
Galloping in fast-growth natural merge sorts

Elahe Ghasemi2,3, Vincent Jugé2 & Ghazal Khalighinejad1,3

1: Duke University
2: LIGM – Université Gustave Eiffel & CNRS
3: Sharif University of Technology

08/07/2022

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 1

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Library sorting algorithms in a few languages (for composite-type arrays)

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21 ’22

Timsort[3]

Trotsort[5]

Powersort[5]

Why don’t people just use plain (DualPivot)QuickSort + Heapsort?

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 2

Sorting data

in a stable manner

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

Heapsort and Mergesort have a worst-case time complexity of O(n log(n))
and we cannot do better, even on average. . .

But, sometimes, we can!

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 3

Sorting data in a stable manner
0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

Heapsort and Mergesort have a worst-case time complexity of O(n log(n))
and we cannot do better, even on average. . .

But, sometimes, we can!

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 3

Sorting data in a stable manner
0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

Heapsort and Mergesort have a worst-case time complexity of O(n log(n))
and we cannot do better, even on average. . .
But, sometimes, we can!

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 3

Let us do better!

4 runs of lengths 4, 3, 4 and 1

0 3 4 4 3 2 1 4 3 2 0 5

1 Subdivide your array in monotonic (non-decreasing or decreasing) runs.

2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)
Run-length entropy: H =

∑ρ
i=1(ri/n) log2(n/ri) 6 log2(ρ) 6 log2(n)

Theorem[5]

Powersort uses O(n + nH) element moves and O(n) + nH comparisons.

We cannot do better than O(n) + nH comparisons![4]

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2(H−5)n.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 4

Let us do better!

4 runs of lengths 4, 3, 4 and 1

0 3 4 4 3 2 1 4 3 2 0 5

1 Subdivide your array in monotonic (non-decreasing or decreasing) runs.
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri) 6 log2(ρ) 6 log2(n)

Theorem[5]

Powersort uses O(n + nH) element moves and O(n) + nH comparisons.

We cannot do better than O(n) + nH comparisons![4]

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2(H−5)n.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 4

Let us do better!

4 runs of lengths 4, 3, 4 and 1

0 3 4 4 3 2 1 4 3 2 0 5

1 Subdivide your array in monotonic (non-decreasing or decreasing) runs.
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri) 6 log2(ρ) 6 log2(n)

Theorem[5]

Powersort uses O(n + nH) element moves and O(n) + nH comparisons.

We cannot do better than O(n) + nH comparisons![4]

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2(H−5)n.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 4

Let us do better!

4 runs of lengths 4, 3, 4 and 1

0 3 4 4 3 2 1 4 3 2 0 5

1 Subdivide your array in monotonic (non-decreasing or decreasing) runs.
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri) 6 log2(ρ) 6 log2(n)

Theorem[5]

Powersort uses O(n + nH) element moves and O(n) + nH comparisons.

We cannot do better than O(n) + nH comparisons![4]

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2(H−5)n.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 4

The principles of Timsort, Trotsort, Powersort et al.
Algorithms based on merging adjacent runs * Stable algorithms

(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Extend small runs to save time O(n), and make them non-decreasing
2 Run merging sub-routine: naïve (Trotsort) or optimised (Timsort & Powersort)

I time O(k + `)
I memory O(min(k, `))

}
Merge cost: k + ` > #comparisons

3 Policy for choosing runs to merge:
I depends on run lengths and positions only

3 Complexity analysis:
* Evaluate the total merge cost
* Just work with run lengths

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 5

The principles of Timsort, Trotsort, Powersort et al.
Algorithms based on merging adjacent runs * Stable algorithms

(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Extend small runs to save time O(n), and make them non-decreasing
2 Run merging sub-routine: naïve (Trotsort) or optimised (Timsort & Powersort)

I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + ` > #comparisons

3 Policy for choosing runs to merge:
I depends on run lengths and positions only

3 Complexity analysis:
* Evaluate the total merge cost
* Just work with run lengths

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 5

The principles of Timsort, Trotsort, Powersort et al.
Algorithms based on merging adjacent runs * Stable algorithms

(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Extend small runs to save time O(n), and make them non-decreasing
2 Run merging sub-routine: naïve (Trotsort) or optimised (Timsort & Powersort)

I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + ` > #comparisons

3 Policy for choosing runs to merge:
I depends on run lengths and positions only

3 Complexity analysis:
* Evaluate the total merge cost
* Just work with run lengths

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 5

Merge trees and fast growth

Timsort merges

0 3 4 4 3 2 1 4 3 2 0 5

0 3 4 4 0 1 2 2 3 3 4 5

0 0 1 2 2 3 3 3 4 4 4 5

0 0 1 2 2 3 3 3 4 4 4 5

Timsort merge treeTimsort merge branch

4 3 4 1

7

11

124 3 4 1

7

11

12

4 4 1r0

r1

r2

r3

ri+j > (14/13) j−2ri

×
2

×
3

×
3

×
1+ + +

=
merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 6

Merge trees and fast growth

Timsort merges

0 3 4 4 3 2 1 4 3 2 0 5

0 3 4 4 0 1 2 2 3 3 4 5

0 0 1 2 2 3 3 3 4 4 4 5

0 0 1 2 2 3 3 3 4 4 4 5

Timsort merge tree

Timsort merge branch

4 3 4 1

7

11

12

4 3 4 1

7

11

12

4 4 1r0

r1

r2

r3

ri+j > (14/13) j−2ri

×
2

×
3

×
3

×
1+ + +

=
merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 6

Merge trees and fast growth

Timsort merges

0 3 4 4 3 2 1 4 3 2 0 5

0 3 4 4 0 1 2 2 3 3 4 5

0 0 1 2 2 3 3 3 4 4 4 5

0 0 1 2 2 3 3 3 4 4 4 5

Timsort merge tree

Timsort merge branch

4 3 4 1

7

11

12

4 3 4 1

7

11

12

4 4 1r0

r1

r2

r3

ri+j > (14/13) j−2ri

×
2

×
3

×
3

×
1+ + +

=
merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 6

Merge trees and fast growth

Timsort merges

0 3 4 4 3 2 1 4 3 2 0 5

0 3 4 4 0 1 2 2 3 3 4 5

0 0 1 2 2 3 3 3 4 4 4 5

0 0 1 2 2 3 3 3 4 4 4 5

Timsort merge tree

Timsort merge branch

4 3 4 1

7

11

12

4 3 4 1

7

11

12

4 4 1r0

r1

r2

r3

ri+j > (14/13) j−2ri

×
2

×
3

×
3

×
1+ + +

=
merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 6

Merge trees and fast growth

Timsort merges

0 3 4 4 3 2 1 4 3 2 0 5

0 3 4 4 0 1 2 2 3 3 4 5

0 0 1 2 2 3 3 3 4 4 4 5

0 0 1 2 2 3 3 3 4 4 4 5

Timsort merge tree

Timsort merge branch

4 3 4 1

7

11

124 3 4 1

7

11

12

4 4 1r0

r1

r2

r3

ri+j > (14/13) j−2ri

×
2

×
3

×
3

×
1+ + +

=
merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 6

Fast growth and merge cost

Fast growth[6]

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

ri+j > a j−b × ri for some constants a > 1 and b > 0.

* Each leaf of size r lies at depth d 6 loga(n/r) + b.
* Such an algorithm has a merge cost 6 loga(2)nH+ bn.

* Fast-growing algorithms work in time O(n + nH).
Examples: Timsort, α-Mergesort, Powersort, Peeksort, adaptive Shiverssort

* Powersort performs no more than n(H+ 4) comparisons (because a = 2 and b = 4).
* Peeksort and adaptive Shiverssort perform only O(n) + nH comparisons (but a > 2).

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 7

Fast growth and merge cost

Fast growth[6]

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

ri+j > a j−b × ri for some constants a > 1 and b > 0.

* Each leaf of size r lies at depth d 6 loga(n/r) + b.
* Such an algorithm has a merge cost 6 loga(2)nH+ bn.

* Fast-growing algorithms work in time O(n + nH).
Examples: Timsort, α-Mergesort, Powersort, Peeksort, adaptive Shiverssort

* Powersort performs no more than n(H+ 4) comparisons (because a = 2 and b = 4).
* Peeksort and adaptive Shiverssort perform only O(n) + nH comparisons (but a > 2).

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 7

Fast growth and merge cost

Fast growth[6]

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

ri+j > a j−b × ri for some constants a > 1 and b > 0.

* Each leaf of size r lies at depth d 6 loga(n/r) + b.
* Such an algorithm has a merge cost 6 loga(2)nH+ bn.

* Fast-growing algorithms work in time O(n + nH).
Examples: Timsort, α-Mergesort, Powersort, Peeksort, adaptive Shiverssort

* Powersort performs no more than n(H+ 4) comparisons (because a = 2 and b = 4).
* Peeksort and adaptive Shiverssort perform only O(n) + nH comparisons (but a > 2).

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 7

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values vs few dual runs:

lex inv

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 8

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values vs few dual runs:

lex inv

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 8

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Subdivide your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i) 6 log2(ρ?) 6 log2(n)

Theorem[6]

Fast-growing merge sorts require O(n + nH?) comparisons if they use Timsort’s galloping
run-merging routine∗. ∗we are slightly cheating

and we cannot use less than O(n) + nH? comparisons in general.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 9

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Subdivide your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i) 6 log2(ρ?) 6 log2(n)

Theorem[6]

Fast-growing merge sorts require O(n + nH?) comparisons if they use Timsort’s galloping
run-merging routine∗. ∗we are slightly cheating

and we cannot use less than O(n) + nH? comparisons in general.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 9

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

12

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)

2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))
Find log2(x) with method 1, then find the bits of x

3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x

3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Galloping merging procedure
Merging runs ≈ finding an integer (several times)[1,2]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

k `

k→0 k→1 k→2 `→0 `→1

Finding an integer x by asking y and being told whether y > x :
1 Ask y = 1, 2, 3, 4 . . . (time x)
2 First ask y = 1, 2, 4, 8, . . ., then find the bits of x (time 2 log2(x))

Find log2(x) with method 1, then find the bits of x
3 Find log2(x) with method 2, then find the bits of x (time log2(x))

Timsort merging procedure ≈ methods 1 + 2 with threshold t[2,3]:
4 Ask y = 1, 2, . . . , t + 1, t + 2, t + 4, t + 8, . . ., then find the bits of x − t

* Merge cost:
∑

i min{(1 + t−1)(k→i + `→i), 6t + 4 log2(k→i + `→i + 1)} > #comparisons
E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 10

Conclusions (after a few more computations)

and references

* For fixed thresholds t, fast-growth natural merge sorts require O(n + nH?) comparisons.
* Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH? comparisons.

Choose t ≈ log(k + `) to merge runs of lengths k and `

* Timsort updates t in a way that makes the O(n + nH?) upper bound look dubious.
* Trotsort requires Ω(n log(n)) comparisons to sort 010101010101010101. . .

* Studying widely-used algorithms/heuristics rocks!

[1] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[2] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
[3] Description of TimSort, Peters

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] Nearly-optimal mergesorts, Munro & Wild (2018)
[6] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 11

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations)

and references

* For fixed thresholds t, fast-growth natural merge sorts require O(n + nH?) comparisons.
* Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH? comparisons.

Choose t ≈ log(k + `) to merge runs of lengths k and `

* Timsort updates t in a way that makes the O(n + nH?) upper bound look dubious.
* Trotsort requires Ω(n log(n)) comparisons to sort 010101010101010101. . .

* Studying widely-used algorithms/heuristics rocks!

[1] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[2] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
[3] Description of TimSort, Peters

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] Nearly-optimal mergesorts, Munro & Wild (2018)
[6] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 11

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations)

and references

* For fixed thresholds t, fast-growth natural merge sorts require O(n + nH?) comparisons.
* Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH? comparisons.

Choose t ≈ log(k + `) to merge runs of lengths k and `

* Timsort updates t in a way that makes the O(n + nH?) upper bound look dubious.
* Trotsort requires Ω(n log(n)) comparisons to sort 010101010101010101. . .

* Studying widely-used algorithms/heuristics rocks!

[1] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[2] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
[3] Description of TimSort, Peters

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] Nearly-optimal mergesorts, Munro & Wild (2018)
[6] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 11

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations) and references
* For fixed thresholds t, fast-growth natural merge sorts require O(n + nH?) comparisons.
* Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH? comparisons.

Choose t ≈ log(k + `) to merge runs of lengths k and `

* Timsort updates t in a way that makes the O(n + nH?) upper bound look dubious.
* Trotsort requires Ω(n log(n)) comparisons to sort 010101010101010101. . .

* Studying widely-used algorithms/heuristics rocks!

[1] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[2] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
[3] Description of TimSort, Peters

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] Nearly-optimal mergesorts, Munro & Wild (2018)
[6] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts 11

svn.python.org/projects/python/trunk/Objects/listsort.txt

