Combinatorics of braids

Vincent Jugé

Université Paris Diderot (IRIF)
05/02/2016

A PhD about braids?

A PhD about braids?

A PhD about braids?

Some questions of interest...

A PhD about braids?

Some questions of interest...
(1) What are braids?

A PhD about braids?

Some questions of interest...
(1) What are braids?

Mathematical objects interacting with each other.

A PhD about braids?

Some questions of interest. . .
(1) What are braids? Mathematical objects interacting with each other.
(2) What is a complicated braid?

A PhD about braids?

Some questions of interest. . .
(1) What are braids? Mathematical objects interacting with each other.
(2) What is a complicated braid?

Define notions of complexity.

A PhD about braids?

Some questions of interest. . .
(1) What are braids? Mathematical objects interacting with each other.
(2) What is a complicated braid?

Define notions of complexity.
(3) How do complicated braids typically behave?

A PhD about braids?

Some questions of interest. . .

(1) What are braids? Mathematical objects interacting with each other.
(2) What is a complicated braid?

Define notions of complexity.
(3) How do complicated braids typically behave?

Choose a dynamic framework/probability measure.

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated monoid

$$
\mathcal{B}_{n}=\langle
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right|
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right|
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right|
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\left.\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(\text { if }|i-j| \geqslant 2)\right\rangle .
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\left.\mathcal{B}_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(\text { if }|i-j| \geqslant 2)\right\rangle .
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\mathcal{B}_{n}=\left\langle\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(\text { if }|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{array}
\end{array}\right\rangle .\right.
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely generated group

$$
\mathcal{B}_{n}=\left\langle\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(\text { if }|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{array}
\end{array}\right\rangle .\right.
$$

What are braids? - Algebra

Isotopy classes of braid diagrams (Artin 1926)

Finitely presented group

$$
\mathcal{B}_{n}=\left\langle\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{l}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(\text { if }|i-j| \geqslant 2) \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{array}\right.\right\rangle .\right.
$$

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial lamination

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

Braid acting on a lamination

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

Braid acting on a lamination

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

Braid acting on a lamination

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

Braid acting on a lamination

What are braids? - Geometry

Isotopy classes of laminations of the punctured plane (Birman 1975)

Trivial class of laminations

Non-trivial class of laminations

Braid acting on a lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

Curve diagram

What are braids? - Geometry
Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

Curve diagram

What are braids? - Geometry

Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

Curve diagram

What are braids? - Geometry

Braids are isotopy classes of which laminations?

Open lamination

Closed lamination

Curve diagram

What are braids? - Checking braid equality
Garside normal form (Garside 1969, Adian 1984)
(1) The monoid of positive braids $\mathcal{B}_{n}^{+}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle^{+}$is a lattice for the divisibility ordering $\leqslant . \quad\left(\alpha \leqslant \beta \Leftrightarrow \exists \gamma \in \mathcal{B}_{n}^{+}, \alpha \gamma=\beta\right)$

What are braids? - Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

(1) The monoid of positive braids $\mathcal{B}_{n}^{+}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle^{+}$is a lattice for the divisibility ordering $\leqslant . \quad\left(\alpha \leqslant \beta \Leftrightarrow \exists \gamma \in \mathcal{B}_{n}^{+}, \alpha \gamma=\beta\right)$

What are braids? - Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

(1) The monoid of positive braids $\mathcal{B}_{n}^{+}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle^{+}$is a lattice for the divisibility ordering \leqslant.

$$
\left(\alpha \leqslant \beta \Leftrightarrow \exists \gamma \in \mathcal{B}_{n}^{+}, \alpha \gamma=\beta\right)
$$

(2) There exists a Garside element $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(3) The Garside normal form of a positive braid $\alpha \in \mathcal{B}_{n}^{+}$is the smallest word $\operatorname{Gar}(\alpha)=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ such that:

$$
\alpha=a_{1} a_{2} \ldots a_{k} ; \quad \quad a_{i}=\Delta_{n} \wedge\left(\left(a_{1} \ldots a_{i-1}\right)^{-1} \alpha\right) .
$$

What are braids? - Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

(1) The monoid of positive braids $\mathcal{B}_{n}^{+}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle^{+}$is a lattice for the divisibility ordering \leqslant.

$$
\left(\alpha \leqslant \beta \Leftrightarrow \exists \gamma \in \mathcal{B}_{n}^{+}, \alpha \gamma=\beta\right)
$$

(2) There exists a Garside element $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(3) The Garside normal form of a positive braid $\alpha \in \mathcal{B}_{n}^{+}$is the smallest word $\operatorname{Gar}(\alpha)=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}$ such that:

$$
\alpha=a_{1} a_{2} \ldots a_{k} ; \quad \quad a_{i}=\Delta_{n} \wedge\left(\left(a_{1} \ldots a_{i-1}\right)^{-1} \alpha\right) .
$$

The Garside normal form:

- can be extended to the group \mathcal{B}_{n};
- is automatic: for all $i \in\{1, \ldots, n-1\}$, the languages

$$
\left\{\left(\mathbf{G} \operatorname{ar}(\alpha), \mathbf{G a r}\left(\alpha \sigma_{i}\right)\right): \alpha \in \mathcal{B}_{n}\right\} ; \quad \bullet\left\{\left(\mathbf{G} \operatorname{ar}(\alpha), \mathbf{\operatorname { G a r }}\left(\sigma_{i} \alpha\right)\right): \alpha \in \mathcal{B}_{n}\right\}
$$ are regular;

- solves the equality problem: $\alpha=\beta$ iff $\operatorname{Gar}(\alpha)=\boldsymbol{\operatorname { G a r }}(\beta)$.

What are braids? - Checking braid equality
Tight laminations/curve diagrams
A lamination/curve diagram is tight if it minimises crossings \pm or $\|^{\boldsymbol{\sim}}$.

What are braids? - Checking braid equality
Tight laminations/curve diagrams
A lamination/curve diagram is tight if it minimises crossings $\underset{\boldsymbol{T}}{\boldsymbol{+}}$ or \boldsymbol{H}^{-}.
Non-tight laminations/curve diagrams

What are braids? - Checking braid equality
Tight laminations/curve diagrams
A lamination/curve diagram is tight if it minimises crossings $\underset{+}{\perp}$ or $-\mid$.
Non-tight laminations/curve diagrams

Tight laminations/curve diagrams

What are braids? - Checking braid equality

Tight laminations/curve diagrams
A lamination/curve diagram is tight if it minimises crossings $\underset{+}{\perp}$ or $-\mid$.
Non-tight laminations/curve diagrams

Tight laminations/curve diagrams

- Two tight laminations/curve diagrams represent the same braid iff they are visibly isotopic to each other.

What are braids? - Checking braid equality

Tight laminations/curve diagrams
A lamination/curve diagram is tight if it minimises crossings $\underset{+}{\perp}$ or $-\mid$.
Non-tight laminations/curve diagrams

Tight laminations/curve diagrams

- Two tight laminations/curve diagrams represent the same braid iff they are visibly isotopic to each other.

What are braids? - Checking complexity
Which braid is the most complicated?

What are braids? - Checking complexity
Which braid is the most complicated?

Several approaches to braid complexity

- "Naive" Artin length: $\quad \mathrm{E}>\mathrm{F}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}$;
- $\mathbf{A}=\sigma_{1} \sigma_{2} \sigma_{1}:$
$|\mathbf{A}|=3 ;$
- $\mathbf{D}=\sigma_{1}^{4}$:
$|D|=4 ;$
- $\mathbf{B}=\sigma_{1} \sigma_{2} \overline{\sigma_{1}}:$
$|B|=3 ;$
- $\mathbf{E}=\left(\sigma_{1} \sigma_{2}\right)^{3}$:
$|E|=6 ;$
- $\mathbf{C}=\sigma_{1} \overline{\sigma_{2}} \sigma_{1}$:
$|\mathbf{C}|=3 ;$
- $\mathbf{F}=\sigma_{1}^{2} \sigma_{2} \overline{\sigma_{1} \sigma_{2}}$:
$|\mathbf{F}|=5$.

What are braids? - Checking complexity
Which braid is the most complicated?

Several approaches to braid complexity

- "Naive" Artin length:
$\mathrm{E}>\mathrm{F}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}$;
- "Real" Artin length:
$\mathrm{E}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}=\mathrm{F}$;
- $\mathbf{A}=\sigma_{1} \sigma_{2} \sigma_{1}:$
$|\mathbf{A}|=3 ;$
- $\mathbf{D}=\sigma_{1}^{4}$:
$|\mathbf{D}|=4 ;$
- $\mathbf{B}=\sigma_{1} \sigma_{2} \overline{\sigma_{1}}:$
$|B|=3 ;$
- $\mathbf{E}=\left(\sigma_{1} \sigma_{2}\right)^{3}$:
$|E|=6 ;$
- $\mathbf{C}=\sigma_{1} \overline{\sigma_{2}} \sigma_{1}$:
$|C|=3 ;$
- $\mathbf{F}=\sigma_{1} \overline{\sigma_{2}} \sigma_{1}$:
$|\mathbf{F}|=3$.

What are braids? - Checking complexity
Which braid is the most complicated?

Several approaches to braid complexity

- "Naive" Artin length:
$\mathrm{E}>\mathrm{F}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}$;
- "Real" Artin length:
$\mathrm{E}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}=\mathrm{F}$;
- Symmetric Garside length:
$\mathrm{D}>\mathrm{C}=\mathrm{F}>\mathrm{B} \approx \mathrm{E}>\mathrm{A}$;
- $\mathbf{A}=\sigma_{1} \sigma_{2} \sigma_{1}$:
$|\mathbf{A}|=1 ;$
- $\mathbf{D}=\sigma_{1} \cdot \sigma_{1} \cdot \sigma_{1} \cdot \sigma_{1}:$
$|D|=4 ;$
- $\mathbf{B}=\overline{\sigma_{1}} \cdot \sigma_{1} \sigma_{2}$:
$|B|=2 ;$
- $E=\Delta_{3} \cdot \Delta_{3}$:
$|E|=2 ;$
- $\mathbf{C}=\overline{\sigma_{2} \sigma_{1}} \cdot \sigma_{2} \sigma_{1} \cdot \sigma_{1}$:
$|\mathbf{C}|=3 ;$
- $\mathrm{F}=\mathrm{C}$:
$|\mathbf{F}|=3$.

What are braids? - Checking complexity
Which braid is the most complicated?

Several approaches to braid complexity

- "Naive" Artin length:
$\mathrm{E}>\mathrm{F}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}$;
- "Real" Artin length:
$\mathrm{E}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}=\mathrm{F}$;
- Symmetric Garside length:
$\mathrm{D}>\mathrm{C}=\mathrm{F}>\mathrm{B} \approx \mathrm{E}>\mathrm{A} ;$
- Open laminated complexity: $\mathbf{C}=\mathrm{F}>\mathrm{D} \approx \mathrm{E}>\mathrm{B}>\mathrm{A}$;
$|A|=6$
$|\mathbf{B}|=8$
$|\mathbf{C}|=|\mathbf{F}|=14$
$|\mathbf{D}|=10$
$|\mathbf{E}|=10$

What are braids? - Checking complexity
Which braid is the most complicated?

Several approaches to braid complexity

- "Naive" Artin length:
$\mathrm{E}>\mathrm{F}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}$;
- "Real" Artin length:
$\mathrm{E}>\mathrm{D}>\mathrm{A} \approx \mathrm{B} \approx \mathrm{C}=\mathrm{F}$;
- Symmetric Garside length:
$\mathrm{D}>\mathrm{C}=\mathrm{F}>\mathrm{B} \approx \mathrm{E}>\mathrm{A} ;$
- Open laminated complexity: $\mathbf{C}=\mathrm{F}>\mathrm{D} \approx \mathrm{E}>\mathrm{B}>\mathrm{A}$;
- Diagrammatic complexity: $\mathrm{C}=\mathrm{F}>\mathrm{D} \approx \mathrm{E}>\mathrm{B}>\mathrm{A}$.

What are braids? - Checking complexity

How fast can you compute the complexity of a braid $\alpha \in \mathcal{B}_{n}$ of length k ?

- Artin length:

$$
\begin{array}{lr}
\text { coNP-complete }(n, k) & \text { (Paterson \& Razborov 1991); } \\
\text { polynomial }(n \leqslant 3, k) & \text { (Sabalka 2003); } \\
\text { open }(n \geqslant 5, k) ; &
\end{array}
$$

What are braids? - Checking complexity

How fast can you compute the complexity of a braid $\alpha \in \mathcal{B}_{n}$ of length k ?

- Artin length: coNP-complete(n, k) (Paterson \& Razborov 1991); polynomial $(n \leqslant 3, k) \quad$ (Sabalka 2003); open $(n \geqslant 5, k)$;
- Symmetric Garside length: polynomial (n, k)
(Thurston 1988);

What are braids? - Checking complexity

How fast can you compute the complexity of a braid $\alpha \in \mathcal{B}_{n}$ of length k ?

- Artin length: coNP-complete(n, k) (Paterson \& Razborov 1991); polynomial $(n \leqslant 3, k) \quad$ (Sabalka 2003);
open $(n \geqslant 5, k)$;
- Symmetric Garside length: polynomial (n, k)
(Thurston 1988);
- Open laminated complexity: polynomial(n, k) (Dynnikov \& Wiest 2004);

What are braids? - Checking complexity

How fast can you compute the complexity of a braid $\alpha \in \mathcal{B}_{n}$ of length k ?

- Artin length: coNP-complete(n, k) (Paterson \& Razborov 1991);

$$
\text { polynomial }(n \leqslant 3, k) \quad \text { (Sabalka 2003); }
$$

$$
\text { open }(n \geqslant 5, k)
$$

- Symmetric Garside length: polynomial (n, k)
(Thurston 1988);
- Open laminated complexity: polynomial (n, k)
(Dynnikov \& Wiest 2004);
- Diagrammatic complexity: polynomial(n, k) (Dynnikov \& Wiest 2004).

Algebra
Geometry

Class of words
$\mathcal{B}_{n}=\langle$ generators $|$ relations \rangle
Garside normal form (regular)

Class of drawings
$\mathcal{B}_{n}=\{$ tight drawings $\}$

Algebra
Geometry

Braid

Class of words
$\mathcal{B}_{n}=\langle$ generators $|$ relations \rangle
Garside normal form (regular)

Class of drawings
$\mathcal{B}_{n}=\{$ tight drawings $\}$
Relaxation normal form (regular) Part 1/4

Algebra

Geometry

Braid

Class of words
$\mathcal{B}_{n}=\langle$ generators $|$ relations \rangle
Garside normal form (regular)

Class of drawings

$$
\mathcal{B}_{n}=\{\text { tight drawings }\}
$$

Relaxation normal form (regular) Part 1/4

Garside: $\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|}$ rational Relaxation: $\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|}$ rational
Artin: $\sum_{\alpha \in \mathcal{B}_{3}} z^{|\alpha|}$ rational
Artin: $\sum_{\alpha \in \mathcal{B}_{n \geqslant 4}} z^{|\alpha|}$?

Braid

Class of words
$\mathcal{B}_{n}=\langle$ generators $|$ relations \rangle
Garside normal form (regular)

Class of drawings

$$
\mathcal{B}_{n}=\{\text { tight drawings }\}
$$

Relaxation normal form (regular) Part 1/4

Garside: $\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|}$ rational
Relaxation: $\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|}$ rational
Artin: $\sum_{\alpha \in \mathcal{B}_{3}} z^{|\alpha|}$ rational
Artin: $\sum_{\alpha \in \mathcal{B}_{n \geqslant 4}} z^{|\alpha|}$?
Geometric: $\sum_{\alpha \in \mathcal{B}_{3}} z^{|\alpha|} \quad \neg$ rational
Part 2/4 \quad-holonomic
Geometric: $\sum_{\alpha \in \mathcal{B}_{n \geqslant 4}} z^{|\alpha|}$?

Depth-first exploration

Random walk

Which normal forms converge?
(Vershik, 2000)

Uniform measure on positive braids of given (Artin) size

What do Garside normal forms of large random braids look like?
(Gebhardt \& Tawn, 2013)

Markov-Ivanovsky normal form
(Vershik \& Malyutin, 2007)

Depth-first exploration
 Width-first exploration

Random walk

Which normal forms converge?
(Vershik, 2000)

Uniform measure on positive braids of given (Artin) size

What do Garside normal forms of large random braids look like?
(Gebhardt \& Tawn, 2013)

Markov-Ivanovsky normal form
(Vershik \& Malyutin, 2007)
Garside normal forms
Part 3/4 (with J. Mairesse)

Depth-first exploration
 Width-first exploration

Braids of large size

Random walk

Which normal forms converge?
(Vershik, 2000)
Uniform measure on positive braids of given (Artin) size

What do Garside normal forms of large random braids look like?
(Gebhardt \& Tawn, 2013)
Markov-Ivanovsky normal form
(Vershik \& Malyutin, 2007)
Garside normal forms
Part 3/4
(with J. Mairesse)

Uniform measure on infinite positive braids
Part 4/4 (with S. Abbes, S. Gouëzel \& J. Mairesse)

Contents

(1) Geometric aspects of braids

- Right relaxation normal form
- Counting braids with a given geometric complexity
(2) Algebraic aspects of braids
- Garside normal form and random walks
- Drawing infinite braids uniformly at random
(3) Conclusion

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

While your lamination is not trivial:

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc;

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
[2ص3]

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
[2』3]

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
[2』3]

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
[2ص3]

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right (or left) neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Moves performed:

$$
[2 \curvearrowleft 3][2 \curvearrowleft 3][1 \backsim 2]
$$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right (or left) neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Trivial lamination!

Moves performed:
$[2 \curvearrowleft 3][2 \curvearrowleft 3][1 \sim 2]$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right (or left) neighbour arc (and remember it);
(3) Relax your diagram!

What is the right relaxation normal form?

Move your rightmost tensed puncture and relax!

Trivial lamination!

Moves performed:

$$
[2 \curvearrowleft 3][2 \curvearrowleft 3][1 \curvearrowleft 2]
$$

Relaxation normal form (RNF):
$[1 \triangleleft 2] \cdot[2 \frown 3] \cdot[2 \frown 3]$
$[k \backsim \ell]=\sigma_{k} \ldots \sigma_{\ell-1}$
$[k \frown \ell]=\overline{\sigma_{k}} \ldots \overline{\sigma_{\ell-1}}$

While your lamination is not trivial:
(1) Select the rightmost (mobile) puncture that lies inside a bigon;
(2) Slide it along its right (or left) neighbour arc (and remember it);
(3) Relax your diagram!

Tight closed lamination, cell map and lamination/arc trees
Tight closed lamination

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Cell map

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Cell map

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Cell map

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Cell map

Tight closed lamination, cell map and lamination/arc trees
Tight closed lamination

Lamination trees (LT)

Tight closed lamination, cell map and lamination/arc trees
Tight closed lamination

Lamination trees (LT)

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Cell map

Arc trees

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Cell map

Arc trees

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Cell map

Arc trees

Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Lamination trees (LT)

Cell map

Arc trees

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{l t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \triangleleft \ell])=\operatorname{RNF}(\alpha) \cdot[k \triangleleft \ell]$;

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{l t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \triangleleft \ell])=\operatorname{RNF}(\alpha) \cdot[k \triangleleft \ell]$;
- compute analogous subtrees $\operatorname{lt}(\alpha[k \frown \ell])$
(if needed).

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{I t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \frown \ell])=\operatorname{RNF}(\alpha) \cdot[k \frown \ell]$;
- compute analogous subtrees $\operatorname{lt}(\alpha[k \frown \ell])$

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{I t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \triangleleft \ell])=\operatorname{RNF}(\alpha) \cdot[k \triangleleft \ell]$;
- compute analogous subtrees $\operatorname{lt}(\alpha[k \frown \ell])$

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{I t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \triangleleft \ell])=\operatorname{RNF}(\alpha) \cdot[k \triangleleft \ell]$;
- compute analogous subtrees $\operatorname{lt}(\alpha[k \frown \ell])$

After a careful case analysis. . .

Given two braids $\alpha \in \mathcal{B}_{n}$ and [$k \frown \ell$], remembering small-size subtrees $\mathbf{I t}(\alpha)$ of $\mathbf{L T}(\alpha)$ is enough to:

- check whether $\operatorname{RNF}(\alpha[k \frown \ell])=\operatorname{RNF}(\alpha) \cdot[k \frown \ell]$;
- compute analogous subtrees $\operatorname{lt}(\alpha[k \frown \ell])$

Theorem (J. 2015)

The right relaxation normal form is regular.

Going further

Some additional results

- Memory requirements: nearly optimal (up to a ratio $\leqslant 20$);
- Dehornoy ordering: σ-positivity \Leftrightarrow RNF in a regular language.

Going further

Some additional results

- Memory requirements: nearly optimal (up to a ratio $\leqslant 20$);
- Dehornoy ordering: σ-positivity \Leftrightarrow RNF in a regular language.

and open questions

- Is the right relaxation normal form (bi-)automatic?
(Yes if $n \leqslant 3$)
- Regularity of other transmission-relaxation normal forms? (wide open)

Contents

(1) Geometric aspects of braids

- Right relaxation normal form
- Counting braids with a given geometric complexity
(2) Algebraic aspects of braids
- Garside normal form and random walks
- Drawing infinite braids uniformly at random
(3) Conclusion

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?

$$
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3
$$

Tight open lamination

Tight closed lamination

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?

$$
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3
$$

- diagrammatic complexity?

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?
- diagrammatic complexity?

$$
\begin{array}{r}
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3 \\
\text { No for } n \geqslant 4
\end{array}
$$

Tight open laminations

$\left|\sigma_{1} \overline{\sigma_{2} \sigma_{3}}\right|_{o}=11$

$\left|\sigma_{1}^{2}{\overline{\sigma_{3}}}^{2}\right|_{o}=11$

Tight curve diagrams

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?
- diagrammatic complexity?

$$
\begin{array}{r}
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3 \\
\\
\text { No for } n \geqslant 4
\end{array}
$$

- inverse diagrammatic complexity?

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?
- diagrammatic complexity?
- inverse diagrammatic complexity?

Tight open lamination

$$
\begin{array}{r}
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3 \\
\text { No for } n \geqslant 4 \\
\text { Yes: }|\bar{\alpha}|_{d}=|\alpha|_{o}
\end{array}
$$

Inverse tight curve diagram

Which complexity should we look at?

Knowing the open laminated complexity of α, can we compute its:

- closed laminated complexity?
- diagrammatic complexity?
- inverse diagrammatic complexity?

$$
\begin{array}{r}
\text { Yes: }|\alpha|_{c}=|\alpha|_{o}+n+3 \\
\text { No for } n \geqslant 4 \\
\text { Yes: }|\bar{\alpha}|_{d}=|\alpha|_{o}
\end{array}
$$

Let us compute geometric generating functions!

$$
\begin{gathered}
\mathcal{O}_{n}(z)=\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|_{0}} \quad \mathcal{C}_{n}(z)=\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|_{c}} \quad \mathcal{D}_{n}(z)=\sum_{\alpha \in \mathcal{B}_{n}} z^{|\alpha|_{d}} \\
\mathcal{C}_{n}(z)=z^{n+3} \mathcal{O}_{n}(z)=z^{n+3} \mathcal{D}_{n}(z)
\end{gathered}
$$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\left\langle\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\left\langle\left(0, x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram
 and encoding them!

Coordinates: $\left\langle\left(0, x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\left\langle\left(0, x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\left\langle(0,1,2,2,0),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\left\langle(0,1,2,2,0),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\langle(0,1,2,2,0),(1,3,4,0)\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\langle(0,1,2,2,0),(1,3,4,0)\rangle$

Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams

Tight curve diagram

Tight generalised curve diagram

and encoding them!

Coordinates: $\langle(0,1,2,2,0),(1,3,4,0)\rangle$

$$
\sum_{i=1}^{n-1} x_{i}=\frac{|\alpha|_{d}+1-n}{2}: \quad \text { Let us compute } \mathcal{G}_{n}(z)=\sum_{k \geqslant 0} g_{n, k} z^{k}=\sqrt{z}^{1-n} \mathcal{D}_{n}(\sqrt{z})!
$$

And finally...

Theorem (J. 2015)

In the 3 -strand braid group \mathcal{B}_{3}, we have:

- $\mathcal{G}_{3}(z)=2 \frac{1+2 z-z^{2}}{z^{2}\left(1-z^{2}\right)}\left(\sum_{k \geqslant 3} \varphi(k) z^{k}\right)+\frac{1-3 z^{2}}{1-z^{2}}$ and
- $g_{3, k}=\mathbf{1}_{k=0}+2\left(\varphi(k+2)-\mathbf{1}_{k \in 2 \mathbb{Z}}+2 \sum_{i=1}^{\lfloor k / 2\rfloor} \varphi(k+3-2 i)\right) \mathbf{1}_{k \geqslant 1}$,
where $\varphi(k)=\#\{\ell: 1 \leqslant \ell \leqslant k$ and $k \wedge \ell=1\}$.

And finally...

Theorem (J. 2015)

In the 3 -strand braid group \mathcal{B}_{3}, we have:

- $\mathcal{G}_{3}(z)=2 \frac{1+2 z-z^{2}}{z^{2}\left(1-z^{2}\right)}\left(\sum_{k \geqslant 3} \varphi(k) z^{k}\right)+\frac{1-3 z^{2}}{1-z^{2}}$ and
- $g_{3, k}=\mathbf{1}_{k=0}+2\left(\varphi(k+2)-\mathbf{1}_{k \in 2 \mathbb{Z}}+2 \sum_{i=1}^{\lfloor k / 2\rfloor} \varphi(k+3-2 i)\right) \mathbf{1}_{k \geqslant 1}$,
where $\varphi(k)=\#\{\ell: 1 \leqslant \ell \leqslant k$ and $k \wedge \ell=1\}$.
Consequence: $\mathcal{G}_{3}(z)$ is not
- rational;

And finally...

Theorem (J. 2015)

In the 3 -strand braid group \mathcal{B}_{3}, we have:

- $\mathcal{G}_{3}(z)=2 \frac{1+2 z-z^{2}}{z^{2}\left(1-z^{2}\right)}\left(\sum_{k \geqslant 3} \varphi(k) z^{k}\right)+\frac{1-3 z^{2}}{1-z^{2}}$ and
- $g_{3, k}=\mathbf{1}_{k=0}+2\left(\varphi(k+2)-\mathbf{1}_{k \in 2 \mathbb{Z}}+2 \sum_{i=1}^{\lfloor k / 2\rfloor} \varphi(k+3-2 i)\right) \mathbf{1}_{k \geqslant 1}$,
where $\varphi(k)=\#\{\ell: 1 \leqslant \ell \leqslant k$ and $k \wedge \ell=1\}$.
Consequence: $\mathcal{G}_{3}(z)$ is not
- rational;
$\left(\mathcal{G}_{3}(z) \notin \mathbb{R}(z)\right)$
- algebraic;
(for all $P \in \mathbb{R}[z]$, if $P\left(\mathcal{G}_{3}^{(i)}(z)\right)=0$, then $P=0$)

And finally...

Theorem (J. 2015)

In the 3 -strand braid group \mathcal{B}_{3}, we have:

- $\mathcal{G}_{3}(z)=2 \frac{1+2 z-z^{2}}{z^{2}\left(1-z^{2}\right)}\left(\sum_{k \geqslant 3} \varphi(k) z^{k}\right)+\frac{1-3 z^{2}}{1-z^{2}}$ and
- $g_{3, k}=\mathbf{1}_{k=0}+2\left(\varphi(k+2)-\mathbf{1}_{k \in 2 \mathbb{Z}}+2 \sum_{i=1}^{\lfloor k / 2\rfloor} \varphi(k+3-2 i)\right) \mathbf{1}_{k \geqslant 1}$,
where $\varphi(k)=\#\{\ell: 1 \leqslant \ell \leqslant k$ and $k \wedge \ell=1\}$.
Consequence: $\mathcal{G}_{3}(z)$ is not
- rational;
$\left(\mathcal{G}_{3}(z) \notin \mathbb{R}(z)\right)$
- algebraic;
(for all $P \in \mathbb{R}[z]$, if $P\left(\mathcal{G}_{3}^{(i)}(z)\right)=0$, then $P=0$)
- holonomic.
(for all $P_{0}, \ldots, P_{k} \in \mathbb{R}[z]$, if $\sum_{i=0}^{k} P_{i}(z) \mathcal{G}_{3}^{(i)}(z)=0$, then $P_{0}=\ldots=P_{k}=0$)

And finally...

Theorem (J. 2015)

In the 3 -strand braid group \mathcal{B}_{3}, we have:

- $\mathcal{G}_{3}(z)=2 \frac{1+2 z-z^{2}}{z^{2}\left(1-z^{2}\right)}\left(\sum_{k \geqslant 3} \varphi(k) z^{k}\right)+\frac{1-3 z^{2}}{1-z^{2}}$ and
- $g_{3, k}=\mathbf{1}_{k=0}+2\left(\varphi(k+2)-\mathbf{1}_{k \in 2 \mathbb{Z}}+2 \sum_{i=1}^{\lfloor k / 2\rfloor} \varphi(k+3-2 i)\right) \mathbf{1}_{k \geqslant 1}$, where $\varphi(k)=\#\{\ell: 1 \leqslant \ell \leqslant k$ and $k \wedge \ell=1\}$.

Consequence: $\mathcal{G}_{3}(z)$ is not

- rational;
$\left(\mathcal{G}_{3}(z) \notin \mathbb{R}(z)\right)$
- algebraic;
(for all $P \in \mathbb{R}[z]$, if $P\left(\mathcal{G}_{3}^{(i)}(z)\right)=0$, then $P=0$)
- holonomic.
(for all $P_{0}, \ldots, P_{k} \in \mathbb{R}[z]$, if $\sum_{i=0}^{k} P_{i}(z) \mathcal{G}_{3}^{(i)}(z)=0$, then $P_{0}=\ldots=P_{k}=0$)
$\mathcal{G}_{3}(z)$ is more complicated than $\sum_{\alpha \in \mathcal{B}_{3}} z^{|\alpha|_{\text {Artin }}}=\frac{(1+z)\left(1-z+z^{2}-2 z^{3}\right)}{(2-z)(1-2 z)\left(1-z-z^{2}\right)}$!

Contents

(1) Geometric aspects of braids

- Right relaxation normal form
- Counting braids with a given geometric complexity
(2) Algebraic aspects of braids
- Garside normal form and random walks
- Drawing infinite braids uniformly at random

(3) Conclusion

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the σ^{2}-free braids (elements of $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \forall \sigma_{i} u, v \in \mathcal{B}_{n}, \alpha \neq u \sigma_{i}^{2} v\right\}$).

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the σ^{2}-free braids (elements of $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \forall \sigma_{i} u, v \in \mathcal{B}_{n}, \alpha \neq u \sigma_{i}^{2} v\right\}$).

Some properties of simple braids:
(1) \mathcal{S}_{n} is a sublattice of \mathcal{B}_{n}^{+};

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the σ^{2}-free braids (elements of $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \forall \sigma_{i} u, v \in \mathcal{B}_{n}, \alpha \neq u \sigma_{i}^{2} v\right\}$).

Some properties of simple braids:
(1) \mathcal{S}_{n} is a sublattice of \mathcal{B}_{n}^{+};
(2) \mathcal{S}_{n} is a two-way Garside family (closed under $\vee, \leqslant, \vee_{*}$ and \geqslant);

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the σ^{2}-free braids (elements of $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \forall \sigma_{i} u, v \in \mathcal{B}_{n}, \alpha \neq u \sigma_{i}^{2} v\right\}$).

Some properties of simple braids:
(1) \mathcal{S}_{n} is a sublattice of \mathcal{B}_{n}^{+};
(2) \mathcal{S}_{n} is a two-way Garside family (closed under $\vee, \leqslant, \vee_{*}$ and \geqslant);
(3) local exit criterion
(for all $\alpha \in \mathcal{S}_{n}$ and $\sigma_{i}, \alpha \geqslant \sigma_{i} \Leftrightarrow \alpha \sigma_{i} \notin \mathcal{S}_{n}$).

Combinatorics of positive braids

Simple positive braids

Simple positive braids are:

- the left divisors of $\Delta_{n}=\bigvee\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the right divisors of $\Delta_{n}=\bigvee_{*}\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$;
- the σ^{2}-free braids (elements of $\mathcal{S}_{n}=\left\{\alpha \in \mathcal{B}_{n}: \forall \sigma_{i} u, v \in \mathcal{B}_{n}, \alpha \neq u \sigma_{i}^{2} v\right\}$).

Some properties of simple braids:
(1) \mathcal{S}_{n} is a sublattice of \mathcal{B}_{n}^{+};
(2) \mathcal{S}_{n} is a two-way Garside family (closed under $\vee, \leqslant, \vee_{*}$ and \geqslant);
onsequence on Garside normal forms:
(9) local neighbouring criterion: $w_{1} \cdot w_{2} \cdot \ldots \cdot w_{k} \in \operatorname{Gar}\left(\mathcal{B}_{n}^{+}\right)$iff

- $w_{1}, \ldots, w_{k} \in \mathcal{S}_{n} \backslash\{\mathbf{1}\} ;$
- $\mathbf{R}\left(w_{i}\right) \supseteq \mathbf{L}\left(w_{i+1}\right)$ for all $i<k$.

$$
\left(\mathbf{L}(\alpha)=\left\{\sigma_{i}: \sigma_{i} \leqslant \alpha\right\} \text { and } \mathbf{R}(\alpha)=\left\{\sigma_{i}: \alpha \geqslant \sigma_{i}\right\}\right)
$$

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{j}\right]^{\ell(i, j)}\right\rangle^{+}$;

$$
\ell(i, j)=2 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}
$$

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{j}\right]^{\ell(i, j)}\right\rangle^{+}$;

$$
\ell(i, j)=3 \Rightarrow \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j}
$$

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{j}\right]^{\ell(i, j)}\right\rangle^{+}$;

$$
\ell(i, j)=+\infty \Rightarrow \text { no relation! }
$$

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{i}\right]^{\ell(i, j)}\right\rangle^{+}$;
- A-T monoid with spherical type: A-T and Garside;

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{i}\right]^{\ell(i, j)}\right\rangle^{+}$;
- A-T monoid with spherical type: A-T and Garside;
- Trace monoid: Artin-Tits with $\ell(i, j) \in\{2,+\infty\}$;

Generalising braid monoids

- Braid monoid: $\left\langle\sigma_{i} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, i \neq j \pm 1 \Rightarrow \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle^{+}$;
- Garside monoid: finite generating set Σ, cancellative, $\leqslant-$ and \geqslant-lattice, with a Garside element Δ such that $\{x: x \leqslant \Delta\}=\{x: \Delta \geqslant x\} \supseteq \Sigma$;
- Artin-Tits monoid: $\left\langle\sigma_{i} \mid\left[\sigma_{i} \sigma_{j}\right]^{\ell(i, j)}=\left[\sigma_{j} \sigma_{i}\right]^{\ell(i, j)}\right\rangle^{+}$;
- A-T monoid with spherical type: A-T and Garside;
- Trace monoid: Artin-Tits with $\ell(i, j) \in\{2,+\infty\}$;
- A-T monoid with FC type: A-T with finite 2-way Garside family.

Contents

(1) Geometric aspects of braids

- Right relaxation normal form
- Counting braids with a given geometric complexity
(2) Algebraic aspects of braids
- Garside normal form and random walks
- Drawing infinite braids uniformly at random

(3) Conclusion

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological \mathcal{L} form:
Left Garside $工$
normal form: 二
$1^{\text {st }}$ step
Right Garside \mathcal{X}
normal form: $=$
Left $^{\Delta}$ Garside \mathcal{X} normal form:

Random walk in a braid monoid

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological $\sqrt{25}$
form:
Left Garside
normal form:
Right Garside
normal form:

Left ${ }^{\Delta}$ Garside $工$ normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:
Left Garside normal form:

Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form:
Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form: Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form: Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form: Right Garside normal form:
 Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form:
Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form:
Right Garside normal form:

Left ${ }^{\Delta}$ Garside normal form:

Random walk

(1) Select i.i.d. generators $\left(Y_{k}\right)_{k \geqslant 0}$ uniformly chosen in $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$.
(2) Random process $\left(X_{k}\right)_{k \geqslant 0}$ defined by $X_{0}=1$ and $X_{k+1}=X_{k} Y_{k}$.

Several Garside normal forms:
(1) $\operatorname{Gar}_{\ell}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \supseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(2) $\operatorname{Gar}_{r}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k}$ with $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$;
(3) $\operatorname{Gar}_{\ell}^{\Delta}(\beta)=\beta_{1} \cdot \ldots \cdot \beta_{k} \cdot \Delta^{*}$ with $\beta_{1} \neq \Delta$ and $\mathbf{R}\left(\beta_{i}\right) \subseteq \mathbf{L}\left(\beta_{i+1}\right)$.

Chronological form:

Left Garside normal form: Right Garside normal form:
 In

Blocking patterns: Going to infinity...
Blocking pattern
Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\operatorname{Gar}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;

Blocking patterns: Going to infinity...
Blocking pattern
Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\operatorname{Gar}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\operatorname{Gar}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P} \beta)$.

Blocking patterns: Going to infinity...

Blocking pattern

Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\mathbf{G a r}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\mathbf{G a r}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P} \beta)$.

Blocking patterns exist in all braid monoids!

Blocking patterns: Going to infinity...

Blocking pattern

Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\mathbf{G a r}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\mathbf{G a r}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P} \beta)$.

Blocking patterns exist in all braid monoids!
(Caruso \& Wiest 2012) and in all irreducible A-T monoids of FC type!

Blocking patterns: Going to infinity...

Blocking pattern

Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\operatorname{Gar}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\operatorname{Gar}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \operatorname{Gar}_{r}(\mathbf{P} \beta)$.

Blocking patterns exist in all braid monoids!
(Caruso \& Wiest 2012) and in all irreducible A-T monoids of FC type!

Some properties of blocking patterns
(3) $\mathbf{C}_{\alpha \beta} \leqslant \mathbf{C}_{\alpha}+\mathbf{C}_{\beta}+\mathbf{K}$ for all braids $\alpha, \beta \in \mathcal{B}_{n}^{+}$ $\left(\mathbf{K}=\right.$ constant and $\mathbf{C}_{x}=\#\left\{\right.$ occurrences of \mathbf{P} or $\Delta_{n}^{-1} \mathbf{P} \Delta_{n}$ in $\left.\left.\mathbf{G a r}_{r}(x)\right\}\right)$;

Blocking patterns: Going to infinity...

Blocking pattern

Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\operatorname{Gar}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\mathbf{G a r}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P} \beta)$.

Blocking patterns exist in all braid monoids!
(Caruso \& Wiest 2012) and in all irreducible A-T monoids of FC type!

Some properties of blocking patterns
(3) $\mathbf{C}_{\alpha \beta} \leqslant \mathbf{C}_{\alpha}+\mathbf{C}_{\beta}+\mathbf{K}$ for all braids $\alpha, \beta \in \mathcal{B}_{n}^{+}$ ($\mathbf{K}=$ constant and $\mathbf{C}_{x}=\#\left\{\right.$ occurrences of \mathbf{P} or $\Delta_{n}^{-1} \mathbf{P} \Delta_{n}$ in $\left.\left.\mathbf{G a r}_{r}(x)\right\}\right)$;
(1) $\mathbb{E}\left[\mathrm{C}_{X_{k}}\right]=\Theta(k)$. (transience of $\left(X_{k}\right)_{k \geqslant 0}$)

Blocking patterns: Going to infinity...

Blocking pattern

Braid $\mathbf{P} \in \mathcal{B}_{n}^{+}$such that, for all $\alpha, \beta \in \mathcal{B}_{n}^{+}$such that $\Delta_{n} \nless \alpha \mathbf{P} \beta$:
(1) $\mathbf{G a r}_{r}(\mathbf{P} \beta)=\mathbf{G a r}_{r}(\mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha \mathbf{P}) \cdot \mathbf{G a r}_{r}(\beta)$;
(2) $\mathbf{G a r}_{r}(\alpha \mathbf{P})=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P})$ iff $\mathbf{G a r}_{r}(\alpha \mathbf{P} \beta)=\mathbf{G a r}_{r}(\alpha) \cdot \mathbf{G a r}_{r}(\mathbf{P} \beta)$.

Blocking patterns exist in all braid monoids!
(Caruso \& Wiest 2012) and in all irreducible A-T monoids of FC type!

Some properties of blocking patterns
(3) $\mathbf{C}_{\alpha \beta} \leqslant \mathbf{C}_{\alpha}+\mathbf{C}_{\beta}+\mathbf{K}$ for all braids $\alpha, \beta \in \mathcal{B}_{n}^{+}$ ($\mathbf{K}=$ constant and $\mathbf{C}_{x}=\#\left\{\right.$ occurrences of \mathbf{P} or $\Delta_{n}^{-1} \mathbf{P} \Delta_{n}$ in $\left.\left.\mathbf{G a r}_{r}(x)\right\}\right)$;
(1) $\mathbb{E}\left[\mathrm{C}_{X_{k}}\right]=\Theta(k)$. (transience of $\left(X_{k}\right)_{k \geqslant 0}$)

Theorem (J. \& Mairesse 2016+)
Prefixes of the words $\operatorname{Gar}_{r}\left(X_{k}\right)_{k \geqslant 0}$ almost surely converge.
... and beyond!

What is our limit object? How fast do we reach it?
... and beyond!

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;

... and beyond!

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;
(2) Ergodic process;
... and beyond!

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;
(2) Ergodic process;
(3) Finite penetration distance;

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;
(2) Ergodic process;
(3) Finite penetration distance;
(4) Maximal linear convergence speed.

... and beyond!

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;
(2) Ergodic process;
(3) Finite penetration distance;
(4) Maximal linear convergence speed.

Theorem (J. \& Mairesse 2016+)

Computing $\operatorname{Gar}_{r}\left(X_{k+1}\right)$ when knowing $\operatorname{Gar}_{r}\left(X_{k}\right)$ and Y_{k} in expected time $\mathcal{O}(k)$.
... and beyond!

What is our limit object? How fast do we reach it?

(1) Limit of an infinite-state Markov chain with L^{1} factors;
(2) Ergodic process;
(3) Finite penetration distance;
(4) Maximal linear convergence speed.

Theorem (J. \& Mairesse 2016+)

Computing $\operatorname{Gar}_{r}\left(X_{k+1}\right)$ when knowing $\operatorname{Gar}_{r}\left(X_{k}\right)$ and Y_{k} in expected time $o(k)$.

Going even further

Generalised framework

- Braid monoid

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type;

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible A-T monoid with spherical type \Rightarrow irreducible $A-T$ group with spherical type;

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps;

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps
(\Rightarrow Random walk with L^{1} steps);

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps

$$
\left(\Rightarrow \text { Random walk with } L^{1}\right. \text { steps); }
$$

- Right Garside normal form

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps

$$
\left(\Rightarrow \text { Random walk with } L^{1}\right. \text { steps); }
$$

- Right Garside normal form \Rightarrow Left $^{\Delta}$ Garside normal form.

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps

$$
\left(\Rightarrow \text { Random walk with } L^{1}\right. \text { steps); }
$$

- Right Garside normal form \Rightarrow Left $^{\Delta}$ Garside normal form.

and open questions

- Convergence with arbitrarily large steps?

Going even further

Generalised framework

- Braid monoid \Rightarrow irreducible $A-T$ monoid with spherical type \Rightarrow irreducible A-T group with spherical type;
- Simple random walk \Rightarrow Random walk with bounded steps

$$
\left(\Rightarrow \text { Random walk with } L^{1}\right. \text { steps); }
$$

- Right Garside normal form \Rightarrow Left $^{\Delta}$ Garside normal form.

and open questions

- Convergence with arbitrarily large steps?
- Ergodicity/speed of convergence with L^{1} steps?
(wide open) (wide open)

Contents

(1) Geometric aspects of braids

- Right relaxation normal form
- Counting braids with a given geometric complexity
(2) Algebraic aspects of braids
- Garside normal form and random walks
- Drawing infinite braids uniformly at random
(3) Conclusion

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$
Two algorithms
- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad\left(\right.$ time $n!+2^{2 n} k$)

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$
Two algorithms
- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad$ (time $n!+2^{2 n} k$)
- Efficient variant (Gebhardt \& González-Meneses 2013) (time $\mathcal{O}\left(k^{2} n^{4}\right)$)

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$
Two algorithms
- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad$ (time $n!+2^{2 n} k$)
- Efficient variant (Gebhardt \& González-Meneses 2013) (time $\mathcal{O}\left(k^{2} n^{4}\right)$)

$$
\text { does drawing } \beta \in \mathcal{B}_{n}^{k} \text { help drawing } \beta \in \mathcal{B}_{n}^{k+1} \text { ? }
$$

Idea:
(1) Draw $\alpha \in \mathcal{B}_{n}^{k}$;

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$
Two algorithms

- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad$ (time $n!+2^{2 n} k$)
- Efficient variant (Gebhardt \& González-Meneses 2013) (time $\mathcal{O}\left(k^{2} n^{4}\right)$)

$$
\text { does drawing } \beta \in \mathcal{B}_{n}^{k} \text { help drawing } \beta \in \mathcal{B}_{n}^{k+1} \text { ? }
$$

Idea:
(1) Draw $\alpha \in \mathcal{B}_{n}^{k}$;
(2) Draw $\alpha \sigma_{i} \in \mathcal{B}_{n}^{k+1}$ with prob. $p_{\alpha, i}$.

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$

Two algorithms

- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad$ (time $n!+2^{2 n} k$)
- Efficient variant (Gebhardt \& González-Meneses 2013) (time $\mathcal{O}\left(k^{2} n^{4}\right)$)

$$
\text { does drawing } \beta \in \mathcal{B}_{n}^{k} \text { help drawing } \beta \in \mathcal{B}_{n}^{k+1} \text { ? }
$$

(Incorrect) idea:
(1) Draw $\alpha \in \mathcal{B}_{n}^{k}$;
(2) Draw $\alpha \sigma_{i} \in \mathcal{B}_{n}^{k+1}$ with prob. $p_{\alpha, i}$.

$$
\mathcal{B}_{4}^{1}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \text { and } \mathcal{B}_{4}^{2}=\left\{\sigma_{1}^{2}, \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{2} \sigma_{1}, \sigma_{2}^{2}, \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{2}, \sigma_{3}^{2}\right\}
$$

(with S. Abbes,
S. Gouëzel \&
J. Mairesse)
uniformly at random in $\mathcal{B}_{n}^{k}=\left\{\beta \in \mathcal{B}_{n}^{+}:|\beta|_{\text {Artin }}=k\right\}$

Two algorithms

- Inductively constructing sets $\left\{\beta \in \mathcal{B}_{n}^{k}: \beta \wedge \Delta_{n}=\alpha\right\} \quad$ (time $n!+2^{2 n} k$)
- Efficient variant (Gebhardt \& González-Meneses 2013) (time $\mathcal{O}\left(k^{2} n^{4}\right)$)

$$
\text { does drawing } \beta \in \mathcal{B}_{n}^{k} \text { help drawing } \beta \in \mathcal{B}_{n}^{k+1} \text { ? }
$$

(Incorrect) idea:
(1) Draw $\alpha \in \mathcal{B}_{n}^{k}$;
(2) Draw $\alpha \sigma_{i} \in \mathcal{B}_{n}^{k+1}$ with prob. $p_{\alpha, i}$.

$$
\mathcal{B}_{4}^{1}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \text { and } \mathcal{B}_{4}^{2}=\left\{\sigma_{1}^{2}, \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{2} \sigma_{1}, \sigma_{2}^{2}, \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{2}, \sigma_{3}^{2}\right\}
$$

Another approach to uniform sampling

Smoothening uniform measures on spheres
(1) Choose $\mu_{p}: \alpha \mapsto H_{n}(p) p^{|\alpha|}$

$$
\left(H_{n}(p)=\sum_{I \subseteq\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}}(-1)^{\# \prime} p^{\left|\Delta_{l}\right|}\right) ;
$$

Another approach to uniform sampling

Smoothening uniform measures on spheres
(1) Choose $\mu_{p}: \alpha \mapsto H_{n}(p) p^{|\alpha|}$

$$
\left(H_{n}(p)=\sum_{I \subseteq\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}}(-1)^{\# \prime} p^{\left|\Delta_{l}\right|}\right) ;
$$

(2) Some properties of μ_{p} :

- $\mu_{p}\left(\alpha \mathcal{B}_{n}^{+}\right)=p^{|\alpha|}$ for all $\alpha \in \mathcal{B}_{n}^{+}$;

Another approach to uniform sampling

Smoothening uniform measures on spheres

(1) Choose $\mu_{p}: \alpha \mapsto H_{n}(p) p^{|\alpha|}$

$$
\left(H_{n}(p)=\sum_{I \subseteq\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}}(-1)^{\# \prime} p^{\left|\Delta_{l}\right|}\right) ;
$$

(2) Some properties of μ_{p} :

- $\mu_{p}\left(\alpha \mathcal{B}_{n}^{+}\right)=p^{|\alpha|}$ for all $\alpha \in \mathcal{B}_{n}^{+}$;
- Markov realisation of μ_{p} :

$$
\mathbb{P}_{\mu_{p}}\left[\operatorname{Gar}_{\ell}(\beta)=w_{1} \cdot \ldots \cdot w_{k} \cdot \ldots\right]=\mathbb{P}\left[\Theta_{1}^{p}=w_{1}, \ldots, \Theta_{k}^{p}=w_{k}\right] .
$$

Another approach to uniform sampling

Smoothening uniform measures on spheres
(1) Choose $\mu_{p}: \alpha \mapsto H_{n}(p) p^{|\alpha|}$

$$
\left(H_{n}(p)=\sum_{I \subseteq\left\{\sigma_{\mathbf{1}}, \ldots, \sigma_{n-\mathbf{1}}\right\}}(-1)^{\# \prime} p^{\left|\Delta_{l}\right|}\right)
$$

(2) Some properties of μ_{p} :

- $\mu_{p}\left(\alpha \mathcal{B}_{n}^{+}\right)=p^{|\alpha|}$ for all $\alpha \in \mathcal{B}_{n}^{+}$;
- Markov realisation of μ_{p} :

$$
\mathbb{P}_{\mu_{p}}\left[\operatorname{Gar}_{\ell}(\beta)=w_{1} \cdot \ldots \cdot w_{k} \cdot \ldots\right]=\mathbb{P}\left[\Theta_{1}^{p}=w_{1}, \ldots, \Theta_{k}^{p}=w_{k}\right] .
$$

$$
\text { What if } H_{n}(p) \rightarrow 0 \text { ? (i.e. } p \rightarrow r_{n} \text {) }
$$

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\mathcal{B}_{n}^{+} \backslash \mathcal{B}_{n}^{+}\right)$.

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\mathcal{B}_{n}^{+} \backslash \mathcal{B}_{n}^{+}\right)$.
(2) Let us increase p towards r_{n} :

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\overline{\mathcal{B}_{n}^{+}} \backslash \mathcal{B}_{n}^{+}\right)$.
(2) Let us increase p towards r_{n} :
- The Markov process $\left(\Theta_{k}^{p}\right)_{k \geqslant 1}$ has a limit $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$;

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\overline{\mathcal{B}_{n}^{+}} \backslash \mathcal{B}_{n}^{+}\right)$.
(2) Let us increase p towards r_{n} :
- The Markov process $\left(\Theta_{k}^{p}\right)_{k \geqslant 1}$ has a limit $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$;
- The measures μ_{ρ} have a weak limit μ_{∞};

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\overline{\mathcal{B}_{n}^{+}} \backslash \mathcal{B}_{n}^{+}\right)$.
(2) Let us increase p towards r_{n} :
- The Markov process $\left(\Theta_{k}^{p}\right)_{k \geqslant 1}$ has a limit $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$;
- The measures μ_{p} have a weak limit μ_{∞};
- $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$ is still a Markov realisation of μ_{∞}.

Critical case: $p=r_{n}$

Two-step limit extraction

(1) Let us add infinite braids:

- Endow \mathcal{B}_{n}^{+}with a topology generated by $\left\{\alpha \mathcal{B}_{n}^{+}\right\}_{\alpha \in \mathcal{B}_{n}^{+}}$and replace \mathcal{B}_{n}^{+} with its completion $\overline{\mathcal{B}_{n}^{+}}$;
- Extend Garside normal forms to infinite braids $\quad\left(\partial \mathcal{B}_{n}^{+}=\overline{\mathcal{B}_{n}^{+}} \backslash \mathcal{B}_{n}^{+}\right)$.
(2) Let us increase p towards r_{n} :
- The Markov process $\left(\Theta_{k}^{p}\right)_{k \geqslant 1}$ has a limit $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$;
- The measures μ_{p} have a weak limit μ_{∞};
- $\left(\Theta_{k}^{\infty}\right)_{k \geqslant 1}$ is still a Markov realisation of μ_{∞}.

Theorem (Abbes, Gouëzel, J. \& Mairesse 2016+)

Uniform probability measures on \mathcal{B}_{n}^{k} converge weakly towards μ_{∞} when $k \rightarrow+\infty$.
μ_{∞} is a uniform probability measure on infinite braids!

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going to higher dimensions

- Braid monoid \Rightarrow Irreducible trace monoid
(Abbes \& Mairesse 2015)

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going to higher dimensions

- Braid monoid \Rightarrow Irreducible trace monoid \quad (Abbes \& Mairesse 2015)
\Rightarrow Irreducible A-T monoid with FC type;

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going to higher dimensions

- Braid monoid \Rightarrow Irreducible trace monoid
(Abbes \& Mairesse 2015)
\Rightarrow Irreducible A-T monoid with FC type;
- Weight $\alpha \mapsto p^{|\alpha|} \Rightarrow$ positive multiplicative weight $\alpha \mapsto v(\alpha)$.

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going to higher dimensions

- Braid monoid \Rightarrow Irreducible trace monoid (Abbes \& Mairesse 2015)
\Rightarrow Irreducible A-T monoid with FC type;
- Weight $\alpha \mapsto p^{|\alpha|} \Rightarrow$ positive multiplicative weight $\alpha \mapsto v(\alpha)$.

Monoid \mathcal{B}_{3}^{+}

Monoid \mathcal{B}_{4}^{+}

Monoid \mathcal{B}_{5}^{+}

Going further

Stable region conjectures (Gebhardt \& Tawn 2014)

(1) The words $\left\{\operatorname{Gar}_{\ell}(\beta) \mid \beta \in \partial \mathcal{B}_{n}^{+}\right\}$contain a geometric number of Δ_{n};
(2) $\left\{\lambda^{i}(\beta) \mid \beta \in \mathcal{B}_{n}^{k}\right\} \xrightarrow[k \rightarrow+\infty]{\mathcal{L}} \lambda_{\infty}^{i}$ and $\lambda_{\infty}^{i} \neq \lambda_{\infty}^{i+1}$ for all $i \geqslant 0$.

Going to higher dimensions

- Braid monoid \Rightarrow Irreducible trace monoid
(Abbes \& Mairesse 2015)
\Rightarrow Irreducible A-T monoid with FC type;
- Weight $\alpha \mapsto p^{|\alpha|} \Rightarrow$ positive multiplicative weight $\alpha \mapsto v(\alpha)$.

Monoid $\mathbb{N} * \mathbb{N}$

Monoid

$$
\langle a, b \mid a b a b=b a b a\rangle^{+}
$$

Monoid $\langle a, b, c \mid a c=c a\rangle^{+}$

Main results

Geometry

(1) The right relaxation normal form is regular;

Main results

Geometry

(1) The right relaxation normal form is regular;
(2) The geometric generating function of \mathcal{B}_{3} is not holonomic.

Main results

Geometry

(1) The right relaxation normal form is regular;
(2) The geometric generating function of \mathcal{B}_{3} is not holonomic.

Random walks
(3) Garside normal forms of random walks have an ergodic limit (for all irreducible A-T groups of spherical type).

Main results

Geometry

(1) The right relaxation normal form is regular;
(2) The geometric generating function of \mathcal{B}_{3} is not holonomic.

Random walks

(3) Garside normal forms of random walks have an ergodic limit (for all irreducible A-T groups of spherical type).

Uniform measures

(1) Uniform measures on positive spheres converge towards a simple critical Markov process (for all irreducible A-T monoids of FC type).

Do you have questions?

Bibliography (1/2)

- E. Artin, Theorie der Zöpfe, Math. Sem. Univ. Hamburg (1926)
- F. Garside, The braid group and other groups, Quart. J. Math. Oxford (1969)
- J. Birman, Braids, Links and Mapping Class Groups, Annals of Math. Studies (1975)
- V. Kaimanovich, A. Vershik, Random Walks on Discrete Groups: Boundary and Entropy, Ann. Probab. (1983)
- S. Adian, Fragments of the word Δ in the braid group, Mat. Zametki (1984)
- W. Thurston, Finite state algorithms for the braid group, Circulated notes (1988)
- M. Paterson, A. Razborov, The set of minimal braids is co-NP complete, J. Algorithms (1991)
- S. Gaubert, J. Mairesse, Task resource models and (max, +) automata, Idempotency (1998)
- A. Vershik, Dynamic theory of growth in groups: entropy, boundaries, examples, Russian Math. Surveys (2000)
- A. Vershik, S. Nechaev, R. Bikbov, Statistical properties of braid groups in locally free approximation, Comm. Math. Phys. (2000)
- L. Sabalka, Geodesics in the braid group on three strands, arXiv preprint (2003)
- A. Malyutin, The Poisson-Furstenberg boundary of the locally free group, J. Math. Sci. (2005)
- I. Dynnikov, B. Wiest, On the complexity of braids, J. Eur. Math. Soc. (2007)

Bibliography (2/2)

- J. Mairesse, F. Mathéus, Randomly growing braid on three strands and the manta ray, Ann. Appl. Probab. (2007)
- A. Vershik, A. Malyutin, Boundaries of braid groups and the Markov-Ivanovsky normal form, Izv. Math. (2008)
- S. Caruso, Algorithmes et généricité dans les groupes de tresses, PhD Thesis (2013)
- S. Caruso, B. Wiest, On the genericity of pseudo-Anosov braids II: conjugations to rigid braids, arXiv preprint (2013)
- P. Dehornoy, F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside theory (2013)
- V. Gebardt, J. González-Meneses, Generating random braids, J. Combin. Theory Ser. A (2013)
- V. Gebhardt, S. Tawn, Normal forms of random braids, J. Algebra (2014)
- V. Gebhardt, S. Tawn, On the penetration distance in Garside monoids, arXiv preprint (2014)
- S. Abbes, J. Mairesse, Uniform and Bernoulli measures on the boundary of trace monoids,
J. Combin. Theory Ser. A (2015)
- V. Jugé, Curve diagrams, laminations, and the geometric complexity of braids,
J. Knot Theory Ramifications (2015)
- V. Jugé, The relaxation normal form of braids is regular, arXiv preprint (2015)

