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Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!

Answer: Use a low-height binary search tree instead.
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Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-balanced trees[3]: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-balanced trees[3]: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees[]: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees[1]: r(x) ⩽ r(xi ) + 2

3 Red-black trees[,]: r(x) = ? (r(⊥) = −1)
Red-black trees[5,9]: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)
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Height and internal/external path length
In weight-balanced trees with parameter α ∈ [1/

√
2, 9/11), in the worst case,

1 Height h ≈ logα(n).

2 Internal path length[] ipl ≈ n log2(n)/H2(α), where

H2(α) = −α log2(α)− (1 − α) log2(1 − α).
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Height and internal/external path length
In weight-balanced trees with parameter α ∈ [1/

√
2, 9/11), in the worst case,

1 Height h ≈ logα(n) = 2 log2(n).
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Grandchildren balanced trees
1 Grandchildren balanced trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)

Grandchildren balanced trees: r(xi ) ⩽ αr(x) (1/
√

2 ⩽ α < 9/11)
Grandchildren balanced trees: r(xij) ⩽ βr(x) (? ⩽ β ⩽ ?)

where B(α) =

√
1 + 4α− 1

2
.

2

5

2

3

9

2

4

2

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 8



Grandchildren balanced trees
1 Grandchildren balanced trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)

Grandchildren balanced trees: r(xi ) ⩽ αr(x) (1/
√

2 ⩽ α ⩽ 3/4)
Grandchildren balanced trees: r(xij) ⩽ βr(x) (B(α) ⩽ β ⩽ α2)

where B(α) =

√
1 + 4α− 1

2
.

2

5

2

3

9

2

4

2

x

r
x1

⩽αr

x2

⩽αrx11

⩽βr

x12

⩽βr

x21

⩽βr

x22

⩽βr

Vincent Jugé Grandchildren weight-balanced binary search trees 8



Improved height and internal/external path length
In trees with parameters α ∈ [1/

√
2, 3/4] and β ∈ [B(α), α2], in the worst case,

1 Height h ≈ 2 logβ(n) ≈ 1.880 log2(n) < 2 log2(n).

2 Internal path length ipl ≈ n log2(n)/∆ ≈ 1.127n log2(n) < 1.146n log2(n), where

∆ =
H2(α) + αH2(β/α)

1 + α
.
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Routine C: Use rotations to keep your Children small[3]
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Routine GC: Use rotations to keep your GrandChildren small
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Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /

Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′

Vincent Jugé Grandchildren weight-balanced binary search trees 13



Combining both routines C and GC
Pros & cons of each routine:

Routine C ensures everybody has small children once your descendants have small children.
It may mess with the grandchildren balance of those nodes its displaces. /
Routine GC ensures everybody has small grandchildren once everybody has small children.
It does not mess with anybody. ,

Recipe:
1 Launch routine C on x .

Our new root x ′ and its children x ′1 and x ′2 might have too large grandchildren.
2 Launch routine GC on x ′1 and x ′2 (in parallel).
3 Launch routine GC on x ′. ✓

x

least unbalanced node

x ′

x ′1 x ′2

x ′

x ′′1 x ′′2

x ′′′
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What is top-down maintenance?
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Prevent catastrophes just before they might occur!

Make C and GC routines trigger rotations as soon as adding or deleting a leaf below x might
make x unbalanced[7].

Redundant update = Trying to insert an already present key or delete an already absent key

At each node x , store r(xi ) for some child xi not on the branch you modify[8]:
It just remains to restore the tree rank, instead of all node ranks on the modified branch.

x

rx1

>αr x12

x121

x11

x122

x2

• ⩽ •+ • or • ⩾ •+ •

x

rx1

⩽αr

x121 x122

x2

x11 x12

• > βr or • > βr
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Correctness and complexity bounds
Correctness:
Relies on 41 inequalities as lovely as (1 − γ)2 ⩽ γ2(1 − α) whenever

1√
2
⩽ α ⩽

3
4

and

γ =
2α

1 + α+
√

1 + α2 + 4α3 − 2α
√

1 + 4α
.

Complexity[]:
Answering q queries requires O(q/c) rotations, where c = min{α− 1/

√
2, β −B(α), α2 − β}.

Proof idea:
Give each node x a counter whose value

increases by 1/r(x) when a leaf below x is inserted/deleted,
is reset to 0 when a rotation changes the vicinity of x .

The sum of all counters
increases by O(1) when a leaf is inserted/deleted;
decreases by Ω(c) when a rotation takes place.
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