Combinatorics of braids and Garside normal forms

Vincent Jugé

ALEA Young Researchers' Workshop 2017

$$
27 / 06 / 2017
$$

Contents

(1) Positive braids

Multiplying braids

What are braids?

(1) Intertwined strands

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

Useful notations:

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
© Simplifications

$$
3-3=0 \text { and } 3 \div 3=1
$$

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
(0) Simplifications

$$
3-3=0 \text { and } 3 \div 3=1
$$

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
(3) Simplifications
$3-3=0$ and $3 \div 3=1$
(3) Partial commutativity
$2 \times 3=3 \times 2$ and $2+3=3+2$

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
(3) Simplifications
$3-3=0$ and $3 \div 3=1$
(3) Partial commutativity
$2 \times 3=3 \times 2$ and $2+3=3+2$

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
(3) Simplifications
$3-3=0$ and $3 \div 3=1$
(4) Partial commutativity
$2 \times 3=3 \times 2$ and $2+3=3+2$
(5) Braid relations

Multiplying braids

What are braids?

(1) Intertwined strands
(2) Intertwined strands up to isotopy, endowed with a product

What properties for this product?
(3) Simplifications
$3-3=0$ and $3 \div 3=1$
(9) Partial commutativity
$2 \times 3=3 \times 2$ and $2+3=3+2$
(5) Braid relations

Positive braids and permutations

What are positive braids?

(1) Braids with σ_{i} moves only

Positive braids and permutations

What are positive braids?

(1) Braids with σ_{i} moves only

Positive braids and permutations

What are positive braids?

(1) Braids with σ_{i} moves only

What are permutations?

Positive braids and permutations

What are positive braids?

(1) Braids with σ_{i} moves only

What are permutations?

(2) Braids where we do not know which strand is in the foreground $\left(\sigma_{i}=\sigma_{i}^{-1}\right)$

Divisibility and positive braids

Divisibility in non-negative integers: $a \mid b$
An integer a divides an integer b iff \exists an integer c such that $b=a \times c$.

$$
3|12,2| 14,7 \mid 0 \text { and } 0 \mid 0 \text { but } 4 \nmid 7
$$

Divisibility and positive braids

Divisibility in non-negative integers: $a \mid b$
An integer a divides an integer b iff \exists an integer c such that $b=a \times c$.

$$
3|12,2| 14,7 \mid 0 \text { and } 0 \mid 0 \text { but } 4 \nmid 7
$$

Divisibility in positive braids: $\alpha \leqslant_{\ell} \beta$ and $\beta \geqslant_{r} \alpha$
(1) The braid α left-divides the braid β iff \exists a braid γ s.t. $\beta=\alpha \times \gamma$.
(2) The braid α right-divides the braid β iff \exists a braid γ s.t. $\beta=\gamma \times \alpha$.

$$
\begin{gathered}
\sigma_{1} \leqslant \ell \sigma_{1} \sigma_{2} \sigma_{1}, \sigma_{1} \leqslant \ell \sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2} \sigma_{1} \geqslant_{r} \sigma_{1} \text { and } \sigma_{2} \leqslant \ell \sigma_{2} \sigma_{1} \text { but } \\
\sigma_{1} \not \sigma_{2} \sigma_{1} \sigma_{l}
\end{gathered}
$$

Divisibility diagrams: GCD and LCM

In non-negative integers: $\operatorname{GCD}(4,7)=1$ and $\operatorname{LCM}(3,5)=15$

Divisibility diagrams: GCD and LCM

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?
Braids whose strands cross at most once.

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?
Braids whose strands cross at most once.

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?
Braids whose strands cross at most once.

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

4	4
3	3
2	2
1	1

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

Showing that there exist GCDs and LCMs: simple braids

What are simple braids?

Braids whose strands cross at most once.

The set of simple braids is:
(1) closed by left and right divisions
(2) in bijection with permutations

Divisibility of simple braids

For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses $\left.^{\text {strand }}{ }_{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

Divisibility of simple braids
For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses strand $\left._{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
- $(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.

Divisibility of simple braids

For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses strand $\left._{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
$\bullet(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S .

$$
\mathbf{S}=\{(1,2),(1,4),(3,4)\}
$$

Divisibility of simple braids

For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses $\left.^{\text {strand }}{ }_{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
$\bullet(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S and delete it.

$$
\mathbf{S}^{\prime}=\{(1,4),(3,4)\}
$$

Divisibility of simple braids

For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses $\left.^{\text {strand }}{ }_{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
- $(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S and delete it.
(2) Swap i 's and $(i+1)$'s.

$$
\mathbf{S}^{\prime \prime}=\{(2,4),(3,4)\}
$$

Divisibility of simple braids
For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses strand $\left._{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
- $(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S and delete it.
(2) Swap i 's and $(i+1)$'s.
(3) Build a braid γ by induction on $|\mathbf{S}|$.

$$
\mathbf{S}^{\prime \prime}=\{(2,4),(3,4)\}
$$

Divisibility of simple braids
For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses strand $\left._{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
- $(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S and delete it.
(2) Swap i 's and $(i+1)$'s.
(3) Build a braid γ by induction on $|\mathbf{S}|$.
(9) We have $\mathbf{S}=\mathcal{L}\left(\sigma_{i} \gamma\right)$!

$$
\mathbf{S}=\{(1,2),(1,4),(3,4)\}
$$

Divisibility of simple braids
For a simple β, let $\mathcal{L}(\beta)=\left\{(i, j): i<j\right.$, strand $_{i \rightarrow}$ crosses strand $\left._{j \rightarrow}\right\}$.
If you please - draw me a $\mathcal{L}(\beta)$
The set \mathbf{S} belongs to $\{\mathcal{L}(\beta) \mid \beta$ is simple $\}$ if and only if, for all $i<j<k$:

- $(i, j) \in \mathbf{S}$ and $(j, k) \in \mathbf{S} \Rightarrow(i, k) \in \mathbf{S}$, and
- $(i, j) \notin \mathbf{S}$ and $(j, k) \notin \mathbf{S} \Rightarrow(i, k) \notin \mathbf{S}$.
(1) Choose a pair $(i, i+1)$ in S and delete it.
(2) Swap i 's and $(i+1)$'s.
(3) Build a braid γ by induction on $|\mathbf{S}|$.
(9) We have $\mathbf{S}=\mathcal{L}\left(\sigma_{i} \gamma\right)$!

Bonus:

$$
\beta \leqslant \ell \gamma \text { iff } \mathcal{L}(\beta) \subseteq \mathcal{L}(\gamma)
$$

Obtaining GCDs and LCMs 1/3

GCDs and LCMs for simple braids
(1) Simple braids have LCMs.

Obtaining GCDs and LCMs $1 / 3$

GCDs and LCMs for simple braids
(1) Simple braids have LCMs: $\mathcal{L}(\operatorname{LCM}(\beta, \gamma))=\boldsymbol{c l}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.

Obtaining GCDs and LCMs 1/3

GCDs and LCMs for simple braids
(1) Simple braids have $\mathrm{LCMs}: \mathcal{L}(\operatorname{LCM}(\beta, \gamma))=\mathbf{c l}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.
(2) Simple braids have GCDs:
$\operatorname{GCD}(\beta, \gamma)=\operatorname{LCM}\left(\left\{\delta \mid \delta \leqslant_{\ell} \beta\right.\right.$ and $\left.\left.\delta \leqslant_{\ell} \gamma\right\}\right)$.

Obtaining GCDs and LCMs 1/3

GCDs and LCMs for simple braids
(1) Simple braids have $\mathrm{LCMs}: \mathcal{L}(\operatorname{LCM}(\beta, \gamma))=\mathbf{c l}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.
(2) Simple braids have GCDs:
$\operatorname{GCD}(\beta, \gamma)=\operatorname{LCM}(\{\delta \mid \delta \leqslant \ell \beta$ and $\delta \leqslant \ell \gamma\})$.

Obtaining GCDs and LCMs 1/3

GCDs and LCMs for simple braids
(1) Simple braids have $\mathrm{LCMs}: \mathcal{L}(\operatorname{LCM}(\beta, \gamma))=\mathbf{c l}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.
(2) Simple braids have GCDs:
$\operatorname{GCD}(\beta, \gamma)=\operatorname{LCM}(\{\delta \mid \delta \leqslant \ell \beta$ and $\delta \leqslant \ell \gamma\})$.

Obtaining GCDs and LCMs 2/3

The greatest simple divisor
β and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor
β and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor
β and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor
β and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor
β and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\{x$ simple $\mid \beta \leqslant \ell x \leqslant \ell \beta \gamma\}$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $\quad x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\{x$ simple $\mid \beta \leqslant \ell x \leqslant \ell \beta \gamma\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$ $\mathbf{H}(\cdot)=\varepsilon$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $\quad x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\{x$ simple $\mid \beta \leqslant \ell x \leqslant \ell \beta \gamma\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$
$\mathbf{H}(\cdot)=\varepsilon$
Lemma: $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \stackrel{?}{=} \mathbf{H}\left(x_{1} x_{2} \cdots x_{k}\right)$

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $\quad x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\{x$ simple $\mid \beta \leqslant \ell x \leqslant \ell \beta \gamma\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$
$\mathbf{H}(\cdot)=\varepsilon$
Lemma: $\mathbf{H}(x, y, z) \stackrel{?}{=} \mathbf{H}(x y, z)$
if $x y$ is simple

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\left\{x\right.$ simple $\left.\mid \beta \leqslant_{\ell} x \leqslant \ell \beta \gamma\right\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$
$\mathbf{H}(\cdot)=\varepsilon$
Lemma: $\mathbf{H}(x, y, z)=x\left(\partial_{x} \wedge y\left(\partial_{y} \wedge z\right)\right)$
if $x y$ is simple

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\left\{x\right.$ simple $\left.\mid \beta \leqslant_{\ell} x \leqslant \ell \beta \gamma\right\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$ $\mathbf{H}(\cdot)=\varepsilon$

Lemma: $\mathbf{H}(x, y, z)=x\left(y \partial_{x y} \wedge y\left(\partial_{x y} \partial_{\partial_{x}} \wedge z\right)\right)$
if $x y$ is simple

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\left\{x\right.$ simple $\left.\mid \beta \leqslant_{\ell} x \leqslant \ell \beta \gamma\right\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$ $\mathbf{H}(\cdot)=\varepsilon$

Lemma: $\mathbf{H}(x, y, z)=x y\left(\partial_{x y} \wedge \partial_{x y} \partial_{\partial_{x}} \wedge z\right)$
if $x y$ is simple

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\left\{x\right.$ simple $\left.\mid \beta \leqslant_{\ell} x \leqslant \ell \beta \gamma\right\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$ $\mathbf{H}(\cdot)=\varepsilon$

Lemma: $\mathbf{H}(x, y, z)=x y\left(\partial_{x y} \wedge z\right)$
if $x y$ is simple

Obtaining GCDs and LCMs 2/3

The greatest simple divisor $x_{1}, x_{2}, \ldots, x_{k}, \beta$ and γ are simple braids
(1) Complement $\mathbf{C}(\beta, \gamma)=\beta\left(\gamma \wedge \partial_{\beta}\right)=\bigvee\left\{x\right.$ simple $\left.\mid \beta \leqslant_{\ell} x \leqslant \ell \beta \gamma\right\}$
(2) Head $\mathbf{H}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{C}\left(x_{1}, \mathbf{H}\left(x_{2}, \ldots, x_{k}\right)\right)$ $\mathbf{H}(\cdot)=\varepsilon$

Lemma: $\mathbf{H}(x, y, z)=\mathbf{H}(x y, z)$
if $x y$ is simple

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.
(2) Positive braids have $\mathrm{LCMs}: \operatorname{LCM}(\beta, \gamma)=\mathbf{G C D}(\{\delta \mid \beta \leqslant \ell \delta, \gamma \leqslant \ell \delta\})$.

Three lemmas
(3) $\sigma_{i} \Delta_{n} \Delta_{n}=\Delta_{n} \Delta_{n} \sigma_{i}$ for all i

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.
(2) Positive braids have $\mathrm{LCMs}: \operatorname{LCM}(\beta, \gamma)=\mathbf{G C D}(\{\delta \mid \beta \leqslant \ell \delta, \gamma \leqslant \ell \delta\})$.

Three lemmas
(3) $\sigma_{i} \Delta_{n} \Delta_{n}=\Delta_{n} \Delta_{n} \sigma_{i}$ for all i
(4) $\beta \Delta_{n}^{2}=\Delta_{n}^{2} \beta$ for all β

$$
\sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \Delta_{n}^{2}=\sigma_{1} \sigma_{3} \sigma_{2} \Delta_{n}^{2} \sigma_{1}=\ldots=\Delta_{n}^{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1}
$$

Obtaining GCDs and LCMs 3/3

GCDs and LCMs for everybody
(1) Positive braids have GCDs.
(2) Positive braids have $\mathrm{LCMs}: \operatorname{LCM}(\beta, \gamma)=\mathbf{G C D}(\{\delta \mid \beta \leqslant \ell \delta, \gamma \leqslant \ell \delta\})$.

Three lemmas
(3) $\sigma_{i} \Delta_{n} \Delta_{n}=\Delta_{n} \Delta_{n} \sigma_{i}$ for all i
(4) $\beta \Delta_{n}^{2}=\Delta_{n}^{2} \beta$ for all β
(6) $\beta \leqslant \ell \Delta_{n}^{2|\beta|}$ for all β

$$
\sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \leqslant \ell \sigma_{1} \sigma_{3} \sigma_{2} \Delta_{n}^{2}=\Delta_{n}^{2} \sigma_{1} \sigma_{3} \sigma_{2} \leqslant \ell \Delta_{n}^{2} \sigma_{1} \sigma_{3} \Delta_{n}^{2} \leqslant \ell \ldots \leqslant \ell \Delta_{n}^{8}
$$

Thank you!

