Introduction

Given a finite alphabet A and an alphabet of variables X', we consider words over AU X
called words with variables (or patterns) and words over A called simply words (or strings).
A finite set R of rewrite rules w — v where w,v are words with variables is called a
word rewriting system with variables (WRSV). From the viewpoint of rewriting systems
theory WRSV’s are rewriting systems over a signature consisting of one binary associative
function (concatenation) and finitely many constant symbols (letters). If the rules of R
do not contain variables, we obtain word rewriting systems (string rewriting systems,
semi-Thue systems) that have been investigated for a long time [1].

In this work we are interested in the reductive power of WRSV’s. For this reason
we simply identify a WRSV with the set of its left-hand sides. Also, we sometimes call
patterns of R rules without adding the prefix ”"the left-hand side of”.

Let Inst(R) denote the set of instances of patterns from R, that is the set of o(p) for
all p € R and all substitutions & of variables by non-empty words® (different occurrences
of the same variable are substituted by the same word). A pattern p applies to (or
reduces) a word v, if v € A*Inst({p})A*. We are interested in the properties of the set
Red(R) = A*Inst(R)A*, that is the set of all words reducible by R. In this paper we
study the following ground reducibility problem: for a given word with variables w, does
Inst({w}) C Red(R) hold, i.e. are all the instances of w reducible by R? If the inclusion
holds, w is said to be ground reducible by R.

The ground reducibility problem has been proved decidable for ordinary term rewriting
systems [7, 4]. However, in the presence of associative functions the problem is more
complex. It was shown undecidable in [3] for term rewriting systems over a signature
containing among other functions an associative function. This result, however, cannot
be generalized to WRSV’s, as the auxiliary non-associative functions are essential in the
proof.

The ground reducibility problem can be also stated in the setting of pattern lan-
guages [8] or (non-linear) pattern matching. (Here "pattern matching” should be under-
stood in the extended sense: a pattern w matches a word v iff v has a factor which is

*CRIN and INRIA-Lorraine, Campus Scientifique, BP 239, F-54506 Vandceuvre-lés-Nancy, France,
email: {kucherov,rusi}@loria.fr

I'The main result of this paper remains valid if we allow variables to be substituted by the empty
word.

an instance of w). Thus, the ground reducibility problem could be rephrased as follows:
given a set of patterns R, is every string matched by a given pattern w also matched by
some pattern from R?

In this note we prove this question to be generally undecidable. It remains undecidable
even for a fixed and very simple word wg = axa where a is a letter and « a variable.

2 Main Result

We will use the following formalism of Minsky machines. A machine M is operated by
a program P which is defined to be a finite sequence of instructions labeled by natural
numbers from 1 to some L. The machine operates on two counters Sy, .S each containing
a nonnegative integer. An instruction [is of one of the following three forms with the
obvious semantics:

(i) : ADD1TO S,; GOTO /'
(11) [: IF S]' 75 (0 THEN SUBTRACT 1 FROM S]'; GOTO !’ ELSE GOTO [”;
(iii) [: STOP;

where j € {1,2} and [,I",)I" € {1,..., L}.

Without loss of generality we will assume that in every program P there is a single
instruction of type (iii) which is the last one, i.e. its label equals the total number of
instructions in the program. The machine starts by executing instruction 1 and works
until the command STOP is encountered. Note that the execution process is deterministic
and has no failure situations. Thus, the execution of a program either ends up with the
STOP command or lasts forever. It is known [6] that every partial recursive function on
natural numbers can be computed by such a program in the following sense:

Theorem 1 (Minsky [6]) For every partial recursive function [on natural numbers
there exists a program P that applied to the initial counter values S; = 2% and Sy = 0,
halts with the counter values Sy = 27D and Sy = 0 if f(d) is defined, and does not hall

otherwise.

From now on we will always consider programs P that compute some partial recursive
function in the sense of theorem 1 and we will assume that if, starting with counter values
Sy = 2%, Sy = 0, the machine halts, then the final value of S5 is 0. Theorem 1 implies
that it is not generally decidable if for a given d, a program P terminates on the initial
counter values S; = 2%, S, = 0.

Our goal is to prove the following main theorem.

Theorem 2 Let wg be a word with variables over an alphabet A. It is undecidable if given

a WRSV R over A, wy ts ground reducible by R.

Proof: Assume that P is a program for the Minsky machine. The run of P on an input
24 can be represented as a sequence of configurations (instantaneous descriptions)

(1,2d,0), (11,5%,3%), ce (lk,slf,sg), .

where a configuration (y, s¥, s5) means that the machine is about to execute instruction
Ir, and s¥, s% are the current values of counters S; and S, respectively. If the execution
of P terminates, the sequence is finite and the final configuration is (L,2",0) for some
m > 0.

Consider now the alphabet A = {*,a,b, =, #} and encode a run of the machine by a
(finite or infinite) word over A in the following way. A configuration (I, s¥, s¥) is encoded

by the word

and the whole run is represented by a sequence of such words separated by #. The first
configuration is preceded by the symbols E#. If the run is finite, the final configuration
is followed by #[= and the coding word has then the following form:

E#a...axb#t ... Ha...ax...xb.. . bF#. . Ha.. . ax.. xbHE
2941 sF41 Ik sk+1 2m+1 L

Let wg = [Ful= where u € X' and let o(wg) be an instance of wy. We will construct
a set of patterns R which depend on the program P and on d > 0 such that if a pattern
p € R applies to o(wp), then o(wy) is not a correct encoding of a (finite) execution of P
on S; = 2%, S5 = 0. Moreover, we prove that every instance o(wp) that does not represent
a correct finite execution is reducible by some pattern. Thus, o(wy) is irreducible by R
if and only if o(wg) encodes the finite execution of P on 57 = 24 Sy = 0 for some d > 0.
Therefore, the set of irreducible instances of wgy is non-empty iff this set consists of a
single instance that represents the finite execution of P on S; = 24, S, = 0. Since it is
not decidable whether the execution of P on S; = 2¢, S, = 0 is finite or not, we conclude
that ground reducibility is not a decidable property.

The patterns of R given below can be divided into two categories. The first one (groups
1-5) contains patterns without variables. These patterns apply to the instances of wq that
are not meaningful as they do not follow the syntactical conventions above for representing
a run of the Minsky machine. The second category (groups 6-7) contains patterns with
variables. Typically, these patterns are designed to apply to a wrong computation step,
i.e. a pair of consecutive configurations #a" ! «! b 4tgm+l b pritldl where the second
one does not correctly encode the result of executing command [with 57 =n, S, = m.

The rest of the proof is devoted to the construction of R. The patterns will be grouped
according to the type of "error” in the encoding that they are meant to cover. Each group
introduces new patterns and further restricts the set of irreducible instances of wg. In the
following, x,y, z are variables.

1. Rules for =
Ty (1)
An irreducible string cannot contain |= at an internal position. (Recall that variables
are substituted by non-empty words).

Fa (2)
=0 (3)
= (4)
af= ()

b (6)
e (7)

= can be followed and preceded only by #.

2. Rules for syntactical structure:

Q

H=
e

© oo

*a 0
* 11
ba
b

H H
He)
R P e S S e

*
#b
pids

It should be clear that the instances of wq irreducible by rules 1-16 are exactly the
strings described by the following regular expression:

(o™ T b) =

N TN TN TN TN TN N
— —
&4 (V%]

—
D

3. Rules for the initial configuration. These rules apply to all instances of wq that do
not start with the encoding of the initial configuration, i.e. do not have the prefix

= Ha? ™t bt

=# = (17)

= #ta'x for every 7, 1< 1< 24 (18)

= #a” (19)

= #a2d+1 * * (20)
= #a™ x bb (21)

4. Rule for command labels. Suppose that L is the number of commands in P. The
pattern
L H1 (22)

reduces the strings containing more than I consecutive .

5. Rules for the final configuration. Recall that the STOP instruction is labeled by
L, and S5 must contain 0 whenever the STOP instruction is to be executed. The
following two patterns specify that |= can follow none but the final configuration in
the encoding.

bb# = (23)
ax' b# = foreveryi, 1<i<L—1 (24)

Conversely, the following pattern applies whenever a final configuration is not fol-
lowed by [.

«Eb#a (25)

The syntactical form of the instances of wy irreducible by rules 1-25 is summarized
in the following lemma:

Lemma 1 Let o(wy) be an instance of wo irreducible by rules 1-25. Then o(wq)
has the following general form:

b s bftaP AT DAL L AP K B e At B qPret s bt

where m >0, pi, pma1,mi > 1 and ¢; € {1,..., L}, for every ¢, 1 <t <m.

. Rules for instructions of type (i). The rules of this group are introduced for each
instruction of type (i) in P.

Assume that [is an instruction of type (i) that applies to Si. If a string encodes a
correct execution and contains a configuration #a"t! *! b +t14 for some n,m > 0,
then it must be followed by the configuration #a"+? %" b +14t. The patterns below
are built to be applicable to every substring

LFra T gttt gl gl

where either [y £ 1" or ny #n + 1 or my # m.

Here we face the main difficulty in the proof: if a pattern contains a variable, it
can potentially match longer factors, not necessarily restricted to two consecutive
configurations, and can possibly apply to some correct executions. The problem is
solved by systematically using non-linear variables.

Let ¢ denote the empty string. The rules below are schematized using metavari-
ables X,Y, 7 where X ranges over {¢,a, aa,aaa,raazx, xaaza} and Y, Z range over

{e, b, bb, bbb, ybby, ybbyb}.
e handling [y # I’
a* bY #Xa*" b (26)

Here I; ranges over {1,....I' =1} U{l'+ 1,...,L}. Thus, 6 x 6 x (L — 1)

patterns are schematized by 26.
e handling ny #n + 1:

— case ny < n:
Xa+' bY#Xa x (27)
— case ny > n+ 2:

#Xa+' bY# Xaaa (28)

e handling my # m:

— case my < m:

ax bY Z#Xa " bY # (29)

— case my > m:

ax' bY #Xa " bYD (30)

We summarize the effect of the rules of group 6 by the following two lemmas:

Lemma 2 Let o(wg) be an instance of wq irreducible by rules 1-25. If one of
patterns 26-30 applies to o(wy), then either o(wy) does not encode a finite execution
of the Minsky machine or o(x) € a™, o(y) € b, and o(z) € b*.

Proof: We use the fact that in rules 26-30 each variable occurs at a position adjacent
to #. Consider, for example, rule 26 and let X be replaced by zaazr or zaaza.
In either case the pattern contains the substring #xaax. Let o be the matching
substitution. By rules 1-5, o(x) starts with ¢ and ends with either a or #. If
o(x) contains at least two #, then it must contain an entire configuration. Since x
occurs twice in the pattern, then this configuration must also occur twice in o(wy).
But this implies that o(wg) does not encode a finite execution. (Recall that the
machine works deterministically and a double occurrence of a configuration in the
execution implies that the program does not halt.) If o(x) contains exactly one
#, then o(x) = a? % "#a®, where p,q,r > 1, s > 0. Then the string matched
by #zaax is #aP *? 0" F#a*TP 7 i H#a®. This string cannot encode an execution
step, as counter S; is increased by at least 2 which is not possible. (Recall that a
command can change a counter at most by 1). Therefore o(x) contains no # and
is then composed only of a.

By symmetry, the same reasoning applies to metavariable Y in 26. Moreover, this
applies to each variable occurring in a rule, since in every rule each variable has an
occurrence adjacent to #. a

Lemma 3 Let [: ADD 1 TO S;; GOTO I’ be a command in P.

(a) If one of patterns 26-30 applies to an instance o(wy) irreducible by rules 1-25,
then o(wg) does not encode a correct execution of P.

(b) Conversely, if o(wo) contains a substring #a™ 1! bmHigtgmtlliymtliy where
either [y £ " orny # n+1 ormy # m, then one of the rules from 6 is applicable.

Proof: (a) By lemma 2, we can restrict variables @, y, z to be substituted by strings
of a®,bT, b respectively. Since each of the patterns 26-30 contains the substring
a*'b, it can apply only to a substring that correponds to an execution of command
[, that is to a substring #a"t! «! b7 T g+t xh pratldl for some n, m,ny, m; > 0,
Iy €40,...,L}. It is easy to see that in this case either Iy # [’ (if rule 26 applies)

or ny # n + 1 (if rules 27, 28 apply) or my # m (if rules 29, 30 apply). Thus, the
matched string cannot be a part of the encoding of a correct execution.

(b) This is proved by simple case analysis on rules 26-30. O

7. If command [of type (i) applies to counter S, the rules are constructed in the same
fashion and their correctness can be shown with similar arguments.

8. Rules for instructions of type (ii). The rules of this group are introduced for each
instruction of type (ii) in P.

Assume that [is an instruction of type (ii) that applies to S;. The strings encoding
the correct execution are:

T Y L A LR

for n > 1, and

tta w4

otherwise. It is clear that the rules can be built using the same technique as in the
previous case. Note that the second string is simpler to treat since the number of
a’s 1s fixed.

We summarize the construction of the rules above in the following lemma.

Lemma 4 Let d > 1 and R be the set of all patterns in groups 1-8. For a substitution o,
o(wo) is reducible by R iff o(wo) is not the encoding of a finite execution of P on S; = 24,
SQ — 0

Since it is not decidable if the program P terminates on S; = 2¢ and S, = 0, the ex-
istence of an irreducible instance of wq is not decidable either. This completes the proof
of theorem 2. O

It is important to note that the proof could be simplified if we had taken a more
complex word wqg containing, for example, another linear variable. However, we found it
interesting to construct a proof for the simplest wy possible. Note that the problem is
trivially decidable for wy = au (symmetrically, for wo = ua) where a € A, v € X, by the
following observation: wq is ground reducible iff for every letter b € A, the word ab is
reducible.

3 Related Works

In this paper we have proved the undecidability of the ground reducibility problem for
word rewriting systems with variables. From the logical point of view, this problem can be
expressed by a positive V3-formula in the first-order theory of a free semigroup. Indeed,
let & be the variables of a pattern w and y be the variables occurring in a rewriting system
R =A{p1,...,pn} over an alphabet A. The ground reducibility of w by R is equivalent to
the validity of the following formula in the free semigroup generated by A:

Vrdu, zdy \/ w=up;z

=1

7

Here the number of universal quantifiers is equal to the number of variables in w and
the number of existential quantifiers is two more than the maximal number of variables
in a rule of R. In particular, the formula corresponding to the proof of theorem 2 con-
tains one universal and five existential quantifiers. In [5] it was proved that the positive
first-order V3-theory of free semigroups is in general undecidable. Since we consider a
very special form of positive V3-formulae (which, among other restrictions, do not con-
tain conjunction), our result can be regarded as a reinforcement of that of [5] for this
particular fragment of the general positive V3-theory of free semigroups. The undecidable
theory constructed in [5] has a single universal and four existential quantifiers. The extra
existential quantifier that we have in our proof may be considered as the price to pay for
restricting the theory.

After this work has been completed we became aware that a result closely related to
our theorem 2 has been obtained in [2]. The main difference is that in [2] matching is
understood in the usual sense: a pattern matches a string if the latter is an instance of the
former. It has been shown in [2] that a single pattern is sufficient in this case to obtain
undecidability.

Acknowledgements: We are grateful to Paliath Narendran for his valuable com-
ments.

References

[1] R. V. Book. Thue systems as rewriting systems. Journal of Symbolic Computation,
3(1 & 2):39-68, 1987.

[2] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Inclusion is undecidable for pattern
languages. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proceedings 20th
ICALP Conference, Lund (Sweden), volume 700 of Lecture Notes in Computer Science,
pages 301-312. Springer-Verlag, 1993.

3] D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Sufficient-completeness,
g
quasi-reducibility and their complexity. Technical Report 87-27, Dept. of Computer
Science, State University of New York at Albany, 1987.

[4] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related prop-
erties of term rewriting systems. Acta Informatica, 24:395-415, 1987.

[5] S.S. Marchenko. Undecidability of the positive V3-theory of a free semigroup. Sibirskii
Matematicheskii Zhurnal, 23(1):196-198, 1982. in Russian.

[6] M. L. Minsky. Recursive unsolvability of Post’s problem of "tag” and other topics in
theory of turing machines. Annals of Mathematics, T4(3):437-455, November 1961.

[7] D. Plaisted. Semantic confluence tests and completion methods. Information and

Control, 65:182-215, 1985.

[8] A.Salomaa. Pattern Languages: Problems of Decidability and Generation. In Z. Esik,
editor, Proceedings 9th FCT Conference, volume 710 of Lecture Notes in Computer
Science, pages 121-132, Szeged (Hungary), 1993. Springer-Verlag.

