
Grandchildren weight-balanced binary search trees

Vincent Jugé

Université Gustave Eiffel
CNRS & Université Paris-Cité

11/08/2025

Vincent Jugé Grandchildren weight-balanced binary search trees 1



Contents

1 Balanced binary search trees

2 Taking care of your grandchildren helps you!

3 Maintaining grandchildren-balanced trees

4 Top-down tree maintenance

5 Correctness and complexity

Vincent Jugé Grandchildren weight-balanced binary search trees 2



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!

Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!

Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!

Remove 7!

1 2 4 7 8 10 191 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!

Remove 7!

1 2 4 7 8 10 191 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Hibbard deletion[2]

Vincent Jugé Grandchildren weight-balanced binary search trees 3



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[,]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

2

2

5

2

3

9

2

4

20

2

0

1

3

0

1

01

2

0

1

3

0

1

00

2

0

1

4

0

2

0

x

r(x)x1

r(x1)

x2

r(x2)

Vincent Jugé Grandchildren weight-balanced binary search trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[,]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

2

2

5

2

3

9

2

4

2

0

2

0

1

3

0

1

01

2

0

1

3

0

1

00

2

0

1

4

0

2

0

x

r(x)x1

r(x1)

x2

r(x2)

Vincent Jugé Grandchildren weight-balanced binary search trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[1]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[,]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

2

0

2

0

1

3

0

1

0

1

2

0

1

3

0

1

00

2

0

1

4

0

2

0

x

r(x)x1

r(x1)

x2

r(x2)

Vincent Jugé Grandchildren weight-balanced binary search trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[1]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[5,9]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

0

1

2

0

1

3

0

1

0

0

2

0

1

4

0

2

0

x

r(x)x1

r(x1)

x2

r(x2)

Vincent Jugé Grandchildren weight-balanced binary search trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[1]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[5,9]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

01

2

0

1

3

0

1

0

0

2

0

1

4

0

2

0

x

r(x)x1

r(x1)

x2

r(x2)

Vincent Jugé Grandchildren weight-balanced binary search trees 4



Height and internal/external path length
In weight-balanced trees with parameter α ∈ [1/

√
2, 9/11), in the worst case,

1 Height h ≈ logα(n).

2 Internal path length[] ipl ≈ n log2(n)/H2(α), where

H2(α) = −α log2(α)− (1 − α) log2(1 − α).

2

5

2

3

9

2

4

2
h
=

3

de
pt

h

0

1

2

3

ipl = 1×0+2×1+4×2+1×3

x
w

x1

⩽ αr
x2

⩽ αr

Vincent Jugé Grandchildren weight-balanced binary search trees 5



Height and internal/external path length
In weight-balanced trees with parameter α ∈ [1/

√
2, 9/11), in the worst case,

1 Height h ≈ logα(n).
2 Internal path length[4] ipl ≈ n log2(n)/H2(α), where

H2(α) = −α log2(α)− (1 − α) log2(1 − α).

2

5

2

3

9

2

4

2
h
=

3de
pt

h

0

1

2

3

ipl = 1×0+2×1+4×2+1×3

x
w

x1

⩽ αr
x2

⩽ αr

Vincent Jugé Grandchildren weight-balanced binary search trees 5



Height and internal/external path length
In weight-balanced trees with parameter α ∈ [1/

√
2, 9/11), in the worst case,

1 Height h ≈ logα(n) = 2 log2(n).
2 Internal path length[4] ipl ≈ n log2(n)/H2(α) ≈ 1.146n log2(n), where

H2(α) = −α log2(α)− (1 − α) log2(1 − α).

2

5

2

3

9

2

4

2
h
=

3de
pt

h

0

1

2

3

ipl = 1×0+2×1+4×2+1×3

x
w

x1

⩽ αr
x2

⩽ αr

Vincent Jugé Grandchildren weight-balanced binary search trees 5



Contents

1 Balanced binary search trees

2 Taking care of your grandchildren helps you!

3 Maintaining grandchildren-balanced trees

4 Top-down tree maintenance

5 Correctness and complexity

Vincent Jugé Grandchildren weight-balanced binary search trees 6





Grandchildren balanced trees
1 Grandchildren balanced trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)

Grandchildren balanced trees: r(xi ) ⩽ αr(x) (1/
√

2 ⩽ α < 9/11)
Grandchildren balanced trees: r(xij) ⩽ βr(x) (? ⩽ β ⩽ ?)

where B(α) =

√
1 + 4α− 1

2
.

2

5

2

3

9

2

4

2

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 8



Grandchildren balanced trees
1 Grandchildren balanced trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)

Grandchildren balanced trees: r(xi ) ⩽ αr(x) (1/
√

2 ⩽ α ⩽ 3/4)
Grandchildren balanced trees: r(xij) ⩽ βr(x) (B(α) ⩽ β ⩽ α2)

where B(α) =

√
1 + 4α− 1

2
.

2

5

2

3

9

2

4

2

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 8



Improved height and internal/external path length
In trees with parameters α ∈ [1/

√
2, 3/4] and β ∈ [B(α), α2], in the worst case,

1 Height h ≈ 2 logβ(n) ≈ 1.880 log2(n) < 2 log2(n).

2 Internal path length ipl ≈ n log2(n)/∆ ≈ 1.127n log2(n) < 1.146n log2(n), where

∆ =
H2(α) + αH2(β/α)

1 + α
.

2

5

2

3

9

2

4

2

h
=

3de
pt

h

0

1

2

3

ipl = 1×0+2×1+4×2+1×3

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 9



Improved height and internal/external path length
In trees with parameters α ∈ [1/

√
2, 3/4] and β ∈ [B(α), α2], in the worst case,

1 Height h ≈ 2 logβ(n) ≈ 1.880 log2(n) < 2 log2(n).
2 Internal path length ipl ≈ n log2(n)/∆ ≈ 1.127n log2(n) < 1.146n log2(n), where

∆ =
H2(α) + αH2(β/α)

1 + α
.

2

5

2

3

9

2

4

2

h
=

3de
pt

h

0

1

2

3

ipl = 1×0+2×1+4×2+1×3

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 9



Contents

1 Balanced binary search trees

2 Taking care of your grandchildren helps you!

3 Maintaining grandchildren-balanced trees

4 Top-down tree maintenance

5 Correctness and complexity

Vincent Jugé Grandchildren weight-balanced binary search trees 10



Routine C: Use rotations to keep your Children small[3]

x

rx1

>αr x12

x121

x11

x122

x2

x1

r x

x12

x121

x11

x122

x2

x12

rx1 x

x121x11 x122 x2

si
m

pl
e

ro
ta

tio
n double

rotation

• ⩾ •+ • • ⩽ •+ •

Vincent Jugé Grandchildren weight-balanced binary search trees 11



Routine C: Use rotations to keep your Children small[3]

x

rx1

>αr x12

x121

x11

x122

x2

x1

r x

x12

x121

x11

x122

x2

x12

rx1 x

x121x11 x122 x2

si
m

pl
e

ro
ta

tio
n double

rotation

• ⩾ •+ • • ⩽ •+ •

Vincent Jugé Grandchildren weight-balanced binary search trees 11



Routine C: Use rotations to keep your Children small[3]

x

rx1

>αr x12

x121

x11

x122

x2

x11

x122

x2

x1

r x

x12

x121

x11

x122

x2

x11

x122

x2

x12

rx1 x

x121

x11 x122 x2

x11 x122 x2

si
m

pl
e

ro
ta

tio
n double

rotation

• ⩾ •+ • • ⩽ •+ •

Vincent Jugé Grandchildren weight-balanced binary search trees 11



Routine GC: Use rotations to keep your GrandChildren small
x

rx1

⩽αr

x121 x122

x2

x11 x12
• > βr • > βr

x1

rx11 x

x12

x121 x122

x2

x12

rx1 x

x11 x121 x122 x2

si
m

pl
e

ro
ta

tio
n double

rotation

Vincent Jugé Grandchildren weight-balanced binary search trees 12



Routine GC: Use rotations to keep your GrandChildren small
x

rx1

⩽αr

x121 x122

x2

x11 x12
• > βr • > βr

x1

rx11 x

x12

x121 x122

x2

x12

rx1 x

x11 x121 x122 x2

si
m

pl
e

ro
ta

tio
n double

rotation

Vincent Jugé Grandchildren weight-balanced binary search trees 12



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /

Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.

2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).

3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Contents

1 Balanced binary search trees

2 Taking care of your grandchildren helps you!

3 Maintaining grandchildren-balanced trees

4 Top-down tree maintenance

5 Correctness and complexity

Vincent Jugé Grandchildren weight-balanced binary search trees 14



What is top-down maintenance?

2
2

3
2

3
3
3
3

1
4

1
5
1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8

4
9
4
9

1
4

1
5
1
5

3
2

2
2

3
3
3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2

3
3
3
3

1
4

1
5
1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8

4
9

4
9

1
4

1
5
1
5

3
2

2
2

3
3
3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2

3
3
3
3

1
4

1
5
1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8
4
9

4
9

1
4

1
5

1
5

3
2

2
2

3
3
3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2

3
3
3
3

1
4

1
5
1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8
4
9

4
9

1
4
1
5

1
5

3
2

2
2

3
3

3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2

3
3

3
3

1
4

1
5
1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8
4
9

4
9

1
4
1
5

1
5

3
2

2
2

3
3

3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2
3
3

3
3

1
4

1
5

1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8
4
9

4
9

1
4
1
5

1
5

3
2

2
2

3
3

3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



What is top-down maintenance?

2
2

3
2
3
3

3
3

1
4
1
5

1
5

4
8

4
9

0
2

6
4

5
2

7
2

Insert 2 bottom-up

4
8
4
9

4
9

1
4
1
5

1
5

3
2

2
2

3
3

3
3

0
2

6
4

5
2

7
2

Insert 2 top-down

Vincent Jugé Grandchildren weight-balanced binary search trees 15



Prevent catastrophes just before they might occur!

Make C and GC routines trigger rotations as soon as adding or deleting a leaf below x might
make x unbalanced[7].

Redundant update = Trying to insert an already present key or delete an already absent key

At each node x , store r(xi ) for some child xi not on the branch you modify[8]:
It just remains to restore the tree rank, instead of all node ranks on the modified branch.

x

rx1

>αr x12

x121

x11

x122

x2

• ⩽ •+ • or • ⩾ •+ •

x

rx1

⩽αr

x121 x122

x2

x11 x12

• > βr or • > βr

Vincent Jugé Grandchildren weight-balanced binary search trees 16



Prevent catastrophes just before they might occur!

Make C and GC routines trigger rotations as soon as adding or deleting a leaf below x might
make x unbalanced[7].

Redundant update = Trying to insert an already present key or delete an already absent key

At each node x , store r(xi ) for some child xi not on the branch you modify[8]:
It just remains to restore the tree rank, instead of all node ranks on the modified branch.

x

rx1

>αr x12

x121

x11

x122

x2

• ⩽ •+ • or • ⩾ •+ •

x

rx1

⩽αr

x121 x122

x2

x11 x12

• > βr or • > βr

Vincent Jugé Grandchildren weight-balanced binary search trees 16



Contents

1 Balanced binary search trees

2 Taking care of your grandchildren helps you!

3 Maintaining grandchildren-balanced trees

4 Top-down tree maintenance

5 Correctness and complexity

Vincent Jugé Grandchildren weight-balanced binary search trees 17



Correctness and complexity bounds
Correctness:
Relies on 41 inequalities as lovely as (1 − γ)2 ⩽ γ2(1 − α) whenever

1√
2
⩽ α ⩽

3
4

and

γ =
2α

1 + α+
√

1 + α2 + 4α3 − 2α
√

1 + 4α
.

Complexity[]:
Answering q queries requires O(q/c) rotations, where c = min{α− 1/

√
2, β −B(α), α2 − β}.

Proof idea:
Give each node x a counter whose value

increases by 1/r(x) when a leaf below x is inserted/deleted,
is reset to 0 when a rotation changes the vicinity of x .

The sum of all counters
increases by O(1) when a leaf is inserted/deleted;
decreases by Ω(c) when a rotation takes place.

Vincent Jugé Grandchildren weight-balanced binary search trees 18



Correctness and complexity bounds
Correctness:
Relies on 41 inequalities as lovely as (1 − γ)2 ⩽ γ2(1 − α) whenever

1√
2
⩽ α ⩽

3
4

and

γ =
2α

1 + α+
√

1 + α2 + 4α3 − 2α
√

1 + 4α
.

Complexity[6]:
Answering q queries requires O(q/c) rotations, where c = min{α− 1/

√
2, β −B(α), α2 − β}.

Proof idea:
Give each node x a counter whose value

increases by 1/r(x) when a leaf below x is inserted/deleted,
is reset to 0 when a rotation changes the vicinity of x .

The sum of all counters
increases by O(1) when a leaf is inserted/deleted;
decreases by Ω(c) when a rotation takes place.

Vincent Jugé Grandchildren weight-balanced binary search trees 18



Correctness and complexity bounds
Correctness:
Relies on 41 inequalities as lovely as (1 − γ)2 ⩽ γ2(1 − α) whenever

1√
2
⩽ α ⩽

3
4

and

γ =
2α

1 + α+
√

1 + α2 + 4α3 − 2α
√

1 + 4α
.

Complexity[6]:
Answering q queries requires O(q/c) rotations, where c = min{α− 1/

√
2, β −B(α), α2 − β}.

Proof idea:
Give each node x a counter whose value

increases by 1/r(x) when a leaf below x is inserted/deleted,
is reset to 0 when a rotation changes the vicinity of x .

The sum of all counters
increases by O(1) when a leaf is inserted/deleted;
decreases by Ω(c) when a rotation takes place.

Vincent Jugé Grandchildren weight-balanced binary search trees 18



Correctness and complexity bounds
Correctness:
Relies on 41 inequalities as lovely as (1 − γ)2 ⩽ γ2(1 − α) whenever

1√
2
⩽ α ⩽

3
4

and

γ =
2α

1 + α+
√

1 + α2 + 4α3 − 2α
√

1 + 4α
.

Complexity[6]:
Answering q queries requires O(q/c) rotations, where c = min{α− 1/

√
2, β −B(α), α2 − β}.

Proof idea:
Give each node x a counter whose value

increases by 1/r(x) when a leaf below x is inserted/deleted,
is reset to 0 when a rotation changes the vicinity of x .

The sum of all counters
increases by O(1) when a leaf is inserted/deleted;
decreases by Ω(c) when a rotation takes place.

Vincent Jugé Grandchildren weight-balanced binary search trees 18



Bibliography

1. G. Adel’son-Velskii & E. Landis, An algorithm for organization of information 1962

2. T. Hibbard, Some combinatorial properties of certain trees with applications to searching and sorting 1962

3. J. Nievergelt & E. Reingold, Binary search trees of bounded balance 1972

4. J. Nievergelt & C. K. Wong, Upper bounds for the total path length of binary trees 1973

5. L. Guibas & R. Sedgewick, A dichromatic framework for balanced trees 1978

6. N. Blum & K. Mehlhorn, Average number of rebalancing operations in weight-balanced trees 1980

7. T. Lai & D. Wood, A top-down updating algorithm for weight-balanced trees 1993

8. C. Martínez & S. Roura, Randomized binary search trees 1998

9. C. B. Haeupler, S. Sen & R. Tarjan, Rank-balanced trees 2015

Vincent Jugé Grandchildren weight-balanced binary search trees 19




	Balanced binary search trees
	Taking care of your grandchildren helps you!
	Maintaining grandchildren-balanced trees
	Top-down tree maintenance
	Correctness and complexity

