Grandchildren weight-balanced binary search trees

Vincent Jugé

Université Gustave Eiffel CNRS & Université Paris-Cité

11/08/2025

Contents

- Balanced binary search trees
- 2 Taking care of your grandchildren helps you
- Maintaining grandchildren-balanced trees
- Top-down tree maintenance
- ⑤ Correctness and complexity

Which data structure should I use to manipulate ordered sets?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

1 2 4 7	8 10 19
---------	---------

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ S? No!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S. Query #3: Delete key k from my set S.

quality in a selection respectively in the selection in t

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S. Query #3: Delete key k from my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Remove 7!

$$\textbf{ Weight-balanced trees}^{[3]} \colon \mathsf{r}(x) = \#\mathcal{T}(x) + 1 \qquad \qquad (\mathsf{r}(x) = \mathsf{r}(x_1) + \mathsf{r}(x_2) \text{ and } \mathsf{r}(\bot) = 1) \\ \mathsf{r}(x_i) \leqslant \alpha \mathsf{r}(x) \qquad \qquad (1/\sqrt{2} \leqslant \alpha < 9/11)$$

$$(\mathsf{r}(x) = \mathsf{r}(x_1) + \mathsf{r}(x_2) \text{ and } \mathsf{r}(\bot) = 1) \ (1/\sqrt{2} \leqslant \alpha < 9/11)$$

• Weight-balanced trees^[3]:
$$\mathbf{r}(x) = \#\mathcal{T}(x) + 1$$

 $\mathbf{r}(x_i) \leqslant \alpha \mathbf{r}(x)$

$$(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1)$$

 $(1/\sqrt{2} \leqslant \alpha < 9/11)$

- $\text{Weight-balanced trees}^{[3]} \colon \mathsf{r}(x) = \#\mathcal{T}(x) + 1 \qquad \qquad (\mathsf{r}(x) = \mathsf{r}(x_1) + \mathsf{r}(x_2) \text{ and } \mathsf{r}(\bot) = 1) \\ \mathsf{r}(x_i) \leqslant \alpha \mathsf{r}(x) \qquad \qquad (1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees^[1]: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_1) + 2$

- Weight-balanced trees^[3]: $r(x) = \#\mathcal{T}(x) + 1$ $(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1)$ $r(x_i) \le \alpha r(x)$ $(1/\sqrt{2} \le \alpha < 9/11)$
- ② AVL trees^[1]: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_1) + 2$
- 3 Red-black trees^[5,9]: r(x) = ? $(r(\bot) = -1)$ $r(x_i) + 1 \le r(x) \le r(x_i) + 2$ $(x_i \text{ red} \Leftrightarrow \lfloor r(x_i)/2 \rfloor = \lfloor r(x)/2 \rfloor)$

- Weight-balanced trees^[3]: $r(x) = \#\mathcal{T}(x) + 1$ $(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1)$ $r(x_i) \leqslant \alpha r(x)$ $(1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees^[1]: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$
- ③ Red-black trees^[5,9]: r(x) = ? $(r(\bot) = -1)$ $r(x_i) + 1 ≤ r(x) ≤ r(x_i) + 2$ $(x_i \text{ red} ⇔ \lfloor r(x_i)/2 \rfloor = \lfloor r(x)/2 \rfloor)$

Height and internal/external path length

In weight-balanced trees with parameter $\alpha \in [1/\sqrt{2}, 9/11)$, in the worst case,

• Height $h \approx \log_{\alpha}(n)$.

Height and internal/external path length

In weight-balanced trees with parameter $\alpha \in [1/\sqrt{2}, 9/11)$, in the worst case,

- Height $h \approx \log_{\alpha}(n)$.
- ② Internal path length^[4] ipl $\approx n \log_2(n)/H_2(\alpha)$, where

$$\mathsf{H}_2(\alpha) = -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha).$$

Height and internal/external path length

In weight-balanced trees with parameter $\alpha \in [1/\sqrt{2}, 9/11)$, in the worst case,

- Height $h \approx \log_{\alpha}(n) = 2\log_2(n)$.
- ② Internal path length^[4] ipl $\approx n \log_2(n)/H_2(\alpha) \approx 1.146 n \log_2(n)$, where

$$\mathsf{H}_2(\alpha) = -\alpha \log_2(\alpha) - (1 - \alpha) \log_2(1 - \alpha).$$

Contents

- Balanced binary search trees
- 2 Taking care of your grandchildren helps you!
- Maintaining grandchildren-balanced trees
- 4 Top-down tree maintenance
- 5 Correctness and complexity

Grandchildren balanced trees

• Grandchildren balanced trees: $\mathbf{r}(x) = \#\mathcal{T}(x) + 1$ $\mathbf{r}(x_i) \leqslant \alpha \mathbf{r}(x)$ $\mathbf{r}(x_{ii}) \leqslant \beta \mathbf{r}(x)$

$$(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1)$$
 $(1/\sqrt{2} \leqslant \alpha < 9/11)$ $(? \leqslant \beta \leqslant ?)$

Grandchildren balanced trees

 $\text{Grandchildren balanced trees: } r(x) = \#\mathcal{T}(x) + 1 \qquad (r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1)$ $r(x_i) \leqslant \alpha r(x) \qquad (1/\sqrt{2} \leqslant \alpha \leqslant 3/4)$ $r(x_{ij}) \leqslant \beta r(x) \qquad (\mathscr{B}(\alpha) \leqslant \beta \leqslant \alpha^2)$

where
$$\mathscr{B}(\alpha) = \frac{\sqrt{1+4\alpha-1}}{2}$$
.

Improved height and internal/external path length

In trees with parameters $\alpha \in [1/\sqrt{2}, 3/4]$ and $\beta \in [\mathcal{B}(\alpha), \alpha^2]$, in the worst case,

• Height $h \approx 2 \log_{\beta}(n) \approx 1.880 \log_{2}(n) < 2 \log_{2}(n)$.

Improved height and internal/external path length

In trees with parameters $\alpha \in [1/\sqrt{2}, 3/4]$ and $\beta \in [\mathcal{B}(\alpha), \alpha^2]$, in the worst case,

- Height $h \approx 2 \log_{\beta}(n) \approx 1.880 \log_2(n) < 2 \log_2(n)$.
- ② Internal path length ipl $\approx n \log_2(n)/\Delta \approx 1.127 n \log_2(n) < 1.146 n \log_2(n)$, where

$$\Delta = \frac{\mathsf{H}_2(\alpha) + \alpha \mathsf{H}_2(\beta/\alpha)}{1 + \alpha}.$$

Contents

- Balanced binary search trees
- 2 Taking care of your grandchildren helps you
- Maintaining grandchildren-balanced trees
- 4 Top-down tree maintenance
- ⑤ Correctness and complexity

Routine C: Use rotations to keep your Children small^[3]

Routine C: Use rotations to keep your Children small^[3]

Routine C: Use rotations to keep your Children small^[3]

Routine GC: Use rotations to keep your GrandChildren small

Routine GC: Use rotations to keep your GrandChildren small

Combining both routines C and GC

Pros & cons of each routine:

• Routine **C** ensures everybody has small children once your descendants have small children. It may mess with the grandchildren balance of those nodes its displaces. ©

least unbalanced node \downarrow

Combining both routines C and GC

Pros & cons of each routine:

- Routine **C** ensures everybody has small children once your descendants have small children. It **may** mess with the grandchildren balance of those nodes its displaces. ©
- Routine **GC** ensures everybody has small grandchildren **once** everybody has small children. It does not mess with anybody. ©

least unbalanced node

Combining both routines C and GC

Pros & cons of each routine:

- Routine **C** ensures everybody has small children once your descendants have small children. It may mess with the grandchildren balance of those nodes its displaces. ©
- Routine **GC** ensures everybody has small grandchildren **once** everybody has small children. It does not mess with anybody. ©

Recipe:

• Launch routine **C** on *x*.

Combining both routines C and GC

Pros & cons of each routine:

- Routine **C** ensures everybody has small children once your descendants have small children. It may mess with the grandchildren balance of those nodes its displaces. ©
- Routine **GC** ensures everybody has small grandchildren **once** everybody has small children. It does not mess with anybody. ©

Recipe:

• Launch routine C on x.

Our new root x' and its children x'_1 and x'_2 might have too large grandchildren.

Combining both routines C and GC

Pros & cons of each routine:

- Routine **C** ensures everybody has small children once your descendants have small children. It may mess with the grandchildren balance of those nodes its displaces. ©
- Routine **GC** ensures everybody has small grandchildren **once** everybody has small children. It does not mess with anybody. ©

Recipe:

1 Launch routine C on x.

Our new root x' and its children x'_1 and x'_2 might have too large grandchildren.

2 Launch routine GC on x'_1 and x'_2 (in parallel).

Combining both routines C and GC

Pros & cons of each routine:

- Routine **C** ensures everybody has small children once your descendants have small children. It may mess with the grandchildren balance of those nodes its displaces. ©
- Routine **GC** ensures everybody has small grandchildren **once** everybody has small children. It does not mess with anybody. ©

Recipe:

1 Launch routine C on x.

Our new root x' and its children x'_1 and x'_2 might have too large grandchildren.

- 2 Launch routine GC on x'_1 and x'_2 (in parallel).
- 3 Launch routine GC on x'.

Contents

- Balanced binary search trees
- 2 Taking care of your grandchildren helps you
- Maintaining grandchildren-balanced trees
- 4 Top-down tree maintenance
- ⑤ Correctness and complexity

Insert 2 bottom-up

Insert 2 bottom-up

Insert 2 bottom-up

Insert 2 **bottom-up**1 8 6
0 4 3 5 4 7
2 2 2 2 2

Insert 2 **bottom-up**1 8 6
2 3 5 4 7
2

Insert 2 bottom-up

1 8 6
0 5 3 5 4 7
2 2 2

Insert 2 bottom-up

Prevent catastrophes just before they might occur!

Make C and GC routines trigger rotations as soon as adding or deleting a leaf below x might make x unbalanced^[7].

Prevent catastrophes just before they might occur!

Make C and GC routines trigger rotations as soon as adding or deleting a leaf below x might make x unbalanced^[7].

Redundant update = Trying to insert an already present key or delete an already absent key At each node x, store $r(x_i)$ for some child x_i not on the branch you modify^[8]: It just remains to restore the tree rank, instead of all node ranks on the modified branch.

Contents

- Balanced binary search trees
- 2 Taking care of your grandchildren helps you
- Maintaining grandchildren-balanced trees
- 4 Top-down tree maintenance
- 5 Correctness and complexity

Correctness:

Relies on 41 inequalities as lovely as $(1-\gamma)^2 \leqslant \gamma^2(1-\alpha)$ whenever $\frac{1}{\sqrt{2}} \leqslant \alpha \leqslant \frac{3}{4}$ and

$$\gamma = \frac{2\alpha}{1 + \alpha + \sqrt{1 + \alpha^2 + 4\alpha^3 - 2\alpha\sqrt{1 + 4\alpha}}}.$$

Correctness:

Relies on 41 inequalities as lovely as $(1-\gamma)^2 \leqslant \gamma^2(1-\alpha)$ whenever $\frac{1}{\sqrt{2}} \leqslant \alpha \leqslant \frac{3}{4}$ and

$$\gamma = \frac{2\alpha}{1 + \alpha + \sqrt{1 + \alpha^2 + 4\alpha^3 - 2\alpha\sqrt{1 + 4\alpha}}}.$$

Complexity^[6]:

Answering q queries requires $\mathcal{O}(q/c)$ rotations, where $c = \min\{\alpha - 1/\sqrt{2}, \beta - \mathscr{B}(\alpha), \alpha^2 - \beta\}$.

Correctness:

Relies on 41 inequalities as lovely as $(1-\gamma)^2 \leqslant \gamma^2(1-\alpha)$ whenever $\frac{1}{\sqrt{2}} \leqslant \alpha \leqslant \frac{3}{4}$ and

$$\gamma = \frac{2\alpha}{1 + \alpha + \sqrt{1 + \alpha^2 + 4\alpha^3 - 2\alpha\sqrt{1 + 4\alpha}}}.$$

Complexity^[6]:

Answering q queries requires $\mathcal{O}(q/c)$ rotations, where $c = \min\{\alpha - 1/\sqrt{2}, \beta - \mathscr{B}(\alpha), \alpha^2 - \beta\}$.

Proof idea:

Give each node x a counter whose value

- increases by 1/r(x) when a leaf below x is inserted/deleted,
- \bullet is reset to 0 when a rotation changes the vicinity of x.

Correctness:

Relies on 41 inequalities as lovely as $(1-\gamma)^2 \leqslant \gamma^2(1-\alpha)$ whenever $\frac{1}{\sqrt{2}} \leqslant \alpha \leqslant \frac{3}{4}$ and

$$\gamma = \frac{2\alpha}{1 + \alpha + \sqrt{1 + \alpha^2 + 4\alpha^3 - 2\alpha\sqrt{1 + 4\alpha}}}.$$

Complexity^[6]:

Answering q queries requires $\mathcal{O}(q/c)$ rotations, where $c = \min\{\alpha - 1/\sqrt{2}, \beta - \mathcal{B}(\alpha), \alpha^2 - \beta\}$.

Proof idea:

Give each node x a counter whose value

- increases by 1/r(x) when a leaf below x is inserted/deleted,
- \bullet is reset to 0 when a rotation changes the vicinity of x.

The sum of all counters

- increases by $\mathcal{O}(1)$ when a leaf is inserted/deleted;
- \bullet decreases by $\Omega(c)$ when a rotation takes place.

Bibliography

1.	G. Adel'son-Velskii & E. Landis, An algorithm for organization of information	1962
2.	T. Hibbard, Some combinatorial properties of certain trees with applications to searching and sorting	1962
3.	J. Nievergelt & E. Reingold, Binary search trees of bounded balance	1972
4.	J. Nievergelt & C. K. Wong, Upper bounds for the total path length of binary trees	1973
5.	L. Guibas & R. Sedgewick, A dichromatic framework for balanced trees	1978
6.	N. Blum & K. Mehlhorn, Average number of rebalancing operations in weight-balanced trees	1980
7.	T. Lai & D. Wood, A top-down updating algorithm for weight-balanced trees	1993
8.	C. Martínez & S. Roura, Randomized binary search trees	1998
9.	C. B. Haeupler, S. Sen & R. Tarjan, Rank-balanced trees	2015

