
Courcelle’s Theorem Made Dynamic

Patricia Bouyer-Decitre1, Vincent Jugé1 & Nicolas Markey1,2

1: LSV, CNRS & ENS Paris-Saclay 2: IRISA, CNRS & Inria & Université Rennes 1

Courcelle’s Theorem Made Dynamic

Patricia Bouyer-Decitre1, Vincent Jugé1 & Nicolas Markey1,2

1: LSV, CNRS & ENS Paris-Saclay 2: IRISA, CNRS & Inria & Université Rennes 1

Dynamic decision problems

Context: Given a decision problem, at what cost can we update our decision when one bit
of the problem input is modified?

Dynamic complexity class: If precomputing auxiliary data in C helps us treating input
updates in C ′, we say that the dynamic problem is in Dyn(C,C ′).

Example: Reachability in acyclic graphs is in Dyn(NL,FO) [5]

Decision problem: Given two vertices s, t of an acyclic graph G = (V,E), does there
exist a path from s to t in G?
Input updates: Edge deletion or insertion (without creating cycles)
Auxiliary predicate: R(x, y) = “There exists a path from x to y”.

Inserting an edge (u, v)

u

v

x1 y1

x2
y2

R(x, y)←R(x, y) ∨
(R(x, u) ∧R(v, y))

Deleting an edge (u, v)

u
v

x1 y1

x2

y2x3

a
b

y3

R(x, y)← (R(x, y) ∧R(y, u)) ∨
(R(x, y) ∧ ¬R(x, u)) ∨
(∃(a, b) 6= (u, v) s.t.
R(x, a) ∧R(b, y) ∧
E(a, b) ∧R(a, u) ∧ ¬R(b, u))

Courcelle’s theorem
Ingredients: A graph G = (V,E), a tree-decomposition D of width κ of G, a succinct
encoding enc of D and an MSO formula ϕ

Tree-decomposition of width κ of G: Pair D = 〈T ,bag〉, where T = (N , E) is an
ordered binary tree and bag is a mapping N 7→ 2V such that:

1. for each vertex v ∈ V , the set {n ∈ N : v ∈ bag(n)} is connected and non-empty;

2. for each edge e = (v1, v2) ∈ E, the set {n ∈ N : {v1, v2} ⊆ bag(n)} is non-empty;

3. for each node n ∈ N , the set bag(n) is of cardinality at most κ + 1.

Succinct encoding of D: Triple enc = 〈χ, λv, λe〉, where χ : V 7→ {0, . . . , κ}, λv :
N 7→ 2{0,...,κ} and λe : N 7→ 2{0,...,κ}

2

are mappings such that, for each node n ∈ N :

1. the restriction of χ to bag(n) is injective (hence χ is a proper coloring of G);

2.λv(n) = {χ(v) : v ∈ bag?(n)}, where bag?(n) = bag(n) \ bag(m) if m is n’s parent
= bag(n) if n has no parent;

3.λe(n) = {(χ(v1), χ(v2)) : (v1, v2) ∈ E ∩ bag?(n)2}.
Labeling every node n ∈ T with the pair (λv(n), λe(n)) gives a succinctly encoded
tree-decomposition of G.

Example: Succinctly encoded tree-decomposition of width 2

Root

MSO formula: Formula over graphs with quantification on (sets of) edges and vertices

Example: The graph G is strongly connected iff G satisfies the formula

ϕ ≡ ∀X ⊆ V.∀x, y ∈ V.x /∈ X ∨ y ∈ X ∨ (∃u, v ∈ V s.t. E(u, v) ∧ u ∈ X ∧ v /∈ X)

Theorem statement [3]

Given an integer κ and an MSO formula ϕ, there exists a tree automaton Aκ,ϕ such that,
for all graphs G and all succinctly encoded tree-decompositions T succinct of width κ of G:

G satisfies ϕ iff Aκ,ϕ accepts T succinct.

Sequentially simulating runs of tree automata

Context: Bottom-up, deterministic automata perform computations in a distributed way.
How can we simulate them on a single (sequential) computation thread?

Tree automata and distributed computation: The run of the tree automaton A =
〈Σ, Q, δ, ι, F 〉 on a labeled tree T = (N , E ,Σ) is the mapping ρ : N 7→ Q such that:

1. ρ(n) = δ(ι, λ(n), ι) for all leaves n with label λ(n) ∈ Σ;

2. ρ(n) = δ(ρ(m1), λ(n), ρ(m2)) for all nodes n with label λ(n) and children m1 and m2.

The automaton A accepts the tree T , with root τ , iff ρ(τ ) ∈ F .

Slicing T : Choose subsets S0, . . . ,S` of N such that S0 = ∅, S` = {τ} and, for k > 1:

1. there is a unique node nk in Sk \ Sk−1; 2. its children (if any) belong to Sk−1.

S0 S1 S2 S3 S4 S5 S6 S7

Sequential simulation: Compute the run restrictions ρ�Sk for 0 6 k 6 `:

1. the initial restriction ρ�S0 is fixed; 2. ρ�S` determines whether A accepts T ;

3. ρ�Sk+1
depends on ρ�Sk and λ(nk+1) only: we set ρ�Sk+1

= Πk(ρ�Sk, λ(nk+1)).

Sequential computations vs Dyck-path reachability

Dyck words: Well-parenthesized words (with multiple kinds of parentheses)
Dyck paths in a labeled graph: Paths whose labels are Dyck words

Example: There are 7 Dyck paths in this graph. Will you find them all?

) ( , [ [

]

Simulating a successful run with paths: Create a graph Γ with:

1. vertices (k, π), where π : Sk 7→ Q for 0 6 k 6 `;

2. edges (k, π) 7→ (k + 1, π′), where π′ = Πk(π, λ(nk+1)).

A accepts T iff there is a path from (0, ρ�S0) to some vertex (`, π) where π(τ ) ∈ F .

B Issue: Changing one label of T may cause many changes in Γ!

Simulating a successful run with Dyck paths: Insert gadgets into Γ, i.e. add:

1. vertices (k+), (k−) and (k, σ) ;

2. egdes (k, π)
π+−→ (k+), (k+)

λ(nk+1)
+

−−−−→ (k−), (k−)
σ−−→ (k, σ) and (k, σ)

π−−→ (k + 1, π′)

for 0 6 k 6 `, σ ∈ Σ, π : Sk 7→ Q and π′ = Πk(π, λ(nk+1)).

A accepts T iff there is a Dyck path from (0, ρ�S0) to some vertex (`, π) where π(τ ) ∈ F .

(k, π0)

(k, π1)

(k, π2)

(k + 1, π′0)

(k + 1, π′1)

(k + 1, π′2)

(k, π0)

(k, π1)

(k, π2)

π+
0

π+
1

π+
2

(k+)
σ+

1

σ+
2

(k−)

(k, σ1)

(k, σ2)

σ−1

σ−2

π−1
π−0
π−2
π−2
π−0
π−1

(k + 1, π′0)

(k + 1, π′1)

(k + 1, π′2)

Naive graph simulation Dyck graph simulation

edge present
if λ(nk+1) = σ1

edge present
if λ(nk+1) = σ2

edge present

at all times

Making Courcelle’s theorem dynamic

Using two more ingredients in addition to the above constructions:

1. Computing logarithmic-depth tree-decompositions of width 4κ + 3 in L [2, 4];

2. Solving Dyck-path reachability problems in acyclic graphs in Dyn(LogCFL,FO) [6].

Dynamic Courcelle’s theorem statement [1]

Let κ and ϕ be fixed. Given a maximal graph G? = (V,E?) of tree-width κ, an initial
subgraph G = (V,E) with E ⊆ E?, and updating G by adding/deleting edges e ∈ E?:

checking whether G satisfies ϕ is feasible in Dyn(L,FO).

References
1. P. Bouyer, V. Jugé, and N. Markey. Courcelle’s theorem made dynamic. coRR/1702.05183, 2017.

2. H. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1–21, 1993.

3. B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs.
Inform. and Comput., 85(1):12–75, 1990.

4. M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle.
In FOCS’10, pages 143–152. IEEE Comp. Soc. Press, 2010.

5. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput. System Sci., 55(2):199–209, 1997.

6. V. Weber and T. Schwentick. Dynamic complexity theory revisited. Theory Comput. Syst., 40(4):355–377, 2007.


