cars

 Courcelle's Theorem Made Dynamic

 Courcelle's Theorem Made Dynamic}

Patricia Bouyer-Decitre ${ }^{1}$, Vincent Jugé ${ }^{1} \&$ Nicolas Markey 1,2

linian

1: LSV, CNRS \& ENS Paris-Saclay \quad 2: IRISA, CNRS \& Inria \& Universite Rennes 1

Dynamic decision problems

Context: Given a decision problem, at what cost can we update our decision when one bit of the problem input is modified?

Dynamic complexity class: If precomputing auxiliary data in \mathcal{C} helps us treating input updates in \mathcal{C}^{\prime}, we say that the dynamic problem is in $\operatorname{Dyn}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$.

Example: Reachability in acyclic graphs is in Dyn(NL,FO) [5]
Decision problem: Given two vertices s, t of an acyclic graph $G=(V, E)$, does there exist a path from s to t in G ?
Input updates: Edge deletion or insertion (without creating cycles)
Auxiliary predicate: $\mathbf{R}(x, y)=$ "There exists a path from x to y ".

$\mathbf{R}(x, y) \leftarrow \mathbf{R}(x, y) \vee$ $(\mathbf{R}(x, u) \wedge \mathbf{R}(v, y))$

Deleting an edge (u, v)

$\mathbf{R}(x, y) \leftarrow(\mathbf{R}(x, y) \wedge \mathbf{R}(y, u)) \vee$ $(\mathbf{R}(x, y) \wedge \neg \mathbf{R}(x, u)) \vee$
$(\exists(a, b) \neq(u, v)$ s.t.
$\mathbf{R}(x, a) \wedge \mathbf{R}(b, y) \wedge$
$\mathbf{E}(a, b) \wedge \mathbf{R}(a, u) \wedge \neg \mathbf{R}(b, u))$

Courcelle's theorem

Ingredients: A graph $G=(V, E)$, a tree-decomposition \mathcal{D} of width κ of G, a succinct encoding enc of \mathcal{D} and an MSO formula φ

Tree-decomposition of width κ of G : Pair $\mathcal{D}=\langle\mathcal{T}$, bag \rangle, where $\mathcal{T}=(\mathcal{N}, \mathcal{E})$ is an ordered binary tree and bag is a mapping $\mathcal{N} \mapsto 2^{V}$ such that:

1. for each vertex $v \in V$, the set $\{n \in \mathcal{N}: v \in \operatorname{bag}(n)\}$ is connected and non-empty; 2. for each edge $e=\left(v_{1}, v_{2}\right) \in E$, the set $\left\{n \in \mathcal{N}:\left\{v_{1}, v_{2}\right\} \subseteq \mathbf{b a g}(n)\right\}$ is non-empty; 3. for each node $n \in \mathcal{N}$, the set $\mathbf{b a g}(n)$ is of cardinality at most $\kappa+1$.

Succinct encoding of \mathcal{D} : Triple enc $=\left\langle\chi, \lambda^{v}, \lambda^{e}\right\rangle$, where $\chi: V \mapsto\{0, \ldots, \kappa\}, \lambda^{v}$ $\mathcal{N} \mapsto 2^{\{0, \ldots, \kappa\}}$ and $\lambda^{e}: \mathcal{N} \mapsto 2^{\{0, \ldots, k\}^{2}}$ are mappings such that, for each node $n \in \mathcal{N}$: 1. the restriction of χ to $\operatorname{bag}(n)$ is injective (hence χ is a proper coloring of G); 2. $\lambda^{v}(n)=\left\{\chi(v): v \in \mathbf{b a g}^{\star}(n)\right\}$, where $\mathbf{b a g}^{\star}(n)=\mathbf{b a g}(n) \backslash \mathbf{b a g}(m)$ if m is n 's parent $=\mathbf{b a g}(n)$ if n has no parent;
3. $\lambda^{e}(n)=\left\{\left(\chi\left(v_{1}\right), \chi\left(v_{2}\right)\right):\left(v_{1}, v_{2}\right) \in E \cap \boldsymbol{b a g}^{\star}(n)^{2}\right\}$

Labeling every node $n \in \mathcal{T}$ with the pair $\left(\lambda^{v}(n), \lambda^{e}(n)\right)$ gives a succinctly encoded tree-decomposition of G.

Example: Succinctly encoded tree-decomposition of width 2

MSO formula: Formula over graphs with quantification on (sets of) edges and vertices
Example: The graph G is strongly connected iff G satisfies the formula

$$
\varphi \equiv \forall X \subseteq V . \forall x, y \in V . x \notin X \vee y \in X \vee(\exists u, v \in V \text { s.t. } \mathbf{E}(u, v) \wedge u \in X \wedge v \notin X)
$$

Theorem statement [3]

Given an integer κ and an MSO formula φ, there exists a tree automaton $\mathcal{A}_{\kappa, \varphi}$ such that, for all graphs G and all succinctly encoded tree-decompositions $\mathcal{T}^{\text {succinct }}$ of width κ of G : G satisfies φ iff $\mathcal{A}_{k, \varphi}$ accepts $\mathcal{T}^{\text {succinct }}$

Sequentially simulating runs of tree automata

Context: Bottom-up, deterministic automata perform computations in a distributed way. How can we simulate them on a single (sequential) computation thread?

Tree automata and distributed computation: The run of the tree automaton $\mathcal{A}=$ $\langle\Sigma, Q, \delta, \iota, F\rangle$ on a labeled tree $\mathcal{T}=(\mathcal{N}, \mathcal{E}, \Sigma)$ is the mapping $\rho: \mathcal{N} \mapsto Q$ such that:

1. $\rho(n)=\delta(\iota, \lambda(n), \iota)$ for all leaves n with label $\lambda(n) \in \Sigma$;
2. $\rho(n)=\delta\left(\rho\left(m_{1}\right), \lambda(n), \rho\left(m_{2}\right)\right)$ for all nodes n with label $\lambda(n)$ and children m_{1} and m_{2}

The automaton \mathcal{A} accepts the tree \mathcal{T}, with root τ, iff $\rho(\tau) \in F$.
Slicing \mathcal{T} : Choose subsets $\mathcal{S}_{0}, \ldots, \mathcal{S}_{\ell}$ of \mathcal{N} such that $\mathcal{S}_{0}=\emptyset, \mathcal{S}_{\ell}=\{\tau\}$ and, for $k \geqslant 1$:

1. there is a unique node n_{k} in $\mathcal{S}_{k} \backslash \mathcal{S}_{k-1} ; \quad 2$ its children (if any) belong to \mathcal{S}_{k-1}
\mathcal{S}_{0}
0
0
0
0
0

 1. the initial restriction $\rho \upharpoonright_{\mathcal{S}_{0}}$ is fixed; \quad 2. $\rho \upharpoonright_{\mathcal{S}_{\ell}}$ determines whether \mathcal{A} accepts \mathcal{T}; 3. $\rho\left\lceil_{\mathcal{S}_{k+1}}\right.$ depends on $\rho\left\lceil_{\mathcal{S}_{k}}\right.$ and $\lambda\left(n_{k+1}\right)$ only: we set $\rho \upharpoonright_{\mathcal{S}_{k+1}}=\Pi_{k}\left(\rho \upharpoonright_{\mathcal{S}_{k}}, \lambda\left(n_{k+1}\right)\right)$.

Sequential computations vs Dyck-path reachability

Dyck words: Well-parenthesized words (with multiple kinds of parentheses) Dyck paths in a labeled graph: Paths whose labels are Dyck words

Example: There are 7 Dyck paths in this graph. Will you find them all?

Simulating a successful run with paths: Create a graph Γ with:

1. vertices (k, π), where $\pi: \mathcal{S}_{k} \mapsto Q$ for $0 \leqslant k \leqslant \ell$;
2. edges $(k, \pi) \mapsto\left(k+1, \pi^{\prime}\right)$, where $\pi^{\prime}=\Pi_{k}\left(\pi, \lambda\left(n_{k+1}\right)\right)$.
\mathcal{A} accepts \mathcal{T} iff there is a path from $\left(0, \rho \upharpoonright_{\mathcal{S}_{0}}\right)$ to some vertex (ℓ, π) where $\pi(\tau) \in F$.
$仓$ Issue: Changing one label of \mathcal{T} may cause many changes in Γ !
Simulating a successful run with Dyck paths: Insert gadgets into Γ, i.e. add:
3. vertices $\left(k^{+}\right),\left(k^{-}\right)$and (k, σ)
4. egdes $(k, \pi) \xrightarrow{\pi^{+}}\left(k^{+}\right),\left(k^{+}\right) \xrightarrow{\lambda\left(n_{k+1}\right)^{+}}\left(k^{-}\right),\left(k^{-}\right) \xrightarrow{\sigma^{-}}(k, \sigma)$ and $(k, \sigma) \xrightarrow{\pi^{-}}\left(k+1, \pi^{\prime}\right)$
for $0 \leqslant k \leqslant \ell, \sigma \in \Sigma, \pi: \mathcal{S}_{k} \mapsto Q$ and $\pi^{\prime}=\Pi_{k}\left(\pi, \lambda\left(n_{k+1}\right)\right)$.
\mathcal{A} accepts \mathcal{T} iff there is a Dyck path from $\left(0, \rho \upharpoonright \mathcal{S}_{0}\right)$ to some vertex (ℓ, π) where $\pi(\tau) \in F$

$\longrightarrow \begin{gathered}\text { if } \lambda\left(n_{k+1}\right)=\sigma_{1}\end{gathered}$

Making Courcelle's theorem dynamic

Using two more ingredients in addition to the above constructions:

1. Computing logarithmic-depth tree-decompositions of width $4 \kappa+3$ in $\mathrm{L}[2,4]$;
2. Solving Dyck-path reachability problems in acyclic graphs in $\operatorname{Dyn}(\log C F L, F O)[6]$.

Dynamic Courcelle's theorem statement [1]

Let κ and φ be fixed. Given a maximal graph $G^{\star}=\left(V, E^{\star}\right)$ of tree-width κ, an initial subgraph $G=(V, E)$ with $E \subseteq E^{\star}$, and updating G by adding/deleting edges $e \in E^{\star}$ checking whether G satisfies φ is feasible in $\operatorname{Dyn}(\mathrm{L}, \mathrm{FO})$.

References

4. M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle. In FOCS'10, pages 143-152. IEEE Comp. Soc. Press, 2010.
5. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput. System Sci., 55(2):199-209, 1997. 6. V. Weber and T. Schwentick. Dynamic complexity theory revisited. Theory Comput. Syst., 40(4):355-377, 2007.
