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1
I N T R O D U C T I O N

An image (a scene or an object) is mathematically represented by a
function defined on a domain of Rn, n = 2, 3. In order to store, process
and manipulate such an image by computer, it is generally digitized
by partitioning the support Rn into regular polygons or polyhedra: for
example, the square, hexagonal or triangular tessellation of R2, and
the cubical tessellation of R3 (see Figure 1). In particular, the center of
each cell of the square or cubical tessellation is represented by a point
of Zn, so that the support of a digital image is Zn instead of Rn [37].
This operation is called digitization, and often defined as a rounding
function, D : Rn → Zn.

(a) (b) (c)

Figure 1: Regular tilings of the two-dimensional space: (a) the square tiling,
(b) the hexagonal tiling, and (c) the triangulair tiling.

With this operation, given a continuous object X ⊂ Rn, the as-
sociated digital object is defined as D ◦ X ⊂ Zn (see Figure 2). To
analyze and manipulate the shapes of such digital objects defined
on Zn, one often uses classical techniques, which are based on geo-
metric or topological models defined in the continuous frame, while
their computations are performed numerically with limited precision.
Consequently, the results obtained may include digitization and calcu-
lation errors that violate the geometric and topological properties of
the original object, and therefore lack reliability (see Figure 2 (b) for
an original shape in R2 and (d) for the topological violation after the
digitization process).

In order to deal with these issues, we1 study discrete models that
allow a geometric calculation in a more reliable way for digital objects.
Digital geometry is indeed the study of the geometric and topological
properties of sets of discrete points in Zn, and provides us with various
discrete models and useful mathematical tools [37], [101].

1 The use of “we” throughout this thesis is purposeful. It is used to involve the reader
with the thesis as recommended by [103].
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2 introduction

(a) X1 ⊂ R2 (b) X2 ⊂ R2

(c) D ◦ X1 ⊂ Z2 (d) D ◦ X2 ⊂ Z2

Figure 2: (a,b) Continuous shapes X1 and X2 in R2 (in transparent blue) and
their boundaries (in blue). (c,d) The associated digitized shapes
D ◦ X1 and D ◦ X2 in Z2 (in transparent blue), and their digital
boundaries (in blue). (c) The digital boundary of D ◦ X1 is a 1-
manifold. (d) The digital boundary of D ◦ X2 is not a 1-manifold,
by contrast with that of X2.

Due to the discrete nature of Zn, there are often combinatorial
aspects to geometric and topological problems of image analysis and
synthesis. The goal of the work presented in this manuscript is to
understand the combinatorial structure of the solution space of each
problem, so that more efficient algorithms and properties can be
proposed, with a help of digital geometry.

In this manuscript, we consider three different topics, related to ana-
lyzing and manipulating digital shapes, in different contexts: topolog-
ical shape analysis (Chapter 2), geometric shape analysis (Chapter 3),
and shape rigid motions (Chapter 4)2. For each issue, we adopt the
following common approach, which is basically fourfold:

1. determining the underlying geometric/topological assumption
for the problem;

2. finding an appropriate discrete model, which discretizes the
solution space;

3. studying the associated combinatorial structures and their prop-
erties; and

2 The order of the topics is chronological in the research carrier of the author.
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4. proposing efficient algorithms based on those structures and
properties.

In the next chapter, we deal with two-dimensional surfaces in Z3.
Our assumption is that the boundaries of three-dimensional objects
are surfaces. We use polyhedral complexes to interpret topology of
digital objects and their boundary, and to characterize each point
topologically. This characterization allows us to study the local config-
urations of discrete surfaces and to propose efficient algorithms for
boundary extraction and thinning.

In Chapter 3, we focus on geometry. We assume that we know a
priori what we observe in digital data. Here, we assume that it is
a plane in a three-dimensional space. Two different problems are
considered: digital planar surface segmentation and digital plane
fitting. The former assumes the shape linearity locally, while the latter
leads to a global optimization under the linear shape constraint. Both
use the common geometric model, digital plane, formulated by a pair
of linear inequalities.

Chapter 4 presents our most recent work. Here, we assume that
digital objects are rigid and simply move in Zn without changing the
shapes. However, in contrast to rigid motions on Rn, this assumption
is so strong that geometric and topological invariances are generally
lost in Zn due to the digitization process. We focus on each problem
independently, and develop a purely discrete framework for rigid
motions on Zn based on digital geometry and topology concepts, with
a help of computational geometry and computer algebra.





2
D I G I TA L S H A P E A N A LY S I S W I T H T O P O L O G I C A L
A S S U M P T I O N

This chapter is dedicated to study combinatorial aspects with topologi-
cal constraints, in particular, topologies of two-dimensional surfaces in
a three-dimensional discrete space. Three-dimensional image analyses
often require surface structures as boundaries of solid objects. For
example, image segmentation is the process of partitioning a digital
image into multiple objects and background. In other words, it is used
to locate their boundaries, which should be generally considered as
surfaces, in a three-dimensional image.

Seeing that objects in digital images are given by sets of integer
points, representing such surfaces, namely 2-manifolds, as polyhedral
surfaces is a natural choice when no shape knowledge is available a
priori [101]. Besides, once we have polyhedral surfaces, they are useful
for visualization [62], as well as calculating geometric features, such
as volume, surface area, tangent, curvature, etc. in post-processing
[159].

In this chapter, we do not focus on image segmentation techniques
themselves, but on topological representation of each segmented re-
gion. More precisely, given a three-dimensional binary image (value 1
for a region of interest and 0 for the background), we represent the
region, namely a discrete object, by a polyhedral complex. Based on
this approach, we can topologically characterize every point in discrete
objects in a local way. As a consequence, it is easy to characterize
points on the object boundary, which forms a two-dimensional combi-
natorial surface (manifold). This topological characteristic enables us
to develop a simple algorithm which examines whether each point of
discrete objects is on a combinatorial surface. As the characterization is
made locally, we find and enumerate all the local point configurations
that can appear on combinatorial surfaces in the three-dimensional
discrete space.

Thanks to this topological framework, we can present an efficient
algorithm to directly obtain a polyhedral surface from a given discrete
object. Moreover, we show that the framework is also useful for a
thinning operation of a binary image.

This chapter is based on the results mainly presented in [85], [89],
[116].

5



6 digital shape analysis with topological assumption

2.1 introduction

2.1.1 Background

The well-known method for generating polyhedral surfaces from a
three-dimensional digital image is the marching cubes method [118],
[198], which simply uses a look-up table based on local point configu-
rations. The original work was made purely for the aim of visualizing
three-dimensional object in a digital image, and it is well known that
there are topological problems, such as creating cracks [69], [140].
For the purpose of solving this problem, approaches making a link
between the classical concept of connectivity of digital topology and
polyhedral surfaces were presented [46], [93], [110].

Topological equivalence between a continuous object boundary and
the polyhedral surfaces reconstructed from its digital image is also
studied in [185]. The authors pointed out that if a digital image
satisfies the well-composedness, proposed by Latecki [115], then the
marching cubes algorithm [118], [198] does not lead to any topological
problem in generated surfaces.

On the other hand, the framework of cell complex or cubical com-
plex is very much used in the context of topological analyses of digital
images [13], [16], [41], [108], [120], whose dual representation is called
Khalimsky space [97]. In fact, if a digital image is well composed,
the boundary of its cubical complex always leads to a topologically
correct polyhedral surface [121]. Thanks to this topological guarantee,
the cubical complex approach is nowadays popular if we are sure that
what we treat are only three-dimensional objects.

However, when multi-dimensional representations are necessarily
using only integer points for multi-dimensional shape analysis (e.g.
curve or surface thinning), dual approaches of the above cubical
complexes would be useful. This is because the framework of cubical
complexes provides inter-voxel surfaces, namely polyhedral surfaces
whose vertices are not at voxel centers but are in between, while
its dual can provide polyhedral surfaces whose vertices are voxel
centers, i.e. integer points. Such representation has been proposed
and used, for example, for computing the Euler characteristic of a
digital object [191], [197], thinning digital objects based on collapse
[94], and analysing topological changes of discrete objects in the level
sets of gray scale images [158], and representing surfaces in the discrete
space [31], [33], [42], [126], etc.

In this chapter, we consider this latter approach.

2.1.2 Problem and approach

Let us consider a three-dimensional discrete space Z3, consisting
of points whose coordinates are all integers in a three-dimensional
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Figure 3: Examples of local configurations in a 3× 3× 3 point region so that
the central point is considered to be a border point [89], which is
either a surface point (left), a surface point but not a simplicity
surface point [42] (center), or a non-surface point, i.e. a singular
point (right).

Euclidean space R3. In [89], we presented a boundary extraction
algorithm which provides a polygonization of a set of boundary points
given by

Brm(V) = {p ∈ V : Nm(p) ∩V 6= ∅} (1)

where V is a finite subset of Z3, i.e., a discrete object and V is its
complement. Nm(p) is the m-neighborhood of a point p in Z3, defined
by

Nm(p) = {q ∈ Z3 : ‖p− q‖2
2 ≤ r}

where r = 1, 2, 3 for m = 6, 18, 26 respectively. Based on combina-
torial topology [3], [186], [202], we introduce discrete polyhedral
complexes [89], [116] to represent discrete objects, and then obtain
topologies for boundary points. With a help of such topologies, we
find that boundary points in Brm(V) include not only surface points,
i.e., points on 2-dimensional combinatorial manifolds, but also non-
surface points, i.e., singular points, as shown in Fig. 3. In this chapter,
we use local topological notions similarly to our work [92] to dis-
criminate surface points from boundary points. Such notions enable
us to present an algorithm to count the local point configurations
appearing in discrete combinatorial surfaces for the 6-, 18- and 26-
neighborhood systems; discrete combinatorial surfaces are defined
for any m-neighborhood system, m = 6, 18, 26, such that their adja-
cent vertices are m-neighboring. Because there are a finite number of
points in the local region, there must be a finite number of local point
configurations in discrete combinatorial surfaces.

Figure 4: The 6 local configurations of 3× 3× 3 of discrete combinatorial
surfaces for the 6-neighborhood system [31], [64], [81], [83] where
the five left ones appear in discrete planes [65], [90].
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2.1.3 Related work

For the 6-neighborhood system, the definition of discrete combinatorial
surfaces is given by Françon in [64] and he showed that there are 6
local configurations of discrete surfaces for the 6-neighborhood system
as illustrated in Fig. 4. Note that similar results are obtained by using
different approaches, for example, in [31], [81], [83]. The discrete
deformation model based on such discrete surface configurations for
6-neighborhood system is also presented in [57]. Moreover, Françon
and Kenmochi et al. show that there are five local configurations which
appear in discrete planes, illustrated as the five left configurations in
Fig. 4 [65], [90]. In other words, there is only one configuration (the
most right one in Fig. 4) which does not appear in discrete planes but
appears in discrete non-planar surfaces.

In [64], however, the 18- and 26-neighborhoods are not practically
treated so that we do not see how to generate discrete combinatorial
surfaces for the 18- and 26-neighborhood systems, even if the mathe-
matical definition is given for any neighborhood system. Morgenthaler
et al. defined discrete surfaces by using the point connectivity based
on the Jordan surface theorem; any Jordan surface divides the space
into two regions [126]. In [42], Couprie et al. pointed out that, for the
26-neighborhood system, Morgenthaler’s discrete surfaces have only
13 local configurations while their discrete surfaces, called simplicity
surfaces, have 736 configurations. However, we see that even simplic-
ity surfaces do not give enough configurations if we would like to
treat our boundary points. For example, we obtain a boundary point
by applying our boundary extraction algorithm [89] as illustrated in
Fig. 3 (center) and we see that it is not considered to be a simplicity
surface. Ciria et al. also presented a graph-based notion of discrete
surfaces for the 26-neighborhood system, though the number of all
local point configurations has not been studied yet [33].

2.2 polyhedral complex for digital object

2.2.1 Convex polyhedra and polyhedral complexes in R3

For the definitions of convex polyhedra and polyhedral complexes in
R3, we follow the notions in [202]. Similar notations are also seen in
[3], [186].

Definition 2.1. A convex polyhedron σ is the convex hull of a finite set of
points in some Rn.

The dimension of a convex polyhedron σ is the dimension of its
convex hull. An n-dimensional convex polyhedron σ is abbreviated
to an n-polyhedron. For instance, a point is a 0-polyhedron, a line
segment is a 1-polyhedron, a triangle or a square is a 2-polyhedron,
and a tetrahedron or a hexahedron is a 3-polyhedron.
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A linear inequality a · x ≤ z is said to be valid for σ if it is satisfied
for all points x ∈ σ. A face of σ is then defined by any set of the form

δ = σ ∩ {x ∈ R3 : a · x = z}

where a · x ≤ z is valid for σ. For instance, a 3-polyhedron which
is a tetrahedron has four 0-polyhedra, six 1-polyhedra and four 2-
polyhedra for its faces. If a k-dimensional convex polyhedron τ is a
face of σ, τ is called an k-face and such a binary relation is denoted by
τ ≺ σ. Note that the binary relation is reflexive so that σ ≺ σ for any
σ and also ∅ ≺ σ for any σ.

The point of a 0-polyhedron, the endpoints of a 1-polyhedron and
the vertices of 2- and 3-polyhedra are called the vertices of each convex
polyhedron.

Definition 2.2. A polyhedral complex K is a finite collection of convex
polyhedra such that

1. the empty polyhedron is in K,

2. if σ ∈ K and τ ≺ σ, then τ ∈ K,

3. if σ, τ ∈ K, then the intersection σ ∩ τ is a common face of σ and τ.

The dimension of K is the greatest dimension of a convex polyhe-
dron in K. It is known that K is a partially ordered set, which can be
identified with a topological space called a discrete space; the detail is
found in Section 6 of Chapter 1 in [3].

2.2.2 Polyhedral complex construction with vertex constraint on Z3

If we have a method to construct a polyhedral complex K from a finite
point set V in Z3, satisfying the following three properties, we can
derive a local topological characterization of points based on such a
polyhedral complex. In the following, we describe a method proposed
in [89], [116].

Property 2.1. A polyhedral complex K is uniquely constructed from any
finite subset V ⊂ Z3, written by

K = Comp(V).

Let Skn(K) be the union of all n-polyhedra in K, called an n-
dimensional skeleton of K. Therefore, Sk0(K) denotes the union
of sets of vertices of all σ ∈ K.

Property 2.2. Given a finite subset V ⊂ Z3, we have

Sk0(Comp(V)) = V.
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Table 1: All n-dimensional discrete convex polyhedra, n = 0, 1, 2, 3, for the
m-neighborhood systems, m = 6, 18, 26, up to rotations and symme-
tries.

 N6  N18  N26

discrete   convex   polyhedra

dim.

0

1

2

3

We say that a point q is m-adjacent to p if q ∈ Nm(p) \ {p}. Let
Am(p) be the set of all m-adjacent points of p. Then we can define all
the adjacent relations in V such that

Am(V) = ∪p∈V ∪q∈Am(p) {{p, q}}.

Property 2.3. Given a finite subset V ⊂ Z3, we have

Sk1(Comp(V)) = Am(V)

where m = 6, 18, 26.

In the following, we describe a method proposed in [89], [116] for
construction of Comp(V) satisfying the above three properties, called
discrete polyhedral complex.

The construction is made with respect to a chosen m-neighborhood
where m = 6, 18, 26. Let us first consider the case of m = 26. We
consider a unit cube whose eight vertices are discrete points in Z3.
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Table 2: Five 1-point configurations of a unit cube where different discrete
complexes are constructed for the 18- and 26-neighborhood systems.

N18

N26

a discrete complex in a unit cube

Setting the value of each point at either 1 or 0, we make a convex hull
of points whose value is 1. The dimension of such a convex hull can
vary from 0 to 3 and we see that every pair of adjacent vertices of any
discrete convex polyhedron are 26-neighboring, as illustrated in Table
1. After generating a discrete convex polyhedron in each unit cubic
region, we compute the union of all discrete convex polyhedra and
their faces, and obtain a discrete polyhedral complex K.

If we consider discrete convex polyhedra such that every pair of
adjacent vertices are 6-neighboring, we obtain only one type of discrete
convex polyhedra for each dimension as shown in Table 1. Similarly
to the case of m = 26, for the case of m = 6, considering the union of
all discrete convex polyhedra and their faces, we obtain a polyhedral
complex K.

Let us consider the case of m = 18. Table 1 shows that there are 22

different 1-point configurations for m = 26, among which there are
five 1-point configurations missing for the 18-neighborhood system.
This is because each of those five convex polyhedra includes a pair
of adjacent vertices which are 26-neighboring but not 18-neighboring.
Therefore, to construct a discrete complex in a unit cube whose 1-point
configuration is one of those five for the 18-neighborhood system, we
need to construct the discrete complexes as illustrated in Table 2. In
addition, the last case in Table 2 may cause the conflicts depending on
the 1-point configuration in its adjacent unit cube (see the left figures
in Figs. 5 and 6). In those cases, we modify polyhedral complexes in
both cubes as illustrated in Figs. 5 and 6 (right). We remark that such
a replacement does not destroy the topology of a discrete complex.
The details and the precise algorithm can be found in [89].

2.2.3 Combinatorial boundaries of polyhedral complexes

Before defining combinatorial boundaries, we give some notions for
polyhedral complexes [3], [89], [116].
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Figure 5: Additional polyhedral decomposition for the 18-neighborhood
system.

Figure 6: Modification of polyhedral complexes in two adjacent unit cubes
such that each of them has the last 1-point configuration in Table
2, and they have four common 1-points and also have two non-
common 1-points whose distance is

√
5, for the 18-neighborhood

system.

Definition 2.3. An n-complex K is said to be pure if there is at least one
n-polyhedron σ ∈ K for every s-polyhedron τ ∈ K so that τ ≺ σ.

Figure 7 shows examples of pure and non-pure discrete complexes.
The following definitions of combinatorial closure and of connec-

tivity are necessary for topological operations in discrete polyhedral
complexes.

Definition 2.4. Let K be a polyhedral complex and H be a subset of H. The
combinatorial closure of H is defined as

C l(H) = H ∪ {τ ∈ K : τ ≺ σ, σ ∈ H}.

Note that H may not be a complex while C l(H) is always a complex,
and H 6= C l(H) if H is not a complex. Figure 8 shows an example of
the closure of a subset for a given complex.

Definition 2.5. Let K be a polyhedral complex, and σ, τ be arbitrary el-
ements in K. We say that K is connected if there exists a path σ(= a1),
a2, . . ., τ(= an) in K that satisfies C l({ai}) ∩ C l({ai+1}) 6= ∅ for every
i = 1, 2, . . . , n− 1.

We can then define combinatorial boundary based on the notion of
algebraic topology [125], [186].

(a) (b)

Figure 7: Examples of (a) pure and (b) non-pure 3-complexes.
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(a) (b) (c)

Figure 8: (a) A 3-complex K, (b) its subset H consisting of three convex
polyhedra whose dimensions are from 1 to 3 respectively, and (c)
the closure of H in K.

Definition 2.6. Let K be a connected and pure n-complex where n > 0 and
H be the set of all (n− 1)-polyhedra in K each of which is a face of exactly
one n-polyhedron in K. The combinatorial boundary of K is then defined as
the pure (n− 1)-complex

∂K = C l(H).

2.3 topological characterization of digital object point

One of the goals of this chapter is to present an algorithm to verify
whether each point in Sk0(K) is considered to be on a discrete sur-
face or not. For this goal, we study topological characterization of
each point in Sk0(K) by observing its local point configuration and
investigate all topological characteristics which can be maintained
by points in Sk0(K). In Z3, we have polyhedral complexes whose
dimensions can be from zero to three. Thus, we present topological
characterization of polyhedral complexes for each dimension from
one to three [116] by using the notions of star and link [202] similarly
to the previous work [92]. We then show that there are 12 topological
types of points in Sk0(K). In the next sections, we will classify all
points in Sk0(K) by their topological characteristics and study the
type of points in discrete surfaces.

In this section, we do not have to distinguish the three different
neighborhood systems. Thus, we abbreviate a polyhedral complex Km

for m = 6, 18, 28 simply to K.

2.3.1 Star and link

The star and the link are defined for each element in Sk(K) as follows.

Definition 2.7. For a polyhedral complex K, the star of a convex polyhedron
σ ∈ Sk(K) is defined such that

S tar(σ) = {τ ∈ K : σ ≺ τ}.

Definition 2.8. For a polyhedral complex K, the link of a convex polyhedron
σ ∈ Sk(K) is defined such that

Link(σ) = C l(S tar(σ)) \ S tar(σ).
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If we need to emphasize K where a star and a link are calculated,
we denote them by star(σ : K) and link(σ : K) respectively. Figure 9

shows examples of star and link. Note that any link is a polyhedral
complex while stars are not always polyhedral complexes.

The dimension of S tar(σ) is defined as the greatest dimension of
convex polyhedra belonging to S tar(σ) and denoted by dim(S tar(σ)).

2.3.2 Topological characterization by stars

For each 0-polyhedron, namely a point x, in the 0-skeleton Sk0(K) of
a polyhedral complex K, we define topological characteristics of stars
[3], [116].

Definition 2.9. Let K be a polyhedral complex and x ∈ Sk0(K). We say
that S tar(x) is linear if Link(x) consists of two 0-polyhedra.

Definition 2.10. Let K be a polyhedral complex and x ∈ Sk0(K). We say
that S tar(x) is semi-linear if Link(x) consists of one 0-polyhedron.

Figure 10 illustrates stars which are linear and semi-linear. By using
linear and semi-linear stars, we define combinatorial curves.

Definition 2.11. Let K be a connected and pure 1-complex. We say that K
is a combinatorial curve with endpoints if the star of every 0-polyhedron in
Sk0(K) is either linear or semi-linear and there is at least one point whose
star is semi-linear in Sk0(K).

Definition 2.12. Let K be a connected and pure 1-complex. We say that K
is a combinatorial closed curve if the star of every 0-polyhedron in Sk0(K) is
linear.

By using the above definitions of combinatorial curves, we define
topological characteristics of stars in two dimensions.

Definition 2.13. Let K be a polyhedral complex and x ∈ Sk0(K). We say
that S tar(x) is cyclic if Link(x) is a combinatorial closed curve.

Definition 2.14. Let K be a polyhedral complex and x ∈ Sk0(K). We
say that S tar(x) is semi-cyclic if Link(x) is a combinatorial curve with
endpoints.

x

(a) (c)(b)

Figure 9: (a) A 3-complex K; (b) the star of x ∈ Sk0(K); (c) the link of x.
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Figure 10: One-dimensional topological characterization of points whose
stars are linear, semi-linear and neither of them, illustrated as grey,
white and black points.

 

Figure 11: Two-dimensional topological characterisation of points whose
stars are cyclic, semi-cyclic and neither of them, illustrated as grey,
white and black points.

Figure 11 illustrates stars which are cyclic and semi-cyclic. By using
cyclic and semi-cyclic stars, we define combinatorial surfaces.

Definition 2.15. Let K be a connected and pure 2-complex. We say that K
is a combinatorial surface with edges if every 0-polyhedron in Sk0(K) has
either a cyclic or semi-cyclic star, and there is at least one 0-polyhedron whose
star is semi-cyclic in Sk0(K).

Definition 2.16. Let K be a connected and pure 2-complex. We say that
K is a combinatorial closed surface if every 0-polyhedron in Sk0(K) has a
cyclic star.

By using combinatorial surfaces and combinatorial boundary (Def-
inition 2.6), we define topological characteristics of stars in three
dimensions.

Definition 2.17. Let K be a polyhedral complex and x ∈ Sk0(K). We say
that S tar(x) is spherical if Link(x) is a combinatorial closed surface.

Definition 2.18. Let K be a polyhedral complex and x ∈ Sk0(K). We
say that S tar(x) is semi-spherical if Link(x) is a combinatorial surface
with edges, and the edges, i.e., the combinatorial boundary ∂(Link(x)) is a
combinatorial closed curve.

Figure 12 illustrates stars which are spherical, semi-spherical and
neither of them. It also shows that a point whose star is spherical is
an interior point in a 3-complex, a point whose star is semi-spherical
is a boundary point of a 3-complex, and a point whose star is neither
spherical nor semi-spherical is a singular point, i.e., an intersection
point of the boundaries.

We present the following proposition which plays an important role
in this chapter [116].

Proposition 2.1. Let K be a pure 3-complex and x be a point in Sk0(K). If
S tar(x : K) is semi-spherical, then star(x : ∂K) is cyclic.
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Figure 12: Three-dimensional topological characterisation of points whose
stars are spherical, semi-spherical and neither of them, illustrated
as grey, white and black points.

2.3.3 Point classification

Each 0-polyhedron, namely point x, in the 0-skeleton Sk0(K) of an
n-complex K where n ≤ 3 can be classified into one of the twelve
types each of which satisfies one of the following conditions [116].

type 0 : dim(S tar(x)) = 0;

type 1a : S tar(x) is linear;

type 1b : S tar(x) is semi-linear;

type 1c : dim(S tar(x)) = 1 and S tar(x) is neither linear nor semi-
linear;

type 2a : S tar(x) is cyclic;

type 2b : S tar(x) is semi-cyclic;

type 2c : dim(S tar(x)) = 2, C l(S tar(x)) is pure and S tar(x) is nei-
ther cyclic nor semi-cyclic;

type 2d : dim(S tar(x)) = 2 and C l(S tar(x)) is not pure;

type 3a : S tar(x) is spherical;

type 3b : S tar(x) is semi-spherical;

type 3c : dim(S tar(x)) = 3, C l(S tar(x)) is pure and S tar(x) is nei-
ther spherical nor semi-spherical;

type 3d : dim(S tar(x)) = 3 and C l(S tar(x)) is not pure.

2.3.4 Enumeration: Algorithm and experiments

As we mentioned above, any point is classified into one of the twelve
types. We also see that these twelve types have a hierarchical structure
as shown in Fig. 13.

By using the hierarchical structure, we can easily obtain an algo-
rithm to classify a local 1-point set V with respect to a type of the star
of the central point x ∈ V:



2.3 topological characterization of digital object point 17

pure closure of star

 3D star 

 all types 
 

type 3b

type 3c

type 0

type 3d

semi-spherical star

type 3a

 spherical star 

 pure closure of star

 2D star 

type 2b

type 2c

type 2d

 semi-cyclic star 

type 2a

 cyclic star 

 1D star 

type 1b

type 1c

 semi-linear star 

type 1a

 linear star 

Figure 13: Hierarchical point classification by topological characterization of
stars on Comp(V) for any V ⊂ Z3.

1. construct a polyhedral complex Km for m = 6, 18 or 26 from V;

2. obtain S tar(x) in Km for each x ∈ V;

3. classify each S tar(x) by its dimension;

4. if the dimension is more than zero, classify S tar(x) by its topo-
logical characteristics (including the purity of C l(S tar(x)) for
more than one dimension).

Note that x is always a 1-point for any 1-point configuration of V. In
addition, a discrete complex Km for m = 6, 18, 26 is uniquely obtained
from V as described in Section 2.2.2.

We apply the algorithm to every local 1-point configurations of V ⊆
N26(x) whose central point x is a 1-point. The number of all possible
1-point configurations of V is 226 = 67 108 864, that is reduced to
1 426 144 up to rotations around the x-, y- and z-axes and symmetries
with respect to the xy-, yz-, zx-planes. Among them, we count the
number of each type of local point configurations.

(a) (b)

Figure 14: Examples of two different 3-complexes K6 (a) and K′6 (b) whose
central points, illustrated as white points, have type 3b such that
Sk0(K6) 6= Sk0(K′6) but Sk0(C l(S tar(x : K6))) = Sk0(C l(S tar(x :
K′6))).
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Table 3: The numbers of star configurations for each of the twelve types, with
respect to the 6-, 18- and 26-neighborhood system, up to rotations
and symmetries.

6-neighborhood 18-neighborhood 26-neighborhood
type 0 1 1 1

type 1a 2 6 11

type 1b 1 2 3

type 1c 6 17 77

type 2a 6 80 55

type 2b 14 313 398

type 2c 123 938 3 203

type 2d 74 461 3 664

type 3a 1 21 425 23 520

type 3b 9 102 793 290 979

type 3c 11 58 532 321 371

type 3d 274 179 893 782 862

total 522 364 461 1 426 144

The type of the central point x is not determined by Km, but by
S tar(x : Km). Therefore, we do not need to observe all points in
Sk0(Km) but only those in Sk0(C l(S tar(x : Km))) for obtaining the
point type of x. For example, Fig. 14 shows examples of two different
3-complexes K6 and K′6 whose central points have type 3b such that

Sk0(K6) 6= Sk0(K′6)

but
Sk0(C l(S tar(x : K6))) = Sk0(C l(S tar(x : K′6))). (2)

Obviously, because of Eq. (2), they have the same type 3b, and have
the same forms around the central points.

For m = 6, 18, the following equation does not always hold;

Sk0(Km) = Sk0(C l(S tar(x : Km))), (3)

while it always holds for m = 26. For example, we see in Fig. 14

that Eq. (3) holds for K6 (a) but does not for K′6 (b). In order to avoid
counting the local point configurations twice for K6 and K′6 in Fig. 14,
we count different configurations of Sk0(C l(S tar(x : Km))) instead of
those of Sk0(Km). Such configurations are called star configurations
and we obtain Table 3. Note that S tar(x : Km) is not a polyhedral
complex so that we make a lowest complex by using the closure
function before making its skeleton. We also mention that we count
configurations of S tar(x : Km) up to rotations and symmetries; thus
no redundant configuration is contained in Table 3. We also see in
Table 3 that the total numbers of different star configurations for
m = 6, 18 are much less than that for m = 26.
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(a) (b)

Figure 15: Two different discrete complexes K26 (a) and K′26 (b) around the
central points x such that S tar(x : ∂K26) = S tar(x : ∂K′26).

2.4 local configurations on discrete surfaces

Our discrete combinatorial surfaces appear at the 2-dimensional com-
binatorial boundaries of 3-complexes, that is ∂K, where dim(K) = 3.
Because S tar(x : ∂K) is cyclic if S tar(x : K) is semi-spherical, from
Proposition 2.1, we see that semi-spherical stars whose point type is 3b
give all local configurations appearing in such discrete combinatorial
surfaces.

Let us consider a set of boundary points Brm′(V) of (1) for m′ =
6, 18, 26. In [89], we see that Brm′(V) includes all types of points
except for spherical points (type 3a), which are interior points of V.
It is also observed that there are relations between the polyhedral
complex Cm constructed from a given V and Brm′(V) for the pairs
(m, m′) = (6, 18), (6, 26), (18, 6), (26, 6) [89]. Those relations indicate
that the points of Brm′(V) do not always have semi-spherical stars,
but also the other stars such as one-, two- and three-dimensional stars
except for spherical stars depending on their local point configurations.
By using our topological classification of local point configurations in
the previous section, we easily discriminate semi-spherical stars from
the other stars on boundaries.

As shown in Table 3, the numbers of semi-spherical star configura-
tions of Sk0(C l(S tar(x : Km))) are still large, especially for m = 18, 26.
What we are interested in, however, is point configurations of stars of x
in combinatorial boundaries ∂Km but not in Km. For example, we have
different discrete complexes Km and K′m such that Sk0(Km) ⊃ Sk(K′m)
and S tar(x : ∂Km) = S tar(x : ∂K′m) as illustrated in Fig. 15.

Note that this does not occur for m = 6. However, we have the case
that K6 6= K′6 and S tar(x : ∂K6) = S tar(x : ∂K′6) as shown in Fig. 16.
We can also say that two discrete surfaces in Fig. 16 have the same
shape but do not have the same orientation if we consider that they
have two sides, the inside and outside.

In order to avoid counting twice for such two discrete complexes Km

and K′m in Figs. 15, 16 respectively, we consider point configurations
of Sk0(C l(S tar(x : ∂Km))) instead of those of Sk0(C l(S tar(x : Km))).
Such point configurations are called surface star configurations. The
results of counting different surface star configurations up to rotations
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(a) (b)

Figure 16: Two different discrete complexes K6 (a) and K′6 (b) around the
central points x such that S tar(x : ∂K6) = S tar(x : ∂K′6).

Table 4: The numbers of surface star configurations for the m-neighborhood
systems for m = 6, 18, 26.

m = 6 m = 18 m = 26
# of surface stars 6 1 412 6 028

and symmetries for m = 6, 18, 26 are shown in Table 4. We verified
that our results for m = 6 are the same as those in reference [64],
which are illustrated in Fig. 4.

For m = 6, we see that surface star configurations are exactly the
same as cyclic star configurations (type 2a in Table 3). However,
for m = 18, 26, they contain more configurations than cyclic star
configurations. One of the reasons is that a cyclic star requires that
both interior and exterior points which are separated by a discrete
surface exist in N26(x). For m = 18, 26, there are some surface star
configurations where there is no interior point as illustrated in Fig. 3

(center).

2.5 algorithm of combinatorial boundary extraction

In Section 2.2.3, we gave the definition of the combinatorial boundary
of a pure n-complex (Definition 2.6). Here, we consider the cases of
n = 3, so that the combinatorial boundary is a pure 2-complex. How-
ever this definition and the complex construction method presented
in Section 2.2.2 do not provide a practical algorithm for extracting the
combinatorial boundaries of the polyhedral complex constructed from
a given finite points set V. In this section, we therefore present an
effective algorithm for generating ∂Compm(V) directly from V. The
method simply refers to Table 5, which is a similar table used for the
marching cubes method [118], [198], for each neighborhood system.
The comparison between the marching cubes method and our method
is discussed in [93]. The details of how to obtain Table 5 can be found
in [89].

Some experimental results of combinatorial boundaries ∂Compm(V)

for the various inputs V, such as digitized sphere, cube, torus and
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Table 5: The look-up table which provides a one-to-one correspondence be-
tween a configuration of 1-points in a unit cubic region Cube(x) and
a pure polyhedral 2-complex Tm(x) for the combinatorial bound-
ary ∂Compm(V) of the set V of all 1-points with respect to each
m = 6, 18, 26. The arrows are oriented to the exterior of Compm(V).

2D pure subcomplex for a combinatorial boundary # of 
1-points N 6 N18 N26

3

4

5

6

7

P6a P6b P6cP6a P6b

P7

P3a

P4a

P5a

P7

P4a P4b

P4cP4d

P4e

P5a P5b

P5c

P4g

P4a P4b

P4cP4d

P4e

P5a P5b

P5c

P4g

catenoid, with respect to m = 6, 18, 26 are shown in Figures 17, 18, 19

and 20. Those inputs of volume data are made by the Volgen tool.

2.6 thinning based on complex collapsibility

Thinning is an image operation whose goal is to reduce object points
in a “topology-preserving” way. Such points whose removal does
not change the topology are called simple points and they play an
important role in any thinning process. For efficient computation,
local characterizations have been already studied based on the concept
of point connectivity for two- and three-dimensional digital images.
In this section, we introduce a topological characterization of sim-
ple points based on collapsibility of polyhedral complexes. We also
study their topological characteristics and propose a linear thinning
algorithm. This section is based on the results in [85].
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(a) (b)

(c) (d)

Figure 17: (a) A digitized sphere generated by Volgen and its combinato-
rial boundaries for (b) 6-, (c) 18- and (d) 26-neighborhood sys-
tems. Note that lattice points are located at centers of cubes in (a)
whereas they are located at vertices of polyhedral complexes in
(b), (c) and (d).

2.6.1 Background and approach

Mathematically, the definition of simple points is given as follows [15].

Definition 2.19. A point x in a finite subset V ⊂ Z3 is said to be simple if
there is a one-to-one correspondence of each connected component of V and
its complement V, and the holes of V and V, with each connected component
of V \ {x} and V∪ {x}, and the holes of V \ {x} and V∪ {x}, respectively.

Because the above global definition is not appropriate for compu-
tation, many studies on their local characterization have been made:
for example, in 3D, characterizations by using connected component
numbers, genus, Euler numbers, and other numbers [15], [105], [191].

Here, we introduce one of the simplest characterizations of simple
points in 3D by using topological numbers, proposed in [15]. We
consider the m-neighborhoods in Z3 for m = 6, 26. Let V be a subset
in Z3, Cm(V) be the set of all m-connected components of V, and
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(a) (b)

(c) (d)

Figure 18: (a) A digitized cube with 45-degree rotations around x and y axes,
generated by Volgen, and its combinatorial boundaries for (b) 6-,
(c) 18- and (d) 26-neighborhood systems. Note that lattice points
are located at centers of cubes in (a) whereas they are located at
vertices of polyhedral complexes in (b), (c) and (d).

Ca
m[x, V] be the set of all components in Cm(V) which are m-adjacent

to a point x. Then, we define topological numbers

T6(x, V) = #Ca
6[x,N18(x) \ {x} ∩V],

T26(x, V) = #Ca
26[x,N26(x) \ {x} ∩V],

where #X is the cardinal of a set X. By using these topological num-
bers, the following proposition is obtained.

Proposition 2.2. A point x ∈ V is m-simple if and only if Tm(x, V) =

Tm(x, V) = 1 for (m, m) = (6, 26), (26, 6).

In this section, we present a topological characterization of simple
points based on collapsibility of polyhedral complexes (see Section
2.6.2). We show that our characterization is also local and only needs
the connectivity m of V but not m of V (Section 2.6.3). Therefore, we
can avoid the well-known problem of how to choose a connectivity
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(a) (b)

(c) (d)

Figure 19: (a) A digitized torus generated by Volgen, and its combinato-
rial boundaries for (b) 6-, (c) 18- and (d) 26-neighborhood sys-
tems. Note that lattice points are located at centers of cubes in (a)
whereas they are located at vertices of polyhedral complexes in
(b), (c) and (d).

pair (m, m) for V and V. Moreover, we show topological characteristics
of simple points derived from collapsibility (Section 2.6.4). We also
propose a linear thinning algorithm (Section 2.6.5) and discuss on
the advantages of our method and on the problems which still exist
(Section 2.6.6).

2.6.2 Collapsing

We introduce a deformation retraction of a polyhedral complex, called
collapsing [166], [186].

Let K be an n-complex and σ be an r-polyhedron in K where r < n.
If there is exactly one (r + 1)-face τ ∈ K such that σ ≺ τ, such a σ is
called free. Then we say that there is an elementary collapse of K to a
subcomplex K′ = K \ {σ, τ}, denoted by K↘e K′.
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(a) (b)

(c) (d)

Figure 20: (a) A digitized catenoid generated by Volgen, and its combina-
torial boundaries for (b) 6-, (c) 18- and (d) 26-neighborhood sys-
tems. Note that lattice points are located at centers of cubes in (a)
whereas they are located at vertices of polyhedral complexes in
(b), (c) and (d).

Definition 2.20. We say that K collapses to a subcomplex L if there is a
sequence of elementary collapses

K = K0 ↘e K1 ↘e . . .↘e Kk = L,

and we write K↘ L.

It is well known that there is a homotopy equivalence between K
and L if K↘ L.

Definition 2.21. An n-complex K is said to be collapsible if K collapses to
a point, and we write K↘ 0 in this case.

2.6.3 Collapsibility and simple points

Let V be a finite point set and Compm(V) be a discrete polyhedral
complex constructed from V for the m-neighborhood system where
m = 6, 26 as described in Section 2.2.2.
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(a) (c)(b) (d)

Figure 21: (a) Three points of type 2c which are colored in grey and white, (b)
the collapsible link of the grey point, and (c, d) the non-collapsible
links of the white points.

Proposition 2.3. A point x ∈ V is m-simple if and only if Link(x :
Compm(V)) is collapsible.

We have calculated all local point configurations such that Link(x :
Comp(V)) is collapsible, and have verified that they are the same
as those of m-simple points [15]. More precisely, we obtain 550 435
different local point configurations in a 3 × 3 × 3 point region for
either case m = 6, 26. Remark that this is not a coincidence; we can
derive this result from Proposition 2.2 which is obtained by another
local characterization. We easily see that any m-simple point for V is
a m-simple point for V if we interchange V with V.

Similar characterizations of simple points can be found in [13], [105].
Note that the topological space in [105] is dual to a discrete polyhedral
complex for 6-neighborhood [89], [116] so that we have an inclusion
relation ≺ which is inverse.

2.6.4 Topological characteristics of simple points

In Section 2.3.3, we showed that each point in a point set V can be
classified into one of the twelve types by using the polyhedral-complex
representation Comp(V). In this subsection, we check which types of
points are simple.

According to Proposition 2.3, we verify the collapsibility of Link(x)
for every type of points x and then obtain the following theorem [85].

Theorem 2.1. Every point whose type is either type 1b, 2b or 3b is always a
simple point. Contrarily, any point whose type is either 0, 1a, 1c, 2a, 2d or
3a can never be a simple point.

From the above theorem, we see that points of types 2c, 3c and
3d, differing from the other types, have both cases which are simple
and not simple. Figures 21, 22 and 23 show examples of simple and
non-simple points for types 2c, 3c and 3d respectively. The examples
illustrate that the connectivity of Link(x) is a necessary condition but
not a sufficient one for the collapsibility of Link(x).

From Theorem 2.1, we also see that simple points can be of the six
different types 1b, 2b, 2c, 3b, 3c, 3d. Table 6 shows the numbers of all
different local configurations of simple points for each point type.
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(a) (c)(b)

Figure 22: (a) Two points of type 3c which are colored with grey and white,
(b) the collapsible link of the grey point, and (c) the non-collapsible
link of the white point.

(a) (c)(b)

Figure 23: (a) Two points of type 3d which are colored in grey and white, (b)
the collapsible link of the grey point, and (c) the non-collapsible
link of the white point.

2.6.5 Linear thinning algorithm

Given a finite subset V in Z3, we present a linear algorithm for
thinning V. In Algorithm ??, we require a list P for deletable point
candidates and also a Boolean function f : V → B for renewing the
deletability of x ∈ V after removing one of its neighboring points.

In Step 12 of Algorithm ??, we assume that points y whose types
can be changed due to removing x from V are in a neighborhood
of x, i.e. N (x). If we use a method in the framework of either of
a Khalimsky topology [97], a partially ordered set [13] or a discrete
polyhedral complex [89], [116] for construction of a polyhedral com-
plex Comp(V), such a neighborhood N (x) can be considered to be
the 26-neighborhood.

Table 6: The numbers of local point configurations of simple points for each
point type with respect to 6- and 26-neighborhood systems.

6-neighborhood 26-neighborhood
type 1b 134 280 3

type 2b 345 016 398

type 2c 28 994 1 037

type 3b 14 031 290 979

type 3c 332 28 525

type 3d 27 782 229 493

total 550 435 550 435
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Algorithm 1: Thinning

input : a point set V ⊂ Z3

output : a thinned set V
1 begin
2 obtain the set P of simple points that are not endpoints in V;
3 foreach x ∈ V do
4 if x ∈ P then
5 f (x)← True;
6 else
7 f (x)← False;

8 while P 6= ∅ do
9 select a point x ∈ P and P← P \ {x};
10 if f (x) = True then
11 V← V \ {x} (change the value of x from 1 to 0);
12 foreach y ∈ N(x) ∩V do
13 if f (y) = True and y is not simple or is an endpoint

then
14 f (y)← False;

15 else if f (y) = False and y is simple but not an
endpoint then

16 P← P ∪ {y} and f (y)← True;

17 return V;

Obviously, the result of Algorithm ?? depends on a point x ∈
P selected in Step 9. If we set no endpoint, thinning results are
topologically equivalent with respect to the initial set V. Therefore,
we can simply realize P as a queue in the case that we are interested
in only topological results. However, if we set endpoints and our
interests are not only topology but also geometry, we may need to
realize P as a priority queue whose priorities depend on distances
from the complement V, for example.

Applying Algorithm ??, we can obtain a curve or surface skeleton
of an initial set V, depending on the definition of endpoints. Thanks
to the results of topological point classification in Section 2.3.3, we can
set endpoints easily by dimensions and topological characteristics of
stars. If we set endpoints to have type 1b (semi-linear), Algorithm ??
behaves as a curve thinning. Similarly, if we set endpoints to have
type 1b and 2b (semi-linear and semi-cyclic), it behaves as a surface
thinning.
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(a) (b) (c)

Figure 24: An example of semi-cyclic star generation for the 26-neighborhood
system; (a) a cyclic star, (b) a linear star having the common central
point of (a), and (c) two new semi-cyclic stars made by cutting (a)
by (b).

2.6.6 Setting of endpoints

Such intuitive settings of endpoints, however, do not always meet
our expectations in practice. For example, it is very rare that we use
the 6-neighborhood system for the curve/surface thinning because
thinning results generally contain too many small parts because of too
many configurations of endpoints; see in Table 6 that there are much
more configurations of types 1b and 2b for the 6-neighborhood than
those for the 26-neighborhood. For the 26-neighborhood system, the
curve thinning works very well (see Fig. 25) while the surface thinning
does not. This is because we do not have enough endpoints (type 2b)
for the 26-neighborhood system as shown in Table 6. To obtain those
semi-cyclic points (type 2b), we construct a polyhedral complex as a
collection of convex polyhedra each of which is locally made from
a set of points in V at a unit cubic region. Therefore, a constructed
polyhedron tends to have three dimensions rather than less than three
dimensions for any point configuration.

We therefore propose a simple method to obtain more configura-
tions for semi-cyclic (type 2b) points. In [116], we obtain all possible
configurations of discrete surfaces which appear on the boundaries of
3D discrete objects and whose central points have cyclic stars on the
surfaces: 6 and 6028 configurations for the 6- and 26-neighborhood
systems, respectively. We cut each cyclic star (a discrete surface) by a
linear star (a discrete line) having the common central point and create
additional semi-cyclic stars. Figure 24 illustrates an example for such
a semi-cyclic star generation. Then we obtain 22 399 configurations
instead of 398 for type 2b in Table 6.

With these new semi-cyclic points, we obtain a surface thinning
result in Figs. 25, 26. In these examples, priorities of P categorized by
26 directions are used. Figure 26 illustrates that we may dig a hole
at the intersection of digitized planes depending on the rotation of
digitized planes and the number of digitized planes. This is caused by
the image discreteness: locally, we cannot distinguish between a 3D
part and an intersection of two 2D parts if they have the same local
point configuration. In order to solve the problem, additional topo-
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Figure 25: The original 3D image (top), its curve thinning result (bottom
left), and its surface thinning result (bottom right) for the 26-
neighborhood system.

logical configurations for surface intersections [117] or supplementary
geometrical concepts will be necessary.

2.7 summary and perspectives

Given a subset V ⊆ N26(x), we presented a method for classifying
the central point x into one of the twelve types by the topological
characterization of its star after constructing a polyhedral complex
Km = Compm(V). Considering that boundary points having type 3b
form discrete combinatorial surfaces as Proposition 2.1, we enumer-
ated local configurations on discrete surfaces such as local point config-
urations whose central point has type 3b, and obtained 9, 102 793 and
290 979 semi-spherical star configurations, Sk0(C l(S tar(x : Km))), and
6, 1412 and 6028 surface star configurations, Sk0(C l(S tar(x : ∂Km))),
for m = 6, 18, 26, respectively. The same surface star configurations
for m = 6 are already presented in [64] and they are illustrated in
Fig. 4. We see that a boundary point illustrated as the central point in
Fig. 3 (center) has a surface star configuration. This explains why our
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Figure 26: A surface thinning result for two intersected digitized planes for
the 26-neighborhood system (left) and the magnification of the
white square (right). A transparency is given to make easy to
see the interior such that there are two deep holes dug from the
surface edges at the intersection and only one point is connected
to surfaces.

discrete surfaces have more configurations than those of simplicity
surfaces [42].

Thanks to the local topological characterization of points, the pro-
posed framework has several utilities: it enables us to propose a linear
thinning algorithm of three-dimensional digital images based on col-
lapsiblity of polyhedral complexes [85], and to define topologically
reasonable discrete surface patches, on each of which geometrical
measures, such as normal vector, can be calculated in a finite way [87]
(see the next Chapter for more details).

The major drawback of this approach is that it is not well adapted
when several objects are located adjacently with sharing their bound-
aries; indeed, if we apply the proposed method, then each object has
its own boundary and there exists a non-empty space between the
two boundaries. In such a situation, inter-voxel approaches such as
cubical complexes, which are considered as dual approaches of ours,
are often taken [120], as already mentioned in Section 2.1. Despite
such inconvenience, in case one discrete object is treated, this discrete
approach is effective.

As a matter of fact, even the inter-voxel approach of cubical complex
would cause topological problems, such that combinatorial boundary
of a three-dimensional complex does not constitute combinatorial
manifolds. To avoid such topological conflicts, for example, the notion
of well-composedness has been proposed [115], and a similar notion
could be found for the proposed framework. For example, a digital
version of the regularity notion, which is originally proposed for
preserving topology under two-dimensional rigid motions [133], can
be a good starting point.





3
D I G I TA L S H A P E A N A LY S I S W I T H G E O M E T R I C
A S S U M P T I O N

Given digital volume data, in this chapter, we perform shape analysis
under some geometric assumption. In other words, we know a priori
geometric information about what we would like to observe in data:
for example, linear shapes as the simplest, namely planes in a 3D
space. Two different problems are considered here: digital planar
surface segmentation and digital plane fitting. The former assumes
local constraints of the shape linearity, while the latter leads to a
global optimization under the linear shape constraint. Both use the
common geometrical model, digital plane, formulated by a pair of
linear inequalities.

We first introduce the analytic (geometric) models of digital hyper-
planes, as well as arithmetic hyperplanes, which are formulated by
pairs of linear Diophantine inequalities. Using the analytic digital
models, we solve the above geometric problems in a discrete manner.
The solutions to the first problem is based on the results mainly pre-
sented in [86], [87], [90], while the second is based on those in [2], [88],
[206].

3.1 analytic model of digital hyperplanes

Before introducing analytic models of digital hyperplanes, we give the
analytic definition of continuous hyperplanes in Euclidean space.

3.1.1 Continuous hyperplanes

A hyperplane in Euclidean space Rd, d ≥ 2, is defined by

H = {(x1, x2, . . . , xd) ∈ Rd :
d

∑
i=1

aixi + ad+1 = 0} (4)

with ai ∈ R, i = 1, . . . , d + 1. Note that it is common to add a
normalization constraint such as

d

∑
i=1
|ai| = 1

or
d

∑
i=1

a2
i = 1.

33
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In this chapter, we use the following normalization instead of the
above conventional ones:

∀i ∈ {1, . . . , d},−1 ≤ ai ≤ 1
∧

max(ai) = 1. (5)

All of the above normalization techniques enable us to bound the range
of every coefficient between −1 and 1, except for ad+1: practically ad+1
is also bounded by the size of an input image.

3.1.2 Digital hyperplanes

A digital hyperplane is the digitization of a hyperplane H in the
discrete space Zd. The following definition was proposed by Stojmen-
ovics et al. [187].

Definition 3.1. A digital hyperplane of a hyperplane H is defined by the set
of discrete points satisfying two inequalities:

D(H) = {(p1, p2, . . . , pd) ∈ Zd : 0 ≤
d

∑
i=1

ai pi + ad+1 +
w
2
< w}

where ai ∈ R, i = 1, . . . , d + 1, and w is a constant, called the width of
D(H). The width is set as

w = max
i=1,...,d

(|ai|).

This digitization operation is also seen as the grid-intersection digi-
tization [170], which is one of popular digitization schemes of curves
and surfaces [101]. Indeed, D(H) is the set of all grid points that are
closest to the intersection points of H with the grid lines of Zd. Note
that we always have w = 1 for D(H) with the above setting if the
normalization of Eq. (5) is considered for H. A set of integer points is
also said to be digitally flat [193] if every point of the set satisfies the
inequalities of Definition 3.1 and w = 1 with its width setting.

If the standard digitization [8], which is a modification of the su-
percover (or outer Jordan) digitization due to avoiding "thicker parts"
called bubbles, is considered, the width is set by

w =
d

∑
i=1
|ai|, (6)

instead of the one in Definition 3.1.
From the definition, we obviously obtain a unique digital hyper-

plane D(H) from any H, but the converse is not true. Let us consider
the following two types of digital hyperplanes depending on the co-
efficients. If ∀i ∈ {1, . . . , d}, ai ∈ Q, then D(H) is called a rational
digital hyperplane, and otherwise, an irrational digital hyperplane.
Then, we have the following property [28], [101].
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Property 3.1. If D(H) is irrational, then D(H) uniquely determines all the
coefficients ai, i = 1, . . . , d + 1. If D(H) is rational, then D(H) uniquely
determines the coefficients ai, i = 1, . . . , d and ad+1 up to an interval.

The difference between rational and irrational cases, in particular
for d = 2, 3, has been studied by taking the approaches such as
number theory and the theory of words. It is known that a rational
digital hyperplane is periodic while an irrational digital hyperplane is
aperiodic (or 1D periodic for d = 3); the latter is related to Sturmian
words, which are aperiodic infinite words [25], [27]. For surveys on
this topic, we refer to [101] and in particular [102] for d = 2 and [25]
for d = 3.

As our observation of grid points, given as pixels in digital images,
is generally limited in a finite space, treating only rational digital
hyperplanes is sufficient from a viewpoint of digital image analysis.
In such a case, we can also use another model for digital hyperplanes,
which is called arithmetic hyperplanes.

3.1.3 Arithmetic hyperplanes

There is another model for digital hyperplanes, which is not defined
through a digitization scheme as above, but defined completely in
a discrete manner with only integer coefficients, i.e. with a pair of
Diophantine inequalities [7], [157].

Definition 3.2. An arithmetic hyperplane is defined as

A = {(p1, p2, . . . , pd) ∈ Zd : 0 ≤
d

∑
i=1

αi pi + αd+1 < ω}

where αi ∈ Z for all i = 1, . . . , d + 1 such that gcd(α1, . . . , αd) = 1. We
call ω the width of A, and set

ω = max
i=1,...,d

(|αi|).

This setting is similar to w for D(H) in Definition 3.1. When the
width is set as mentioned above, A is called a naive hyperplane [7].
Similarly to Eq. (6), we can also set ω by

ω =
d

∑
i=1
|αi|. (7)

Then A is called a standard hyperplane [7].
The width setting influences the connectivity of a digital hyper-

plane [7], [101]. We also need the following concept of tunnels1, in
particular, for d ≥ 3 [7].

1 The tunnels are also called “gaps” in [24].
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Definition 3.3. An arithmetic hyperplane of coefficients αi, i = 1, . . . , d +

1, has a k-tunnel if there are two distinct k-neighbors, (p1, p2, . . . , pd),
(q1, q2, . . . , qd) ∈ Zd, such that

d

∑
i=1

αi pi + αd+1 < 0
∧ d

∑
i=1

αiqi + αd+1 ≥ ω.

Using the above notion of k-tunnels, we have the following (topo-
logical) connectivity property for d = 2, 3 [7], [157].

Property 3.2. Let A be an arithmetic hyperplane with a width ω.

• If ω = maxi=1,...,d (|αi|), A is a minimal (2d + dd)-connected set
(without 2d-tunnel for d = 3).

• If ω = ∑d
i=1 |αi|, A is a minimal (2d)-connected set (without tunnel

for d = 3).

Here, we say that a connected set X ⊂ Zd is minimal if there
is no simple point in X. In other words, if we take out any point
p ∈ X, then X \ {p} has a different topology from that of X (X \ {p}
does not separate X ∪ {p} into two parts anymore while X separates
X = Zd \ X into two.).

The following proposition makes a link between digital hyperplanes
and arithmetic planes [7], [157].

Proposition 3.1. Every rational digital hyperplane is a naive hyperplane,
and vice-versa.

Thanks to this, we can enumerate all digital hyperplanes of a finite
size, called linear local geometric patterns, as seen in the next section
for d = 3.

Hereafter, we focus on the cases of d = 2, 3 in particular, and digi-
tal/arithmetic hyperplanes when d = 2, 3 are called digital/arithmetic
lines and planes, respectively.

3.2 local geometric patterns of digital planes

3.2.1 Preimages of a digital plane patch

Let us consider a plane P ⊂ R3 and its digitization D(P). Since
we observe D(P) in a finite grid space X ⊂ Z3 in this section, X is
bounded such that X = Πi=1,2,3[X−i , X+

i ] ∩Z3 where X−i , X+
i are finite

integers with X−i < X+
i . Then, our digital plane D(P) is also bounded

such that
DX(P) = D(P) ∩ X, (8)

called a digital plane patch.
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Given DX(P), we can find a set of Euclidean planes P such that the
digitization of each P in X is equal to DX(P). The set of all such P
is called the preimage of DX(P) [35]. Note that the correspondence
between DX(P) and P is not one-to-one but one-to-many, as mentioned
above. Thus, the preimage of DX(P) is represented by a set of feasible
parameters αi, i = 1, . . . , 4, such that all points of DX(P) satisfy the
inequalities in Definition 3.2. It means that the preimage is given by a
convex polytope in the parameter space [35]. Because all interesting
parameters in this paper are translation-invariant, we focus on the
three parameters αi, i = 1, 2, 3, indicating the normal vector of P,
distinguished from the intercept α4 of P. Further discussion is given
in Section 3.3.4.

3.2.2 Local geometric patterns and their linearity

We define a local point set around a point p in Z3, such that

Qk(p) = {q ∈ Z3 : ‖p− q‖∞ ≤ k} (9)

where k is a positive integer, k ∈ Z+. Qk(p) is a cubical grid-point
set whose edge length is 2k + 1. Note that Q1(p) = N26(p). Let
us consider that each grid point in Z3 has a binary value such as
either 1 or 0. Such a pattern of binary points in Qk(p) is called local
geometric patterns, abbreviated to LGP hereafter. There are 2(2k+1)3−1

different LGP for Qk(p), provided that the central point p always has
a fixed value, such as 1. This indicates that p is considered to be not a
background point but an object point.

In this section, we investigate, among these 2(2k+1)3−1 LGP, which
LGP can appear on digital planes. Note that we set binary values of
points of DQk(p)(P) to be 1 and those of other points to be 0. This
problem is mathematically written as follows. Let F be a set of points
whose values are 1 in Qk(p). If there is a digital plane patch

DQk(p)(P) = F,

we say that F forms a digital plane patch in Qk(p). Therefore, our
problem is solved by looking for all possible F, namely LGP, forming
digital plane patches, i.e. satisfying the inequalities:

0 ≤
3

∑
i=1

ai pi + a4 +
w
2
< w (10)

in Definition 3.1 with d = 3. Such LGPs are called linear LGPs. Since
this problem is considered to be the feasibility of the above inequalities
for all (p1, p2, p3) ∈ F, we check if there are feasible solutions ai,
i = 1, . . . , 4 for each different F, namely LGP. If they exist, such an
LGP can appear on digital planes and becomes a linear LGP.
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3.2.3 Linear LGP generation by arithmetic planes

In this section, however, in order to avoid computing the feasibility
test for all 2(2k+1)3−1 LGPs of Qk(p), we consider another approach to
generate all linear LGPs, which is based on arithmetic planes [101],
[156], and similar to [47].

From the discussion in Section 3.2.1, we know that there are many
possible P corresponding to a given DQk(p)(P) and that such preimage
is represented by a set of feasible parameters αi, i = 1, . . . , 4. This
implies that, given DQk(p)(P), we can find a corresponding P with only
rational parameters. In addition, the denominators of those rational
numbers are bounded by the size of Qk(p), namely k. Furthermore,
it is also known from Proposition 3.1 that a digital plane D(P) with
rational slopes is equivalent to an arithmetic plane A.

Based on this fact, we generate all linear LGPs by using naive planes
A instead of digital planes D(P). Our algorithm mainly consists of
the following three steps:

1. set parameters αi ∈ Z for i = 1, . . . , 4;

2. from those parameters, construct a grid point set A;

3. for each point p ∈ A, observe the LGP of Qk(p) for a given k.

In the following, we detail each of steps 1 and 2.

3.2.3.1 Parameter setting for naive planes

As mentioned in Section 3.2.1, we distinguish the three parameters αi
for i = 1, . . . , 3 indicating a normal vector of A from the intercept α4

indicating a translation of A. We are first concerned with the setting
of value α4. It is known that A always has grid points (p, q, r) ∈ Z3

satisfying the following equality:

α1 p + α2q + α3r + α4 = 0, (11)

called leaning points [156]. Chosen a leaning point p ∈ A, even if
we translate A with a vector −p so that the origin becomes a leaning
point, it is certain that such a translation does not influence LGPs on
A. We therefore simply set

α4 = 0 (12)

so that we consider only naive planes A where the origin is a leaning
point.

Concerning the other parameters αi ∈ Z, i = 1, 2, 3, we give the
following constraints:

0 ≤ α1 ≤ α2 ≤ α3, α3 6= 0. (13)



3.2 local geometric patterns of digital planes 39

All naive planes which do not satisfy (13) can be generated from the
naive planes with the constraints (13) by their rotations around the
origin, since we set α4 = 0, and their symmetries with respect to the
xy-, yz- and xz-planes. We can also bound α3 such that

α3 ≤ 8k2 (14)

from the size of Qk(p) [29]. Therefore, once the value of k is given, we
can automatically generate a set of all relatively-prime integer triplets
(α1, α2, α3), denoted by Vk, by using the Euclidean algorithm, with the
constraints (13) and (14).

3.2.3.2 Constructed part of a naive plane

With the constraint (13), we see that the principal projection plane of
A is the xy-plane. Then, it is known that there are at most (2k + 1)2

different LGPs on A and that all different LGPs can appear in the
region which is projected in the principal projection plane, i.e. in the
xy-plane, as a (4k + 1)× (4k + 1) squared region and whose central
point is a leaning point of A, i.e. the origin [195].

Concerning to z-coordinates, thanks to the periodicity of A [101],
we see that the maximum difference of the z-coordinates of any pair
of points in the region which is projected in the xy-plane as a (4k +
1)× (4k + 1) rectangle does not exceed twice those of the x- and y-
coordinates. Therefore, we can set a constructed part of A in a finite
grid space Xk such that

Xk = ([−2k, 2k]× [−2k, 2k]× [−4k, 4k]) ∩Z3. (15)

3.2.4 Algorithm and results

From the above discussion, we now present Algorithm ?? for gener-
ating all linear LGPs of Qk(x) for a given k. By executing Algorithm
??, we obtain 34 linear LGPs for k = 1, similarly 1574 for k = 2, 23 551
for k = 3, and 181 735 for k = 4, up to translations, rotations and
symmetries, thanks to the constraints (13). Figure 27 shows all linear
LGPs for k = 1 and Fig. 28 shows some examples for k = 2. In order
to visualize their shapes in the figures, we add polyhedral meshes
which are made by applying a discrete version of the marching cubes
method for the 18-neighborhood system [89] to a digitized half space.

Remark that our LGP around a point p = (p1, p2, p3) in A for a
given k is slightly different from the (2k + 1, 2k + 1)-cube [195], which
is defined as a set of points q = (q1, q2, q3) in A such that |p1− q1| ≤ 1
and |p2 − q2| ≤ 1, under the constraints (13). A linear LGP of Qk(p)

can be smaller than a (2k + 1, 2k + 1)-cube, so that there are less linear
LGPs than (2k+ 1, 2k+ 1)-cubes; for example, there are 40 (3, 3)-cubes,
called tricubes [47], [195], against the 34 linear LGPs for k = 1.
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Algorithm 2: Generation of all linear LGPs
input : a size k of Qk(x)
output : a set T of linear LGPs

1 begin
2 initialize a set T;
3 make a set of integer normal vectors Vk with the constraints

(13) and (14) ;
4 foreach (α1, α2, α3) ∈ Vk do
5 construct a finite grid-point set A in Xk ;
6 foreach x ∈ A ∩ Xk do
7 if LGP of Qk(x) is not included in T then put it in T;

8 return T;

[1]
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[15] [16] [17] [18] [19] [20] [21] 

[22] [23] [24] [25] [26] [27] [28] 

[29] [30] [31] [32] [33]  [34]  

[2] [3] [4] [5] [6] [7]

[8] [9] [10] [11] [12]

Figure 27: The 34 linear LGPs for k = 1 up to translations, rotations and
symmetries, with polyhedral meshes made by a discrete version
of the marching cubes method [89].

3.2.5 Topological property of digital planes

For d = 3 in particular, there is also the interesting property on
topological characterization of grid points on naive planes [91].

Let us consider a naive plane A with integer parameters αi, i =

1, . . . , 4, and its associated digitized half-space I such that

I = {(p1, p2, p3) ∈ Z3 :
3

∑
i=1

αi pi + α4 ≥ 0}.

To this I, we apply the algorithm of constructing the polyhedral
complex, Compm(I) with setting either m = 18 or 26, presented in
Section 2.2. Because of the geometry of I, we have the following
lemma.
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[1] [2] [3] [4]

[5] [6] [100] [500]

Figure 28: Examples of the linear LGPs for k = 2 up to translations, rotations
and symmetries, with polyhedral meshes made by a discrete
version of the marching cubes method [89].

Lemma 3.1. For any digitized half-space I, its polyhedral complex Compm(I)
with either m = 18 or 26 is a pure polyhedral 3-complex.

Then, we also have the following lemma concerning the combinato-
rial boundary.

Lemma 3.2. For any digitized half-space I, the combinatorial boundary of the
polyhedral complex of I, ∂Compm(I), is also pure, namely, a pure polyhedral
2-complex.

We then have the following relations [91].

Property 3.3. For any naive plane A, which associates a half-space I, we
have:

A = Sk0(∂Comp18(I)) = Sk0(∂Comp26(I)).

This property together with Lemma 3.2 and the observation of
Figure 27 lead us to the next (combinatorial) topological property of
naive planes [90].

Property 3.4. Given a naive plane A, let us consider its associated topologi-
cal structure ∂Compm(I). Then, for any discrete point p ∈ A, Star(p :
∂Compm(I)) is cyclic. In other words, Star(p : Compm(I)) is semi-
spherical.

This result is not against intuition. This also implies that if we need
a topological structure of a naive plane, we can apply the discrete
version of the marching cubes algorithm to the associated digitized
half-space in order to obtain the polyhedral surface ∂Compm(I), which
can be considered as a combinatorial 2-manifold.

3.3 digital planar surface segmentation

In this section, we focus on d = 3 in particular. We first characterize
local geometric patterns on digital planes and then present a method
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for segmenting a 3D grid-point cloud into planar surfaces by using
those patterns. The latter segmentation problem is called surface
segmentation, which is one of classical problems in computer vision.

3.3.1 Related work and our approach

In computer vision, conventional methods for surface segmentation
are classified into three categories: region-based, edge-based, and
hybrid methods. The first ones merge points having similar region
properties calculated from their neighboring points such as normal
vectors and curvatures [19]. As calculated properties are sensitive
to noise and quantization errors, they cause over-segmentation. The
second methods search edges that separate regions by using depth
discontinuities [201]. As edges are not always extracted as connected
curves, they cause under-segmentation. The third methods are hybrid
between the two [183], [200]. In particular, for the case where our
interesting object is polyhedral, a hybrid method using locally planar
points is proposed [183]. In that method, points not locally planar are
considered to be potential edge points.

In discrete geometry, a digital plane is defined as a set of grid points
lying between two parallel planes with a small distance [101]. Local
geometric patterns (LGPs) appearing on digital planes are called linear
LGPs, and their number is finite. It is known that linear LGPs are
related to arithmetic planes [156]. Their arithmetic properties were
studied for digital plane recognition [47], [195], and used to develop
region-based methods for digital planar surface segmentation [177].
However, those region-based methods require an incremental plane
recognition process, which causes another problem of incremental
point tracking.

Here, to avoid plane recognition involving incremental point track-
ing for segmentation, we present a discrete version of the hybrid
methods, consisting of an edge-based and a region-based parts, using
linear LGPs. Our idea is similar to [183]. We first generate all linear
LGPs in a cubic region of (2k + 1)× (2k + 1)× (2k + 1) grid points
for an arbitrary size k, by using their arithmetic properties. We then
reject a point from a grid-point set if its LPG is not linear; since re-
jected points define candidates of edge points (the edge-based part),
the remaining non-rejected points define candidates of planar points.
For the region-based part, we use the normal vectors of linear LPGs.
Each linear LGP possesses a set of feasible normal vectors, called
preimages [35]. We merge non-rejected points whose linear LGPs have
common normal vectors to obtain digital planar surfaces. We show
our experimental results demonstrating that our method is robust
against not only quantization errors but also noise. As our method
gives a rough segmentation result with less computation, it may be
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Figure 29: The 32 local star configurations which appear in discrete combi-
natorial planes for the 26-neighborhood system.

useful to apply our method to obtain an initial segmentation before
applying plane recognition.

3.3.2 Linear and non-linear LGPs

From the above results, we see that there are a few linear LGPs rela-
tively to non-linear ones. However, we have learned from experience
that many border points of a digital object have linear LGP, if its object
surface is very smooth. Indeed, this is not difficult to understand,
since any local surface patch on a smooth surface can be approximated
to a planar surface when the size of the patch becomes small. In other
words, even if a point has a linear LGP, we are uncertain whether such
a point appears on a planar surface or a non-planar surface. Contrarily,
if a point has a non-linear LGP, it is certain that such a point can never
appear on a planar surface.

Together with topological point characterizations based on polyhe-
dral complexes, presented in Chapter 2, we also lead that there are
5 and 32 different configurations of stars which appear in discrete
combinatorial planes for m = 6, 26, respectively [65], [90]. Such planar
stars for m = 6 are shown as the five left configurations in Fig. 4. We
also illustrate the 32 configurations of planar stars for m = 26 in Fig.
29. Note that oriented surfaces are considered in [65], [90] so that 8
and 34 configurations are obtained for m = 6, 26.

Figure 30 shows that, for example, each boundary point appearing
at the faces of a digitized cube has one of the 32 planar stars illustrated
in Fig. 29. On the other hand, around the vertices and edges of a
digitized cube, boundary points have non-planar stars. Figure 30 also
shows that many boundary points on non-planar surfaces such as a
sphere, a one-sheet hyperboloid and a hyperbolic paraboloid have
planar stars rather than non-planar stars. From such experiments, we
consider that the study of local configurations of boundary points
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in the 26-neighborhood system might be useful for shape analysis of
three-dimensional images. We remark that the same shape analysis
works for m = 18, while it would not be worth doing for m = 6
because most of all boundary points of three-dimensional digitized
objects have planar stars as illustrated in Fig. 31.

(a) (b)

(c) (d)

Figure 30: Boundary points of three-dimensional digitized objects, such
as a cube, a sphere, a one-sheet hyperboloid and a hyperbolic
paraboloid, are classified into two types in the 26-neighborhood
system: they are illustrated as white and black points if the stars
are planar and non-planar, respectively.

3.3.3 Non-linear point rejection of digital objects

By simply checking the LGP linearity, we can therefore reject non-
linear points from a grid-point set, since we know that non-linear
points never appear on any discrete plane. In other words, the linear
LGPs play an important role in filtering linear points. Note that it is
realized by looking up the binary table of LGPs (linear or not).

3.3.3.1 From a point cloud to a grid point set

Before executing the non-linear point rejection to a grid-point set,
we describe how to transform a 3D point cloud into a grid-point
set. Our input in this paper is a range image represented by a 2D
digital image, such that each pixel (p, q) ∈ [X1, X2]× [Y1, Y2] of Z2

has a depth information d(p, q) ∈ R+ from a 3D scanner to an object
surface. We transform such a range image into a 3D triple-valued
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(a) (b)

(c) (d)

Figure 31: Most boundary points of three-dimensional digitized objects, for
example, a cube, a sphere, a one-sheet hyperboloid, and a hyper-
bolic paraboloid have planar surface stars in the 6-neighborhood
system illustrated as white points.

image by re-quantizing a depth d(x, y) as follows: for each point
(p, q, r) in a finite subset X = [X1, X2]× [Y1, Y2]× [Z1, Z2] of Z3, we
define a triple-valued function such that

t(p, q, r) =


2 if r = b d(p,q)

s + 1
2c,

1 if r > b d(p,q)
s + 1

2c,
0 otherwise,

(16)

where s is a sampling interval for depths.
Grid points whose values are 2 are closer to input points (p, q, d(p, q)) ∈

Z2 ×R+ so that they are considered to be discrete surface points and
to be visible from a 3D scanner. Thus, we call them visible surface
points and define a set of visible surface points such that

V = {(p, q, r) ∈ X : t(p, q, r) = 2}. (17)

Concerning grid points whose values are 1, they are invisible from
a 3D scanner so that we do not know whether they are surface points
or not. Therefore, we simply call them invisible points. Since the rest
of grid points whose values are 0 are visible and background points,
a set of potential points for an object is defined as a union of visible
surface points and invisible points such that

W = {(p, q, r) ∈ X : t(p, q, r) 6= 0}.
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Then, the set of surface points is obtained as the border point set
Br6(W) of Eq. (1). Note that V ⊆ Br6(W) and the equality does not
always hold.

A visible surface point set V can be considered to be a digitization
of a point cloud, whereas a surface point set Br6(W) is necessary for
making binary patterns of LGPs; the binary value of a point p is set
to be 1 if p ∈ Br6(W); otherwise, it is set to be 0. This is why we also
need Br6(W) as well as V.

3.3.3.2 Experiments

For the experiment, we use a 3D point cloud taken by a 3D scanner
Konica-Minolta VIVID 910 with a resolution 320× 240. We first re-
quantized the z-coordinates with a similar interval r to those of the
x- and y-coordinates from Eq. (16), and obtained two finite grid-point
sets, namely, a visible surface point set V and a surface point set
Br6(W), from Eqs. (17) and (1). Note that the LGP linearity is checked
for every point in V even if binary patterns for LGPs are made from
Br6(W).

Figure 32 shows an example of locally linear and non-linear points
for k = 1, colored in light green and black respectively, in a 3D
point cloud taken by a 3D scanner Konica-Minolta VIVID 910 with
a resolution 320× 240. We see in the figure that points appearing
around polyhedral-face edges are rejected as well as isolated points
that are considered to be noise. However, we also observe that some
points around edges are not rejected, because they are considered to
be locally linear even if they are not linear in a larger region than their
LGPs. This fact implies that a simple post-processing, such as the
connected component labeling [101] of a non-rejected point set, does
not always give satisfactory results for planar surface segmentation.

3.3.4 Linear LGPs and discrete Gaussian spheres

In the continuous framework, each smooth surface point has a unique
normal vector, and a mapping from a surface point to its normal
vector on the Gaussian sphere is called the Gaussian image. In [75],
the extended Gaussian image is presented as a mapping from a point
n on the Gaussian sphere to the area of the surface whose normal
vector is n in order to represent surface shapes. In this article, we
need a discrete version of the extended Gaussian image, called the
unified discrete Gaussian image, which will be used for planar surface
segmentation in the following section. In the discrete framework, each
linear LGP has a set of unit normal vectors, called a preimage, and
such a preimage is represented as a set of points on the Gaussian
sphere. In this section, we first investigate a preimage for each linear
LGP, and study how all linear LGPs divide the Gaussian sphere. Such
a divided Gaussian sphere is called a discrete Gaussian sphere. We
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Figure 32: An experimental example of non-linear point rejection.
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Figure 33: Normal cells in the parameter space (α′, β′) for k = 1 (left) and
k = 2 (right).

then define our unified discrete Gaussian image using a discrete
Gaussian sphere.

3.3.4.1 Feasible normal vectors of each LGP

From the discussion in the previous subsection, if a surface point p
of a digital object has a linear LGP of Qk(p), we can say that such p

is locally linear with the size of Qk(p). In other words, the value of k
indicates the absolute size of a planar surface around p. Based on this
fact, we therefore calculate normal vectors at p by using (8) from a set
of points on a digital plane in Qk(p).

From each linear LGP, we obtain DQk(p)(P) in Qk(p), so that for all
(p, q, r) ∈ DQk(p)(P), we obtain a set of linear inequalities (8), namely,

0 ≤ αp + βq + γr + δ < ω (18)
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where α, β, γ, δ ∈ R. Because we assumed the constraints (13) for
generating the linear LGPs in Section 3.3, we also consider the similar
constraints such that

0 ≤ α ≤ β ≤ γ, γ 6= 0. (19)

Note that, thanks to these constraints, we have ω = γ in (18) from
its definition. Arbitrary choosing pairs of different points (pi, qi, ri),
(pj, qj, rj) ∈ DQk(x)(P), we thus obtain:

0 ≤ αpi + βqi + γri + δ < γ, (20)

0 ≤ αpj + βqj + γrj + δ < γ. (21)

Because γ 6= 0 from the constraints (19), we divide both of Ineqs. (20)
and (21) by γ and substitute α′, β′ and γ′ for α, β and γ such that

α′ =
α

γ
, β′ =

β

γ
, γ′ =

δ

γ
. (22)

In order to eliminate γ′ by Fourier-Motzkin elimination [202], we then
obtain

−piα
′ − qiβ

′ − ri ≤ γ′ < −piα
′ − qiβ

′ − ri + 1, (23)

−pjα
′ − qjβ

′ − rj ≤ γ′ < −pjα
′ − qjβ

′ − rj + 1, (24)

and finally derive

(pi − pj)α
′ + (qi − qj)β′ + ri − rj + 1 > 0 (25)

for any pair (pi, qi, ri), (pj, qj, rj) ∈ DQk(x)(P). The solution gives a
feasible region which is a convex polygon in the space (α′, β′). Remark
that all calculations are done by using only integers, i.e. they cause
no rounding errors. Figure 33 illustrates that some of those convex
polygons share the region in (α′, β′) and that such common regions
make triangular or quadrilateral cells, called normal cells. Note that
the constraints (19) make our interesting space (α′, β′) narrow down
to a triangle bounded by linear inequalities 0 ≤ α′ ≤ β′ ≤ 1. Table 7

shows a set of normal cells which represents a set of feasible normal
vectors for each linear LGP of Q1(x) depicted in Fig. 27.

We can find a similar figure to the left one of Fig. 33 in [195], which
is generated by an approach based on 2D Farey series in number
theory. It is clear that our normal cells are related to 2D Farey series
since the values of our inputs pi − pj, qi − qj and ri − rj of (25) are
bounded by the size of Qk(x). However, our result is slightly different
from that in [195]. It is caused by the difference between the definition
of linear LGPs and that of (2k + 1, 2k + 1)-cubes [195], as we already
discussed at the end of Section 3.3.2. The difference can be seen in Fig.
33 (left), such that the normal cells “0” and “10” are not symmetric
with respect to a line of α′ + β′ = 1, while the cells in [195] are
symmetric.
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Table 7: Normal cells, illustrated in Fig. 33 (left), corresponding to each
linear LGP for k = 1, illustrated in Fig. 27, with the constraints (19).

linear LGP for k = 1 corresponding normal cells
1 0 25

2 1 9 11 12

3 4 5 7 10 23

4,5 0 1 16 17 18 24

6,17 2 3 4 5 7 8

7 2 3 5 8

8,9 6 9 10 11 14 15 21 23

10,12 8 19 20 25

11 8 17 18 19 20

13,28 2 3 4 5 6 7 9 10 11 12 13 14 15 21 22 23

14 2 3 6 13 14 15 16 21 22 24

15 2 3 6 11 12 13 14 22

16 4 5 7 10 23

18,19 0 18 19 25

20,23 0 1 3 8 12 13 16 17 18 19 20 22 24 25

21,22 3 8 16 17 20 22

24,25 1 9 11 12 13 14 15 24

26,34 2 4 5 6 7 10 21 23

27 2 5 6 7 21 23

29,30 0 17 18 19 20 25

31,32 1 12 13 16 22 24

33 6 9 11 14 15 21

α

β

γ

Figure 34: The cubical Gaussian sphere.

3.3.4.2 Discrete Gaussian spheres

The 26 and 910 normal cells in Fig. 33 are generated with the con-
straints (19). We embed these normal cells into the 3D space (α, β, γ)

by using (22) with γ = 1. The triangle surrounded by thick lines in
Fig. 34 (right) corresponds to the triangular region which is the union
of normal cells in Fig. 33. Once the normal cells are embedded into the
space (α, β, γ), we make the congruous ones by applying to them 48
transformations of rotations and symmetries of a cube of edge length
2, centered at the origin of the 3D space. We see, in Fig. 34, that there
are the 48 triangles on the cube, so that the whole cube contains 1248
and 43 680 normal cells for k = 1, 2, respectively. Such a cube is called
a cubical Gaussian sphere.

We now project normal cells tiled on the cubical Gaussian sphere
onto a unit sphere centered at the origin, as illustrated in Fig. 35.
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α

β

γ

Figure 35: The discrete Gaussian sphere.

The unit sphere separated by projected normal cells is called the
discrete Gaussian sphere, because the size of normal cells indicates
the resolution of digitized normal vectors calculated from linear LGPs.
The triangle surrounded by red lines in Fig. 35 corresponds to the
triangle surrounded by thick lines in Fig. 34, which is the union of
normal cells in Fig. 33. In the remainder, we denote G the set of all
normal cells on the discrete Gaussian sphere. Remark that we use
only integer or rational numbers to calculate all normal cells, which
are related to the cubical Gaussian sphere.

3.3.4.3 Unified discrete Gaussian images

By using the discrete Gaussian sphere, we give a discrete version
of extended Gaussian images [75], called unified discrete Gaussian
images. Let us first consider a discrete version of the Gaussian image.
Let V be a set of object surface grid-points. For a point p ∈ V, we
define a discrete Gaussian image Ik(p) as the set of normal cells
corresponding to the linear LGP of p, if its LGP is linear with respect
to k; otherwise, Ik(p) is defined as empty. Because we are interested in
points which have linear LGP in this section, we set Ik(p) = ∅ when p

has a non-linear LGP. For each cell c ∈ Gk, we consider a point subset
of V such that

R(c) = {p ∈ V : c ∈ Ik(p)}. (26)

We then obtain the number of points in R(c) for every c ∈ Gk, called
a unified discrete Gaussian image, such that

u(c) = |R(c)|. (27)

The concept of unified discrete Gaussian images is similar to that
of extended Gaussian images [75]. The differences from extended
Gaussian images are the followings: the function (27) is defined with
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Figure 36: A synthetic 3D image of a box (left) and its unified discrete Gaus-
sian image (right) for k = 1 (top) and k = 2 (bottom). Concerning
cell colors on the discrete Gaussian sphere (right), the darker the
blue cell, the larger the value of u(c), and the red cell has the
maximum value. The length of the pale blue needle for each
cell c also corresponds to the value of u(c). On a digitized box
(left), red and blue points have linear LGPs for k = 1, and k = 2,
while green points have non-linear LGPs. Note that red points
correspond to the red cell.

respect to a normal cell c on the discrete Gaussian sphere Gk, instead
of a point n on the Gaussian sphere; the value of (27) is the number
of grid points p such that Ik(p) includes c, instead of the area of the
surface whose normal vector is n. From the definition, we see that our
unified discrete Gaussian image represents a distribution of normal
cells of a digital object surface.

Figure 36 shows examples of unified discrete Gaussian images for a
digitized box. In the figures, we see that we can extract a set of grid
points which belong to a digital plane D(P) by choosing a “good” cell,
for example, a red one. This is based on the following fact; if (α, β, γ)

is a normal vector of D(P), (α, β, γ) is included in the common cell(s)
of Ik(p) for all p ∈ D(P).
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3.3.5 Planar surface segmentation using LGPs

By using the unified discrete Gaussian image u(c) and the point sets
R(c), we present our algorithm for planar surface segmentation from
a locally linear point set V′. Our problem is formulated as follows;
each point p ∈ V′ is assigned to one of sets Si for i = 1, 2, . . . such that
the points in each Si constitutes a connected planar-surface set. From
the previous discussions, our method is founded on the following
hypothesis: if there is a connected point subset S ⊆ V′ such that they
have a common normal cell for all p ∈ S, S may constitute a discrete
plane.

3.3.5.1 Algorithm

Based on this hypothesis, we present Algorithm ??. We look for the
largest connected set Si, whose points have a common normal cell,
by using u(c) and R(c). As each point has several normal cells, our
method cannot be processed in parallel with respect to normal cells.
It must be an iterative procedure; once we obtain Si, we remove all
points of Si from every R(c), modify u(c), and repeat this procedure
after the increment of i. Practically, we would like to avoid obtaining
a very small surface patch, so that we set a parameter s that is the
minimal size for Si.

Algorithm ?? is thus a loop procedure of seeking planar surfaces
Si. Each Si is a maximally connected point set, whose points have
a common normal cell. Once we find Si, we check the size of Si
in Step 11, and if |Si| ≥ s, we remove all points of Si from every
R(c) and also modify u(c) in Step 13. After such modification and
incrementing i, we seek a new Si. For finding each Si, we look for the
maximum connected component C of each R(c), and then set Si to
be the maximum among all C. In order to reduce the frequency of
calculation of connected components, which is a global operation, we
make a priority queue Dk of normal cells with u(c) in Step 4. We then
repeat dequeue of a normal cell h from Dk to obtain the maximum
connected component C of R(h) in Step 8. Comparing the size of C
with the maximum among those of other normal cells that are already
dequeued from Dk, we finally obtain the currently maximum point
set Sl in Step 9. Note that this loop is repeated until the size of R(h)
is less than s or more than the size of Sl as described in Step 7. For
calculating the maximally connected component of R(h), we apply a
simple method based on a depth-first strategy by using a queue [101].
The time complexity is linear with respect to the size of R(h).

3.3.5.2 Experimental results

For the experiment, we used six range images of the same blocks,
which are taken by a 3D scanner Konica-Minolta VIVID 910 from two
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Algorithm 3: Planar surface segmentation
input : a unified discrete Gaussian image u(c), point sets R(c),

and a minimum surface size s
output : planar-surface point sets Si for i = 1, 2, 3, . . .

1 begin
2 initialize a label such that l = 0;
3 repeat
4 make a queue Dk of normal cells with priorities of values

u(c);
5 increment l and initialize Sl = ∅;
6 set h to be the highest priority cell in Dk and remove it

from Dk;
7 while |R(h)| > max(s− 1, |Sl |) do
8 set C to be the maximal connected component of

R(h);
9 if |C| > |Sl | then set Sl = C ;
10 reset h to be the highest priority normal cell in Dk

and remove it from Dk;

11 if |Sl | ≥ s then
12 forall c such that u(c) 6= 0 and R(c) ∩ Sl 6= ∅ do
13 reset R(c) = R(c) \ Sl and u(c) = |R(c)|;

14 until |Sl | < s;
15 return Si for i = 1, 2, . . . , l − 1;

different viewpoints with three different resolutions. The range images
were transformed into grid-point sets by following the explanation in
Subsection 3.3.3.1. First, we rejected all non-linear points, as described
in Section 3.3.3, and then applied Algorithm ??. The results are
illustrated in Fig. 37. In the cases of Fig. 37, the numbers of valid
(measured) points are 207 459 for (a), 51 739 for (b) and 12 859 for (c).
Among those valid points, we have 184 682 locally linear points for
(a), 47 093 for (b), and 11 346 for (c), respectively.

We see in Fig. 37 that non-linear points, colored in light green,
appear around edges of block faces, and sometimes appear in faces
because of small bumps in faces or noise in the range images. As we
set the minimum surface size s, there are locally linear points that
construct no planar surface whose size is not less than s around the
points, colored in black in the figures. Note that we use 2D connected
component labeling in Algorithm ??, instead of 3D connected compo-
nent labeling, because locally linear points are sparsely distributed in
the 3D space, but not in the 2D space.

There are physically 12 visible planar surfaces in Fig. 37; there are
actually 11 planes because a table face is separated into two parts with
a right cube. Figure 37 shows that all planar surfaces are segmented by
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(a)

(b)

(c)

Figure 37: Planar surface segmentation results from range images of blocks,
which are taken from the same viewpoint, with different res-
olutions: the image sizes are 640 × 480 (a), 320 × 240 (b), and
160× 120 (c). The minimum surfaces sizes s are set to be 1000 (a),
500 (b), and 100 (c), respectively.
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our simple algorithm, which requires neither complicated parameter
setting nor parameter estimation. We should mention that it may
bring us rather over-segmentation results when the resolution of an
input image is high. For example, the orange and cream points in
Fig. 37 (a) should be considered to be in the same region, even if they
are separately segmented. We also see that our method is less sensitive
to image noise in lower image resolutions; for example, in Fig. 37 (a),
there do not exist many linear points on the left cubic face colored
in moss green, while more olive and turquoise points are found in
Figs. 37 (b) and (c).

As we discussed in Section 3.3.3, we can use larger-size LGPs for
the planar surface segmentation. If we use lager-size LGPs, then we
will have more normal cells on the discrete Gaussian sphere [86]. This
means that each normal cell becomes relatively small so that we can
see smaller differences between normal vectors for their distinction.
However, we may have a risk of obtaining over-segmentation results.
Furthermore, as mentioned before, there are other problems such
as obtaining less locally linear points because larger LGPs are more
sensitive to noise, and finding a good data structure.

3.4 digital line and plane fitting

In the previous sections, we considered the local geometric constraints.
In this section, we are interested in a global geometric constraint and
consider the following fitting problem: given an arbitrary set of N
points in a bounded grid in dimension d, find a digital hyperplane
that contains the largest possible number of points. We focus on the
cases of d = 2, 3 in particular. Such line fitting and plane fitting are
essential tasks in the field of image analysis and computer vision. For
instance, the procedures are used for shape approximation [20], [179],
image registration [173], [203], and image segmentation [87], [106].

3.4.1 Related work

In the fields of computer vision and image processing, most commonly
used methods derive from a continuous hyperplane model, which is
defined as a set of Euclidean points satisfying the linear equation of
Eq. (4). Such hyperplane fitting is an essential task, and the problem
can be viewed as a parameter estimation method [73]. Fitting is
typically carried out through optimizing various cost functions. For
instance, least-square fitting minimizes the sum of geometric distances
from all given points to the model, while least-absolute-value fitting
uses the vertical distances [23]. However, these are not robust to the
presence of outliers. Conversely, Least Median of Squares regression,
which minimizes the median of the vertical/geometric distances, is
robust as long as fewer than half of the given points are outliers [167].
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Well-known and most used methods for approximate hyperplane
fitting include the Hough Transform (HT) [53], [76], RANSAC [60] and
associated variations [32]. The Hough Transform uses an accumulative
approach in the discretized dual space and an ad-hoc detection of
high accumulated values. The computational complexity of traditional
HT is O(Nδd−1), where N is the number of given points and δ is the
(discrete) size of image sides. This is linear for a fixed δ and a fixed
d. RANSAC and its variation consider random d-tuples of points
(i.e. pairs and triplets respectively for 2D or 3D) within the pixel
set S, forming respectively a candidate hyperplane, and compute a
distance from S to the candidate hyperplane. Many distances can be
considered, including robust versions that may or may not be true
distances. A distance or score is associated with every candidate
hyperplane. After a number of candidate trials that depend on the
size of S, the best-fitting hyperplane featuring the minimum distance
or score is given as the output. The computational complexity of
RANSAC is linear in the size N of S if the number of inliers is a
constant fraction of N. Both HT and RANSAC are efficient, linear-
time complexity algorithms. However, neither can claim to find a
global, or even error-bounded approximate, solution to an associated
optimization problem.

3.4.2 Problem formulation and its geometric interpretations

Because the problem is inherently discrete, it is useful to consider a
purely discrete formulation of the problem using a digital hyperplane
of Definition 3.1, instead of a continuous hyperplane of (4).

Given a finite set S of discrete points in Zd, the problem is to find
a digital hyperplane that contains a maximum number of points,
called an optimal digital hyperplane D(H). Discrete points that are
contained in the fitted digital hyperplane D(H) are called inliers; the
complement points are called outliers. Our problem is then equivalent
to finding a digital hyperplane D(H) such that the number of inliers
be maximum. Figure 38 (left) depicts an example of digital line
fitting. Note that we hereafter set ad = 1 of D(H) in Definition 3.1 for
simplicity. In other words, we mainly deal with the following linear
inequalities

0 ≤
d−1

∑
i=1

aixi + xd + ad+1 < w (28)

instead of the ones in Definition 3.1. Thus, the above optimization
problem is formulated as follows:

maximize
C∈2S

|C|

subject to ∀(x1, x2, . . . , xd) ∈ C, 0 ≤
d−1

∑
i=1

aixi + xd + ad+1 < w
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where 2S is the power set of S. As C = D(H)∩ S, C can be considered
as the consensus set for a digital hyperplane D(H).

In order to solve this combinatorial optimization problem, we fo-
cused on a geometric property of consensus sets for digital hyper-
planes, implying that all consensus sets C can be generated from a
given point set S. We introduce the following definition for geometric
understanding:

Definition 3.4. A slab is the region on and in between two parallel hy-
perplanes in Rd. An ω-slab is a slab of size ω, meaning that the distance
between the two hyperplanes is ω.

If the distance ω is taken in the xd-axis direction in the space
(x1, x2, . . . , xd), i.e. in the primal space, and ω = w, then D(H) can
be geometrically interpreted as a w-slab. Thus, finding the optimal
digital hyperplane for a given S is equivalent to finding a w-slab that
contains the maximum number of points in S (see Fig. 38 (left)).

Let us now consider the dual-space interpretation of a digital hy-
perplane in the primal space, defined by (28). A digital hyperplane
is regarded as a set of parallel hyperplanes whose coefficients of xi
are ai for i = 1, . . . , d where ad = 1 and whose xd-intercepts are be-
tween −ad+1 and w− ad+1. This corresponds, in the dual space, to a
line segment in the ad+1-axis direction of length w, as illustrated in
Fig. 39 (left). Because points in the primal space are represented by
hyperplanes in the dual space, the problem of finding the optimal
consensus set in the primal space is equivalent to searching the best
position of the vertical line segment of length w such that it intersects
with as many hyperplanes as possible in the dual space, as illustrated
in Fig. 39 (left).

There is another primal-space interpretation of the digital hyper-
plane fitting problem. For each point of S, we first consider the line
segment in the xd+1-axis direction of length w. Given the set of the
line segments of all points of S, we then look for a hyperplane that
stabs the maximum number of such line segments. Figure 38 (right)
illustrates the problem of stabbing line segments, which is equivalent
to the original problem in Fig. 38 (left).

The dual-space interpretation of the latter primal problem is then
as follows. Using standard geometric duality induced by (28), every
point p in the primal space is mapped to a hyperplane H in the dual
space. Then, a line segment, containing p as an endpoint, in the xd+1-
axis direction of length w in the primal space is mapped to a w-slab
(distance w in the ad+1-axis direction) one of whose sides is equal to
H, in the dual space. As a hyperplane in the primal is mapped to the
point in the dual, the problem of stabbing line segment in the primal
(see Fig. 38 (right)) can be considered in the dual space, given a set of
w-slabs for all points of S, to find the divided region that is covered
by the maximum number of w-slabs (see Fig. 39 (right)).
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Figure 38: Digital line fitting (left) and its equivalent problem of stabbing
line segments (right) in the primal space.
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Figure 39: Digital line fitting (left) and its equivalent problem of stabbing
line segment (right) in the dual space. A slab in the primal space
in Fig. 38 (left) is associated with a vertical line segment in the
dual space while each vertical line segment in Fig. 38 (right) is
associated with a slab in the dual space.

In the following sections, the problem of digital hyperplane fitting
will be considered either in the primal space or in the dual space.
Working in the dual space of such a duality transform is a classical
approach in computational geometry and computer vision [12], [73].

3.4.3 Exact fitting

The discrete optimization-based framework for the digital hyperplane
fitting problem was initially proposed in [207] for 2D lines and 3D
planes. Even though the pair of hyperplanes form a convex set, the
problem is combinatorial in nature, and a non-polynomial, branch-and-
bound approach was initially suggested to find the optimal solution
[207]. This was later solved with an O(Nd log N) algorithm for d = 2, 3
in [204]–[206], and improved in [88] with an O(N2) solution in 2D
using a topological sweep method. While a polynomial solution of
degree equal to the dimension of the problem is useful, it is still too
inefficient for many application. Typically, the problem is currently
solvable for N = 103 but impractical for N = 106 in 3D.
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3.4.3.1 Algorithms

As mentioned above, we have presented two kinds of exact algorithms
for digital hyperplane fitting [88], [206], only one of which is applicable
so far for 3D [206]. Here we explain this latter one, which searches
efficiently the optimal solution with time complexity O(Nd log N) for
dimension d, where d = 2, 3, together with space complexity O(N)

where N is the size of a given set S of grid points. The algorithm is
inspired by the algorithm of LMS [182] working in the dual space, as
explained in the previous section.

The approach is focusing on inlier sets, also called consensus sets.
Since the size of S is finite and each element x ∈ S has finite coor-
dinates, we easily notice that the number of different consensus sets
C ∈ 2S for the digital hyperplane fitting of S is finite as well. Thus,
if we can find all different consensus sets C from a given S, which is
relatively smaller than |2S|, we just need to verify the size of each C
and find the maximum one (ones if there are several) as the optimal
solution. Then the following question comes up naturally: is it pos-
sible to find the set of all the consensus sets of S, denoted by F? If
the answer is positive, how can we generate F? We will answer these
questions as follows. Some notions related to digital hyperplanes are
given: two parallel hyperplanes defined by the equations, by which the
inequalities in (28) are replaced, are called the support hyperplanes of
a digital hyperplane. Discrete points that are on support hyperplanes
are called critical points of a digital hyperplane. The proposed method
is then based on the following property of consensus sets of digital
hyperplanes [206].

Property 3.5 (Zrour et al. [206]). Given a finite set S ⊂ Zd where d = 2, 3,
let C be a consensus set of S for an arbitrary hyperplane. It is then always
possible to find a digital hyperplane whose consensus set is the same as C
such that it has at least d critical points.

From this property, we see that we can find a digital hyperplane
D(H) for any consensus set C of S such that it has at least d critical
points. This is intuitively understandable, because when we move a
digital hyperplane D(H) in the primal space, its consensus set C will
change when a critical point goes out from D(H), namely, becomes
an outlier, due to the motion of the hyperplane. Indeed, such a digital
hyperplane D(H) can be constructed from a set of d points chosen
from S such that they become critical points of D(H). Consequently,
we can generate the set F of all C from those D(H) constructed from
sets of d points in S. Thus, the naive method is to choose d points from
S, to construct D(H) from the d points and to verify for each point x
of S if x is an inlier or not. This method leads to the time complexity
O(Nd+1).

The key point of the proposed method is to reduce this complex-
ity to O(Nd log N) by using the geometrical structure in the dual
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Figure 40: Digital lines on which a point p is a critical point in the primal
space (left), and those corresponding vertical line segments of
length ω in the dual space (right).

space, which allows to make the verification incrementally. Let
x = (x1, x2, . . . , xd) be a point in the primal space, then the dual
of x is the hyperplane of (4) in the dual space (a1, a2, . . . , ad−1, ad+1).
Here we suppose that ad = 1 due to the normalization explained in
Section 3.4.2. Likewise, the dual of a nonvertical hyperplane a · x = 0
in the primal space where a = (a1, a2, . . . , ad−1, ad+1) is the point a in
the dual space. Now, let us consider the dual-space interpretation of
a digital hyperplane in the primal space: a digital hyperplane corre-
sponds, in the dual space, to a vertical line segment of length w, as
illustrated in Fig. 39 (left). Because points in S in the primal space
are represented by hyperplanes in the dual space, the problem of
finding the optimal consensus set in the primal space is equivalent
to searching the best position of the vertical line segment of length
w such that it intersects with as many hyperplanes as possible in the
dual space, as described in Section 3.4.2.

Obviously, we cannot search everywhere in the dual space to find
the best line segment. From Property 3.5, we know that, for any
consensus set, there exists a digital hyperplane that features at least d
critical points. Therefore, we first take d− 1 points and consider all
the digital hyperplanes on which all the d− 1 points are critical points
on the same support hyperplane.

For simplifaction, let us explain the 2D case first. We take one point
p ∈ S and consider it to be the first critical point of such a fitted
digital line. Because p corresponds to a line L0

p in the dual space, all
digital lines for which p is a critical point correspond to the set of
all the vertical line segments of length w having one of its endpoints
on L0

p in the dual space, as shown in Fig. 40. The set of such digital
hyperplanes, therefore, forms two w-slabs in the dual space; one of
them is bounded by L0

p and L1
p = L0

p +wed where ed = (0, 0, . . . , 0, 1),
and another is bounded by L0

p and L2
p = L0

p − wed, as illustrated in
Fig. 40. For simplification, we focus on the w-slab bounded by L0

p
and L1

p = L0
p + wed, because the following discussion is also valid for

another slab bounded by L0
p and L0

p −ωed.
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Figure 41: Three points p, q, r in the primal space (left), and the correspond-
ing hyperplanes Li

p for i = 0, 1, L0
q and L0

r in the dual space, with
their intersections.

According to Property 3.5, we choose a point q ∈ S \ {p} to be
the second critical point of a fitted digital hyperplane such that the
x1-coordinate of q is different from that of p, i.e., xq 6= xp; the case of
xq = xp will be discussed later. Any point q in the primal space is
represented by the line L0

q in the dual space, as shown in Fig. 41. We
see in this figure that L0

q intersects each of the slab boundaries, L0
p

and L1
p = L0

p + wed, if it is not parallel to L0
p; the parallel case occurs

when xq = xp, and it will be dealt with separately as a degenerate
case without exceeding the computational complexity (see [206] for
details). The intersections between L0

q and Li
p, σi

q, for i = 0, 1, are
calculated. Geometrically, the vertical line segment in the w-slab, one
of whose endpoints is one of the intersections σi

q, in the dual space
corresponds to a digital line with the two critical points p and q in the
primal space. This shows that the digital lines corresponding to the
vertical line segments between the two intersections σ0

q and σ1
q in the

slab always contain q as an inlier.
In order to know the number of inliers within the digital lines with

a critical point p, we check the intersections σ0
q and σ1

q of L0
q for all

q ∈ S \ {p} with the w-slab boundaries, L0
p and L1

p. We increment a
counter when L0

q enters the slab and reduces the counter by −1 when
L0

q goes out from the slab. Algorithmically, once all the intersections
σi

q for i = 0, 1 are calculated for all q ∈ S \ {p}, they are sorted
with respect to the a1 values. With this sorting order, the counter is
incrementally calculated so that the maximum value is found, together
with the optimal consensus set. The degenerate cases such that many
lines enter or leave a slab at the same a1 value is described in [206].

For digital plane fitting in the three-dimensional space, we need
a search procedure for an optimal segment similarly to the above
algorithm for digital line fitting. Thanks to Property 3.5, we know
that, for any consensus set, there exists a digital plane featuring at
least three critical points, among which at least two are on one of the
support planes. Thus, taking two different points p, q from S in the
primal space, we first consider all the digital planes on which both p
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Figure 42: All the digital planes with two critical points p and q in the primal
space (left) correspond to a set of vertical line segments of length
ω having one of its endpoints on the intersection line of the two
planes Pp and Pq (right).

and q are critical points on the same support plane. In the dual space,
digital planes having two critical points p and q, forms two slabs, as
illustrated in Fig. 42. Figure 43 depicts that a digital plane with two
critical points p, q, appearing as a vertical line segment of length w
in the slabs, has a third point r as an inlier, when its dual plane Pr
crosses the vertical line segment. In other words, this sub-problem
becomes the same as the 2D sub-problem so that we can apply the
same algorithm to the sub-problem. More details can be found in
[206].

Figure 43: Four points p, q, r and s in the primal space (left), and their
interpretations in the cross-section Qpq of the dual space (right).
Qpq is made as the plane that contains the intersection line L0

pq
of Pp and Pq the parallel direction to the c-axis, as illustrated in
Fig. 42. In Qpq, all the digital planes having p and q as critical
points are represented by the slabs, each of which is bounded by
L0

pq and either of its parallel lines L1
pq or L2

pq. The other points
r and s in the primal space are represented by the two lines Lr
and Ls in Qpq.

3.4.4 Theoretical observation

We consider the [0, δ]d grid, and a set S of N discrete points is given.
As our input is a binary image, N is necessarily smaller than δd. We
show that, for any N that is smaller than δd, the exact solution of the
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fitting problem is as hard to obtain as that of O(Nd) problems; for
d = 2, we call such a class of problems the 3SUM problem. For the
sake of simplicity, we start our discussion in the 2D plane.

3SUM is the following computational problem, introduced by Gajen-
taan and Overmars [68] and conjectured to require roughly quadratic
time complexity: given a set T of n integers, are there elements a, b, c in
T such that a + b + c = 0? A problem is called 3SUM-hard if solving it
in subquadratic time implies a subquadratic time algorithm for 3SUM.

Observation 3.1 (Aiger et al. [2]). The problem of digital line fitting is
3SUM-hard.

The extension of 3SUM problem to higher dimensions is considered
as the problem of detecting affine degeneracy of a given collection of
N hyperplanes, i.e. finding a subset of d + 1 hyperplanes intersecting
in a common point. This is conjectured to require O(Nd) time. Here,
we do not seek a proof since the case for d = 2 is sufficient for our
purpose, as we seek a linear algorithm.

3.4.5 Approximate fitting

As solving the problem exactly in arbitrary dimension is likely at
least quadratic, we next suggest two approximations. The first has
a theoretically proven characteristics but is not easy to implement.
The second is a more practical algorithm that features a proven worst
case runtime and can be easily implemented. Moreover, its practical
runtime can be much better than what is suggested by its worst case
analysis.

3.4.5.1 Approximation with bounded error in number of inlier points

Here, we show that if the optimal number of inlier points is not too
small (i.e. Ω(N)), an approximation of the optimal digital hyperplane
can be found in linear time, with respect to N and the runtime also
depends on the given approximation value ε. We use the dual space
and make a simple use of the tool to solve approximately the problem
of linear programming with violations, presented in [10]. In this
approximation, we do not use the fact that the points lie on a grid and
it is correct for any set of points in Rd.

We start with the results of Aronov et al. [10] on linear programming
with violations. They obtained a randomized algorithm which is
correct with high probability. Afshani et al. also [1] obtained a Las
Vegas algorithm (i.e. one that either provides the correct answer or
informs about failure).

Theorem 3.1 (Aronov et al. [10]). Let L be a linear program with n
constraints in Rd, and let f be the objective function to be minimized. Let
kopt be the minimum number of constraints that must be violated to make
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L feasible, and let v be the point minimizing f (v) with kopt constraints
violated. Then one can output a point u ∈ Rd such that u violates at most
(1 + ε)kopt constraints of L, and f (u) ≤ f (v). The results returned are
correct with high probability. The expected running time (which also holds
with high probability) of this algorithm is O(n + ε−4 log n) for d = 2, and
O(n(ε−2 log n)d+1) for larger d.

In our case, we are only interested in finding a point in the dual
space that is covered by the maximum number of w-slabs. We reduce
this problem to the problem of linear programming with violations
and solve it using the result of [10]. The following observation is
a result of replacing each w-slab with two halfspaces that have the
w-slab as their intersection, represented by (28). We thus have 2N
constraints and a point in space is violating (i.e. not covered by) k w-
slabs among N, if and only if it is violating k halfspaces among the 2N.
Therefore, the tool for finding a point violating the minimum number
of halfspaces finds also a point that is covered by the maximum
number of w-slabs. Let nopt be the maximum possible number of
w-slabs that can contain a point in d-space (i.e. inliers) and let kopt an
optimal number of violations, N = kopt + nopt. For the approximation
parameter, we observe that since we find a point that violates at most
(1 + ε)kopt slabs, we actually find a point that is covered by at least
N− (1+ ε)kopt w-slabs. Let n be the number of points that are covered
by the w-slab we just found. If nopt = Ω(N) we have n > (1− cε)nopt

for some fixed c. We now observe the following:

Observation 3.2 (Aiger et al. [2]). Given a set of N points in the d-
dimensional space and some ε > 0, we can find a w-slab that contains at least
(1− ε)nopt points, where nopt is the maximum possible number of points
that can be found in a w-slab, assuming nopt = Ω(N). The runtime is
O(N + ε−4 log N) for d = 2 and O(N(ε−2 log N)d+1) for larger d.

This result can be immediately used for our original problem of
finding the optimal digital hyperplane by using the set of grid points.

3.4.5.2 Approximation with bounded error in digital hyperplane width

Here, we show another kind of approximation that makes use of the
fact that the input points are in a bounded grid as well. The meaning
of this approximation is slightly different from the previous one. The
advantage of this version is that it is easy to implement, unlike the
previous one that is mainly of theoretical interest and is probably
hard to implement. Moreover, using this approximation, we can do
both: prove its worst case runtime and also allow to get optimal
solution with practical good runtime or to have an approximation to
any desired level in better runtime than the worst case. We need the
following result from da Fonseca and Mount [63].
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Theorem 3.2 (da Fonseca and Mount [63]). For a set of N points in the
unit d-dimensional cube and some ε > 0, one can build a data structure
with O(ε−d) storage space, in O(N + ε−d logO(1)(ε−1)) time, such that for
a given query hyperplane H, the number of points on and below H can be
approximately reported in O(1) time, in the following sense: all the points
(below H) that have a larger distance2 than ε from H are counted. Points
that are closer to H on both sides may or may not reported.

Then, the main theorem of this section is stated as follows.

Theorem 3.3 (Aiger et al. [2]). Given a set of N points on a grid [0, δ]d,
and some ε > 0, w > 0, a digital hyperplane of width w + 5ε that contains
n ≥ nopt points, can be found in O(N + ( δ

ε )
d logO(1)( δ

ε )) time where nopt

is the maximum number of points that any digital hyperplane of width w in
[0, δ]d can contain.

For the proof, please see [2]. A typical use for digital hyperplanes
would be to use w = 1 and 0 < ε < 0.5.

The detail of building a specially-designed data structure for the
query is described as follows. The algorithm is very simple to im-
plement using recursion. For every box in space we first build the
range counting data structure recursively. We first find the points that
lie inside each one of the 8 children of the box (this is performed in
logarithmic time using orthogonal range searching) and then we create
the range counting data structure for each one of them recursively
using the box of size ε as the smallest box. Then for building the data
structure for the current box we create the set of all possible digital
planes (depending on ε) and query each one of them in all children,
summing the number of points.

We now go over all planes in the outer box (the bounding box of
the set of input points) and for each plane, we query the number
of points below this plane and below a parallel plane of distance
w + 5ε as described in the previous section. We simply take the pair
(which is a slab) in which the number of points resulting from the
subtraction of the two is the largest. A practical problem however is
the memory requirement, since the algorithm has space (and roughly
time) complexity O((δ/ε)3), so in 3D it may require large amounts of
memory depending on the approximation parameter.

3.4.6 Experiments

In this section, we experimentally compare the exact algorithm [206]
with time complexity O(N3 log N), explained in Section 3.4.3.1, and
the approximated method with bounded error in digital plane width,
explained in Section 3.4.5.2. We used two types of 3D digital images

2 The `2 distance is used in [63] while the `1 distance is used in this section. However,
the theorem still holds since the `1 distance is always greater than or equal to the `2
distance.
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(a) (b) (c)

(d) (e)

Figure 44: Experimental results of digital plane fitting for a 3D synthetic
volume data generated by 400 points in a digital plane and 100
randomly generated points (outliers). The approximation algo-
rithm with bounded error in digital plane width is applied with
the value of ε set to be 2.0 (a), 1.0 (b), 0.5 (c), and 0.25 (d): rose
points are inliers and blue points are outliers. A fitted digital plane
is visualized as a pair of rose parallel planes. The optimal solution
(e) obtained by the exact algorithm [206] is also illustrated.

for the experiments: some synthetic test data and three real data: a
3D discrete point cloud, an X-ray micro-tomography image, and an
electron nano-tomography image.

3.4.6.1 Noisy digital image of digital planes

The 3D synthetic data was created such that 400 grid points were
samples from a digital plane formulation of Definition 3.1 with setting
w = 1, and 100 grid points were added randomly. For the approx-
imated method, four different ε values were used: 2.0, 1.0, 0.5 and
0.25.

As seen in Table 8 and Fig. 44, the computation time of the exact
algorithm is long, however it does yield the optimal solution contain-
ing 406 inlier points (i.e. the 400 expected points plus 6 random ones).
On the other hand, the approximation results indicate that the smaller
the value of ε, the more precise the solution; when ε = 2, a solution
relatively far from the optimal was obtained. Table 8 also shows that
two different numbers of points were obtained for each value of ε: the
first one is the number of points in a fitted digital plane with width w,
and the second one is the number of points in a fitted digital plane
with width w + 5ε. Note that the second number is guaranteed to be
greater than or equal to the optimal number of inlier points by design,
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Table 8: The runtimes, parameters and numbers of points of fitted digital
planes in Fig. 44.

parameters nb. of points
runtime a1 a2 a4 w w + 5ε

Approx. fitting
ε = 2.0 31 msec −0.0625 −0.0625 −10.9 110 485
ε = 1.0 266 msec −0.5 −0.5 −3.0002 300 435
ε = 0.5 2172 msec −0.5 −0.5 −3.0002 300 421
ε = 0.25 16 640 msec −0.5625 −0.546875 −2.55002 362 410

Exact fitting
exact comp. 35 min 29.109 sec −47/81 −43/81 −203081/81000 406
float comp. 4 min 36.908 sec −0.580247 −0.530864 −2.507173

and it indeed converges to the optimum as ε is decreasing (see Table
8). We can observe as well from Table 8 that the smaller the value of ε,
the higher the runtime. Therefore, it is necessary in practice to find
an appropriate value for ε, which provides a sufficiently approximate
solution within a reasonable timeframe.

3.4.6.2 Real data: 3D discrete point cloud

The first real data example is a set of 3D discrete point clouds in Fig.
37 (c), which is obtained after the planar surface segmentation of a
range image of blocks (see Section 3.3.5.2). The number of points in
the cloud is 12 859, which are segmented into 13 planar surfaces, as
illustrated in Fig. 37 (c) with points in different colors, except for
those colored in light green that are detected as edge points. For
each of these 13 sets, we optimally fitted a digital plane. We see the
corresponding planes in Fig. 45, and the number of points for each
segmented surface and the size of its optimal consensus set in Table 9.

Figure 45: Results of exact digital plane fitting of segmented planar surfaces
in Fig. 37.
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Table 9: The number of points for each segmented planar surface in Fig. 37

and the size of its optimal consensus set for digital plane fitting.

Nb. of points Opt. consensus set size
Blue 1770 1401
Yellow 1578 1195

Pink 1523 935

Pale blue 1191 922

Orange 699 693

Green 573 573

Brown 545 544

Turquoise 536 512

Olive 440 405

Purple 248 245

Violet 232 206

Moss green 223 223

Cream 101 97

3.4.6.3 Real data: X-ray micro-tomography image

We also applied the exact algorithm to a 3D image extracted from a
polymer foam observed in X-ray micro-tomography, on which homo-
topic thinning and surface decomposition were applied [56]. Figure
46 shows a cross section of the original image and Fig. 47 shows a
3D binary image obtained after homotopic thinning and surface de-
composition; the image is cut into two parts for visualization. Among
around 400 sets of points forming surfaces in the entire image, we
choose a part, as illustrated in Fig. 48, including 17 decomposed sur-
faces for digital plane fitting. We show the fitted planes in Fig. 49,
and the number of points and the optimal consensus set size for each
segmented surface in Table II. For both the examples, we set w = 1.

Figure 46: A cross section of a 3D image extracted from a polymer foam
observed in X-ray micro-tomography.
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Figure 47: The 3D binary image obtained after homotopic thinning and
surface decomposition applied on the image in Fig. 46: the image
is cut into two part for visualization.

Figure 48: Selected decomposed surfaces, which is a part of the 3D binary
image in Fig. 47, for digital plane fitting.

Figure 49: Optimal fitted digital planes for decomposed surfaces shown in
Fig. 48.

3.4.6.4 Real data: electron nano-tomography image

The third real data we used was a 3D binary image generated from
a electron nano-tomography image containing a cubical crystal. The
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Table 10: The number of points and the optimal consensus set size for each
decomposed surface in Fig. 49.

Nb. of points Opt. consensus set size
541 269

512 233

439 208

427 196

427 200

405 208

377 159

335 206

333 169

309 141

308 168

258 76

220 104

200 90

198 61

163 98

104 71

image is very noisy due to the dimension of the sample and the
physically-constrained tomography reconstruction method. The origi-
nal image is of 512× 511× 412 with gray values. After binarizing the
image by a thresholding, we detected the boundary points by using
the 6-neighborhood and extracted the largest connected component
by using the 26-connectivity. Finally, we obtained 205 001 points in
the 512× 511× 412 grid. This number of points is too large to apply
the exact algorithm: it would have required on the order of 1018 oper-
ations, i.e. many months of runtime. Instead we ran the approximate
algorithm with some adjustments of the values for ε and w. We set
ε = 4 to obtain its runtime around 12 seconds with w = 1; the result
is illustrated in Fig. 50 (a). As we saw that the cube wall is very noisy,
we also performed a fitting with w = 25 to obtain a thicker digital
plane (see Fig. 50 (b)).

3.5 summary and perspectives

In this chapter, we assumed that what we observe from data has
linear shapes, namely, form lines in 2D and planes in 3D. In this
sense, the common geometrical model, digital hyperplane, formulated
in Definition 3.1, has been used through the whole chapter. The
two different types of digital geometric problems were considered:
digital planar surface segmentation, which assumes rather locally the
linear shape constraint, and digital plane fitting, which is a global
optimization problem under the linear shape constraint.
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(a) (b)

Figure 50: Results of digital plane fitting for a pre-processed 3D binary nano-
tomography image containing 205 001 points. The approximation
algorithm with bounded error in digital plane width is applied
with ε = 4 for w = 1 (a) and w = 25 (b).

In order to solve the first problem of digital planar segmention,
we present a discrete version of the hybrid method. Our method
simply requires two types of look-up tables, i.e., the binary LGP table
(linear or non-linear) and the normal cell list with respect to each
linear LGP, and does not require any parameter setting/estimation.
The experimental results in Fig. 37 show that our method is useful
for planar surface segmentation from a point cloud. This comes from
the fact that our method takes into account not only quantization
errors but also noise. The proposed method is practical to filter out
noise and to classify points with respect to similar directions of the
normal vectors based on the unified discrete Gaussian image. From
this reason, the results of this first part were also used as inputs of the
second problem of this chapter.

In the second part of this chapter, we have exposed a new method
for line and plane fitting on discrete data such as bitmap images using
a digital geometry approach. The digital geometry approach allows
practitioners to separate effects due to digitization on the one hand
and noise on the other. Using our approach, we first have proposed
an optimal fitting method from the point of view of the maximal
consensus set: we are guaranteed to fit a digital line or plane with
the least amount of outliers. The 3D algorithm is based on the same
idea as the 2D algorithm. The 2D and 3D algorithms has a complexity
that are identical to parameter-less traditional plane-fitting algorithms
such as LMS regression [167], but allows us to define a digital line or
plane exactly, in the presence of outliers. Nevertheless, solving the
problem exactly in dimension d is likely at least quadratic, we have
proposed two approximate discrete hyperplane fitting methods with
outliers. The first uses an approach based on linear programming
with violations. It is continuous in nature and features interesting
complexities but is difficult to implement. The second is discrete in
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nature, it uses an accumulation and query data structure and is easy to
implement. This method features bounded error defined in this way:
for a given N points, a width w and an error factor ε, the hyperplane
found contains in a width equal to w + 5ε at least as many points as
the optimum would with a width of w. It features a computational

complexity in O(N +
(

δ
ε

)d
), where δ is the distance between two

neighbours in the hypergrid. The algorithm is therefore linear in
the number of points in the set being considered, but exponential in
the approximation factor with d, the geometric dimension. Memory
requirements are also exponential with ε and d in the same way.

Nonetheless, as we show in this chapter that the exact solution is
3SUM-hard, this method is useful. The computational complexity
is given in the worst case, in practice it can be much better. The
algorithm is in particular well-behaved when there are few outliers.

Future work will include more complete applications such as opti-
mal polygonization or polyhedrization by choosing a good value for
w automatically, and image registration considering all feasible digital
line and plane parameters.



4
D I G I TA L S H A P E M A N I P U L AT I O N : R I G I D M O T I O N S
O N Z 2 A N D Z 3

Geometric transformations are often involved in image registration,
object tracking, and shape matching and recognition in two- and
three-dimensional digital images [11], [199], [203]. A geometric trans-
formation is a bijection of a set having some geometric structure to
itself. They are classified according to the geometric properties they
preserve: for example,

• displacements preserve angles, distances and orientations;

• isometries preserve angles and distances;

• similarities preserve angles and ratios between distances;

• affine transformations preserve parallelism;

• projective transformations preserve collinearity.

Among these geometric transformations, displacements obtained
by composing translations and rotations, are simple and fundamental
transformations in digital image processing. In order to apply such
a displacement, namely a rigid motion, to digital images, it must be
digitized. However, while the geometry and topology are preserved
by any rigid motion in Rn, in the discrete domain, i.e. Zn but not
Rn, these geometric and topological invariances are generally lost
because of the discontinuities induced by the digitization processes of
the function (see Figure 51). Indeed, these defects could be caused by
the loss of the bijectivity of the digitized function (see Figure 52).

This problem is of crucial importance, particularly when images
contain rich contents such as a large number of objects structured in a
complex way, for example in biomedical and geomaterial applications.
At present, this issue is addressed through ad hoc strategies in most
cases. Thus, rigid motions are generally applied in Rn, after the digital
images have been plunged from Zn into this continuous space. The
results are then re-digitized in Zn. This succession of spatial trans-
positions without topological and geometric consideration induces
numerical results which necessarily lead to topological and geometric
alterations.

In order to avoid losing such control of geometry and topology on
Zn, we aim to develop a purely discrete framework for rigid motions
on Zn based on digital geometry and topology concepts. This new
framework will allow to manipulate digital objects in a “rigid” manner

73
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(a) (b)

(c) (d)

(e)
Figure 51: Digital images (left) and their rigid motions (right). (a) A disk

preserves neither topology nor geometry, while (b) a half-plane
preserves its topology but not its geometry. (c) A thin digital
plane preserves neither topology nor geometry, while (d) a thicker
digital plane preserves topology (connected without hole) but
is not planar shape. (e) A binary retinal image here preserves
neither topology nor geometry.

via “pixel-by-pixel” operations. In this chapter, we consider the dis-
crete model of the exact digitized rigid motions and seek solutions to
the following sub-problems of digitized rigid motions: combinatorial
analysis of local behaviors [39], [149] (see Section 4.2), characterisa-
tion of bijectivity [150], [152], [153] (see Section 4.3), preservation of
topology [138], [148] and geometry [131] (see Sections 4.4 and 4.5).
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(a) (b)

Figure 52: After a rigid motion of points of Z2 in the square tilling that are
initially positioned as illustrated in (a), there exist square cells
containing no preimage or rather two preimages, as illustlated in
(b); the transformation is no longer bijective.

4.1 rigid motion and digitization

4.1.1 Rigid motions on Rn

Let us consider an object X in the Euclidean space Rn, n = 2, 3, as a
bounded and closed connected subset of Rn. Rigid motions on Rn are
defined by a mapping:∣∣∣∣ T : Rn → Rn

x 7→ Rx + t
(29)

where R is a rotation matrix and t ∈ Rn is a translation vector. Such
bijective transformation T is isometric and orientation-preserving. In
other words, T(X) has the same shape as X (i.e. preserves the geometry
and topology).

4.1.2 Rotation representations and parameterizations

Let us here focus on rotational parts. Rotation matrices in Rn are
n× n square matrices, with real entries. More specifically, they can be
characterized as orthogonal matrices with determinant 1.

In R2, any rotation matrix has the following form:

R =

[
cos θ − sin θ

sin θ cos θ

]
, (30)

which rotates points on the plane counterclockwise by an angle θ

about the origin of the Cartesian coordinate system. Indeed, there is
one parameter θ, which describes the magnitude of the rotation about
the origin, in R2.

In R3, the number of rotational degrees of freedom is three1, and
there are several representations parameterizing a rotation. The

1 The number of rotational degrees of freedom in n dimensions is n(n−1)
2 , which comes

from the dimensions of the rotation group.
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axis–angle representation parameterizes a rotation by a unit vector w
indicating the direction of an axis of rotation and an angle θ. Then
Rodrigues’ rotation formula gives a method to obtain R from w and θ

[128]:
R = I + (sin θ)W + (1− cos θ)W2

where I is 3 × 3 identity matrix and W denotes the cross-product
matrix for the unit vector w = (wx, wy, wz),

W :=

 0 −wz wy

wz 0 −wx

−wy wx 0


with w2

x + w2
y + w2

z = 1.
We can also parametrize a rotation in R3 by three reals a, b, c ∈ R,

which constitute the skew-symmetric matrix A:

A :=

 0 c −b
−c 0 a
b −a 0

 . (31)

Then Cayley transform [30] allows us to obtain almost any rotation
matrix R such that

R = (I − A)(I + A)−1 (32)

=
1

1 + a2 + b2 + c2

1 + a2 − b2 − c2 2(ab− c) 2(b + ac)
2(ab + c) 1− a2 + b2 − c2 2(bc− a)
2(ac− b) 2(a + bc) 1− a2 − b2 + c2

 .

(33)

Indeed, rotations by π around any axis can only be obtained by the
Cayley transform as a limit: angles of rotation converge to π when
a, b, c tend to infinity [174]. In practice, this constraint is negligible
and does not affect generality of our study. Note that rotations in R2

can be also written by Eq. (32), setting

A :=
[

0 −a
a 0

]
. (34)

In other words, 2D rotations are parametrized by a ∈ R, instead of
θ ∈ (−π, π), and we have

cos θ =
1− a2

1 + a2 , sin θ =
2a

1 + a2 .

Rather than rotation matrices, we can use quaternion operations for
rotations in R3. Let us represent any point in R3 by a pure imaginary
quaternion: x = (x1, x2, x3) ' x1i + x2 j + x3k. Then, any rotation can
be written as

x 7→ qxq−1, (35)
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where x ∈ R3 [84], [194]. The quaternion q is uniquely determined up
to multiplication by a nonzero real number, and if |q| = 1, up to a sign
change: qxq−1 = (−q)x(−q)−1; hence the correspondence between
unit quaternions and rotation matrices is two-to-one. Note that, for
any unit norm quaternion q = a + bi + cj + dk, a rotation angle θ

and an axis of rotation w are given as θ = 2 cos−1 a, and w = (b,c,d)
|(b,c,d)| ,

respectively. We refer the reader unfamiliar with quaternions to [40],
[84], [194].

We use one of the above rotation representations properly according
to each of the following problems.

4.1.3 Rigid motions on Zn

If we simply apply a rigid motion T of (29) to every point in Zn, we
generally have T(Zn) 6⊂ Zn. In order to get the points back on Zn, we
then need a digitization operator∣∣∣∣ D : Rn → Zn

(x1, . . . , xn) 7→
(⌊

x1 +
1
2

⌋
, . . . ,

⌊
xn +

1
2

⌋)
where bsc denotes the largest integer not greater than s. A discrete
analogue of T is then obtained by

T := D ◦ T|Zn , (36)

so that the discrete analogue of the point-wise rigid motion of a
digital object X on Zn is given by T (X). Due to the behavior of D

that maps Rn onto Zn, digitized rigid motions are, most of the time,
non–bijective, so that they guarantee neither topology nor geometry
preservation, as illustrated in Figures 51 and 52.

4.2 combinatorial local analysis

As such alterations happen locally, due to digitization, discrete mo-
tion maps have been studied for small image patches, in order to
understand such defects at local scale [142], [143]. For such a local
analysis, one wishes to generate all possible images of an image patch
under digitized rigid motions. In digital geometry and combinatorics,
complexity analyses of such a problem has been made for certain geo-
metric transformations. However, there are few algorithms available
for generating all the transformed images from a given image patch.
In this chapter, we study combinatorial and local structures of 2D and
3D digitized rigid motions, mainly published in [39], [149]. In this
section, we consider the following issues:

1. the complexity of digitized rigid transformations of a finite
image patch of Zn,
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2. the graphical modelling of the structure of digitized rigid trans-
formations, and

3. the algorithm for computing the structure.

4.2.1 Related work

Similar study on combinatorial analysis of 2D image transformations,
where theoretical complexities of some digitized geometric transfor-
mations are summarized in Table 11, were made for rotations [5],
[189], scalings [4], [6], combined scalings and rotations [79], affine
transformations [77], [80], projective and linear transformations [78].

Classes of transformations Complexity
Rotations [5], [189] O(r3)

Scalings [4], [6] O(r3)

Rotations and scalings [79] O(r6)

Linear transformations [78] O(r12)

Affine transformations [77], [80] O(r18)

Projective transformations [78] O(r24)

Table 11: Space complexities of different classes of transformations on a finite
subset of Z2 of radius r.

On the other hand, few algorithms which enable the construction
of the combinatorial structures of those digitized geometric transfor-
mations were proposed: 2D rotations [142]; 3D rotations around a
given rational axis [190]; 2D rigid motions [39], [153], 3D rigid motions
(without the structure) [149] and 2D affine transformations [80]. In the
sections below, we first explain the theoretical complexity for digitized
geometric transformations and then the algorithm for constructing
the combinatorial structures of rigid motions of a finite subset of Z2,
proposed in [39], and the one for generating all the rigid motions of a
finite subset of Z3, proposed in [149].

4.2.2 Image patch and its alterations under digitized rigid motions

Let us consider a finite set S ⊂ Zn, called an image patch, whose center
c and radius r of S are respectively given by

c =
1
|S| ∑

p∈S
p

and
r = max

p∈S
‖p− c‖.

Note that, in this section, we consider c as the origin for simplicity,
and study the evolution of such an image patch S under digitized
rigid motions T .
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The digitized rigid motions T = D ◦ T are piecewise constant, and
thus non-continuous, which is a consequence of the nature of the
digitization operator D. In particular, the image T (p) of a given
point p may remain constant as the parameters of T vary, and then
suddenly jump from one point of Zn to another. In other words,
an image patch S evolves non-continuously, under digitized rigid
motions, in accordance with the parameters of T that underlies T .
Hereafter, without loss of generality, we assume that T (c) stays in the
digitization cell of c, namely T (c) = c, since translation by an integer
vector would not change the geometry of S. Under this assumption
we have that

t ∈
(
−1

2
,

1
2

)n

.

Studying the non–continuous evolution of an image patch S is
equivalent to studying the discontinuities of T (p) for every p ∈ S \ {c},
which occur when T (p) is on the half–grid plane, namely a boundary
of a digitization cell. This is formulated by

Rip+ ti = ki −
1
2

(37)

where ki ∈ Z ∩ [−r′, r′], Ri is the i-th row of the rotation matrix for
i = 1, . . . , n and r′ is the longest radius of T(S) for all T, so that
r′ = r +

√
n.

4.2.3 Problem as an arrangement of hypersurfaces

For any image patch S, the n(n+1)
2 -dimensional parameter space of T is

partitioned by a set of hypersurfaces given by (37) into a finite number
of connected subsets. Although points in each n(n+1)

2 -dimensional
open cell induce different rigid motion T|S, their digitized rigid mo-
tions T|S = D ◦ T|S are identical.

In order to construct a combinatorial model of the local behavior of
displacements on Zn, the transformations can be classified according
to their effect on a digital image patch. This classification can be
interpreted as specific problems of hypersurface arrangements in the
parameter space of the transformations.

4.2.4 Combinatorial analysis of structures2

Let C be a collection of hypersufaces defined by Eq. (37) for the ar-
rangement. For the combinatorial analysis of the structure of the
arrangement C, there are three important elements that we should
consider: the number m of hypersurfaces, the number d of hypersur-
face parameters, and the maximum degree b of hypersurfaces which
are in algebraic surfaces.

2 Special thanks goes to Xavier Goaoc for the fruitful discussions and variable advices.



80 digital shape manipulation : rigid motions on Z2
and Z3

Let us here consider the rotation representation by Cayley transform,
described in Section 4.1.2. Then, each of the hypersurfaces defined by
(37) is written in the form:

P(a1, a2, . . . , ad) = 0

where P(a1, a2, . . . , ad) is a polynomial function with

d =
n(n + 1)

2
(38)

where n is the dimension of digital image space, namely n = 2 or 3
here. From (32), (34)/(31) and (37), we also obtain

b ≤ 3

for any P, and thus b is a small constant.
Given an image patch S of radius r, let us now consider the collection

of the associated hypersurfaces defined by (37). From the definition,
we have the following lemma since (37) varies for p ∈ S \ {c} and for
ki ∈ Z∩ [−r′, r′] where r′ = r +

√
n.

Lemma 4.1. Given an n-dimensional image patch S of radius r, the complex-
ity of the collection of the associated hypersurfaces defined by (37) is O(rn+1).

Applying Theorem 21.1.4 in [72] to this specific problem and taking
into consideration Lemma 4.1, we have the following complexity of
the arrangement C. Note that the complexity of intersection points
and that of d-dimensional cells are equal.

Corollary 4.1. Given an n-dimensional image patch S of radius r, let C be a
collection of m hypersufaces with d parameters defined by (37). The maximum

combinatorial complexity of the arrangement of C is O(md) = O(r
n(n+1)2

2 ).

Similar combinatorial analyses can be done for other geometric
transformations, which are for instance listed in Table 11. The corollary
is then generalized as follows.

Corollary 4.2. Given an n-dimensional image patch S of radius r, let C be a
collection of hypersufaces with d parameters, defined from critical hypersur-
faces of digitized geometric transformations in the form of affine/projective
transforms. The maximum combinatorial complexity of the arrangement of C
is O(r(n+1)d).

This enables us to obtain the complexity analyses in Table 12, parts
of which, particularly in 2D, were same as those in Table 11 given
above.
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Classes of transformations n (dim.) d (para. #) Complexity
2D translations 0 2 O(r2)

2D scalings 2 1 O(r3)

2D rotations 2 1 O(r3)

2D rotations and scalings 2 2 O(r6)

2D rigid transformations 2 3 O(r9)

2D linear transformations 2 4 O(r12)

2D affine transformations 2 6 O(r18)

2D projective transformations 2 8 O(r24)

3D translations 0 3 O(r3)

3D scalings 3 1 O(r4)

3D axis-fixed rotations 3 1 O(r4)

3D rotations 3 3 O(r12)

3D rotations and scalings 3 4 O(r16)

3D rigid transformations 3 6 O(r24)

3D linear transformations 3 9 O(r36)

3D affine transformations 3 12 O(r48)

3D projective transformations 3 15 O(r60)

Table 12: Combinatorial analyses of complexity of different classes of trans-
formations on a subspace of Zn, n = 2, 3, of radius r, obtained
from Collorary 4.2.

4.2.5 Graph representing the dual combinatorial structures

An arrangement of (d− 1)-dimensional hypersurfaces defined by (37)
subdivides the parameter space Rd (see Fig. 53 (a) for an example of
2D digitized rigid motions). By mapping each d-dimensional open cell
onto a vertex, and each separating (d− 1)-dimensional hypersurface
onto an edge – following a Voronoi / Delaunay duality – we can
model such a subdivision of the parameter space, as a graph, called
discrete rigid transformation (DRT) graph (see Fig. 53 (b) for an example).

Definition 4.1. Given a collection C of critical hypersurfaces defined by (37)
in Rd, the dual graph G = (V, E), called DRT graph, is defined such that:

1. any vertex v ∈ V models a d-dimensional open cell of the arrangement
of C;

2. any edge e = (v, w) ∈ E connects two vertices v, w ∈ V sharing a
(d− 1)-dimensional hypersurface of C.

This DRT graph G represents the dual structure of the subdivision
of the parameter space Rd of rigid transformations. In particular, G
associated to a digital image patch S of finite size (according to (37),
the size is described by the radius of S denoted by r) is a finite data-
structure that describes all the possible digital rigid transformations
of S.
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t1

t2

(a) Arrangement of critical surfaces.

t2

t1

(b) DRT graph.

Figure 53: (a) Subdivision of the (t1, t2, θ) parameter space of 2D rigid mo-
tions into 3D cells by critical surfaces, which are vertical (in blue)
and horizontal (in red), and (b) the associated DRT graph.

It should be mentioned that the DRT graph G does not contain any
geometric parameters of rigid transformations but only the topological
information, that models the relationship between any neighbouring
transformed images. More precisely, each vertex v ∈ V of G is as-
sociated with a unique transformed image generated by any rigid
transformation in the dual open cell of v. It is shown in [39] that
two connected transformed images in G differ by at most one over
the O(rn) pixels/voxels of S. Thus, each edge e = (v, w) ∈ E of G is
–implicitly– associated to a function indicating the only modification
that differs between the transformed images corresponding to v and
w. This allows us to use the DRT graph to produce all the transformed
images via successive elementary (i.e., single-pixel) modifications. This
property opens a way of involving the DRT graph in digital image
processing and analysis tasks.

4.2.6 Algorithms for computing the structure of digitized rigid motions

The theoretical combinatorial analysis above gave us the complexities
O(r9) and O(r24) for two- and three-dimensional digitized rigid mo-
tions, respectively. The corresponding arrangement problems can be
solved by methods of computational geometry. For the calculation,
despite the existence of degenerate cases, the algorithm based on
plane sweeping is proposed for n = 2, and it can be applied to an
image patch whose cardinality is greater than 100 [39] (see Section
4.2.6.1). Note that topological information of the arrangement, namely
DRT graph, is obtained. On the other hand, working in Z3 increases
considerably the complexity of the problem, and thus we set the sim-
pler goal for n = 3 such as obtaining at least one sample point for
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each 6-dimensional open cell in the parameter space R6, than that of
constructing the DRT graph G for n = 2. We tackle this problem in
two stages: (1) the calculation of sampling points in an arrangement
of quadrics in the parameter space of rotations; (2) the retrieval of
information on the other parameters of translations [149] (see Section
4.2.6.2).

4.2.6.1 Computing an arrangement for 2D digitized rigid motions

Here we consider a finite collection C of critical surfaces defined by
(37) with the rotation parameterisation by angle θ, namely (30), with a
given value r. Note that there are two sets of critical surfaces, denoted
by Ci for i = 1, 2, called vertical and horizontal respectively, so that
C = C1 ∪ C2. As illustrated in Fig. 53 (a), any critical surface of Ci
is orthogonal to the (ti, θ)-plane. We explain an efficient algorithm
for constructing the DRT graph G, with a low computational cost,
which is linear with respect to its space complexity. The algorithm,
which handles real (i.e., non-rational) values related to the continuous
transformations associated to the discrete ones, is however defined in
a fully discrete form, allowing for exact computation, and avoiding in
particular any approximations related to floating point arithmetics.

The algorithm consists of using a plane orthogonal to the θ-axis,
denoted by Γ, swept along this axis, from 0 to 2π. From the definition
of critical surfaces (37), the critical surfaces of C intersect and subdivide
Γ into at most (|C1|+ 1)× (|C2|+ 1) rectangular cells, as illustrated in
Fig. 54. Each rectangle corresponds to a vertex, while each frontier
between two rectangles corresponds to an edge of the DRT graph.
When swept Γ reaches an intersection of critical surfaces of C, some
rectangles disappear while new ones appear right after; new vertices
and edges are generated and added into the DRT sub-graph G. In
order to construct incrementally G, we need to maintain a set of sorted
intersection points of critical surfaces with respect to θ in [0, 2π[, and
to make Γ progress in the increasing order (see [39] for more details).
Note that this algorithm has a complexity that depends on the number
of these intersections, namely O(|C|2) [39].

One of the key points of this incremental construction of G is exact
sorting of intersections of vertical (or horizontal) critical surfaces
along the θ-axis. Note that we can use for the comparison the values
cos θ and sin θ, which are both quadratic irrationals3 in this specific
problem [39]. It is known in [162] that two quadratic irrationals can
be compared by an exact method. In fact, a quadratic irrational can be
represented exactly using a periodic continued fraction modelled by
a sequence of integers, and this representation is unique. Moreover
the comparison of periodic continued fractions can be performed
in constant time [61] (see Appendix A of [39] for more details), so

3 A quadratic irrational is an irrational number that is a solution of some quadratic
equations.
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Figure 54: DRT graph construction by the sweeping plane algorithm, with
2 vertical (blue, cyan) and 2 horizontal (red, magenta) critical
surfaces. (a) 3 × 3 rectangular cells generated by the tipping
surfaces in each sweeping plane. (b) The associated part of the
DRT graph in each plane (in green: new vertices and edges in the
second and third planes).

that sorting all intersections requires O(N log N) times of such a
comparison, where N is the number of intersections, namely N =

O(|C|2) as mentioned above.
Moreover, from Fig. 54, one remarks that the critical surfaces in-

tersect the sweeping plane Γ with a specific order along each ti-axis.
At each intersection, this order evolves, but only between consecu-
tive critical surfaces involved in the intersection. Therefore, instead
of calculating intersections between all critical surfaces in C, we can
calculate only those of consecutive critical surfaces in their ordered
structure in Γ along each ti-axis. In consequence, we consider at most
|C| − 2 intersections at each update of Γ. The next intersection of criti-
cal surfaces for updating the planar subdivision is the closest among
these |C| − 2. After such intersection, the order of the critical surfaces
generating the intersection in Γ is swapped.

The overall procedure starts at θ = 0 with the ordered structure in Γ
with C along each ti-axis and, at each intersection, calculates |Ci| new
vertices and their associated (3|Ci|+ 2) edges, that are integrated into
G, while the ordered structure in Γ is updated. This is repeated until Γ
reaches 2π. After each update, the modifications of such intersections
can be performed in constant time.

In summary, the initial graph has a complexity O(|C|) ×O(|C|),
and the graph update can be made in O(|C|) at each intersection, of
which the total number is O(|C|2). Thus the complexity of the overall
procedure is O(|C|3). From Lemma 4.1, we have |C| = O(r3), and thus
this leads to O(r9), which is equal to the space complexity shown in
Corollary 4.1.

The similar sweeping strategy can be also used for constructing a
local structure of the DRT graph G [134]; given a vertex v, compute
the neighboring vertices and edges of v. This can be made in O(kr2)
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where k is the maximum distance of the neighbors from v such that
the length of every edge is considered to be 1. This local information
is, for example, used for handling image registration [134].

4.2.6.2 Computing an arrangement for 3D digitized rigid motions

Here we consider a finite collection C of critical surfaces defined by
(37) with the rotation parameterisation by angle θ, namely (33), with a
given value r and for n = 3. From (38), the number of variables of this
specific problem is 6, of which 3 variables are for rotations and the
other 3 are for translations. With this parametrisation, the parameter
space is

Ω =

{
(a, b, c, t1, t2, t3) ∈ R6 | a, b, c ≥ 0,−1

2
< ti <

1
2

for i = 1, 2, 3
}

for a 3-dimensional image patch S. In order to avoid dealing with the
hypersurface arrangement in this 6-dimensional space, we uncouple
the parameters in Ω as follows. By considering the differences between
the hypersurfaces given in (37) for different p ∈ S and k ∈ H(S)3 =

Z∩ [−r−
√

3, r +
√

3], we can reduce the problem to the study of an
arrangement of surfaces in the (a, b, c)-space, and then lift the solution
to the six dimensional space.

Let us consider a rigid motion defined by R and t. The condition
for having T (p) = k = (k1, k2, k3) ∈ Z3 where p ∈ S is

ki −
1
2
< Rip+ ti < ki +

1
2

for i = 1, 2, 3. Equivalently,

ki −
1
2
− Rip < ti < ki +

1
2
− Rip. (39)

Let us call a configuration a list of couples (p, k), which describe how
the image patch S is transformed. This configuration can be described
as a function∣∣∣∣ F : S → H(S)3

p = (p1, p2, p3) 7→ k = (k1, k2, k3).

We would like to ascertain whether a given configuration F arises from
some digitized rigid motion T , i.e. corresponds to some parameters
a, b, c, t1, t2, t3. Then the inequalities (39) state precisely the necessary
and sufficient conditions for the existence of the translation part t
of such a rigid motion, assuming that a, b, c are already known. Let
us now remark that all these inequalities can be summed up in three
inequalities indexed by i:

max
p∈S

(
F(p)i −

1
2
− Rip

)
< min

p∈S

(
F(p)i +

1
2
− Rip

)
, (40)
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Figure 55: Examples of the zero sets of quadratic polynomials of Q.

or equivalently to the following list of inequalities

∀p, p′ ∈ S, F(p′)i −
1
2
− Rip

′ < F(p)i +
1
2
− Rip. (41)

The key observation is that we have eliminated the variables t1, t2, t3

and have reduced to a subsystem of inequalities in a, b, c. Moreover,
due to the rational expression in the Cayley transform (33), we may
use the following polynomials of degree 2:

qi[p, ki](a, b, c) = (1 + a2 + b2 + c2)(2ki − 1− 2Rip), (42)

for i = 1, 2, 3. Then (41) can be rewritten as the quadratic polynomial
inequalities

∀p, p′ ∈ S, Qi[p, p′, F(p)i, F(p′)i](a, b, c) > 0,

where

Qi[p, p′, ki, k′i](a, b, c) = qi[p, ki](a, b, c) + 2(1 + a2 + b2 + c2)

− qi[p
′, k′i](a, b, c), (43)

for i = 1, 2, 3. The set of quadratic polynomials for this specific
problem is then given by

Q = {Qi[p, p′, ki, k′i](a, b, c) | i = 1, 2, 3, p, p′ ∈ S, ki, k′i ∈ H(S)}.

Figure 55 illustrates the zero sets of some quadratic polynomials in Q.

Computation of the arrangement of quadrics Q(a, b, c) = 0 for all
Q ∈ Q can be made in a similar way to the strategy proposed in
[127] (see [149] for more details). One of the main differences is that
we do not store information about all cells different from sample
points of full-dimensional connected components. Another difference
is that we compute a sample point per open connected component of a
quadric arrangement using a projection along a non-generic direction,
using the theory of generalized critical values [82], [109], [155], while the
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original sweeping strategy is proposed along a generic direction [127].
Let us here consider the a-axis for such a non-generic direction. We
then consider not only the following three types of critical values:

type a : values s of a where the sweeping plane a = s is tangent to a
quadric of Q;

type b : values s of a where the curve of intersection of two quadrics
of Q is tangent to the sweeping plane;

type c : values s of a where the sweeping plane contains an intersect-
ing point of three quadrics of Q;

as illustrated in Figs. 56, 57 and 58 respectively, but also the following
two types of asymptotic critical values:

type a∞ : values s of a where the sweeping plane a = s is tangent to
a quadric at infinity;

type b∞ : values s of a where the sweeping plane is tangent to a curve
defined by the intersection of two quadrics at infinity,

as illustrated in Figs. 59 and 60 respectively.
The critical values are obtained as systems of quadratic equations

(see [149] for the details) and are represented by real algebraic num-
bers, namely roots of univariate polynomials. We can make compar-
ison between two algebraic numbers, which is necessary to sort the
critical values, similarly to [127].

Once detecting and sorting all the critical values at which topology
of an arrangement changes, we sweep by a plane the set of quadrics
along a chosen direction, which is here the a-axis. The sweeping
plane stops between each pair of consecutive critical values and take
a sample value corresponding to the position of the sweeping plane.
We then consider the intersection of the quadrics and the sweeping
plane. This intersection reduces the problem into the subproblem of

c

a

b

Figure 56: Example of critical value of the type A – a sweeping plane a = 0
(depicted in violet) tangent at a point (depicted in red) to a quadric
Q = bc− a.
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c

a

b

Figure 57: Example of critical value of the type B – a sweeping plane is
tangent to two curves (depicted in red) given by an intersection of
quadrics Q1 = bc + a and Q2 = a2 + b2 − 4bc + c2 + 4a + 1.

c

a

b

Figure 58: Example of critical value of the type C – a point (depicted in
red) given by an intersection of quadrics Q1 = ab − c, Q2 =
ab− ac− b− c and Q3 = a2 − ab + c2 − c.

a 2D arrangement of conics on the sweeping plane (see Fig. 61). We
then compute a 3D sample point for each 2D cell of the arrangement
on the plane.

It is obvious that this method can create more than one sample
point in a 3D cell of the quadric arrangement. However, this method
guarantees that we do not overlook a 3D cell where no sample point
is generated. In order to reduce such excess of sample points, we can
also consider an incremental approach, which requires instead more
complex data structures, as presented in [127].

After this procedure, for each sample point we recover the transla-
tion part of the parameter space of digitized 3D rigid motions from
(39). Notice that the proposed approach could be also applied to solve
the problem in 2D, as described in the previous section, i.e. generation
of the different images of a 2D image patch under 2D digitized rigid
motions, which leads the same results obtained in [39].
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c

a

b

Figure 59: Example of asymptotic critical value of A∞ type. There exist a
plane a = 0 tangent to an asymptote—the red curves in the surface
Q = ab− 2ac− 2b− c—in a point at infinity.

a

b

c

Figure 60: Example of asymptotic critical event of B∞ type. The intersection
of quadrics: Q1 = bc + a (the orange-green surface) and Q2 =
b2 − bc + a− 1 (the blue surface) leads to the red curves which
exhibit an asymptotic behavior at a = 1

2 . The a-, b- and c- axes
are re-oriented and the origin is changed for a better visualization
effect.

4.3 characterization of bijectivity

Although the displacements are bijective and isometric in Rn, these
properties are lost during the digitization in Zn (see Figure 51). To
study these defects, we extend a combinatorial model of the local
behavior, originally defined for rotations [144], to displacements in Z2

[153]. This model allows us to study the bijective displacements in
Z2, and to propose algorithms for verifying if a given displacement
is bijective restricted to a fixed finite subset of Z2 [153]. It should
be mentioned that the same characterization can be obtained by an
arithmetic approach based on the properties of Gaussian integers
[168].

On the other hand, in the case of displacements in Z3, more pre-
cisely, of discrete rotations, a similar characterization does not exist.
However, an arithmetic algorithm to certify the (global) bijectivity of
digitized rational rotations was obtained using the properties of Lips-
chitz quternions [150]. This algorithm also makes it possible to show
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Figure 61: The 2D arrangement of 81, 513 and 741 quadrics for an image
patch of radius r = 1,

√
2,
√

3, respectively.

the existence of bijective digitized rotations whose axis of rotation
does not correspond to one of the coordinate axes.

Both the combinatorial and arithmetic approaches can also handle
other regular tilings, such as hexagonal ones [151], [152]. Here we
present the combinatorial and arithmetic approaches to study the
bijectivity of displacements on Z2 and Z3, respectively.

4.3.1 Combinatorial approach to characterization of bijectivity

4.3.1.1 Neighborhood motion map

In order to track the local behavior of displacements T in Z2, we
introduce the notion of a neighborhood motion map that is defined
as a set of vectors, each representing information about a neighbor
after rigid motion. This notion was originally proposed by Nouvel
and Rémila to study local behavior of 2D digitized rotations [143].

Let us first consider the neighborhood of p ∈ Z2 of squared radius
r ∈ R+, defined as

Nr(p) =
{
p+ d ∈ Z2 | ‖d‖2 ≤ r

}
.

Then the neighborhood motion map of Nr(p) is defined as follows.
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p p

Figure 62: The reference label maps L1 (left) and L2 (right).

p

p

Figure 63: Examples of label maps LT1 (p). Each point contains at most one
label (left): the rigid motion T is then locally injective. One point
contains two labels (right): T is then non-injective.

Definition 4.2 (Neighborhood motion map). Given a digitized rigid
motion T, the neighborhood motion map of p ∈ Z2 is defined as∣∣∣∣ GTr (p) : Nr(0) → Nr′(0)

d 7→ T (p+ d)− T (p)

where r′ ≥ r.

The map GTr (p) associates to each relative position of an integer
point q = p+ d in the neighborhood of p, the relative position of the
image T (q) in the neighborhood of T (p).

For a visualization, GTr (p) is represented by label maps. A reference
map Lr associates a specific label to each point d = q− p of Nr(0)
for a given squared radius r (see Fig. 62, for the maps L1 and L2). A
second map LTr (p)associates to each point r of Nr′(0) the labels of all
the points q such that T (q)− T (p) = r. Such a set of labels for each r

may contain 0, 1 or 2 labels, due to the possible mappings of integer
points under digitized rigid motions (see examples in Fig. 63).

4.3.1.2 Partitioning remainder range and neighboring motion maps

Due to the definition, the neighboring motion map GTr (p) evolves
non-continuously. Our purpose is now to express how GTr (p) evolves.

Let us denote by C(p) the digitization cell centered at a grid point
p = (p1, . . . , pn) ∈ Zn:

C(p) =
n

∏
i=1

[
pi −

1
2

, pi +
1
2

)
.

Instead of studying the whole source and target spaces of rigid mo-
tions T, we study the set of remainders defined by the remainder map:∣∣∣∣ ρ : Zn → C(0)

p 7→ T(p)−D ◦ T(p).
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Let us now consider an integer point p+ d in the neighborhood
Nr(p) of p. From (29), we have

T(p+ d) = Rd+ T(p),

which is rewritten as

T(p+ d) = Rd+ ρ(p) + T(p).

Without loss of generality—and up to translations in Z2—we can
assume that T (p) is the origin of a local coordinate frame of the image
space, T (p) ∈ C(0). In these local coordinates frames, the former
equation rewrites as

T(d+ p) = Rd+ ρ(p). (44)

Now, studying the non-continuous evolution of the neighborhood
motion map GTr (p) is equivalent to studying the behavior of T (d) =
D ◦ T (p+ d) for d ∈ Nr(0) and p ∈ C(0), with respect to the motion
parameters. In particular, the discontinuities of T (p+ d) occur when
T(p+ d) is on the boundary of a digitization cell. Setting ρ(p) =

(x1, x2) ∈ C(0) and d ∈ Nr(0), this is formulated by one of the
equations:

xi + Rid = ki −
1
2

(45)

where ki ∈ Z, i = 1, 2. For a given d and ki, (45) defines a vertical or
horizontal line in the remainder range C(0), called a critical line. These
critical lines with different d and ki subdivide the remainder range
C(0) into rectangular regions called frames. As long as coordinates
of ρ(p) belong to a same frame, the associated neighborhood motion
map GTr (p) remains constant.

Proposition 4.1. For any p, q ∈ Z2, GTr (p) = GTr (q) iff ρ(p) and ρ(q) are
in the same frame.

This proposition is shown originally in [143] for the case r = 1
and rotations without translation: the above is an extension for gen-
eral cases, such that r ≥ 1, and rigid motions. An example of the
remainder range partitioning for r = 2 is presented in Fig. 64, and the
corresponding neighboring motion map for each frame in Fig. 64 can
be found in Fig. 65 (for further examples, see Appendices of [153]).

4.3.1.3 Characterization of globally bijective digitized rigid motions

Observing such neighboring motion maps, we can find the frames in
which the neighborhood motion maps have points with two or zero
preimages, implying non-surjectivity or non-injectivity [144]. Those
frames are called non-surjective and non-injective frames, depicted
as f 0

∗ and f 2
∗ in Fig. 64 (see [153] for details). Therefore, if there

exists p ∈ Z2 such that ρ(p) is in one of non-surjective (resp. non-
injective) frames, then the digitized rigid motion T is not surjective
(resp. injective). In other words, we have the following proposition.
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f2
↓

f2
↑

f2
→

f2
←

f0
↑

f0
→

f0
↓

f0
←

Figure 64: Example of remainder range partitioning for r = 2 for θ ∈ (0, α1),
where α1 is the smallest positive critical angle, together with non-
injective zones f 2

∗ and non-surjective zones f 0
∗ are illustrated by

red and brown rectangles, respectively.

Proposition 4.2. A digitized rigid motion is bijective if and only if there
is no ρ(p) for all p ∈ Z2 in non-sujective nor non-injective frames of the
remainder range C(0).

We now characterize bijective rigid motions on Z2 while investi-
gating those local conditions. Let us start with the rotational part
of the motion. We know from [144] that rotations with any angle
of irrational sine or cosine are non-bijective; indeed, such rotations
have a dense image by ρ (there exists p ∈ Z2 such that ρ(p) lies in
a non-surjective or non-injective frame of C(0)). This result is also
applied to T , whatever translation part is added.

Therefore, we focus on rigid motions for which both cosine and
sine of the angle θ are rational. Such angles are called Pythagorean
angles [144] and are defined by primitive Pythagorean triples (a, b, c) =
(p2 − q2, 2pq, p2 + q2) with p, q ∈ Z, p > q and p− q is odd, such that
(a, b, c) are pairwise coprime, and cosine and sine of such angles are
a
c and b

c , respectively. The image of Z2 by ρ, when T is a digitized
rational rotation, corresponds to a cyclic group G on the remainder
range C(0), which is generated by ψψψ =

( p
c , q

c

)
and ωωω =

(
− q

c , p
c

)
and

whose order is equal to c = p2 + q2 [144] (see Fig. 66 for an example
of G). When T contains a translation part, the image of ρ in C(0),
which we denote by G′, is obtained by translating G (modulo Z2), and
|G′| is equal to the order of G, its underlying group. Note as well the
following result, which was shown by Nouvel and Rémila [144] and,
more recently, by Roussillon and Cœurjolly [168] with an arithmetical
approach.

Proposition 4.3 ([144], [168]). A digitized rational rotation is bijective (the
intersection of G with non-injective and non-surjective regions is empty) iff
its angle comes from a twin Pythagorean triple—a primitive Pythagorean
triple with the additional condition p = q + 1.

Our question is then whether a digitized rigid motion can be bijec-
tive, even when the corresponding rotation is not. In order to answer
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Figure 65: Neighborhood motion maps GT2 , represented by label maps, cor-
responding to each frame in Fig. 64. Neighborhood motion maps
which correspond to non-injective zones are marked by brown,
dashed, frames.

this question, we use the following equivalence property: digitized
rational rotations are bijective if they are surjective or injective [144].
Indeed, this allows us to focus only on non-surjective zones, since
they are squares hence provide symmetry, then presenting interesting
properties in terms of exact computing.

Lemma 4.2. A digitized rigid motion whose rotational part is given by a
non-twin Pythagorean primitive triple is always non-surjective.

If, on the contrary, the rotational part is given by a twin Pythagorean
triple, i.e. is bijective, then the rigid motion is also bijective, under the
following condition.

Proposition 4.4. A digitized rigid motion is bijective if and only if it is
composed of a rotation by an angle defined by a twin Pythagorean triple
(a, b, c) and a translation t = t′ + Zψψψ + Zωωω, where t′ ∈

(
− 1

2c , 1
2c

)2.

4.3.1.4 Verification of locally bijective digitized rigid motions

The globally bijective digitized rigid motions, though numerous, are
not dense in the set of all digitized rigid motions. Thus, we may
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ψ
ω

Figure 66: An example of remainder range partitioning together with the
cyclic group G obtained for the rotation defined by the primitive
Pythagorean triple (12, 35, 37). Note that the associated digitized
rotation is non-bijective.

generally expect defects, such as points with two preimages. However,
in practical applications, the bijectivity of a given T on the whole Z2 is
not the main issue; rather, one usually works on a finite subset of the
plane (e.g., a rectangular digital image). The relevant question is then:
“given a finite subset S ⊂ Z2, is T restricted to S bijective?”. Actually,
the notion of bijectivity in this question can be replaced by the notion
of injectivity, since the surjectivity is trivial, due to the definition of T
that maps S to T (S).

The basic idea for such local bijectivity verification is quite natural.
Because of its quasi-isometric property, a digitized rigid motion T
can send at most two neighbors (in a N1) onto a same point. Thus,
the lack of injectivity is a purely local matter, suitably handled by
the neighborhood motion maps via the remainder map. Indeed, T is
non-injective, with respect to S iff there exists p ∈ S such that ρ(p) lies
in the union F = f 2

↓ ∪ f 2
↑ ∪ f 2

← ∪ f 2
→ of all non-injective frames. We

propose two algorithms making use of the remainder map information,
as an alternative to a brute force verification.

The first—forward—algorithm, verifies for each point p ∈ S, the
inclusion of ρ(p) in one of the non-injective frames of F . The second—
backward—algorithm first finds all points w in G′ ∩ F , called the non-
injective remainder set, and then verifies if their preimages ρ−1(w) are
in S. See [153] for further details of both algorithms.

Both algorithms apply to rational motions, i.e., with a Pythagorean
angle given by a primitive Pythagorean triple and a rational translation
vector. We capture essentially the behavior for all angles and trans-
lation vectors, since rational motions are dense. These assumptions
guarantee the exact computations of the algorithms, which are based
on integer numbers. Methods for angle approximation by Pythagorean
triples up to a given precision is found in [9].
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4.3.2 Arithmetic approach to certification of bijectivity

We now present an algorithm for certifying the bijectivity of 3D digi-
tized rational rotations using the arithmetic properties of the Lipschitz
quaternions.

4.3.2.1 Remainder set and bijectivity

Here we use quaternions for representing 3D rotations such as (35).
Let us consider the remainder defined by∣∣∣∣ Sq : Z3 ×Z3 → R3

(x, y) 7→ qxq−1 − y.

Then, the bijectivity of digitized rotation T defined by a quaternion q
is expressed as

∀y ∈ Z3 ∃!x ∈ Z3, Sq(x, y) ∈ C(0),

which is equivalent to the “double” surjectivity relation, used in [168]:{
∀y ∈ Z3 ∃x ∈ Z3, Sq(x, y) ∈ C(0)
∀x ∈ Z3 ∃y ∈ Z3, Sq(x, y) ∈ qC(0)q−1 (46)

provided that both sets Sq(Z3, Z3) ∩ C(0) and Sq(Z3, Z3) ∩ qC(0)q−1

coincide; in other words,

Sq(Z
3, Z3) ∩ ((C(0) ∪ qC(0)q−1) \ (C(0) ∩ qC(0)q−1)) = ∅.

Hereafter, we shall rely on (46), and in the study of the bijectivity of
digitized rotation T , we focus on the values of Sq. More precisely, we
study the group G spanned by values of Sq:

G = Zq
(

1
0
0

)
q−1 + Zq

( 0
1
0

)
q−1 + Zq

( 0
0
1

)
q−1

+ Z
(

1
0
0

)
+ Z

( 0
1
0

)
+ Z

( 0
0
1

)
. (47)

4.3.2.2 Dense subgroups and non-injectivity

The key to understanding the conditions that ensure the bijectivity
of T is the structure of G. For this reason, we start by looking at the
image G of Sq, and discuss its density.

Proposition 4.5. If one or more generators of G have an irrational term,
then G ∩ V is dense for some nontrivial subspace V. We say that G has a
dense factor.

On the contrary, we have the following result.

Proposition 4.6. If all generators of G have only rational terms, then there
exist vectors σσσ, φφφ, ψψψ ∈ G which are the minimal generators of G.
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(a) (b)

σσσ φφφ

ψψψ

(c)

Figure 67: Illustration of a part of G that: is dense (a); has a dense subgroup
– the set of points at each plane is dense while the planes are
spaced by a rational distance (b); is a lattice (c). In the case of (a)
and (b), only some random points are presented, for the sake of
visibility. In (c), vectors σσσ, φφφ, ψψψ are marked in red, blue and green,
respectively.

Lemma 4.3. Whenever G is dense, the corresponding 3D digitized rotation
is not bijective.

When G is dense (see Fig. 67(a)), the reasoning of Nouvel and
Rémila, originally used to discard 2D digitized irrational rotations as
being bijective [144], shows that a corresponding 3D digitized rotation
cannot be bijective as well. What differs from the 2D case is the
possible existence of non-dense G with a dense factor (see Fig. 67(b)).
In this context, we state the following conjecture.

Conjecture 4.1. Whenever G has a dense factor, the corresponding digitized
rotation is not bijective.

Henceforth, we assume that G is generated by rational vectors, and
forms therefore a lattice (see Fig. 67(c)). In other words, correspond-
ing rotations are considered as rational. The question now remains
of comparing the (finitely many) points in Sq(Z3, Z3) ∩ C(0) and
Sq(Z3, Z3) ∩ qC(0)q−1.

4.3.2.3 Lipschitz quaternions and bijectivity

For representing 2D rational rotations, Gaussian integers are used in
[168]. In R3, rational rotations are characterized as follows [44].

Proposition 4.7. There is a two-to-one correspondence between the set of
Lipschitz quaternions L = {a + bi + cj + dk | a, b, c, d ∈ Z} such that the
greatest common divisor of a, b, c, d is 1, and the set of rational rotations.

Working in the framework of rational rotations allows us to turn
to integers: |q|2G is an integer lattice. As integer lattices are easier to
work with from the computational point of view, we do scale G by
|q|2 in order to develop a certification algorithm.

Similarly to the former discussion, after scaling G by |q|2, we con-
sider the finite set of remainders, obtained by comparing the lattice
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qZ3q̄ with the lattice |q|2Z3, and applying the scaled version of the
map Sq defined as∣∣∣∣ Šq : Z3 ×Z3 → Z3

(x, y) 7→ qxq̄− qq̄y.
(48)

Indeed, (46) is rewritten by{
∀y ∈ Z3 ∃x ∈ Z3, Šq(x, y) ∈ |q|2C(0)
∀x ∈ Z3 ∃y ∈ Z3, Šq(x, y) ∈ qC(0)q̄.

(49)

Note that the right hand sides of (48) and (49) are left multiples of
q. As a consequence, we are allowed to divide them by q on the left,
while keeping integer-valued functions. Let us define∣∣∣∣∣ S′q : Z3 ×Z3 → Z4

(x, y) 7→ xq̄− q̄y.

Then, bijectivity of T is ensured when{
∀y ∈ Z3 ∃x ∈ Z3, S′q(x, y) ∈ q̄C(0)
∀x ∈ Z3 ∃y ∈ Z3, S′q(x, y) ∈ C(0)q̄,

(50)

provided that both sets S′q(Z3, Z3) ∩ q̄C(0) and S′q(Z3, Z3) ∩ C(0)q̄
coincide.

4.3.2.4 Bijectivity certification

We now present an idea for verifying whether a digitized rational
rotation given by a Lipschitz quaternion is bijective or not. The
strategy consists of checking whether there exists w ∈ ((q̄C(0) ∪
C(0)q̄) \ (q̄C(0) ∩ C(0)q̄)) ∩Z4 such that w = S′q(x, y). If this is the
case, then the rotation given by q is not bijective, and conversely.

Because q is a Lipschitz quaternion, the values of S′q span a sublattice
Ǧ ⊂ Z4. Therefore, given a Lipschitz quaternion q = a + bi + cj + dk,
solving S′q(x, y) = w with x, y ∈ Z3 for w ∈ Ǧ leads to solving the
following linear Diophantine system:

Az = w (51)

where zt = (x, y) ∈ Z6 and

A =


b c d −b −c −d

a −d c −a −d c

d a −b d −a −b

−c b a −c b −a

 .

The minimal basis (σ̌σσ, φ̌φφ, ψ̌ψψ) of Ǧ can be obtained from the columns
of the Hermite normal form of the matrix A. Since the rank of A is 3,
we have Ǧ = Zσ̌σσ + Zφ̌φφ + Zψ̌ψψ.
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Figure 68: Examples of 3D bijective digitized rotations, represented by Lips-
chitz quaternions q, of a digitized cube for q = 0.

Therefore, the problem amounts to: (i) finding the minimal basis
(σ̌σσ, φ̌φφ, ψ̌ψψ) of the group Ǧ by reducing the matrix A to its Hermite
normal form; (ii) checking whether there exists a linear combination
of these basis vectors w = uσ̌σσ + vφ̌φφ + wψ̌ψψ, for u, v, w ∈ Z such that
w ∈ (q̄C(0) ∪ C(0)q̄) \ (q̄C(0) ∩ C(0)q̄). For further details of the
algorithm, see [150].

This method allows us to obtain some Lipschitz quaternions q that
generate non-simple 3D bijective digitized rotations4, as illustrated in
Fig. 68.

4.4 topology preservation

Similarly to the bijection, the topology is not always preserved under
rigid motions on Zn (see Figure 51). This problem is studied in Z2;
the class of two-dimensional images that preserve their topological
properties during displacements – called regular images – is identified,
as well as methods allowing such “regularization” [138] (see Section

4 A complete list of Lipschitz quaternions in the range [−10, 10]4, inducing bijective
3D digitized rotations can be downloaded from: http://perso.esiee.fr/~plutak/
download/lipschitz_quaternion_bijective_-10_10.csv

http://perso.esiee.fr/~plutak/download/lipschitz_quaternion_bijective_-10_10.csv
http://perso.esiee.fr/~plutak/download/lipschitz_quaternion_bijective_-10_10.csv
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4.4.2). Nevertheless, these strategies in Z2 rely on topological models
that are not intrinsically transposable to higher dimensions [148]; we
show some counterexamples in Section 4.4.3. Before attacking these
topological issues, we first give the framework of well-composed
images [114], in which our study is developed (see Section 4.4.1).

4.4.1 Digital topology and well-composed images

Digital topology [105] provides a simple framework for handling the
topology of binary images in Zn. It is also compliant [120] with other
discrete models (e.g., Khalimsky grids [96] and cubical complexes
[108]) but also with continuous notions of topology [122].

Practically, digital topology relies on two adjacency relations, noted
a2n and a3n−1, defined by(

p a2n q
)
⇐⇒

(
‖p− q‖1 = 1

)
(52)(

p a3n−1 q
)
⇐⇒

(
‖p− q‖∞ = 1

)
(53)

for any p, q ∈ Zn. In the case of Z2, we retrieve the well-known 4- and
8-adjacency relations.

Let Ω ⊆ Z2. We say that p, q ∈ Z2 are 4- (resp. 8-) adjacent, if
p a4 q (resp. p a8 q). From the reflexive-transitive closure of a4 (resp.
a8) on Ω, we derive the 4- (resp. 8-) connectedness relation ∼4 (resp.
∼8) on Ω; we say that p, q are 4- (resp. 8-) connected in Ω, if p ∼4 q

(resp. p ∼8 q). It is plain that ∼4 (resp. ∼8) is an equivalence relation
on Ω; the equivalence classes Ω/∼4 (resp. Ω/∼8) are called the 4-
(resp. 8-) connected components of Ω.

Let IM be the set of all finite binary images. A finite set Ω ⊂ Z2

can be modeled as a binary image I ∈ IM, defined by I−1({1}) = Ω
and I−1({0}) = Ω = Z2 \Ω, or vice versa. The topological handling
of I cannot easily rely on a single adjacency relation for both Ω and Ω,
due to paradoxes related to the discrete version of the Jordan theorem
[119]. Such paradoxes are avoided by considering distinct adjacencies
for Ω and Ω, leading to the dual adjacency model [164] (Fig. 69(e–g)).

Definition 4.3 (Dual adjacency [164]). Let I ∈ IM. Let Ω = I−1({1})
and Ω = I−1({0}). We say that I is a (8, 4)- (resp. a (4, 8)-) image if Ω is
equipped with a8 (resp. a4), while Ω is equipped with a4 (resp. a8). We
define the set of the connected components of the (8, 4)- (resp. (4, 8)-) image
I as

C(8,4)[I] = I−1({1})/∼8 ∪ I−1({0})/∼4

(resp. C(4,8)[I] = I−1({1})/∼4 ∪ I−1({0})/∼8 )

For the sake of concision, we will often write (k, k) as a unified notation for
(8, 4) and (4, 8).
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(a) I1 ∈ IM (b) C(8,4)[I1] (c) C(4,8)[I1] (d) I1 ∈ WC

(e) I2 ∈ IM (f) C(8,4)[I2] (g) C(4,8)[I2] (h) I2 /∈ WC

Figure 69: (a) A binary image I1 ∈ IM. (b) If we consider I1 as a (8, 4)-
image, the 8-connected components of Ω = I−1

1 ({1}) are depicted
in blue, purple and red, while the 4-connected components of
Ω = I−1

1 ({0}) are depicted in yellow and green. (c) If we consider
I1 as a (4, 8)-image, the 4-connected components of Ω are depicted
in blue, purple and red, while the 8-connected components of Ω
are depicted in yellow and green. Note that since I1 has the same
topological structure as a (8, 4)- and as a (4, 8)-image, it can also
be considered in the well-composedness model: the boundaries
shared by its foreground and background regions, depicted in
green (d), are 1-manifolds. (e) A binary image I2 ∈ IM. (f) If we
consider I2 as a (8, 4)-image, the 8-connected components of Ω =
I−1
2 ({1}) are depicted in purple and red, while the 4-connected

components of Ω = I−1
2 ({0}) are depicted in yellow, cyan, blue

and green. (g) If we consider I2 as a (4, 8)-image, the 4-connected
components of Ω = I−1

2 ({1}) are depicted in blue, purple and
red, while the 8-connected components of Ω = I−1

2 ({0}) are
depicted in yellow and green. Note that I2 does not have the
same topological structure as a (8, 4)- and as a (4, 8)-image. Thus,
I2 is ill-composed: the boundaries shared by its foreground and
background regions, depicted in green, are not 1-manifolds (see
the red dots in (h)). (a,d,e,h) Ω is depicted in black, and Ω in white.
(b,c,f,g) For the sake of readability, each connected component is
represented in a different colour.
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Alternatively, both Ω and Ω may be equipped with a4, provided
one considers only images that avoid the issues related to the Jordan
theorem, i.e. those for which ∼4 and ∼8 are equivalent for both Ω and
Ω, thus leading to the well-composedness model [114] (Fig. 69(a–c)).

Definition 4.4 (Well-composedness [114]). Let I ∈ IM. We say that I
is a well-composed (or a wc-) image if

∀v ∈ {0, 1}, I−1({v})/∼8 = I−1({v})/∼4

We define the set of the connected components of the wc-image I as

Cwc[I] = I−1({1})/∼4 ∪ I−1({0})/∼4

The set of the finite well-composed binary images is noted WC.

Remark 4.1. When interpreting digital topology in a continuous framework
[120], an image is well-composed iff the boundaries shared by the foreground
and background regions are manifolds [114] (Fig. 69(d,h)).

Remark 4.2. The well-composedness model is more restrictive than dual
adjacency. Indeed, any I ∈ IM can be considered in the dual adjacency
model, but not necessarily in the well-composedness one, i.e.

WC ⊂ IM

4.4.2 Topological invariance under 2D digitized rigid motions

Given a binary image I ∈ IM, a transformation T : Z2 → Z2, and
the transformed image IT ∈ IM obtained from I and T , a frequent
question in image analysis is: "Does T preserve the topology between
I and IT ?". It is generally answered by observing the topological
invariants of these images.

Note that we consider here the backwards transformation model
such that

T := D ◦ (T−1)|Z2 (54)

rather than (36), so that T is surjective. It means that the transformed
image IT , defined by

IT = I ◦D ◦ (T−1)|Z2 = I ◦ T ,

has no pixel that has either no or double values.
Among the simplest topological invariants are the Euler-Poincaré

characteristic and the Betti numbers. However, these are too weak to
accurately model “topology preservation” between images [119]. It is
necessary to consider stronger topological invariants, e.g., the (digital)
fundamental group [104], the homotopy-type (considered via notions
of simple points / sets [14], [18], [146], [160]), or the adjacency tree
[163].
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Our first goal is to provide conditions under which 2D digital
images preserve their topological properties under arbitrary rigid
transformations. A crucial issue is the choice of the topological in-
variant used to formalize this problem. Any of those evoked above
describe topology preservation in a global fashion, and do not model
accurately the possible local modifications of the image topological
structure. Indeed, I and IT may have identical fundamental group,
homotopy-type or adjacency tree while still retaining some topological
differences between regions of I and IT that are in correspondence
with respect to T . (A classical example that illustrates this assertion
is the “scorpion” configuration illustrated, e.g., in [17], where the
removal of a point from a 3D object removes a tunnel while simulta-
neously creating another, thus producing a new object with the same
global topological invariants. However this procedure changes the
local topological structure in the neighbourhood of these two tunnels.)

In the sequel, we propose some conditions to achieve this first goal.
Our conjecture is that these conditions are necessary and sufficient to
locally preserve image topological properties under arbitrary rigid
transformations. However, in this section, we only establish that they
are sufficient to globally preserve image topological properties under
any rigid transformation.

We consider the adjacency tree [163] as a (global) topological in-
variant. The motivation of this choice is twofold: (i) this topological
invariant is probably easier to understand than others; and (ii) in the
2D case, its preservation is equivalent [165] to the preservation of the
homotopy-type, that is the most commonly used topological invariant
in image processing. We now recall the definition of the adjacency
tree.

Let I ∈ IM (resp. WC). Let Ω1, Ω2 ∈ C(k,k)[I] (resp. Cwc[I]), with

Ω1 6= Ω2. We note Ω1 a
(k,k)
I Ω2 (resp. Ω1 awc

I Ω2) if there exist

p ∈ Ω1 and q ∈ Ω2 such that p a4 q. It is plain that a(k,k)
I (resp.

awc
I ) is an adjacency relation, and that Ω1 a

(k,k)
I Ω2 implies that

Ω1 ∈ I−1({1})/∼k and Ω2 ∈ I−1({0})/∼k or vice versa. We define

the (k, k)- (resp. wc-) adjacency graph of I as G(k,k)(I) = (C(k,k)[I],a(k,k)
I )

(resp. Gwc(I) = (Cwc[I],awc
I )). This graph is connected and acyclic,

and is indeed a tree. It can be equipped with a root that is the (only)
infinite connected component of C(k,k)[I] (resp. Cwc[I]), thus leading
to the following definition.

Definition 4.5 (Adjacency tree [163]). Let I ∈ IM (resp. WC). The
(k, k)- (resp. wc-) adjacency tree of I is the triplet

T(k,k)(I) =
(
C(k,k)[I],a(k,k)

I , B(k,k)
I
)

(55)

(resp. Twc(I) =
(
Cwc[I],awc

I , Bwc
I
)

)

where B(k,k)
I ∈ C(k,k)[I] (resp. Bwc

I ∈ Cwc[I]) is the unique infinite connected
component of I.
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(a) (b) (c)

Figure 70: (a) The binary image of Fig. 69(a). (b) The connected components
of the background (in yellow and green) and foreground (in red,
blue and purple) of (a). (c) The adjacency tree associated to (a) in
which each coloured node corresponds to a connected component
of (a,b), while each edge corresponds to an adjacency link between
two components. The root of the tree is the yellow node, that
corresponds to the infinite background component in (a,b).

An adjacency tree example is given in Fig. 70.
We are now ready to present our definition of topology preservation

under rigid transformation.

Definition 4.6 (Topological invariance [138]). Let I ∈ IM (resp. WC).
We say that I is (k, k)- (resp. wc-) topologically invariant if I ◦ T ∈ IM

(resp. WC) and if any digitized rigid motion T induces an isomorphism
between T(k,k)(I) (resp. Twc(I)) and T(k,k)(I ◦ T) (resp. Twc(I ◦ T)). We
note INV(k,k) (resp. INVwc) the set of all the (k, k)- (resp. wc-) topologically
invariant binary images.

4.4.2.1 Image classes and topological invariance

We first introduce a notion of singularity, and we establish that singular
images cannot be topologically invariant, thus reducing the image
subspace to consider.

Definition 4.7 ((Non-)singular image). Let I ∈ IM. We say that I is a
singular image if

∃p ∈ Z2, ∀q ∈ Z2,
(
q a4 p

)
=⇒

(
I(p) 6= I(q)

)
(56)

otherwise I is non-singular. We note NS the set of the well-composed images
that are non-singular.

Examples of (non-)singular images are given in Fig. 71. The non-
topological invariance of singular images is derived from the non-
surjectivity of some digitized rigid transformations [132], [142]. Indeed
some such transforms may remove connected components composed
of exactly one pixel. More precisely, we have the following proposition.

Proposition 4.8.

INVwc ⊆
(
INV(k,k) ∩WC

)
⊆ NS
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(a) (b) (c) (d)

Figure 71: Examples of images being (a) singular and ill-composed, (b) sin-
gular and well-composed, (c) neither singular nor well-composed,
and (d) not singular but well-composed. Red dots identify ill-
composedness, while red boundaries identify singularity.

(a) (b)

Figure 72: (a) A digitally regular image. (b) An image that is neither 1- nor
0-regular, but that is however opened by a structuring element �,
both for black and white points (see Remark 4.3).

The study of topological invariance is then carried out within the
set of well-composed non-singular images, independently from the
considered (dual adjacency or well-composedness) model.

Let us now introduce a new notion that strengthens the notion of
well-composedness.

Definition 4.8 (Digital image regularity [138]). Let I ∈ NS. Let v ∈
{0, 1}. We say that I is v-regular if for any p, q ∈ I−1({v}), we have(

p a4 q
)
=⇒

(
∃� ⊆ I−1({v}), p, q ∈ �

)
where � = {x, x + 1} × {y, y + 1}, for (x, y) ∈ Z2. We say that I is
regular if it is both 0- and 1-regular. We note REG1 (resp. REG0, resp.
REG) the set of all the 1-regular (resp. 0-regular, resp. regular) binary
images.

An example of a regular binary image is given in Fig. 72(a).

Remark 4.3. Following mathematical morphology terminology [130, Ch. 1],
if I is 1- (resp. 0-) regular, then Ω = I−1({1}) (resp. I−1({0})) is opened
by any structuring element �, i.e.

γ�(Ω) = Ω	�⊕� = Ω

The converse is not true, as illustrated in Fig. 72(b).
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We finally establish our main theoretical result that states that digital
regularity implies topological invariance, for binary images.

Theorem 4.1 (Digital regularity condition [138]).

REG0 ⊆ INV(8,4)

REG1 ⊆ INV(4,8)

REG ⊆ INVwc

This result is straightforwardly extended to grey-level and label
images. See [138] for the proofs and further details.

4.4.2.2 Characterization of regular images

Regular images are necessarily well-composed. A prerequisite is then
to characterise WC. This is tractable by considering a specific 2× 2
pattern [114] (see Figure 73 (a)).

Theorem 4.2 ([114]). Let I ∈ IM. We have I /∈ WC iff there exist distinct
points p, q, r, s ∈ Z2, with p a4 q a4 r a4 s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s)

We now propose a pattern-based characterization of regular binary
images.

Proposition 4.9 ([138]). Let I ∈ WC. We have I /∈ REG1 (resp. REG0)
– and a fortiori REG – iff there exists p ∈ I−1({1}) (resp. I−1({0})) that
satisfies at least one of the following two conditions (up to π/2 rotations and
symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0))

I(p+ (0, 1)) = I(p) 6= I(p− (1, 0)) = I(p+ (1, 1))

Indeed, the first condition is a rewriting of I /∈ NS, while the second
condition is a rewriting of the negation of the equation in Definition
4.8.

The characterization of regular binary images can then be carried
out by simply checking that they do not contain the forbidden patterns
induced by Fig. 73.

Let us consider the four binary images depicted in Fig. 74(a), that
are well-composed, but neither 1- nor 0-regular. The identified forbid-
den patterns corresponding to this default of regularity are illustrated
in Fig. 74(b). Their presence indicates that the topological structure of
these images is likely to be altered when applying a rigid transforma-
tion, as exemplified in Fig. 74(c–e).

This characterization can be straightforwardly extended to grey-
level and label images [138].
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(a) (b) (c)

Figure 73: Forbidden patterns in WC (a) and in REG0 (a–c), up to π/2
rotations and symmetries. The patterns forbidden in REG1 are
obtained from (a–c) by value inversion. Black (resp. white) points
have value 1 (resp. 0).

(a) (b) (c) (d) (e)

Figure 74: (a) Four well-composed, but neither 1- nor 0-regular images. Pix-
els of value 1 and 0 are depicted in black and white, respectively.
(b) Patterns that forbid regularity. In red: patterns of Fig. 73(b); in
green: patterns of Fig. 73(c). (c–e) Three examples of rigid trans-
formations where the four images are topologically altered in
comparison to (a). In particular, the black part of the images, that
are 4-connected in (a), are split into several 4-connected compo-
nents. Moreover, the 8-connected components forming the holes
inside the “a” and “e” letters in (a) are merged to the background.

4.4.2.3 Image regularization

We now propose two strategies for preprocessing images in order to
obtain regular – and thus topologically invariant – versions, before
further rigid transformation. Even though both can be applied to
grey-level and label images, we only show binary cases; see [138] for
the other cases.
1) Iterative homotopic regularization: The strategy starts from the
image I, which is defined on a finite set S ∈ Z2 in real applications,
and iteratively eliminates forbidden configurations given in Theorem
4.2 and Proposition 4.9 by modifying the value of one point p ∈
S at each iteration, until stability. This value modification can be
interpreted either as a background-to-foreground or a foreground-to-
background sweep. The choice of p is guided (i) by a cost function
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(a) (b) (c) (d) (e)

Figure 75: (a) Regular images obtained from Fig. 74(a) after iterative homo-
topic regularization. (b) Difference between (a) and Fig. 74(a).
In blue: pixels switched from white to black; in green: pixels
switched from black to white. (c–e) Three examples of rigid trans-
formations where the four images are topologically preserved in
comparison to (a). The transformation parameters are the same as
in Fig. 74(c–e).

that describes a distance with respect to I, e.g., by following a gradient
descent approach, and (ii) by choosing p as a simple point so that the
modification preserves the topological properties [41].

For example, starting from the four images of Fig. 74(a), this strategy
swaps the value of simple points until a regular image with the same
homotopy-type, and sufficient geometric similarity is obtained. In the
results illustrated in Fig. 75(a,b), the number of modified pixels is 14,
10, 15 and 14, for each image, respectively, and the Hausdorff distance
between the initial and regularized images is 1 in each case. It can be
observed in Fig. 75(c–e), that for rigid transformations with the same
parameters as those of Fig. 74(c–e), the obtained results now have the
same topological structure as in Fig. 74(a).

The obtained algorithm can be seen as an extension of those pre-
sented in [165] for well-composedness recovery, to the case of reg-
ularity recovery. In particular, it presents the same strengths and
weaknesses. Indeed, in most application cases, it will converge in
linear time with respect to the number of forbidden configurations,
that are often sparsely distributed within images. Nevertheless, in
the worst cases (e.g., in presence of fine textures, Figure 76), it may
not converge, or even fail. To deal with this issue, we propose an
alternative up-sampling regularization strategy.
2) Upsampling regularisation: Even before the issue of regulariza-
tion, it may happen that I cannot be modified into a topologically-
equivalent well-composed image, when using a strategy such as pre-
sented above. It is then possible to oversample I by explicitly rep-
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(a) (b)

Figure 76: (a) A well-composed binary image that is not 0-regular. Pixels
of value 1 and 0 are depicted in black and white, respectively.
This image cannot be regularized without up-sampling, due to
fine texture effects. (b) An image obtained from (a) after a rigid
transformation. It is topologically altered, in comparison to (a).

(a) (b)

Figure 77: (a) A regular image obtained from Fig. 76(a) after the up-sampling
regularization. (b) An image obtained from (a) after a rigid trans-
formation. It is topologically preserved, by comparison to (a). The
transformation parameters are the same as in Fig. 76(b).

resenting its interpixel topological structure. This can be done by
embedding I into the Khalimsky space [96], then leading to a new

image I(k,k)
K defined as∣∣∣∣∣∣∣∣∣∣∣

I(4,8)
K : Z2 → {0, 1}

2.p 7→ I(p)
2.p+ (0, 1) 7→ ∨6 I(p+ {0} × {0, 1})
2.p+ (1, 0) 7→ ∨6 I(p+ {0, 1} × {0})
2.p+ (1, 1) 7→ ∨6 I(p+ {0, 1} × {0, 1})

(57)

(The image I(8,4)
K is defined by substituting

∧
to
∨

in Eq. (57).) The
following result straightforwardly derives from these definitions.

Proposition 4.10. Let I ∈ IM. We have I(k,k)
K ∈ WC. Moreover, I(k,k)

K and
image I have the same homotopy-type, when considered as (k, k)-images.

From now on, we then assume that I ∈ WC. As stated before,
even in this case, the image I may still not be modified into a regular
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image when using homotopic iterative regularization. Once again, an
oversampling strategy can be alternatively proposed. This strategy
no longer relies on Khalimsky space embedding, but on a 2× 2 up-
sampling approach. More precisely, from I ∈ WC, we can define a
new image ∣∣∣∣ I2×2 : Z2 → {0, 1}

p = (x, y) 7→ I((bx/2c, by/2c)) (58)

The following result straightforwardly derives from this definition.

Proposition 4.11. Let I ∈ WC. We have I2×2 ∈ REG. Moreover, I2×2 and
image I have the same homotopy-type when considered as (k, k)- (resp. wc-)
images.

Finally, Eqs. (57)–(58) provide a global up-sampling strategy that
enables to re-cast any (8, 4)-, (4, 8)-, or wc-image as regular, and
thus topologically invariant. This strategy has the advantages of being
deterministic and geometrically preserving (up to the thickening of the
interpixel space due to the up-sampling process). Its main drawback,
in comparison to the first strategy, is its higher spatial cost, as it
models an image of size |S| as a new one of size 4.|S| (and 16.|S|
in the worst cases). This may remain however acceptable for many
applications, considering the memory specifications and progress of
current computers.

Let us consider the three images depicted in Fig. 76(a), that are
well-composed, but not regular, with topological consequences when
applying rigid transformations, as illustrated in Fig. 76(b). For such
images, the iterative homotopic regularisation may not converge, or
even fail, due to fine texture effects. It is then relevant to consider the
second, up-sampling regularization strategy. Since the three consid-
ered images are already well-composed, it is not necessary to carry
out the first step of the regularization, namely the Khalimsky grid
embedding (Eq. (57)). After the application of the second step, namely
the 2× 2 up-sampling approach (Eq. (58)), we obtain new images,
depicted in Fig. 77 (a), that are regular, and therefore topologically
invariant, as illustrated in Fig. 77 (b).

4.4.3 Topological alterations under 3D digitized rigid motions

The straightforward extension of the above 2D approach to 3D is
considered first of all; digital image regularity in Definition 4.8 can
be extended for 3D images by replacing the 2× 2 square � by the
2× 2× 2 cube. Then, we quickly find some counterexamples of the
3D version of Theorem 4.1 [148]: for example, see Figure 78. Figure
79 also shows a position of a 6-neighborhood after a rigid motion,
which generates such a topological alteration after the motion; only
the center point is in the object while none of its 6-adjacent points
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(a) (b)

Figure 78: (a) A part of digitally regular image containing a flat shape, which
is 6-connected for both the foreground and background, and (b)
its rigidly transformed image, which is not anymore 6-connected
for the foreground.

are in the object. Note that the initial object satisfies the digitally
regularity.

This concludes that a simple extension of the 2D approach of image
regularization is not useful for more than two dimensions. Conse-
quently, it will be essential to develop new strategies more generic
and thus valid in any dimension.

Figure 79: A position of a 6-neighborhood after a rigid motion, which can
generate a topological alteration after the motion; only the center
point is in the object while none of its 6-adjacent points are in the
object.

4.5 geometry preservation

In this section, we focus on geometric issues under rigid transfor-
mation on Z2. Indeed, digital image regularity, which preserves
connectivity under any digitized rigid motions, as seen previously,
does not preserve geometry simultaneously. See Figure 51 (b) for an
example: the binary image containing a digitized half-plane is regular
(Figure 51 (b) left) although its digitized rigid motion does not always
preserve the linear separability (right). In order to overcome this
problem, we propose a rigid motion scheme that preserves geometric
properties as well as topology of transformed digital objects: a con-
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nected object will remain connected, and some geometric properties
(e.g. convexity, area and perimeter) will be preserved. This section is
based on the work of [137].

4.5.1 Digitized rigid motions via polygonization

To reach that goal, we propose to represent a digital object of Z2 as
a continuous –but discrete– object, namely a polygon of R2. This
strategy has several advantages. First, it allows us to apply the rigid
motion in R2, with the geometric and topological guarantees within
this space. Second, since a polygon remains a discrete object, it can
be processed without numerical error, by considering transformations
based on integers (or, equivalently, rationals).

In this context, our assumption is that the polygon has to relevantly
capture the geometry of the digital object. In particular, this means
that the Gauss digitization of the polygon has to get us back to the
initial digital object; this property is called reversibility. In other
words, the global shape of the digital object, namely the succession of
the convex and concave parts of its boundary, has to be captured by
the polygonization process. In particular, this means that a digitally
convex object of Z2 will lead to a convex polygon. In that case, we
will choose as relevant polygon model its convex hull. In the other
cases, the polygon will depend on the user’s polygonization policy.

Based on these hypotheses, we propose, as a first contribution, an al-
gorithmic framework for rigid motion of digital objects of Z2. It relies
on three successive steps, as illustrated in Figure 80: (1) the polygo-
nization of the digital object; (2) the transformation of the intermediate
piecewise affine object (polygon) of R2; and (3) the digitization of the
transformed polygon for recovering a result within Z2. In the case
of an initial object being digitally convex, our framework is proved
to provide a final digital object which is also digitally convex (see
Section 4.5.3). In the other cases, it is experimentally observed that
the shape of objects are correctly preserved (see Section 4.5.4). More
precisely, such an observation can be done qualitatively and quantita-
tively in which geometric properties, for example area and perimeter,
are measured.

Generally, preserving the geometry also implies to preserve the
topology. This implication is mostly offered in R2, while it is hardly
obtained in Z2. This is the motivation for our second contribution.
Indeed, we propose a new notion of quasi-(r, r′)-regularity, defined on
continuous objects, including particular polygons (see Section 4.5.2.3).
It provides sufficient conditions to be fulfilled by a continuous object
for guaranteeing topology preservation during its digitization.
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polygonization

rigid motion

(re-)digitization

Figure 80: Rigid motion scheme of 2D digital shape via polygonization.

4.5.2 Digitization and topology preservation

As seen above, we have a re-digitization process after the rigid motion
of a polygonal shape. We first explain the digitization scheme and the
related topological issues.

4.5.2.1 Digitization model and topological issues

Let X be a continuous object in the Euclidean space R2. (In the sequel,
we will implicitly consider that X is bounded and connected.) A digital
object X ⊂ Z2 is generally the result of a digitization process applied
on a continuous object X ⊂ R2. We consider the Gauss digitization
[101], which is simply the intersection of a continuous object X with
Z2:

X = X∩Z2. (59)

The object X is a subset of Z2; but from an imaging point of view, it
can also be seen as a subset of pixels, i.e. unit squares defined as the
Voronoi cells of the points of X within R2. Based on these different
models, the structure of X can be defined in various topological frame-
works which are mainly equivalent [121] to that of digital topology
[105]. However, this digital topology of X is often non-coherent with
the continuous topology of X. This fact is illustrated in Figure 81,
where a connected continuous object X leads, after Gauss digitization,
to a disconnected digital object X.

4.5.2.2 Regular sets and their digitization

In the literature, various studies proposed conditions for guaranteeing
the preservation of topology of digitized objects [113], [172], [184]. In
particular, in [147] Pavlidis introduced the notion of r-regularity.
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(a) (b) (c)

Figure 81: (a) A continuous object X in R2. (b) A Gauss digitization of X,
leading to the definition of X which is composed by the black
points of Z2 within X. (c) The digital object X represented as a set
of pixels. The objects X and X are not topologically equivalent: the
digitization process led to a disconnection, due to the resolution
of the discrete grid, not fine enough for catching the shape of X.

Definition 4.9 (r-regularity [147]). An object X ⊂ R2 is r-regular if for
each boundary point of X, there exist two tangent open disks of radius r, lying
entirely in X and its complement X, respectively

The notion of r-regularity is based on classical concepts of differen-
tial geometry. In particular, r-regularity is strongly related to bounded
values of curvature, parameterized by the resolution of the digitization
sampling. Pavlidis proved the topological equivalence of an r-regular
continuous, smooth, object X and its digital counterpart X, for a dense
sampling.

Proposition 4.12 ([147]). An r-regular object X ⊂ R2 has the same topo-
logical structure as its digitized version X = X∩Z2 if r ≥

√
2

2 .

Remark 4.4. In [147], “the same topological structure” between two objects
means that there exists an homeomorphism between both. In the sequel,
we will consider the same paradigm. However, it is worth mentioning that
in the 2D case and for digital objects whose continuous analogues have a
manifold boundary (this will be our case with well-composed objects, see
below), most topological invariants are indeed equivalent, namely homotopy
type, adjacency tree and homeomorphism [22], [163], [165].

It was shown that the digitization process of an r-regular object
yields a well-composed object [113], whose definition relies on stan-
dard concepts of digital topology, as shown in Section 4.4.1. Here, we
consider the notion of well-composedness [114] focusing on a subset of
Z2, and characterize such digital objects whose structure intrinsically
avoids the topological issues of a digital version of the Jordan curve
theorem.

Definition 4.10 (Well-composed sets [114]). A digital object X ⊂ Z2 is
well-composed if each 8-connected component of X and of its complement X
is also 4-connected.
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This definition implies that the boundary5 of X is a set of 1-manifolds
whenever X is well-composed (see Figure 82). In particular, there exists
a strong link between r-regularity and well-composedness.

Proposition 4.13 ([113]). If an object X ⊂ R2 is r-regular, with r ≥
√

2
2 ,

then X = X∩Z2 is a well-composed digital object.

(a) (b) (c)

Figure 82: (a) X ⊂ Z2 (in grey) is neither connected, nor well-composed. (b)
X is 8-connected, but neither 4-connected nor well-composed. (c)
X is 4-connected and well-composed.

4.5.2.3 Quasi-regular sets and their digitization

Clearly, polygons are not r-regular as their boundaries are not differ-
entiable at the polygonal vertices. In order to deal with polygons, we
generalize the concept of r-regularity for non-differentiable shapes.

For this purpose, let us first recall some notations and a few mathe-
matical morphology notions. [74], [161], [172]. We denote by ⊕ and 	
the classical operators of dilation and erosion, corresponding to the
Minkowski addition, and its associated subtraction

X⊕Y =
⋃

y∈Y

Xy =
⋃

x∈X

Yx (60)

X	Y =
⋂

y∈Y

X−y (61)

where Xy = {x + y | x ∈ X} and, in our case, X, Y ⊂ R2. We also
denote by ◦ the composition of erosion and dilation, called opening,
that is

X ◦Y = (X	Y)⊕Y. (62)

We denote by Br a close disk of R2 of radius r > 0 and centered on
(0, 0) ∈ R2. Then, we can rewrite Definition 4.9 for a bounded, simply
connected set X ⊂ R2 as follows: X is r-regular if:

• X	 Br is non-empty and connected;

5 The boundary of X is defined here as the boundary of the continuous object obtained
as the union of the closed Voronoi cells associated to the points of X, in R2.
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• X	 Br is connected;

• X = X	 Br ⊕ Br = X ◦ Br; and

• X = X	 Br ⊕ Br = X ◦ Br.

We are now ready to introduce the notion of quasi-(r, r′)-regularity.
Intuitively, a quasi-(r, r′)-regular object X of R2 presents sufficient
conditions for guaranteeing that its connectedness will not be affected
by a Gauss digitization process.

Definition 4.11 (Quasi-(r, r′)-regularity [137]). Let r′ ≥ r > 0. Let
X ⊂ R2 be a bounded, simply connected (i.e., connected and with no holes)
set. We say that X is quasi-(r, r′)-regular if it satisfies the following four
properties:

• X	 Br is non-empty and connected;

• X	 Br is connected;

• X ⊆ X	 Br ⊕ Br′ ; and

• X ⊆ X	 Br ⊕ Br′ ;

Remark 4.5. This definition does not require specific assumption on the
boundary of X. In particular, it does not need to be differentiable.

Remark 4.6. Comparing the two notions of quasi-(r, r′)-regularity and
of Pavlidis’ r-regularity, we observe that the principal difference between
both notions is the fact that the matching between X (resp. X) and its
opening need to be perfect in the case of r-regularity, namely r = r′, while
a “margin”, r′ − r 6= 0, is authorized in the case of quasi-(r, r′)-regularity,
thus allowing for non-smooth (for instance, non-differentiable, noisy, etc.)
boundary. Examples of quasi-(1,

√
2)-regular and non-quasi-(1,

√
2)-regular

objects are given in Figure 83.

Proposition 4.14 ([137]). Let X ⊂ R2 be a bounded, simply connected
(i.e., connected and with no holes) set. If X is quasi-(1,

√
2)-regular, then

X = X ∩Z2 and X = X ∩Z2 are both 4-connected. In particular, X is then
well-composed.

This notion of quasi-(r, r′)-regularity will be used in the following
sections for guaranteeing the preservation of topological properties of
digital shapes during rigid motions, via their (continuous) polygonal
representation.

4.5.3 Convexity-preserving digitized rigid motions

Here we deal with a specific case of digital sets, namely the convex
ones. For rigid motion purpose, we build a continuous polygon
corresponding to the convex hull of the input digital set. Then, we
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(a) (b)

(c) (d)

Figure 83: Examples of quasi-(1,
√

2)-regular (a) and non-quasi-(1,
√

2)-
regular (b,c,d) sets X: (b) X 6⊆ X	 B1 ⊕ B√2; (c) X	 B1 is not
connected; (d) X	 B1 is not connected. The sets X ⊂ R2 are in
blue, the disks B1 are in red and the disks B√2 are in black, the
erosions X	 B1 are in red and the openings X	 B1 ⊕ B√2 are in
green.

move this continuous polygon, and finally digitize it for retrieving the
final transformed digital set. We show that, by this process, the digital
convexity is preserved if the convex hull is quasi-(1,

√
2)-regular.

4.5.3.1 Digital convexity

In R2, a set X is said to be convex if, for any pair of points x, y ∈ X,
the line segment joining x and y

[x, y] = {λx + (1− λ)y ∈ R2 | 0 ≤ λ ≤ 1} (63)

is included in X. However, this intuitive continuous notion cannot be
directly transposed to digital sets of Z2. Indeed, given a connected set
X in Z2, for p, q ∈ X we generally have [p, q] 6⊂ Z2.

In order to tackle this problem, various extensions of the notion of
convexity have been proposed for Z2. We can cite, for instance: MP-
convexity [124] which is a straightforward extension of the continuous
notion; S-convexity [180] which uses convex objects in R2 to determine
the convexity of objects in Z2; H-convexity [98] which is a geometrical
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version of S-convexity, using the convex-hull of digital objects; and
D-convexity [99] which is based on the notion of digital line.

In the case of 4-adjacency modeling of digital objects, MP- and
H-convexities have been proved equivalent [98, Theorem 5]. Similar
results under the assumption of 8-adjacency can be found in [55], via
the chord property, which relate the MP-, H- and D-convexities. Under
the condition that X has no isolated point (i.e., no point adjacent to
one other point within X), it was then proved that X is H-convex iff it
is S-convex [98, Theorem 4]. A more complete description on various
notions of digital convexity can be found in [45, Chapter 9].

In this section, the notion of H-convexity was chosen. This is mo-
tivated, on the one hand, by its compliance with the other kinds of
convexities in the case of 4-connected (and, a fortiori, well-composed)
digital objects. On the other hand, the notion of H-convexity relies
on the explicit definition of the convex hull of the digital object. Such
polygonal object provides us with a continuous model that can be in-
volved in the continuous part of our rigid motion algorithmic process.

We recall hereafter the definition of the convex hull of a digital
object X ⊂ Z2, denoted by Conv(X). Then, we provide the formal
definition of H-convexity.

Conv(X) =
{

x =
|X|

∑
i=1

λipi ∈ R2
∣∣∣∣ |X|∑

i=1
λi = 1 (64)

∧ ∀i ∈ {1, . . . , |X|}, (λi ≥ 0∧ pi ∈ X)

}
Definition 4.12 (H-convexity [98]). A digital object X ⊂ Z2 is H-convex
if

X = Conv(X) ∩Z2

i.e., if X is equal to the digitization of its continuous polygonal convex hull.

Remark 4.7. An H-convex object is not necessarily connected. This is
exemplified in Figure 84.

It is important to notice that, similarly to continuous convexity,
H-convexity remains stable by intersection. In particular, we have the
following property.

Property 4.1. Let X and Y be two digital objects in Z2. If X and Y are
H-convex, then X∩ Y is H-convex.

4.5.3.2 Polygonization of H-convex digital objects

Let us hereafter consider that the input is an H-convex digital object
X. Then, one of the simplest polygonizations, which is the first step of
the algorithmic process computing the rigid motion of X as illustrated
in Figure 80, is the polygonal convex hull.
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Figure 84: A digital object X that is H-convex, but not connected. This is due,
here, to the acute angle at the highest vertex of the convex hull
Conv(X) that allows the induced polygon to “pass between” two
4-adjacent points of the background of X.

If X contains at least three non-colinear points, then its convex hull
Conv(X) is a non-trivial convex polygon whose vertices are some
points of X. As these vertices are grid points of Z2, the polygon
Conv(X) is defined as the intersection of closed half-planes with inte-
ger coefficients

Conv(X) =
⋂

H∈R(X)
H (65)

where R(X) is the smallest set of closed half-planes that include X.
This set is finite and sufficient for defining Conv(X). Each closed
half-plane H of this subset is defined as

H = {(x, y) ∈ R2 | ax + by + c ≤ 0} (66)

with a, b, c ∈ Z and gcd(a, b) = 1. Note that the integer coefficients of
H are obtained by a pair of consecutive vertices of Conv(X), denoted
by u, v ∈ Z2, which are in the clockwise order, such that

(a, b) =
1

gcd(wx, wy)
(−wy, wx) (67)

c = (a, b) · u (68)

where (wx, wy) = v− u ∈ Z2.
Many algorithms can be used to compute the convex hull of a

digital object. In [48], a linear time algorithm determines whether a
given polyomino is convex and, in that case, it returns its convex-hull.
This method relies on the incremental digital straight line recognition
algorithm [49], and uses the geometrical properties of leaning points of
maximal discrete straight line segments on the contour. The algorithm
scans the contour curve and decomposes it into discrete segments
whose extremities must be leaning points. The tangential cover of the
curve [58] can be used to obtain this decomposition. Alternatively, an
approach presented in [26] uses tools of combinatorics on words to
study contour words: the linear Lyndon factorization algorithm [54]
and the Christoffel words. A linear time algorithm decides convexity
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(a) (b)

Figure 85: A digital H-convex object X of Z2 (black dots and grey pixels). (a)
The half-plane representation of X, depicted by the 5 red support
lines. The red points/pixels are those required to define these
closed half-spaces. (b) The convex hull Conv(X) in R2, defined as
the polygon whose vertices are these red points.

of polyominoes and can also compute the convex hull of a digital
object (it is presented as a discrete version of the classical Melkman
algorithm [123]).

The half-planes can then be deduced from the consecutive vertices of
the computed convex hull from (66)–(68). An example of convex hull
and half-plane modeling of an H-convex digital object is illustrated in
Figure 85.

4.5.3.3 Rational rigid motions of convex polygons

In order to perform rigid motions of convex polygons without any
numerical approximation, one can consider only rigid motions with
rational parameters. Doing so, only exact computations with integers
can be involved. This does not constitute an applicative restriction,
due to the density of “relevant” rational values within the rotation
and translation parameter space.

Thus, we assume hereafter that all the parameters of a rigid motion
T of (29) are rational, such that the rotation matrix R is defined as
1
r

(
p −q
q p

)
where p, q, r ∈ Z constitute a Pythagorean triple, i.e.,

p2 + q2 = r2, r 6= 0 and the translation vector is defined as (t1, t2) ∈ Q2.
This assumption is fair, as we can always find rational parameter
values as close as desired from any real values [9] for defining such a
Pythagorean triple.

A half-plane H, as defined in (66), is transformed by such rational
rigid motion T as follows

T(H) = {(x, y) ∈ R2 | αx + βy + γ ≤ 0} (69)

where α, β, γ ∈ Q are given by (α β)T = R(a b)T and γ = c + αt1 + βt2.
This leads to a rational half-plane, which can be easily rewritten as an
integer half-plane in the form of (66).
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4.5.3.4 Digitization of convex polygons: geometric issues

Since an H-convex digital object X is represented by a finite set of
digital half-planes, we can define the rigid motion TConv of X on Z2

via its continuous polygonal convex hull as follows:

TConv(X) = T(Conv(X)) ∩Z2 = T

( ⋂
H∈R(X)

H
)
∩Z2. (70)

This constitutes an alternative to the standard pointwise rigid mo-
tion defined in (54). Note that the backwards model is considered
here thanks to the surjection. In order to distinguish this standard
pointwise rigid motion T from TConv, we write TPoint instead of T .

We have

T

( ⋂
H∈R(X)

H
)
∩Z2 =

( ⋂
H∈R(X)

T(H)

)
∩Z2

=
⋂

H∈R(X)
(T(H) ∩Z2), (71)

and the digitization of any continuous half-space of R2 is H-convex.
Then, from (70–71), TConv(X) is expressed as the intersection of a finite
number of H-convex digital objects. The following proposition is then
a corollary of Property 4.1.

Corollary 4.3. Let X be a digital object of Z2. Let TConv be the polygon-
based rigid motion induced by a rigid motion T with rational parameters. If
X is H-convex, then TConv(X) is H-convex.

The polygon corresponding to the convex hull of TConv(X) is not
equal, in general, to the transformed convex hull of X. However, we
have the following inclusion relation.

Property 4.2. With the same hypotheses as in Corollary 4.3, we have

Conv(TConv(X)) ⊆ T(Conv(X)).

The proof of this property derives from the fact that TConv(X) =

T(Conv(X)) ∩Z2. Thus we have TConv(X) ⊆ T(Conv(X)), and this
inclusion also holds for the convex hull of TConv(X).

This inclusion indicates first that the cardinality of TConv(X) is lower
(often strictly) than that of X. In other words, TConv is a decreasing
operator with respect to the cardinality of the input digital object; these
facts are exemplified in Figure 86. A straightforward consequence
is that TConv is not bijective, in general. Second, this implies that the
polygons of the two convex hulls of the input and output digital objects
may be distinct, with respect to their number and size of edges, and
angles at vertices. However, the convexity of the objects is preserved,
which was the fundamental property to satisfy.
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Figure 86: A sequence of transformations TConv on an H-convex object X.
The convex hull of TConv(X) is included in the transformed convex
hull of X and the cardinality of TConv(X) ∩Z2 is lower than that
of X.

4.5.3.5 Digitization of convex polygons: topological issues

In R2, the continuous definition of convexity intrinsically implies
connectedness. By contrast, in Z2 the notion of H-convexity (such
as various other notions of digital convexity) does not always offer
guarantees of connectedness, e.g. with respect to 4- and 8-adjacencies.

In order to illustrate that fact, let us consider the example of Fig-
ure 84. The digital object X, composed of 8 points/pixels, is H-convex.
Indeed, its convex hull contains only digital points that belong to X.
However, X is not connected (neither with 4- nor 8-adjacencies). Such
phenomenon is mainly caused by angular or metric factors: whenever
an angle of the convex hull polygon is too acute, or when an edge is
too short, such disconnections may happen.

Then, in addition to providing geometry guarantees of convexity
—via the H-convexity of digital objects— when performing rigid trans-
formations of a digital object, it is desirable to also provide topology
guarantees, and more precisely connectedness guarantees.

To reach that goal, we use the notion of quasi-(r, r′)-regularity in-
troduced in Section 4.5.2.3. This additional notion provides us with
sufficient conditions for ensuring that a digital H-convex object will
remain not only H-convex but also connected after any rigid motion.
The next corollary is obtained from Proposition 4.14 and Corollary 4.3.

Corollary 4.4. Let X ⊂ Z2 be an H-convex 4-connected set. If Conv(X)
is quasi-(1,

√
2)-regular, then TConv(X) is H-convex, 4-connected and well-

composed.

Remark 4.8. If Conv(X) is quasi-(1,
√

2)-regular, then the initial digital
set X is also 4-connected and well-composed.

The experiment of rigid motions was carried out on a digitized
ellipse X, which is H-convex (see Figure 87 (a)). Figure 87 presents the
results of TPoint and TConv applied to X. It should be mentioned that
TConv preserves the H-convexity of X as shown in Corollary 4.3 and
Figure 87 (c). By contrast, TPoint hardly preserves the H-convexity as
illustrated in Figure 87 (b).
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(a) X (b) TPoint(X)

(c) TConv(X) (d) TPoly(X)

Figure 87: Comparison between the digitized rigid motions TPoint (b), TConv
(c) and TPoly (d), of a digitized ellipse (a), which is H-convex,
with rotation angle of π

10 and translation of (tx, ty) = (0.1, 0.2).
H-convexity is preserved by TConv while it is not by TPoint and
TPoly.

4.5.4 Digitized rigid motions for non-convex objects

We now deal with rigid motions of digital objects without convexity
hypothesis. We propose and show experimentally how geometric
measures such as area and perimeter are preserved.

4.5.4.1 Polygonization of a non-convex digital object

There exist various methods for polygonizing a digital object. In
the field of digital geometry, numerous approaches used the contour
curves extracted from the digital objects; each method computes a
polygonal representation of the digital object with particular properties.
In [50], [175], invertible methods enable us to compute Euclidean
polygons whose digitization is equal to the original discrete boundary.
These methods use the Vittone algorithm [196] in the preimage space
for straight line recognition. In [51], [52], [59], [169] the arithmetical
recognition algorithm [49] is used to decompose a discrete contour
and deduce a polygonal representation. These methods rely on the
tangential cover of the contour [58], composed of the sequence of
its maximal discrete straight segments. It was proved in [59] that
all polygonal representations of the contour can be deduced from
its tangential cover, leading to a linear algorithm which computes
the polygon with minimal integral summed squared error. In [51],
[52], [169], the goal was different. It consisted of determining a
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reversible polygon that faithfully represents the convex and concave
parts of the boundary of a digital object. The polygonization method
proposed in [135], [139] also exploits the idea of maximal straight
segment primitives. It allows to identify the characteristic points on a
contour, called dominant points, and to build a polygon representing
the given contour. Another technique presented in [70] is the curve
decomposition. It uses the analytical primitives, called digital level
layers, to decompose a given contour and to obtain an analytical
representation. Another algorithm is proposed in [178] to compute
the polygonal simplification of a curve such that the Fréchet distance
[66] between the simplified polygon and the original curve is lower
than a given error.

It should be mentioned that, for a given digital object, different
results can be obtained from these various polygonization techniques.
In other words, the polygonal representation of a digital object is
not unique. However, the crucial property to be satisfied is that the
polygon P(X) computed for a digital object X has to be coherent
with respect to digitization, i.e. P(X) ∩Z2 = X. This property is
called reversibility. A second important property, in our framework of
discrete geometry and exact calculus, is that the vertices of P(X) have
rational coordinates, which we call rationality.

To the best of our knowledge, none of the above methods guarantees
both of these properties for any X if they are directly applied to the
boundary of X. In fact, most of them compute a simplified polygon
from a digital curve, which must be generated from X as its boundary.
However, it is not obvious to obtain a “nice” digital curve from any
X, which leads to a “nice” P(X). On the other hand, we can find very
simple polygonization methods that respect both of the properties, for
example:

1. making a rectilinear polygon as the boundary of the cell complex
of X [108],

2. making a polygonal curve generated by the marching square
method, which is the 2D version of marching cube [118], [198],

under the condition that X is well-composed. Those simple polygo-
nization methods, however, may provide “poor” geometric properties.

Here, we adapt a polygonization strategy based on [135], [139],
which guarantees the above two properties, for the first trial. See [137]
for the details of this polygonization scheme.

4.5.4.2 Rational rigid motion of a non-convex polygon

As the polygon P(X) may not be convex, we cannot use the half-plane
representation, as it was done in Section 4.5.3.2 for convex polygons.
Here, we use a standard vertex representation, by modeling a polygon
via a sequence of successive vertices of its boundary.
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Note that the vertices of P(X) should be integer or rational points,
and those of T(P(X)) are rational points, if the rigid motion T is
given by a rational matrix and a rational translation vector (see Sec-
tion 4.5.3.3). Then, for each vertex of the polygon P(X), we simply
apply the rigid motion T of (29) with such rational setting, as described
in Section 4.5.3.3, and preserve the order of the vertex sequence.

4.5.4.3 Digitization of a polygon and geometric/topological issues

Once the polygon T(P(X)) has been computed, the resulting object,
denoted by TPoly(X) can be deduced. Similarly to the case of H-convex
digital objects (see (70)), this is done by embedding T(P(X)) in Z2 via
the Gauss digitization

TPoly(X) = T(P(X)) ∩Z2 (72)

Various ways exist for carrying out this digitization in an exact way.
For instance, it is possible to decompose T(P(X)) into a partition
of triangles whose vertices are (rational-coordinate) vertices of the
boundary of T(P(X)). Each of such triangles being defined as a convex
region modeled by three half-planes with rational parameters, the
points of Z2 contained herein can be determined without numerical
error.

In order to ensure the connectedness preservation of X, we require,
as for the H-convex case, that the polygon P(X) of X, is quasi-(1,

√
2)-

regular.

Proposition 4.15. Let X ⊂ Z2 be a digital object. Let P(X) ⊂ R2 be a
polygon such that P(X) ∩Z2 = X. If P(X) is quasi-(1,

√
2)-regular, then

TPoly(X) is 4-connected and well-composed.

Remark 4.9. Beyond topological guarantees such as 4-connectedness and
well-composedness, the notion of quasi-(1,

√
2)-regularity also presents some

geometric properties. Indeed, any point of X is either part of P(X) ◦ B1

(i.e. the “smooth” opening of a polygon) or part of the (noisy) boundary in
P(X) \ (P(X) ◦ B1). But, in this second case, this point is necessarily at a
distance not greater than

√
2− 1 < 0, 5 (i.e. the half of a pixel size) from

this opening P(X) ◦ B1. In other words, quasi-(1,
√

2)-regularity describes
objects with boundaries that may not be completely smooth (in particular,
they may be non-differentiable), but that will be, in the worst cases, only
slightly noisy, by contrast with results of standard pointwise rigid motions
TPoint. This is illustrated in Table 13.

Note that P(X) can be non-convex even if X is H-convex, depending
on a chosen polygonization method, as illustrated in Figure 88. There-
fore, TPoly does not guarantee the H-convexity of the transformed
object (see Figure 87 (d) for an example).

As stated above, P(X) can be defined by following various policies.
Then, there exist many (actually an infinite number of) polygons
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Figure 88: Polygon (in blue) and convex hull (in red) of the digital object X
of Figure 87 (a).

whose digitization leads to X. In particular, it may happen that P(X) is
not quasi-(1,

√
2)-regular while X and TPoly(X) are indeed 4-connected

and well-composed. This statement emphasizes the importance of
choosing wisely a polygonization policy. In this context, various
properties may be relevantly targeted.

4.5.5 Experiments

The experiments on a digitized square of size 21× 21, which is H-
convex, was made as follows: using the three transformation models,
TPoint, TConv and TPoly, we rotate the object with angle π

10 around its
center repeatedly, such that the rotation is first applied on the input
image, and then the transformed image is used as input for the next
rotation, and so on. Table 13 illustrates the visual results of successive
rotated images with the number of the object grid points, which is
interpreted as the area of the rotated shape, after each rotation. We
observe that the TPoint alter not only the digital topology of the object
boundary but also the H-convexity. By contrast, TConv preserves the
topology together with the H-convexity since Conv(X) is quasi-(1,

√
2)-

regular, as discussed in Section 4.5.3.5, while the number of the object
points is decreasing as seen in Remark 4.2. We observe that TPoly
avoids this shrinking effect without topological alteration thanks to
the quasi-(1,

√
2)-regularity of P(X) for this example.

In order to quantify experimentally the accuracy and stability of
geometric measurements using the three models of rigid motions on
convex digital objects, we observe two measures: area and perimeter.
The area is computed simply as the number of digital points within
the transformed objects [100] and the perimeter is calculated based
on curve segmentation by maximal digital standard segment [107]
of the 4-connected curves extracted from the transformed objects. It
has been proven that these estimators have multigrid convergence
property [34]. The experiments were done with rotations for angles θ

varying from 0 to 2π. Figure 89 reports some quantitative comparisons
of those geometric measures between rotations by TPoint, TConv and
TPoly on the input images given in Table 13. We can observe that
TPoint and TConv do not preserve well the perimeter of the transformed
objects since TPoint alters the boundary of the objects and TConv is a
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#Points=441

θ = π
10 θ = 2π

10 θ = 3π
10 θ = 4π

10 θ = π
2

TPoint(X)

#Points=445 #Points=437 #Points=437 #Points=445 #Points=441

TConv(X)

#Points=397 #Points=385 #Points=373 #Points=357 #Points=349

TPoly(X)

#Points=397 #Points=409 #Points=409 #Points=397 #Points=441

Table 13: Comparison of the three different models for digitized rigid motion,
TPoint, TConv and TPoly, on a digitized square of size 21× 21. A
rotation of angle π

10 around the square center is applied repeatedly,
so that the accumulated rotation angle θ is given.

decreasing operator. By construction, TPoly uses a polygon that fits the
input digital object for the transformation; thus it preserves better the
perimeter. For the same reasons, TConv does not preserve well the area,
contrary to TPoly. Since TPoint is defined on a point-by-point model, it
also preserves well the area.

The last experiments were made to non-H-convex digital objects, as
illustrated in Figure 90. Here we compared the two transformation
models, TPoint and TPoly, with respect to the estimations of area and
perimeter, similarly to those for the H-convex case, The results are
respectively shown in Figure 91. We can observe that both of TPoint and
TPoly have a stable behaviour with respect to the area measurement,
while TPoly preserves better the perimeter than TPoint.

4.5.6 Extension to 3D

The extension of the digitized rigid motions via polygonization for 2D
to 3D is straightforward, in particular for convex cases. The important
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Figure 89: Estimated area (a) and perimeter (b) variations after applying
rotations of angles varying from 0 to 2π to the digitized square of
size 21× 21 used in Table 13.

(a) X1 (b) X2 (c) X3

Figure 90: Non-convex digital objects used for the quantitative experiments.

elements, such as H-convexity, quasi-(r, r′)-regularity and convex hull,
can be defined for 3D as well. Thus, the following corollary, which is
similar to Corollary 4.4 for 2D, can be also obtained for 3D [136].

Corollary 4.5 (Ngo et al. [136]). Let X ⊂ Z3 be a finite H-convex and
6-connected set. If Conv(X) is quasi-(1, 2√

3
)-regular, then TConv(X) is both

H-convex and connected.

An example of digital object, whose convex hull is quasi-(1, 2√
3
)-

regular, is given in Figure 92 (a). The behaviour of TConv compared
to Tpoint when applied on the H-convex object is illustrated in Fig-
ure 92. One can observe the better preservation of the shape of the
transformed object, and in particular the preservation of H-convexity
by TConv.
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Figure 91: Area (left) and perimeter (right) evolution of the three digital
objects X1, X2 and X3 (see Figure 90), under successive rigid
motions TPoint and TPoly.
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Figure 92: An H-convex digital object X such that Conv(X) is quasi-1-regular
(a) and its digital rigid motions by Tpoint (b) and by TConv (c).

4.6 summary and perspetives

In this chapter, we tackled the following problems of digitized rigid
motions:

1. combinatorial analysis of local configurations;

2. characterization of bijective rigid motions;

3. topological invariance/alteration;

4. geometric invariance/alteration.

In order to solve the first problem, we first introduced a combina-
torial structure represented by a graph for modelling the parameter
space of digitized rigid transformations. In the dual structure, this
problem can be seen as decomposing the parameter space for a given
image patch of finite size. We analyzed the space complexity of such
combinatorial structures in 2D and 3D cases. Besides, algorithms
based on sweeping plane were proposed for constructing the combi-
natorial structure in linear time with respect to this space complexity
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for the 2D case, and for computing only sample points for the 3D
case. This structure can be also calculated locally in the 2D case, and
allows us a fully discrete framework of image registration [134] and
geometric transform. The similar problem in the 3D case should be
also treated in near future.

Concerning the second problem, we have seen two approaches: the
combinatorial and arithmetic ones. In the first approach, we first
extended the neighborhood motion maps to rigid motions, previously
proposed by Nouvel and Rémila [143] for digitized rotations on Z2.
This led us to the necessary and sufficient condition of bijective rigid
motions on Z2. This combinatorial approach could be extended to dig-
itized rigid motions on Z3 with a help of uncoupling the parameters
of 3D rigid motions [149], and results would be helpful for character-
izing bijective digitized rigid motions on Z3. On the other hand, the
second arithmetic approach, which is already admitted as a useful tool
for characterizing bijective 2D digitized rotations [168], allows us to
show the existence of non-simple 3D bijective digitized rotations–ones
for which a given rotation axis does not correspond to any of the
coordinate axes; we do not succeed yet to fully characterize the set
of 3D bijective digitized rotations using Lipschitz quaternions, which
play a similar role to Gaussian integers for the 2D case. This is due
to the non-commutative nature of quaternions and their two-to-one
relation with 3D rotations.

In order to tackle the third problem, we first focused on the 2D
problem. Based on theoretical results established in the digital topol-
ogy framework, we proposed the notion of digital regularity, based on
which we derived efficient algorithms for analyzing and preprocessing
such images. The genericity of these results and methods, in terms
of topological models (dual adjacency and well-composedness) and
values (binary, grey-level and label images), authorize their actual
use in real applications [138]. As a priority, it should be first sought
whether the notion of digital regularity provides not only sufficient,
but also necessary conditions for topological invariance. We will also
investigate the link between the notions of digital regularity and quasi-
regularity, that intrinsically merges digital and discrete (and even
continuous) frameworks. Indeed, the rigid transformation of a dig-
ital image can be interpreted as the re-digitization of its associated
continuous pixel-based, thus polygonal representation. This link may
help us to explain why digital regularity does not provide a sufficient
condition for topological invariance in 3D to the contrary to 2D.

The last problem was solved in an algorithmic fashion; we first
proposed an algorithmic process for performing rigid motions of well-
composed sets on Z2, while preserving their global shapes. This shape
preservation was expressed in terms of geometry, but also in terms of
topology, since the object should not be erroneously disconnected due
to the discrete structure of Z2. In order to tackle these issues, we con-
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sidered an intermediate continuous model of the digital object, namely
a polygonal model, and proposed a new notion of quasi-r-regularity
that provides sufficient conditions for guaranteeing topological preser-
vation when digitizing a continuous object, which can be seen as a
generalization of the classic notion of r-regularity. This notion of quasi-
r-regularity was indeed required to correctly handle the mandatory
digitization step induced by the use of an intermediate continuous
polygonal model. This work opens the way to various perspectives.
First we will investigate how this rigid motion scheme can be extended
to the 3D case, i.e. to digital objects defined in Z3. Such an extension
cannot be straightforward as topological (and geometric) properties
of Gauss digitization for more than two dimensions are different and
more complex than those in two dimensions [111]. Second, from a
practical point of view, we will investigate the relevance of different
polygonization approaches, in order to identfy those that are the best
fitted to the proposed transformation approach.





5
C O N C L U S I O N A N D P E R S P E C T I V E S

5.1 conclusion

In this manuscript, we considered the following three topics, related
to analyzing and manipulating shapes in Z2 and Z3, in different
contexts: topological shape analysis (Chapter 2), geometric shape
analysis (Chapter 3), and shape rigid motions (Chapter 4). For each
problem, we adopted a combinatorial approach, which consists of

• studying the combinatorial structure of the solution space and
its properties, and

• proposing some solutions and efficient algorithms based on
these properties.

In Chapter 2, we first proposed a framework based on polyhedral
complexes such that the vertices are in Z3 and any adjacency between
polygonal vertices are the m-adjacency, m = 6, 18, 26. Given a finite
subset X ⊂ Z3, we presented a method for constructing a polyhedral
complex and classified each point of X into one of the twelve types
by the topological characterization of its star, as shown in Figure 13,
among which type 3b (semi-spherical star) corresponds to the local
configuration on combinatorial surfaces. We also enumerated such
local configurations.

Thanks to this local topological characterization of points, the pro-
posed framework has several utilities: it allowed us to propose a dis-
crete version of the marching cubes method for boundary extraction
(see Section 2.5) and a linear thinning algorithm of three-dimensional
digital images based on collapsiblity of polyhedral complexes [85]
(see Section 2.6), and to define topologically reasonable discrete sur-
face patches, on each of which geometrical measures, such as normal
vector, can be calculated in a finite way [87] (see Chapter 3).

In Chapter 3, two different problems were considered: digital planar
surface segmentation and digital plane fitting. The former problem
was solved by a discrete version of the hybrid method, based on the
previously obtained topologically reasonable discrete surface patches:
filtering out non-linear points and classifying points with respect to
normal vectors in the unified discrete Gaussian image. The exper-
imental results show that our method is useful for planar surface
segmentation from a point cloud if the input is sufficiently close to an
ideal image, i.e., if it involves only quantization errors. However, such
ideal images are rarely obtained in practice as input images generally
contain noise in addition to quantization errors. In order to eliminate
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such noise, we reduce image resolutions before applying our method
for example.

In order to find a solution even for such noisy images, we also
exposed a method for digital line and plane fitting in the presence of
outliers in the second part of Chapter 3. A digital hyperplane model
was used to develop the discrete optimization-based framework. The
exact fitting problem was solved with an O(Nd log N) algorithm for
d = 2, 3, which was later improved with an O(N2) solution in 2D
using a topological sweep method. While a polynomial solution of
degree equal to the dimension of the problem is useful, it is still
too inefficient for many applications; the problem is solvable for
N = 103 but intractable for N = 106 in 3D. For more practical use, we
therefore proposed an approximate digital hyperplane fitting method,
which uses an accumulation and query data structure and is easy to
implement. The method features bounded error, which trades off the
algorithm running time and memory requirements.

In Chapter 4, we first constructed a combinatorial model of the local
behavior of displacements on Z2 by classifying the transformations
according to their effect on a digital image patch. This classification
can be interpreted as specific problems of hypersurface arrangements
in the parameter space of the transformations, which were solved by
methods of computational geometry and computer algebra.

This combinatorial model then allowed us to characterize the bi-
jective transformations on Z2. In the 3D case, on the other hand, we
adopted an arithmetic approach, which led an algorithm to certify the
bijective digitized rotations; the bijectivity characterization is not yet
made.

Concerning the topological problem, the class of two-dimensional
images that preserve their topological properties during rigid motions
– called digitally regular images – has been identified, as well as
methods allowing such “regularization”. Nevertheless, these strategies
are not intrinsically transposable to higher dimensions.

Finally, the geometric problem was solved in an algorithmic fashion
in Z2. We considered an intermediate continuous model of the digital
object, namely a polygonal model, and proposed a notion of quasi-
regularity that provides sufficient conditions for topological invariance
when digitizing a polygonal object. With this condition, any rigid mo-
tion can be applied to a polygonal object without topological alteration
of the digitized polygon. Some geometric properties are intrinsically
maintained via the polygonal representation. The extension of this
approach to 3D would be straightforward.

5.2 ongoing and future challenges

There are various interesting themes, which are related to the pre-
sented work in this manuscript. In particular, many 3D problems are
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still left as the difference between 2D and 3D is so large that methods
that work perfectly in 2D are often not applicable to 3D. As the recent
work is mainly presented in Chapter 4, most of the following topics
are also related to those in the last chapter.

5.2.1 Ongoing challenges

Topologically invariant rigid motions on Z3

As we discussed in Section 4.4.3, digital regularity does not
guarantee topological properties of digital shapes under rigid
motions on Z3, in contrast to the case of Z2 (see Section 4.4.2).
In order to understand this difference between 2D and 3D, quasi-
regular sets, which were proposed in Section 4.5 in order to
guarantee topological invariance under rigid motions via poly-
gonization/polyhedrization, would be useful as they can make
a link between continuous and digital sets.

Collaboration with: Phuc Ngo (LORIA), Nicolas Passat (CReSTIC),
Kacper Pluta (Technion, Israel)

Polygonization/Polyhedrization of a subset of Zn

As observed in the previous argument, techniques for polygo-
nization/polyhedrization of a subset X of Zn is one of the key
issues for topologically (and geometrically) invariant rigid mo-
tions on Zn (see Section 4.5). The following three criteria should
be considered for constructed polygons/polyhedra P(X), which
are possibly non-convex: (1) Gaussian digitization of P(X) has
to get back to an initial digital object X (reversibility); (2) the co-
ordinates of all the vertices of P(X) must be rational (rationality);
(3) both P(X) and P(X) have the common boundary where X is
the complement of X (auto-duality). We are investigating such
polygonization/polyhedrization techniques.

Collaboration with: Isabelle Debled-Rennesson (LORIA), Phuc Ngo
(LORIA), Nicolas Passat (CReSTIC)

Measuring geometric alteration on digital shape boundary under
rigid motions

It will be pertinent to explore also questions of discrete differen-
tial geometry, such as the behavior of discrete curvature under
displacements. In this context, new notions of “geometric” and
“topological” preservation must be proposed. For example, the
approach of “integral geometry” [171], which allows us to define
a measure of the continuous shapes digitized in the same digital
shape, can be a good mathematical tool in order to search for
displacements in Zn preserving this type of measure. There
are also the tools of combinatorics on words, which allow us
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to measure the balancedness or the equilibrateness of a word,
which represents a rectilinear digital curve [188].

Collaboration with: David Coeurjolly (LIRIS), Lama Tarsissi (LIGM,
Université Paris-Est), Pascal Romon (LAMA, Université Paris-Est)

Tangent estimation of 3D digital curves

In the field of digital geometry, many discrete differential geom-
etry results can be found for digital curves in 2D space, while
less results are found for digital curves in 3D space. However,
there are practical demands, which have motivated us to esti-
mate tangents along a 3D digital curve. The experimental results
were already published in [154], and we are currently deepening
properties such as multi-grid convergence.

Collaboration with: Jacques-Olivier Lachaud (LAMA, Université de
Savoie), Kacper Pluta (Technion, Israel)

Approximate digital polynomial function fitting to a subset of Zn

Analytical models of digital geometry have been studied not
only for digital lines and planes but also for non-linear curves
and surfaces [8]. We tackle the problem of non-linear curve
/ surface using such digital analytical models. With a careful
consideration, this problem can be seen as stabbing polytopes
with a hyperplane. With a help of tools of computational ge-
ometry, we will apply the techniques of random sampling and
ε-approximation [129] in order to develop efficient algorithms
which would be useful in practice even if the dimension of the
parameter space is relatively high.

Collaboration with: Eric Andres (XLIM, Université de Poitiers), Gaëlle
Largeteau-Skapin (XLIM, Université de Poitiers), Nabil Mustafa (LIGM,
Université Paris-Est), Rita Zrour (XLIM, Université de Poitiers)

5.2.2 Future challenges

Characterization of 3D bijective digitized rigid motions

This is still an open problem, as we already discussed in Section
4.3. As we did not yet find any clue with the arithmetic ap-
proach (see Section 4.3.2), adopting the combinatorial approach,
presented in Section 4.3.1, for this 3D problem, would help us to
observe and analyze the neighborhood motion maps. This exten-
sion can be made with a help of uncoupling the parameters of
3D rigid motions, whose technique was already used in Section
4.2.6.2

Optimal transport for finding bijective discrete transformations

This problem was initially posed by Yan Gérard (ISIT, Université
Clermont Auvergne) during the meeting of CoMeDic Poject held
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in July 2018. We consider all bijections T from Z2 to Z2, which
are called (digital) transports. The problem is to find the optimal
transport, whose total cost, ∑p∈Z2 c(p, T(p)), is the least of all
possible transports. The question is: can results obtained by
solving such optimal transport problems be as bijective digitized
rigid motions?

Local search for 3D rigid motion registration

The method for computing an arrangement for 3D digitized
rigid motions proposed in Section 4.2.6.2 is simply aimed at
obtaining at least one sampling point for each full-dimensional
cell; thus, no topological information of the arrangement is
computed. However, there is sometimes a demand for exploring
the combinatorial structure of digitized rigid transformations
along the dual graph structure, for example, when discrete local
search is used for rigid image registration [134]. In this case,
we need to construct the combinatrial structure containing the
topological information, which is not necessarily globally but
only locally. For this aim, we will extend the discrete local graph-
search method for 2D rigid image registration [134] to 3D, with
a help of computer algebra tools [149].

Extension to other geometric transformations

In computer vision and image processing/analysis, other ge-
ometric transformations are also used. Similar study to rigid
motions should be made with consideration of more general
frameworks.

Link to the quasi-affine transformation

There are generic approaches based on the quasi-affine transfor-
mations [21], [36], which show that the digitization of a contin-
uous operation is sometimes unsatisfactory (loss of bijection),
but sometimes very rich with the associated arithmetic structure
(tilings, enumeration, etc.). It will be naturally interesting to link
these approaches to the study of displacements in Zn.

Extension to other digitization models

In this manuscript, we consider only the Gaussian digitization
[101]. However, there are other digitization models, such as
the inner and outer Jordan digitization models [101], the grid-
intersection digitization [67], the flake digitization models [192],
etc. We will study how to adapt our framework of digitized rigid
transformation based on Gaussian digitization to other models.

As-rigid-as-possible deformation of digital shapes

As-rigid-as-possible deformation, i.e. deformation which is lo-
cally rigid, is used in various scenes [181]. It would be useful
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to formulate such deformation as a combinatorial optimization
problem using the discrete framework of digitized rigid trans-
formations, and to verify its utility to practical problems, such
as image registration and object motion/deformation tracking.

Topologically correct conversion between meshes and voxel sets

Here, we consider scenes where there are several objects exist
in a same space; such voxel data are given by labeled images
generated from a 3D medical image containing several organs,
for example. A voxel set corresponding to each label is often
converted for its visualization to a mesh using the marching
cubes method [118], [198], which is often followed by mesh
simplification [145]. In a multi-object scene, the topological
structure between the objects in the scene should be preserved
during the conversion as well as the geometric precision.

On the contrary, the conversion from meshes to voxel sets is also
useful to repair and analyze the complex structures of meshes
[141]. Many methods for mesh voxelization exist. However,
most of the methods are insterested in voxelizing a surface [38],
[112], but not in voxelizing a solid [141]. From the viewpoint
of digital topology, solid voxelization is, indeed, more relevant
to the Gaussian digitization model, which is generally used for
full-dimensional objects co-existing in a space. If we would
like to guarantee coherent topology between meshes and voxel
sets wherever the meshes are positioned, considering the quasi-
regularity condition on each mesh, presented in Section 4.5.1,
will be a good starting point.

Hierarchical surface segmentation with digital geometric features

Polyhedrization of a voxel set is known as a very difficult prob-
lem [176]. Here, we re-revisit this problem as a segmentation
problem and apply a hierarchical image segmentation approach.
We recently worked on graph-based hierarchical image segmen-
tation, whose principle is region merging with a criterion based
on region dissimilarity [43], [71]. As polyhedral surfaces con-
structed from the method proposed in Section 2.5 have graph
structures, we can apply this method to such discrete surfaces
accompanied with digital geometric features, such as quantified
normal vectors presented in Chapter 3. Specific dissimilarity
should be considered according to the discrete nature of digital
geometric features.

Hierarchical image vectorization

We recently have exploited various digital-contour representa-
tions and proposed a method of greyscale image vectorization,
which allows a geometric quality control [95]. On the other hand,
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as mentioned above, we have worked on graph-based hierarchi-
cal image segmentation, whose principle is region merging with
a criterion based on region dissimilarity [43], [71]. In order to
improve the quality of the greyscale or labeled image vectoriza-
tion, we consider involving the hierarchical image structure in
the procedure.
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