Finding Repeats With Fixed Gap *

Roman Kolpakov† and Gregory Kucherov‡

Abstract

We propose an algorithm for finding in a word all pairs of occurrences of the same subword within a given distance r. The obtained complexity is $O(n \log r + S)$, where S is the size of the output. We also show how the algorithm can be modified in order to find all such pairs of occurrences separated by a given word. The solution uses an algorithm for finding all quasi-squares in two strings, a problem that generalizes the well-known problem of searching for squares.

1 Introduction

Repetitions in words are important objects often playing a fundamental role in combinatorial properties of words and their applications to string processing, such as compression [Sto88] or biological sequence analysis [Gus97].

A great deal of work, in word combinatorics and string matching, has been devoted to contiguous repetitions, when a fragment is repeated contiguously two or more times [Cro81, Sli83, Cro83, AP83, ML84, ML85, Mai89, Kos94, IMS97, SG98a, KK99b, SG98b, KK99a]. A simplest form of contiguous repetition is a square (tandem repeat), which is a subword of the form uu.

On the other hand, some applications bring up the problem of finding subwords repeated in a word in a possibly non-contiguous way. As an example, it is well known that the suffix tree [McC76, Ukk95] allows to easily compute the longest subword occurring at least twice in a word. More about finding repeated subwords in a word can be found in [Gus97].

An intermediate problem, occurring for example in molecular biology applications, consists in finding subwords repeated within some specified distance. This problem has been studied in a recent paper [BLPS99]. More precisely, the problem considered was to find all subwords uvu, where the size of v, called the gap, belongs to a specified interval. Using suffix

*Part of this work has been done during the first author’s visit of LORIA/INRIA-Lorraine in August-October 1999, within a joint project of the French-Russian A.M.Liapunov Institut of Applied Mathematics and Informatics at Moscow University. A preliminary version of this work has been published as INRIA research report [KK00].

†French-Russian Institute for Informatics and Applied Mathematics, Moscow University, 119899 Moscow, Russia, e-mail: roman@vertex.inria.msu.ru

‡LORIA/INRIA-Lorraine, 615, rue du Jardin Botanique, B.P. 101, 54602 Villers-lès-Nancy, France, e-mail: kucherov@loria.fr
trees together with binary search trees, it has been shown in [BLPS99] that all such pairs (of occurrences of u) can be found in time $O(n \log n + S)$, where S is the size of the output.

In this paper, we consider a restricted version of this problem, when v has a fixed size, and show that all repeated occurrences of u with a gap equal to r can be found in time $O(n \log r + S)$.

The approach we use is similar to the one used in [Mai89, KK99a] for finding so-called maximal (contiguous) repetitions. It is based on two ideas. The first one is a special factorization of the word. Slightly different definitions of this factorization are known under the name s-factorization [Cro83] (f-factorization in [CR94]), or Lempel-Ziv factorization [Gus97], because of its use in the well-known Lempel-Ziv compression method [LZ76, ZL77]. In this paper, for presentation purposes, we use the Lempel-Ziv factorization.

The second component of our method is longest common extension functions [ML84]. To illustrate the idea, assume we are given two words u_1, u_2, and want to compute, for each position i of u_2, the length of the longest prefix of u_1 which occurs at position i in u_2. A variation of the Knuth-Morris-Pratt algorithm (see [ML84, CR94]) allows to compute all these lengths in time $O(|u_1| + |u_2|)$. This computation, under different variants, appeared to be very useful in several string matching problems [Cro83, ML84, Mai89, KK99a, SG98b].

After giving basic definitions in Section 2, we first consider a problem of finding quasi-squares in two words. This problem, which plays an auxiliary role in this paper, generalizes the problem of finding usual squares in a word and is interesting on its own. In Section 3, we propose an efficient solution to this problem. Then, in Section 4, we present an algorithm for finding all repeats with a fixed gap. Finally, in Section 5 we show how this algorithm can be modified to find all repeated subword occurrences with a fixed word between them.

2 Definitions

Consider a word $w = a_1...a_n$. $|w|$ denotes the length of w, $w[i..j]$, for $1 \leq i, j \leq n$, denotes the subword $a_i...a_j$ provided that $i \leq j$, and the empty word otherwise. A position i in w is an integer number between 0 and k, associated to the factorization $w = w''w''$, where $|w'| = i$. A subword v of w is said to start (respectively end) at position i if v is a prefix of w'' (respectively suffix of w'). A subword v contains position i if it starts at a position smaller or equal than i, and ends at a position greater or equal than i.

For a set S, $|S|$ denotes the cardinality of S.

Let $r > 0$ be a given integer. An occurrence in w of subword $a = uvw$, where $|u| > 0$ and $|v| = r$, is called an r-gapped repeat (for short, r-repeat) in w. The first occurrence of u is called the left root, and the second the right root. For an r-repeat a, the length $|u|$ is denoted $p(a)$.

3 Finding quasi-squares in two words

In this section we consider an auxiliary problem, which however is interesting on its own, as it generalizes the well-known problem of finding all squares in a word.
Assume we are given two words \(w', w'' \) of equal length, \(|w'| = |w''| = n \), \(n \geq 2 \). We say that words \(w', w'' \) contain a quasi-square iff for some \(1 \leq k \leq n \) and \(p > 0 \) we have \(w'[k..k + p - 1] = w''[k + p..k + 2p - 1] \). By analogy to usual squares, \(p \) is called the period of the quasi-square, and words \(w'[k..k + p - 1], w''[k + p..k + 2p - 1] \) are called respectively its left root and right root.

Given two words, the problem is to find all quasi-squares in them. Clearly, this generalizes the problem of finding all squares in a word which corresponds to finding all quasi-squares in two equal words. Recall that finding all squares in a word is a problem which has been extensively studied. Since the number of all squares can be \(O(n^2) \), one way is to consider only primitively-rooted squares, of which the number is \(O(n \log n) \), or other repetitive structures, such as maximal integer or maximal fractional repetitions\(^1\). Several algorithms [Cro81, AP83, ML84] allow to find all such structures in time \(O(n \log n) \). Each of these algorithms is able to extract all squares in time \(O(n \log n + S) \), where \(S \) is the number of output squares (see also [SG98a]). On the other hand, Crochemore [Cro83] proposed an algorithm to test, in linear time, if a word contains at least one square. Using the technique proposed in [KK99a], this algorithm can be actually extended to find all squares in time \(O(n + S) \). This bound was claimed in [Kos94], and follows from later works [SG98b, KK99a].

Denote \(QS(w', w'') \) the set of all quasi-squares of words \(w', w'' \). We show that \(QS(w', w'') \) can be computed in time \(O(n \log n + S) \), where \(S = |QS(w', w'')| \). The algorithm we propose is based on longest common extension functions and does not use suffix tree-like data structures. It is similar to the algorithm of [ML84] for finding all repetitions. An advantage of the proposed solution is that the output quasi-squares are naturally grouped into families of quasi-squares with the same root length and starting at successive positions in the word\(^2\). We will use this feature of the algorithm in Section 5.

Assume \(n = 2m \), and denote \(QS_m (w', w'') \) the subset of \(QS(w', w'') \) consisting of those quasi-squares which contain position \(m \). To prove the bound \(O(n \log n + S) \), it is sufficient to show that all quasi-squares from \(QS_m (w', w'') \) can be found in time \(O(n + |QS_m (w', w'')|) \).

Decompose \(QS_m (w', w'') \) into two subsets \(QS^L_m (w', w'') \) and \(QS^R_m (w', w'') \) containing position \(m \) respectively in the left root and the right root. Consider the set \(QS^L_m (w', w'') \) (\(QS^R_m (w', w'') \) is treated similarly).

Let \(w'[k..k + p - 1], w''[k + p..k + 2p - 1] \) be a quasi-square from \(QS^L_m (w', w'') \) with period \(p \), that is \(k \leq m \leq k + p - 1 \). Define \(LPR(p) \) to be the length of the longest common prefix of words \(w'[m+1..n] \) and \(w''[m+p+1..n] \), and \(LSF(p) \) to be the length of the longest common suffix of \(w'[1..m] \) \(w''[m+1..m+p] \). From the considered quasi-square, it is easily seen that \(LPR(p) + LSF(p) \geq p \). Vice versa, if for some \(p = 1, ..., m \), \(LPR(p) + LSF(p) \geq p \), then there exists a quasi-square with period \(p \) from \(QS^L_m (w', w'') \). More precisely, the following Lemma holds.

Lemma 1 For \(p = 1, ..., m \), there exists a quasi-square of \(QS^L_m (w', w'') \) with period \(p \) iff \(LPR(p) + LSF(p) \geq p \). When this inequality holds, there is a family of quasi-squares with period \(p \) from \(QS^L_m (w', w'') \), with the left roots starting at positions \(\lfloor m - LSF(p) \rfloor, m + \min\{LPR(p), p\} - p \).

\(^1\)Formal definitions of these notions can be found in [KK99b]

\(^2\)This families are analogous to runs of squares in [IMS97, SG98a]
To use Lemma 1 as an algorithm for computing $QS_m^{l}(w', w'')$, we have to compute values $LPR(p), LSF(p)$ for $p = 1, ..., m$. All these values can be computed efficiently in time $O(m)$ using a variation of the Knuth-Morris-Pratt string matching algorithm. We refer to [ML84, CR95] for details of how this can be done.

We conclude that the quasi-squares of $QS_m^{l}(w', w'')$ can be computed in time $O(m + |QS_m^{l}(w', w'')|)$. Similarly, all quasi-squares of $QS_m^{l}(w', w'')$ can be computed in time $O(m + |QS_m(w', w'')|)$, and therefore all quasi-squares of $QS_m(w', w'')$ in time $O(m + |QS_m(w', w'')|)$. A straightforward divide-and-conquer algorithm gives the running time $O(n \log n + |QS(w', w'')|)$ for finding all quasi-squares in w', w''.

Theorem 1 The set $QS(w', w'')$ of all quasi-squares in words w', w'' can be found in time $O(n \log n + |QS(w', w'')|)$.

4 Finding repeats with a fixed gap

We now turn to our main problem – finding all r-repeats in a given word u. We first define the Lempel-Ziv factorization.

Definition 1 The Lempel-Ziv factorization $w = u_1...u_s$ of a word $w = a_1...a_n$ is recursively defined as follows:

1. $u_1 = a_1$,
2. for $i = 2, ..., s$, $u_i = va$, where v is the longest word, occurring at least twice in $u_1...u_{i-1}v$, and a is the letter following the prefix $u_1...u_{i-1}v$ in w (in other words, u_i is the shortest word which occurs only as a suffix in $u_1...u_{i-1}u_i$).

The Lempel-Ziv factorization is directly related to the Lempel-Ziv compression algorithm [ZL77] and to the underlying definition of complexity of a string [LZ76]. A salient property of Lempel-Ziv factorization is that it can be computed in time $O(n)$. This can be done using the suffix tree data structure [McC76, Ukk95], developed in the context of string matching applications (see [RPE81]). Conversely, the Lempel-Ziv factorization (and its close relative – the s-factorization [Cro83]) turned out itself to be useful in string matching applications related to the search for repetitions in the word [Mai89, KK99a, SG98b]. This paper gives another example of such an application.

Let $w = a_1...a_n$ be a word of length n. Without loss of generality, we assume that a_n does not occur elsewhere in w. Assume we computed the Lempel-Ziv factorization $w = u_1...u_s$ for w. First, we introduce some notation. Let $e_0, e_1, ..., e_{s-1}, e_s$ be the positions delimiting u_i’s, that is $e_0 = 0$, and $e_i = |u_1...u_i|$ for $1 \leq i \leq s$. We also denote $l_i = |u_i|, i = 1, ..., s$.

For every $i = 1, ..., s - 1$, define $\hat{e}_i = e_i + r$, if $l_{i+1} > r$, and $\hat{e}_i = e_{i+1}$, if $l_{i+1} \leq r$. To simplify the presentation, we assume that $w[i] = @$ for $i \leq 0$, where $@$ is a letter not belonging to the alphabet.

3 We note that the Lempel-Ziv factorization can also be computed in linear time with the DAWG data structure [BBH85, Cro86].
Let us split the set of all r-repeats into the set R' of those r-repeats which contain positions $e_1, ..., e_{i-1}$ and the set R'' of the remaining r-repeats. (Obviously, an r-repeat cannot contain e_i because of the assumption about the last letter, and if it contains e_i, it also contains e_{i+1}.) We now concentrate on the r-repeats of R', and further split R' into (disjoint) subsets R_i^r, $i = 1, ..., s - 1$, so that R_i^r consists of those r-repeats which contain e_i but don’t contain e_{i+1}. Furthermore, each R_i^r is split into the following subsets:

(a) $\alpha \in R_i^{lnt}$ iff the left root of α contains e_i;
(b) $\alpha \in R_i^{rnt}$ iff the right root of α contains e_i;
(c) $\alpha \in R_i^{mrnt}$ iff the right root of α contains e_i, but does not contain e_i;
(d) $\alpha \in R_i^{mid}$ iff the right root of α contains neither e_i, nor e_{i+1}.

Cases (a) and (b) cover the situation when e_i is contained in the left (respectively right) root of α. Otherwise, e_i is contained in the gap between the roots. Cases (c) and (d) distinguish whether the right root contains e_i or not (note that (c) is not possible if $e_i = e_{i+1}$, as α does not contain e_{i+1}).

We now consider separately r-repeats belonging to each of the cases (a)-(d) and show how to find them.

(a) Finding r-repeats of R_i^{lnt}. Let $\alpha \in R_i^{lnt}$ and $p(\alpha) = p$. Since α does not contain e_{i+1}, then $r + p < l_{i+1}$, and therefore $p \leq l_{i+1} - 1 - r$. In particular, R_i^{lnt} is empty whenever $l_{i+1} \leq r + 1$. Assume now that $l_{i+1} > r + 1$.

Define $LPR_i(p)$ to be the length of the longest common prefix of u_{i+1} and $u_{i+1}[r + p + 1..l_{i+1} - 1]$, and $LSF_i(p)$ to be the length of the longest common suffix of $u_{i+1}[r + 1..r + p]$ and the suffix of $u_1..u_i$ of length p. From the r-repeat α, it is easily seen that $LSF_i(p) + LPR_i(p) \geq p$.

Conversely, if for some $p = 1..l_{i+1} - 1 - r$, $LSF_i(p) + LPR_i(p) \geq p$, then there exists a family of r-repeats of R_i^{lnt} with the root length p, starting at positions $[e_i - LSF_i(p)..e_i + \min\{0, LPR_i(p) - p\}]$.

We summarize the above in the following lemma.

Lemma 2 There exists an r-repeat $w \in R_i^{lnt}$ with root length p ($p \in [1..l_{i+1} - 1 - r]$) iff $LSF_i(p) + LPR_i(p) \geq p$. When this inequality holds, all such r-repeats start at positions $[e_i - LSF_i(p)..e_i + \min\{0, LPR_i(p) - p\}]$.

Lemma 2 suggests a method of computing R_i^{lnt}. Compute the longest common extension functions $LSF_i(p)$ and $LPR_i(p)$ for all $p = 1..l_{i+1} - 1 - r$. This computation can be done in time linear on the length of involved words, that is in time $O(l_{i+1})$, using the Knuth-Morris-Pratt technique (see Section 3). Then all r-repeats of R_i^{lnt} can be output using Lemma 2. The whole computation takes time $O(l_{i+1} + |R_i^{lnt}|)$.
(b) Finding r-repeats of \(R_i^{rt} \). Consider \(\alpha \in R_i^{rt} \) with \(p(\alpha) = p \). From Definition 1 of Lempel-Ziv factorization it follows that the right root of \(\alpha \) starts to the right of \(e_{i-1} \). On the other hand, from the definition of \(R_i^{rt} \), it ends to the left of \(e_{i+1} \). Therefore, \(0 < p \leq l_i + l_{i+1} - 2 \).

We proceed similarly to case (a), and define longest common extension functions \(RPR_i(p) \) and \(RSF_i(p) \) for \(p = 1..l_i + l_{i+1} - 2 \). \(RPR_i(p) \) is defined as the length of the longest common prefix of \(u_{i+1}[1..l_{i+1} - 1] \) and \(w[e_i - p + 1..e_i - r] \), and \(RSF_i(p) \) as the length of the longest common suffix of \(u_i[2..l_i] \) and the suffix of \(w[1..e_i - r - p] \) of length \(l_i - 1 \). Similarly to case (a), the following Lemma holds.

Lemma 3 There exists an r-repeat \(\alpha \in R_i^{rt} \) with root length \(p \) (\(p \in [1..l_i + l_{i+1} - 2] \)) iff \(RPR_i(p) + RSF_i(p) \geq p \). When this inequality holds, the right roots of all such r-repeats start at positions \(\{e_i - \min\{RSF_i(p), p\}, e_i + RPR_i(p) - p\} \).

Again, functions \(RPR_i \) and \(RSF_i \) can be computed in time linear in the length of involved words, that is in time \(O(l_i + l_{i+1}) \). Therefore, all r-repeats of \(R_i^{rt} \) can be reported in time \(O(l_i + l_{i+1} + |R_i^{rt}|) \).

(c) Finding r-repeats of \(R_i^{mrt} \). Note that this case is defined only when \(e_i < e_{i+1} \), that is when \(l_{i+1} > r \). Consider \(\alpha \in R_i^{mrt} \) with \(p(\alpha) = p \). The right root of \(\alpha \) lies inside \(u_{i+1}[2..l_{i+1} - 1] \), and therefore \(p < l_{i+1} - 1 \).

Using the same approach, we define \(MPR_i(p) \) to be the length of the longest prefix of \(u_{i+1}[r+1..l_{i+1} - 1] \) and \(w[e_i - p + 1..e_i] \), and \(MSF_i(p) \) to be the length of the longest suffix of \(u_{i+1}[2..r] \) and the suffix of \(w[1..e_i - p] \) of length \(r - 1 \). The following Lemma holds.

Lemma 4 There exists an r-repeat \(\alpha \in R_i^{mrt} \) with root length \(p \) (\(p \in [1..l_{i+1} - 2] \)) iff \(MPR_i(p) + MSF_i(p) \geq p \). When this inequality holds, the right roots of all such r-repeats start at positions \(\{e_i + r - \min\{MSF_i(p), p\}, e_i + r + MPR_i(p) - p\} \).

Functions \(MPR_i \) and \(MSF_i(p) \) can be computed in time \(O(l_{i+1}) \) and all r-repeats of \(R_i^{mrt} \) can be reported in time \(O(l_{i+1} + |R_i^{mrt}|) \).

(d) Finding r-repeats of \(R_i^{mid} \). Consider now \(\alpha \in R_i^{mid} \) with \(p = p(\alpha) \). Denote \(m_i = e_i - e_{i+1} = \min\{r, l_{i+1}\} \). The right root of \(\alpha \) lies inside \(u_{i+1}[2..m_i - 1] \), and therefore \(p \leq m_i - 2 \).

This case differs from cases (a)-(c) in that we cannot a priori select a position contained in the right (or left) root of \(\alpha \). Therefore, we cannot apply directly the technique of longest common extension functions. We reduce this case to the problem of finding quasi-squares, considered in Section 3.

Since the start position of the right root is contained in the word \(w[e_i + 1..e_i + m_i - 1] \), the end position of the left root is contained in the word \(w[e_i + 1 - r..e_i + m_i - 1 - r] \). Since \(p \leq m_i - 2 \), the left root of \(\alpha \) is contained in the word \(w' = w[e_i - r - m_i + 1..e_i + m_i - 1 - r] \). The length of \(w' \) is \(2m_i - 4 \). Let \# be another fresh letter. Denote by \(w'' \) the word \(#\ldots\# u_i[2..m_i - 1]\).

Lemma 5 There exists an r-repeat \(\alpha \in R_i^{mid} \) iff there exists a quasi-square in words \(w', w'' \). Each such quasi-square corresponds to an r-repeat \(\alpha \in R_i^{mid} \).
Therefore, there is a one-to-one correspondence between the set \(R^m_{i} \) and the set of quasi-squares in the words \(w', w'' \) constructed above. Moreover, a quasi-square with the left root starting at position \(j \) in \(w' \) corresponds to an \(r \)-repeat starting at position \((e_i - r - m_i + 3 + j) \) in \(w \).

By Theorem 1, all those quasi-squares can be found in time \(O(m_i \log m_i) \). We conclude that all \(r \)-repeats of \(R^m_{i} \) can be reported in time \(O(m_i \log m_i + |R^m_{i}|) \), which, using \(m_i = \min \{r, l_{i+1}\} \), we estimate as \(O(l_{i+1} \log r + |R^m_{i}|) \).

Putting together cases (a)-(d), all \(r \)-repeats of \(R' \) can be found in time \(O(l_i) + O(l_{i+1} \log r) + O(|R'|) \). Summing up over all \(i = 1..s \), we obtain that all \(r \)-repeats of \(R' \) can be found in time \(O(n \log r + |R'|) \).

Finding \(r \)-repeats of \(R'' \) can be done using a technique similar to the one used in [KK99a]. The key observation here is that each \(r \)-repeat of \(R'' \) occurs inside some factor \(u_i \) (i.e. does not contain positions \(e_i \) and \(e_{i+1} \)). By definition of the factorization, each such \(r \)-repeat is a copy of another \(r \)-repeat occurring to the left. When constructing the Lempel-Ziv factorization, we can store, for each factor \(u_i = va \), a reference to an occurrence of \(v \) to the left (see Definition 1). After finding all \(r \)-repeats of \(R' \), we sort them, using basket sort, in increasing order of their start position and, for each start position, in increasing order of their root length. Then we process all factors from left to right and for each factor \(u_i = va \), copy corresponding earlier found \(r \)-repeats occurring in the referenced copy of \(v \). We refer the reader to [KK99a] for full details. The running time of this stage is \(O(n + |R''|) \).

We conclude with the final result.

Theorem 2 The set \(R \) of all \(r \)-repeats in a word \(w \) can be found in time \(O(n \log r + |R|) \).

We end this section by noting that when \(r = 0 \) (that is, usual squares are looked for), only cases (a),(b) remain to be dealt with. The algorithm we obtain is actually the algorithm of Crochemore [Cro83] allowing to find, in linear time, all squares containing factor borders, augmented with the technique of [KK99a] allowing to find the remaining squares (cf Section 3). Thus, we obtain an \(O(n + S) \) algorithm for finding all squares. The same algorithm works for \(r = 1 \), since in this case too, cases (a),(b) cover all possible relative positions of 1-repeats and factor borders.

5 Finding \(r \)-repeats with a fixed gap word

The algorithm presented in Section 4 can be modified in order to find all \(r \)-repeats with a fixed word between the two roots. Assume \(v \) is a fixed word of length \(r \). Denote by \(R_v \) the set of \(r \)-repeats of the form \(uvu \), where \(|u| \geq 1 \). We show that all those repeats can be found in time \(O(n \log r + |R_v|) \). To do that, we first find, using any linear-time string matching algorithm (for example, the Knuth-Morris-Pratt algorithm) all start occurrences of \(v \) in \(w \). For each position \(i \) of \(v \), we compute the position \(\text{NEXT}(i) \), defined as the nearest start position of \(v \) strictly to the right of \(i \).

From the algorithm of Section 4 for finding the set \(R' \), it should be clear that all the \(r \)-repeats of \(R' \) can be represented by \(O(n \log r) \) families each consisting of \(r \)-repeats with a
given root length and starting at all positions from a given interval. In other words, each
family can be specified by an interval $[i..j]$ and a number p, and encodes all r-repeats with
root length p starting at positions from $[i..j]$.

From this specification, using function $NEXT(i)$, we can easily extract all r-repeats of
R_v in time proportional to the number of those. For that, we first assume that each family
is specified by an interval of end positions of the left root (as the root length p is known
for each family, the translation can be trivially computed by just adding p to the interval
of start positions). Then we process all the families and extract from each interval those
positions which are start positions of an occurrence of v. Using function $NEXT$, this can
be easily done in time proportional to the number of such positions.

After processing all families, we have found all r-repeats from the set $R'_v = R_v \cap R'$ in
time $O(n \log r + |R'_v|)$. Then, using a procedure for finding r-repeats from R'', described in
Section 4, we find all r-repeats from $R''_v = R_v \cap R''$ in time $O(n + |R''_v|)$. As $R_v = R'_v \cup R''_v$, all r-repeats from R_v are found in time $O(n \log r + |R_v|)$.

6 Conclusions

An interesting natural question is whether all r-repeats can be found in time $O(n + |R|)$. The “bottleneck” implying the $\log r$ factor comes from the problem of finding quasi-squares. Can all quasi-squares be found in time $O(n + |QS(w', w'')|)$?

References

[AP83] A. Apostolico and F.P. Preparata. Optimal off-line detection of repetitions in a

The smallest automaton recognizing the subwords of a text. *Theoretical Computer

bounded gap. In M. Crochemore and M. Paterson, editors, *Proceedings of the 10th
Annual Symposium on Combinatorial Pattern Matching*, volume 1645 of *Lecture

[CR95] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string

[Cro81] M. Crochemore. An optimal algorithm for computing the repetitions in a word.

