Counting Braids and Laminations

Vincent Jugé

École des Mines de Paris \& Université Paris Diderot (LIAFA)

10/06/2015

Contents

(1) Braids and Diagrams

- Braid Groups
- Complexity of a Braid

(2) Band Laminations

(3) Radial Laminations

4 Conclusion

Braid Groups

What are braids?

(1) Intertwined strands

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C}

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_{n} globally invariant

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_{n} globally invariant: $\mathcal{B}_{n}=\frac{\operatorname{Hom}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, \mathrm{ld}_{\partial D}\right)}{\operatorname{Hom}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, l d_{\partial D}\right)}$.

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_{n} globally invariant: $\mathcal{B}_{n}=\frac{\operatorname{Hom}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, \mathbf{l d}_{\partial D}\right)}{\operatorname{Hom}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, l d_{\partial D}\right)}$.
(4) Finitely presented group
$\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $\left.\geqslant i+2\right\rangle$. σ_{i} : Artin Generators

Braid Groups

What are braids?

(1) Intertwined strands
(2) Isotopy group of braid diagrams
(3) Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_{n} globally invariant: $\mathcal{B}_{n}=\frac{\operatorname{Hom}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, \mathbf{l d} d_{\partial D}\right)}{\operatorname{Hom}_{0}\left(\mathbb{C}, P_{n} \leftrightarrow P_{n}, l d_{\partial D}\right)}$.
(4) Finitely presented group
$\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $\left.\geqslant i+2\right\rangle$. σ_{i} : Artin Generators

Coxeter Group:

$$
\left.\mathfrak{S}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i}^{2}=1, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { si } j \geqslant i+2\right\rangle
$$

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings
\qquad
simple

complex

complex?

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings
\qquad
simple

complex

complex?

- $\|\alpha\|=$ minimal number of crossings

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings
\qquad
simple

complex

complex?

- $\|\alpha\|=$ minimal number of crossings
- $\|\alpha\|=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\| \leqslant\|\alpha\|+\|\beta\|$

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings
\qquad
simple

complex

complex?

- $\|\alpha\|=$ minimal number of crossings
- $\|\alpha\|=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\| \leqslant\|\alpha\|+\|\beta\|$
- Computing $\|\alpha\|$: very hard

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings
\qquad
simple

complex

complex?

- $\|\alpha\|=$ minimal number of crossings
- $\|\alpha\|=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\| \leqslant\|\alpha\|+\|\beta\|$
- Computing $\|\alpha\|$: very hard (easy up to a multiplicative factor n !)

Complexity of a Braid

What is a complex braid?

Idea \#1: a braid with lots of crossings

simple

complex

complex?

- $\|\alpha\|=$ minimal number of crossings
- $\|\alpha\|=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\| \leqslant\|\alpha\|+\|\beta\|$
- Computing $\|\alpha\|$: very hard (easy up to a multiplicative factor n !)
- Computing $N^{(k)}=\#\{\alpha:\|\alpha\|=k\}$: seems very hard

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph
\qquad

generated by simple braids

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph
\qquad

generated by simple braids

- $\|\alpha\|_{2}=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\|_{2} \leqslant\|\alpha\|_{2}+\|\beta\|_{2}$

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph
\qquad

generated by simple braids

- $\|\alpha\|_{2}=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\|_{2} \leqslant\|\alpha\|_{2}+\|\beta\|_{2}$
- Computing $\|\alpha\|_{2}$: easy

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph
\qquad

generated by simple braids

- $\|\alpha\|_{2}=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\|_{2} \leqslant\|\alpha\|_{2}+\|\beta\|_{2}$
- Computing $\|\alpha\|_{2}$: easy
- Computing $N_{2}^{(k)}=\#\left\{\alpha:\|\alpha\|_{2}=k\right\}$: easy

Complexity of a Braid

What is a complex braid?

Idea \#2: distance to ε in another Cayley graph
\qquad

generated by simple braids

- $\|\alpha\|_{2}=$ distance to ε in a Cayley graph: $\|\alpha \cdot \beta\|_{2} \leqslant\|\alpha\|_{2}+\|\beta\|_{2}$
- Computing $\|\alpha\|_{2}$: easy
- Computing $N_{2}^{(k)}=\#\left\{\alpha:\|\alpha\|_{2}=k\right\}$: easy $\left(\sum_{k \geqslant 0} N_{2}^{(k)} z^{k}\right.$ is rational)

Contents

(1) Braids and Diagrams

(2) Band Laminations

- What are Band Laminations?
- Laminations and Complexity

(3) Radial Laminations

4 Conclusion

What are Band Laminations?

Trivial band lamination:

What are Band Laminations?

Non-trivial band lamination:

What are Band Laminations?

Braid acting on a band lamination:

What are Band Laminations?

Braid acting on a band lamination:

What are Band Laminations?

Braid acting on a band lamination:

What are Band Laminations?

Braid acting on a band lamination:

What are Band Laminations?

Braid acting on a band lamination:

What are Band Laminations?

Braid acting on a band lamination:

Braid Acting on a Band Lamination

Braid \equiv Band lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{b} :
$\mathcal{B}_{n}=\{n$-strand braids $\}$
$\mathcal{L}_{n}^{b}=\{$ band laminations with n holes $\}$

Braid Acting on a Band Lamination

Braid \equiv Band lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{b} :

$$
\begin{array}{lll}
\mathcal{B}_{n} & \equiv & \mathcal{L}_{n}^{b} \\
\alpha & \rightarrow & \alpha\left(\mathbf{L}_{\varepsilon}^{b}\right)
\end{array}
$$

$\mathcal{B}_{n}=\{n$-strand braids $\}$
$\mathcal{L}_{n}^{b}=\{$ band laminations with n holes $\}$
$\mathbf{L}_{\varepsilon}^{b}=$ trivial band lamination

Braid Acting on a Band Lamination

Braid \equiv Band lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{b} :

$$
\begin{array}{lll}
\mathcal{B}_{n} & \equiv & \mathcal{L}_{n}^{b} \\
\alpha & \rightarrow & \alpha\left(\mathbf{L}_{\varepsilon}^{b}\right)
\end{array}
$$

$\mathcal{B}_{n}=\{n$-strand braids $\}$
$\mathcal{L}_{n}^{b}=\{$ band laminations with n holes $\}$
$\mathbf{L}_{\varepsilon}^{b}=$ trivial band lamination

ε

$\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}$

$\sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}$

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

- $\|\alpha\|_{3}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{c}\right) \cap \mathbb{R}$

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

- $\|\alpha\|_{3}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{c}\right) \cap \mathbb{R}$
- $\left\|\left(\sigma_{1} \sigma_{2}^{-1}\right)^{k}\right\|_{3} \approx 2^{k}$

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

- $\|\alpha\|_{3}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{c}\right) \cap \mathbb{R}$
- $\left\|\left(\sigma_{1} \sigma_{2}^{-1}\right)^{k}\right\|_{3} \approx 2^{k}:\|\alpha \cdot \beta\|_{3} \leqslant\|\alpha\|_{3}+\|\beta\|_{3}$

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

- $\|\alpha\|_{3}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{c}\right) \cap \mathbb{R}$
- $\left\|\left(\sigma_{1} \sigma_{2}^{-1}\right)^{k}\right\|_{3} \approx 2^{k}:\|\alpha \cdot \beta\|_{3} \leqslant\|\alpha\|_{3}+\|\beta\|_{3}$
- Computing $\|\alpha\|_{3}$: easy

Laminations and Complexity

What is a complex braid?

Idea \#3: a band lamination whose arcs often cross \mathbb{R}

Complex braid

- $\|\alpha\|_{3}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{c}\right) \cap \mathbb{R}$
- $\left\|\left(\sigma_{1} \sigma_{2}^{-1}\right)^{k}\right\|_{3} \approx 2^{k}:\|\alpha \cdot \beta\|_{3} \leqslant\|\alpha\|_{3}+\|\beta\|_{3}$
- Computing $\|\alpha\|_{3}$: easy
- Computing $N_{3}^{(k)}=\#\left\{\alpha:\|\alpha\|_{3}=k\right\}$: not obvious...

Contents

(1) Braids and Diagrams

(2) Band Laminations
(3) Radial Laminations

- What are Radial Laminations?
- Laminations and Complexity
- Counting Laminations

4. Conclusion

What are Radial Laminations?

Trivial radial lamination:

What are Radial Laminations?

Non-trivial radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

What are Radial Laminations?

Braid acting on a radial lamination:

Braid Acting on a Radial Lamination

Braid \equiv Radial lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{r} :

```
\mathcal{B}}={n-strand braids
\mathcal{L}}\mp@subsup{}{n}{r}={\mathrm{ radial laminations with }n\mathrm{ holes }
```


Braid Acting on a Radial Lamination

Braid \equiv Radial lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{r} :

$$
\begin{array}{lll}
\mathcal{B}_{n} & \equiv & \mathcal{L}_{n}^{r} \\
\alpha & \rightarrow & \alpha\left(\mathbf{L}_{\varepsilon}^{r}\right)
\end{array}
$$

$\mathcal{B}_{n}=\{n$-strand braids $\}$
$\mathcal{L}_{n}^{r}=\{$ radial laminations with n holes $\}$
$\mathbf{L}_{\varepsilon}^{r}=$ trivial radial lamination

Braid Acting on a Radial Lamination

Braid \equiv Radial lamination

\mathcal{B}_{n} acts faithfully and transitively on \mathcal{L}_{n}^{r} :

\mathcal{B}_{n}	$\equiv \mathcal{L}_{n}^{r}$	
α	\rightarrow	$\alpha\left(\mathbf{L}_{\varepsilon}^{r}\right)$

$\mathcal{B}_{n}=\{n$-strand braids $\}$
$\mathcal{L}_{n}^{r}=\{$ radial laminations with n holes $\}$
$\mathbf{L}_{\varepsilon}^{r}=$ trivial radial lamination

ε

$\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}$

$\sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}$

Laminations and Complexity

What is a complex braid?

Idea \#4: a lamination whose ray often crosses $\mathbf{L}_{\varepsilon}^{b}$

Laminations and Complexity

What is a complex braid?

Idea \#4: a lamination whose ray often crosses L_{ε}^{b}

Complex braid

Laminations and Complexity

What is a complex braid?

 Idea \#4: a lamination whose ray often crosses $\mathbf{L}_{\varepsilon}^{b}$

Complex braid

- $\|\alpha\|_{4}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{r}\right) \cap \mathbf{L}_{\varepsilon}^{b}$

Laminations and Complexity

What is a complex braid?

Idea \#4: a lamination whose ray often crosses $\mathbf{L}_{\varepsilon}^{b}$

Complex braid

- $\|\alpha\|_{4}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{r}\right) \cap \mathbf{L}_{\varepsilon}^{b}$
- Computing $N_{4}^{(k)}=\#\left\{\alpha:\|\alpha\|_{4}=k\right\}$

Laminations and Complexity

What is a complex braid?

Idea \#4: a lamination whose ray often crosses $\mathbf{L}_{\varepsilon}^{b}$

Complex braid

- $\|\alpha\|_{4}=$ cardinality of $\alpha\left(\mathbf{L}_{\varepsilon}^{r}\right) \cap \mathbf{L}_{\varepsilon}^{b}=\left\|\alpha^{-1}\right\|_{3}$
- Computing $N_{4}^{(k)}=\#\left\{\alpha:\|\alpha\|_{4}=k\right\}=N_{3}^{(k)}:$ not so hard. . .

Laminations and Complexity

Why do we have $\|\alpha\|_{4}=\left\|\alpha^{-1}\right\|_{3}$?

Pull α 's ray tight!

Laminations and Complexity

Why do we have $\|\alpha\|_{4}=\left\|\alpha^{-1}\right\|_{3}$?

Pull α 's ray tight!

Laminations and Complexity

Why do we have $\|\alpha\|_{4}=\left\|\alpha^{-1}\right\|_{3}$?
Pull α 's ray tight!

Laminations and Complexity

Why do we have $\|\alpha\|_{4}=\left\|\alpha^{-1}\right\|_{3}$?
Pull α 's ray tight!

$$
\left|\sigma_{2} \sigma_{1}^{-1}\left(\mathbf{L}_{\varepsilon}^{r}\right) \cap \mathbf{L}_{\varepsilon}^{b}\right|=\left|\sigma_{2}^{-1}\left(\mathbf{L}_{\varepsilon}^{b}\right) \cap \sigma_{1}^{-1}\left(\mathbf{L}_{\varepsilon}^{r}\right)\right|
$$

$=\quad\left|\sigma_{1} \sigma_{2}^{-1}\left(\mathbf{L}_{\varepsilon}^{b}\right) \cap \mathbf{L}_{\varepsilon}^{r}\right|$

Counting Laminations

How can we count (radial) laminations?

Counting Laminations

How can we count (radial) laminations?

(1) Identify mirrors

Counting Laminations

How can we count (radial) laminations?

(1) Identify mirrors and their periscopes

Counting Laminations

How can we count (radial) laminations?

(1) Identify mirrors and their periscopes and transparent holes

Counting Laminations

How can we count (radial) laminations?

(1) Identify mirrors and their periscopes and transparent holes
(2) Check that the ray is connected!

Counting Laminations

How can we count (radial) laminations?

(1) Identify mirrors and their periscopes and transparent holes
(2) Check that the ray is connected!

Counting laminations: 1 or 2 strands

1-strand braids:

Counting laminations: 1 or 2 strands

```
1-strand braids: }\mp@subsup{N}{4}{(k)}=\mp@subsup{1}{k=0}{
```


Counting laminations: 1 or 2 strands

1-strand braids: $N_{4}^{(k)}=1_{k=0}$

$0-0$

2-strand braids: $N_{4}^{(k)}=1_{k=1}$

Counting laminations: 1 or 2 strands

1-strand braids: $N_{4}^{(k)}=1_{k=0}$

$$
00
$$

2-strand braids: $N_{4}^{(k)}=\mathbf{1}_{k=1}+2 \cdot \mathbf{1}_{k \in 2 \mathbb{N}+3}$

Counting laminations: 1 or 2 strands

1-strand braids: $N_{4}^{(k)}=1_{k=0}$

$$
00
$$

2-strand braids: $N_{4}^{(k)}=1_{k=1}+2 \cdot \mathbf{1}_{k \in 2 \mathbb{N}+3}$

Counting laminations: 3 strands

3-strand braids:

Counting laminations: 3 strands

3-strand braids:

$$
N_{4}^{(k)}=\mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}
$$

Counting laminations: 3 strands

3-strand braids:

$$
N_{4}^{(k)}=\mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}-2 \cdot \mathbf{1}_{k \in 4 \mathbb{N}+6}
$$

Counting laminations: 3 strands

3-strand braids:

$$
\begin{aligned}
N_{4}^{(k)}= & \mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}-2 \cdot \mathbf{1}_{k \in 4 \mathbb{N}+6}+ \\
& 4 \sum_{i=2}^{k / 4} \varphi(k / 2+4-2 i) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+2}
\end{aligned}
$$

Counting laminations: 3 strands

3-strand braids:

$$
\begin{aligned}
N_{4}^{(k)}= & \mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}-2 \cdot \mathbf{1}_{k \in 4 \mathbb{N}+6}+ \\
& 4 \sum_{i=2}^{k / 4} \varphi(k / 2+4-2 i) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+2} \\
N_{4}^{(k)} \sim & \left(\mathbf{1}_{k \in 2 \mathbb{N}}+\mathbf{1}_{k \in 4 \mathbb{N}+2}\right) k^{2} / \pi^{2}
\end{aligned}
$$

Counting laminations: 3 strands

3-strand braids:

$$
\begin{aligned}
N_{4}^{(k)}= & \mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}-2 \cdot \mathbf{1}_{k \in 4 \mathbb{N}+6}+ \\
& 4 \sum_{i=2}^{k / 4} \varphi(k / 2+4-2 i) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+2} \\
N_{4}^{(k)} \sim & \left(\mathbf{1}_{k \in 2 \mathbb{N}}+\mathbf{1}_{k \in 4 \mathbb{N}+2}\right) k^{2} / \pi^{2} \\
\sum_{k \geqslant 0} N_{4}^{(k)} z^{k}= & 2 \frac{1+2 z^{2}-z^{4}}{z^{2}\left(1-z^{4}\right)}\left(\sum_{n \geqslant 3} \varphi(n) z^{2 n}\right)+\frac{z^{2}\left(1-3 z^{4}\right)}{1-z^{4}}
\end{aligned}
$$

Counting laminations: 3 strands

3-strand braids:

$$
\begin{aligned}
N_{4}^{(k)}= & \mathbf{1}_{k=2}+2 \varphi(k / 2+1) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+4}-2 \cdot \mathbf{1}_{k \in 4 \mathbb{N}+6}+ \\
& 4 \sum_{i=2}^{k / 4} \varphi(k / 2+4-2 i) \cdot \mathbf{1}_{k \in 2 \mathbb{N}+2} \\
N_{4}^{(k)} \sim & \left(\mathbf{1}_{k \in 2 \mathbb{N}}+\mathbf{1}_{k \in 4 \mathbb{N}+2}\right) k^{2} / \pi^{2} \\
\sum_{k \geqslant 0} N_{4}^{(k)} z^{k}= & 2 \frac{1+2 z^{2}-z^{4}}{z^{2}\left(1-z^{4}\right)}\left(\sum_{n \geqslant 3} \varphi(n) z^{2 n}\right)+\frac{z^{2}\left(1-3 z^{4}\right)}{1-z^{4}}
\end{aligned}
$$

Typical cases:

Counting laminations: 4 strands or more

 n-strand braids:- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$
- $M_{\ell}=\mathcal{O}\left(\ell^{2 n-4}\right)$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$
- $M_{\ell}=\mathcal{O}\left(\ell^{2 n-4}\right)$
- $\ell^{n-2}=\mathcal{O}\left(M_{\ell}\right)$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$
- $M_{\ell}=\mathcal{O}\left(\ell^{2 n-4}\right)$
- $\ell^{\lfloor(3 n-5) / 2\rfloor}=\mathcal{O}\left(M_{\ell}\right)$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$
- $M_{\ell}=\mathcal{O}\left(\ell^{2 n-4}\right)$
- $\ell^{\lfloor(3 n-5) / 2\rfloor}=\mathcal{O}\left(M_{\ell}\right)$

Conjecture

$M_{\ell}=\Theta\left(\ell^{2 n-4}\right)$

Counting laminations: 4 strands or more

n-strand braids:

- $N_{4}^{(k)} \neq 0 \Leftrightarrow k \in 2 \mathbb{N}+n-1 \quad \rightarrow M_{\ell}=N_{4}^{(n-1+2 \ell)}$
- $M_{\ell}=\mathcal{O}\left(\ell^{2 n-4}\right)$
- $\ell^{[(3 n-5) / 2]}=\mathcal{O}\left(M_{\ell}\right)$

Conjecture

$M_{\ell}=\Theta\left(\ell^{2 n-4}\right)$
Is this permutation cyclic?

Contents

(1) Braids and Diagrams
(2) Band Laminations
(3) Radial Laminations
(4) Conclusion

Conclusion

Next goals

- Prove the conjecture
- Look at the combinatorial structure of laminations

Conclusion

Next goals

- Prove the conjecture
- Look at the combinatorial structure of laminations

Thank you!

