Uniform Generation of Braids

Monoid of positive braids

Positive braids with n strands are elements of the monoid

$$
\left.B_{n}^{+}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \text { and } \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j| \geq 2\right\rangle^{+} .
$$

Braids represent isotopy classes of braid diagrams.

Isotopic braid diagrams associated with the braid $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3}$

Uniform sampling of n-strand braids of length k

Simple 3-step algorithm:

1. Enumerate the elements of the set $B_{n}^{k}:=\{n$-strand braids of length $k\}$;
2. Draw some integer $i \in\left\{1,2, \ldots, \# B_{n}^{k}\right\}$ uniformly at random;
3. Pick the $i^{\text {th }}$ element of your enumeration of B_{n}^{k}.
\triangle Step 1 is computationally difficult!
Example ($n=4$ and $0 \leq k \leq 2$):

$$
B_{4}^{0}=\{\mathbf{1}\}, B_{4}^{1}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \text { and } B_{4}^{2}=\left\{\sigma_{1}^{2}, \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{2} \sigma_{1}, \sigma_{2}^{2}, \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{2}, \sigma_{3}^{2}\right\}
$$

There exists an efficient variant [5] that works in time $\mathcal{O}\left(k^{2} n^{4}\right)$.

Garside normal form

Theorem \& Definitions [2]: The monoid B_{n}^{+}, endowed with the division ordering \preccurlyeq (i.e. $\alpha \preccurlyeq \alpha \beta$ for all $\alpha, \beta \in B_{n}^{+}$), is a lattice. Furthermore, we call

- Garside element of B_{n}^{+}the braid $\Delta:=\sigma_{1} \vee \sigma_{2} \vee \ldots \vee \sigma_{n-1}$.
- Garside normal form of a positive braid $\alpha \in B_{n}^{+}$the smallest word $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ such that $a_{1} a_{2} \ldots a_{k}=\alpha$ and $a_{i}=\Delta \wedge\left(a_{i} a_{i+1} \ldots a_{k}\right)$ for all $i \in\{1, \ldots, k\}$

Consequence: Uniform sampling of braids in B_{n}^{k} can be performed in time $\mathcal{O}\left(n!+n^{2} 2^{2 n} k\right)$ by constructing inductively the sets

$$
B_{n}^{k, \alpha}:=\{n \text {-strand braids } \beta \text { of length } k \text { and such that } \alpha=\Delta \wedge \beta\}
$$

for all divisors α of Δ, via the recursion formulæ:

$$
B_{n}^{k, \alpha}=\bigsqcup_{\substack{\beta: \beta \preccurlyeq \Delta \text { and } \\ \alpha=\Delta \wedge(\alpha \beta)}} B_{n}^{k-l e n g t h(\alpha), \beta} .
$$

Inconsistent samplings

Given oracles for drawing elements of B_{n}^{k}, can we draw elements of B_{n}^{k+1} ?

With the above algorithms, we need to start again from scratch! Is there a better way?
Naive (and incorrect) idea:
To draw an element of B_{n}^{k+1}, begin by drawing some prefix of length k, i.e.

1. Draw some element $\alpha \in B_{n}^{k}$;
2. For all $\beta \in B_{n}^{k+1}$ such that $\alpha \preccurlyeq \beta$, compute an extension probability $p_{\alpha, \beta}$;
3. Draw β with probability $p_{\alpha, \beta}$.
\triangle Issue: This approach fails for $n=4$ and $k=1$: drawing $\beta \in\left\{\sigma_{2} \sigma_{1}, \sigma_{2}^{2}, \sigma_{2} \sigma_{3}\right\}$ (with probability $3 / 8$) amounts to drawing $\alpha=\sigma_{2}$ (with probability $1 / 3$) in the first place!

Let us find other ways to generate large random braids. .

A new approach on consistent samplings

Idea: Let us smoothen measures on the "spheres" B_{n}^{k} by taking averages!

1. Choose p such that the sum $Z_{n}(p):=\sum_{k \geq 0} \# B_{n}^{k} p^{k}$ converges;
2. Choose $\mu_{p}: \alpha \mapsto \frac{1}{Z_{n}(p)} p^{\text {length }(\alpha)}$

Key results

1. We have $\mu_{p}\left(\alpha B_{n}^{+}\right)=p^{\text {length }(\alpha)}$ for all $\alpha \in B_{n}^{+}$, where $\alpha B_{n}^{+}:=\left\{\alpha \beta: \beta \in B_{n}^{+}\right\}$;
2. Möbius inversion formulæ allow computing $\mu_{p}\left(\mathbf{A}^{\mathrm{Gar}}\right)$ for all finite words \mathbf{A}, where $\mathbf{A}^{\mathbf{G a r}}:=\{\beta$: the Garside normal form of β begins with the prefix $\mathbf{A}\}$

For all $\alpha \in B_{n}^{+}$, we have

1. $\alpha B_{n}^{+}=\bigsqcup_{\beta: \alpha \preccurlyeq \beta \preccurlyeq \Delta|\alpha|} \mathbf{G N F}(\beta)^{\text {Gar } ;}$
2. $\mu_{p}\left(\mathbf{G N F}(\alpha)^{\mathbf{G a r}}\right)=\sum_{I \subseteq\{1, \ldots, n-1\}} \mathbf{1}_{\|\alpha\|=\left\|\alpha \Delta_{I}\right\|}(-1)^{\# I} \mu_{p}\left(\alpha \Delta_{I} B_{n}^{+}\right)$, where
$\operatorname{GNF}(\alpha)$ is Garside normal form of $\alpha,\|\alpha\|$ is the length of $\operatorname{GNF}(\alpha)$, and $\Delta_{I}:=\vee_{i \in I} \sigma_{i}$.

Example ($n=4$ and $\mathbf{A}=\sigma_{1} \cdot \sigma_{1}$):
$\mu_{p}\left(\mathbf{A}^{\mathrm{Gar}}\right)=\mu_{p}\left(\sigma_{1}^{2} B_{4}^{+}\right)-\mu_{p}\left(\sigma_{1}^{2} \sigma_{2} B_{4}^{+}\right)-\mu_{p}\left(\sigma_{1}^{2} \sigma_{3} B_{4}^{+}\right)+\mu_{p}\left(\sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{2} B_{4}^{+}\right)=p^{2}-2 p^{3}+p^{5}$

Möbius polynomial

Theorem [3, 4]: Let $H_{n}(X)$ be the Möbius polynomial of the monoid B_{n}^{+}, i.e.

$$
H_{n}(X)=\sum_{I \subseteq\{1, \ldots, n-1\}}(-1)^{\# I} X^{\operatorname{length}\left(\Delta_{I}\right)} .
$$

The power series $Z_{n}(X)$ and $H_{n}(X)$ are inverses of each other, i.e. $Z_{n}(X) H_{n}(X)=1$

Möbius polynomials $H_{2}(p), H_{3}(p), H_{4}(p)$ and $H_{5}(p)$ and their smallest positive roots
Theorem: Using Möbius inversion formulæ and Möbius polynomials, we derive a

Markov realisation of μ_{p}

There exists an explicit Markov chain $\left(\Theta_{k}^{p}\right)_{k \geq 1}$ over the set $\{\beta: \beta \preccurlyeq \Delta\}$ such that, for all finite words $\mathbf{A}=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$,

$$
\mu_{p}\left(\mathbf{A}^{\mathrm{Gar}}\right)=\mathbb{P}\left[\Theta_{1}^{p}=a_{1} \wedge \Theta_{2}^{p}=a_{2} \wedge \ldots \wedge \Theta_{k}^{p}=a_{k}\right] .
$$

Critical behaviour: What happens when $p \rightarrow r_{n}$?

Adding infinite braids:

1. Endow B_{n}^{+}with a topology generated by sets αB_{n}^{+}and consider its completion $\overline{B_{n}^{+}}$
2. Extend Garside normal forms to infinite braids (i.e. elements of $\partial B_{n}^{+}:=\overline{B_{n}^{+}} \backslash B_{n}^{+}$).

Increasing p :

1. Both μ_{p} and $\left(\Theta_{k}^{p}\right)_{k \geq 1}$ have limits μ_{∞} and $\left(\Theta_{k}^{\infty}\right)_{k \geq 1}$ when $p \rightarrow r_{n}$
2. $\left(\Theta_{k}^{\infty}\right)_{k \geq 1}$ is still a Markov realisation of μ_{∞}

Theorems:

1. The support of μ_{∞} is ∂B_{n}^{+};
2. Uniform probability measures on B_{n}^{k} converge weakly towards μ_{∞} when $k \rightarrow+\infty$.

Hence, we say that μ_{∞} is a uniform probability measure on infinite braids!

An infinite braid chosen uniformly at random
This work was inspired by the similar case of trace monoids [1].

References

