Galloping in fast-growth natural merge sorts

Elahe Ghasemi ${ }^{2,3}$, Vincent Jugé ${ }^{2}$ \& Ghazal Khalighinejad ${ }^{1,3}$

1: Duke University
2: LIGM - Université Gustave Eiffel \& CNRS
3: Sharif University of Technology

08/07/2022

Library sorting algorithms in a few languages (for composite-type arrays)

Library sorting algorithms in a few languages (for composite-type arrays)

Library sorting algorithms in a few languages (for composite-type arrays)

Library sorting algorithms in a few languages (for composite-type arrays)

Library sorting algorithms in a few languages (for composite-type arrays)

Library sorting algorithms in a few languages (for composite-type arrays)

Sorting data

0	2			3	4	0	1	1	5	4	1	2		3
0	0		,	1	2	2		2	3	3	4	4	4	5

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log (n))$ and we cannot do better, even on average. . .

Sorting data in a stable manner

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log (n))$ and we cannot do better, even on average. . .

Sorting data in a stable manner

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log (n))$ and we cannot do better, even on average. . . But, sometimes, we can!

E. Ghasemi, V. Jugé \& G. Khalighinejad

Galloping in fast-growth natural merge sorts

Let us do better!

0	3	4	4	3	2	1	4	3	2	0	5

(1) Subdivide your array in monotonic (non-decreasing or decreasing) runs.

Let us do better!

4 runs of lengths $4,3,4$ and 1

0	3	4	4	3	2	1	4	3	2	0	5

(1) Subdivide your array in monotonic (non-decreasing or decreasing) runs.
(2) New parameters: Number of runs (ρ) and their lengths $\left(r_{1}, \ldots, r_{\rho}\right)$

Let us do better!

4 runs of lengths 4, 3, 4 and 1

0	3	4	4	3	2	1	4	3	2	0	5

(1) Subdivide your array in monotonic (non-decreasing or decreasing) runs.
(2) New parameters: Number of runs (ρ) and their lengths $\left(r_{1}, \ldots, r_{\rho}\right)$ Run-length entropy: $\mathcal{H}=\sum_{i=1}^{\rho}\left(r_{i} / n\right) \log _{2}\left(n / r_{i}\right) \leqslant \log _{2}(\rho) \leqslant \log _{2}(n)$

Let us do better!

$$
4 \text { runs of lengths } 4,3,4 \text { and } 1
$$

0	3	4	4	3	2	1	4	3	2	0	5

(1) Subdivide your array in monotonic (non-decreasing or decreasing) runs.
(2) New parameters: Number of runs (ρ) and their lengths $\left(r_{1}, \ldots, r_{\rho}\right)$ Run-length entropy: $\mathcal{H}=\sum_{i=1}^{\rho}\left(r_{i} / n\right) \log _{2}\left(n / r_{i}\right) \leqslant \log _{2}(\rho) \leqslant \log _{2}(n)$

Theorem ${ }^{[5]}$

Powersort uses $\mathcal{O}(n+n \mathcal{H})$ element moves and $\mathcal{O}(n)+n \mathcal{H}$ comparisons.
We cannot do better than $\mathcal{O}(n)+n \mathcal{H}$ comparisons! ${ }^{[4]}$
There are X possible reorderings, with $X \geqslant 2^{1-\rho}\binom{n}{r_{1} \ldots r_{\rho}} \geqslant 2^{(\mathcal{H}-5) n}$.

The principles of Timsort, Trotsort, Powersort et al. Algorithms based on merging adjacent runs

- Stable algorithms (good for composite types)

0	2	2	3	4	0	1	-	5
\downarrow	\checkmark							
0	0	1	2	2	3	4		

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs

- Stable algorithms (good for composite types)
(1) Extend small runs to save time $\mathcal{O}(n)$, and make them non-decreasing
(2) Run merging sub-routine: naïve (Trotsort) or optimised (Timsort \& Powersort)
- time $\mathcal{O}(k+\ell)$
- memory $\mathcal{O}(\min (k, \ell))\}$ Merge cost: $k+\ell \geqslant$ \#comparisons
(3) Policy for choosing runs to merge:
- depends on run lengths and positions only

The principles of Timsort, Trotsort, Powersort et al.

 Algorithms based on merging adjacent runsStable algorithms (good for composite types)

(1) Extend small runs to save time $\mathcal{O}(n)$, and make them non-decreasing
(2) Run merging sub-routine: naïve (Trotsort) or optimised (Timsort \& Powersort)

- time $\mathcal{O}(k+\ell)$
- memory $\mathcal{O}(\min (k, \ell))\}$ Merge cost: $k+\ell \geqslant$ \#comparisons
(3) Policy for choosing runs to merge:
- depends on run lengths and positions only
(3) Complexity analysis:
- Evaluate the total merge cost
- Just work with run lengths

Merge trees and fast growth

Timsort merges

0	3	4	4	3	2	1	4	3	2	0	5	
$\xrightarrow{-1}$												
0	3	4	4	0	1	2	2		3	4	4	
0	0	1	2	2	3	3	3	4	4	4	$4{ }^{4} 5$	
(1)												
0	0	1	2	2	3	3	3		4			

Merge trees and fast growth

Timsort merges

Merge trees and fast growth

Timsort merges

Timsort merge tree

Merge trees and fast growth

Timsort merges

Timsort merge tree

Merge trees and fast growth

Timsort merges

Timsort merge branch

Fast growth and merge cost

Fast growth ${ }^{[6]}$

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

$$
r_{i+j} \geqslant a^{j-b} \times r_{i} \text { for some constants } a>1 \text { and } b \geqslant 0 .
$$

Fast growth and merge cost

Fast growth ${ }^{[6]}$

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

$$
r_{i+j} \geqslant a^{j-b} \times r_{i} \text { for some constants } a>1 \text { and } b \geqslant 0 .
$$

- Each leaf of size r lies at depth $d \leqslant \log _{a}(n / r)+b$.
- Such an algorithm has a merge cost $\leqslant \log _{a}(2) n \mathcal{H}+b n$.

Fast growth and merge cost

Fast growth ${ }^{[6]}$

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

$$
r_{i+j} \geqslant a^{j-b} \times r_{i} \text { for some constants } a>1 \text { and } b \geqslant 0 .
$$

- Each leaf of size r lies at depth $d \leqslant \log _{a}(n / r)+b$.
- Such an algorithm has a merge cost $\leqslant \log _{a}(2) n \mathcal{H}+b n$.
- Fast-growing algorithms work in time $\mathcal{O}(n+n \mathcal{H})$.

Examples: Timsort, α-Mergesort, Powersort, Peeksort, adaptive Shiverssort

- Powersort performs no more than $n(\mathcal{H}+4)$ comparisons (because $a=2$ and $b=4$).
- Peeksort and adaptive Shiverssort perform only $\mathcal{O}(n)+n \mathcal{H}$ comparisons (but a>2).

What about | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 0 | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| \downarrow | | | | | | | | | | | | | | | | |

5×0			4×1					3×2				
\downarrow,												
0	0	0	0	0	1	1	1	1			2	2

Few runs vs few values vs few dual runs:

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0	1	1	0	2	1	0	2	0	2	0	1

(1) Subdivide your data in non-decreasing, non-overlapping dual runs
(2) New parameters: Number of dual runs $\left(\rho^{\star}\right)$ and their lengths $\left(r_{i}^{\star}\right)$

Dual-run entropy: $\mathcal{H}^{\star}=\sum_{i=1}^{\rho^{\star}}\left(r_{i}^{\star} / n\right) \log _{2}\left(n / r_{i}^{\star}\right) \leqslant \log _{2}\left(\rho^{\star}\right) \leqslant \log _{2}(n)$

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0	1	1	0	2	1	0	2	0	2	0	1

(1) Subdivide your data in non-decreasing, non-overlapping dual runs
(2) New parameters: Number of dual runs $\left(\rho^{\star}\right)$ and their lengths $\left(r_{i}^{\star}\right)$

Dual-run entropy: $\mathcal{H}^{\star}=\sum_{i=1}^{\rho^{\star}}\left(r_{i}^{\star} / n\right) \log _{2}\left(n / r_{i}^{\star}\right) \leqslant \log _{2}\left(\rho^{\star}\right) \leqslant \log _{2}(n)$

Theorem ${ }^{[6]}$

Fast-growing merge sorts require $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ comparisons if they use Timsort's galloping run-merging routine*.
*we are slightly cheating
and we cannot use less than $\mathcal{O}(n)+n \mathcal{H}^{\star}$ comparisons in general.

Galloping merging procedure Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Galloping merging procedure Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Galloping merging procedure Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Galloping merging procedure

 Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Galloping merging procedure Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Galloping merging procedure Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 1 | | | | | | |

Galloping merging procedure

 Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 1 | | | | | | |

Finding an integer x by asking y and being told whether $y \geqslant x$:
(1) Ask $y=1,2,3,4 \ldots$

Galloping merging procedure

Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 1 | | | | | | |

Finding an integer x by asking y and being told whether $y \geqslant x$:
(1) Ask $y=1,2,3,4 \ldots$
(2) First ask $y=1,2,4,8, \ldots$, then find the bits of x

Galloping merging procedure

Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\ \hline\end{array} \quad \begin{array}{ll}0 & 0\end{array}\right) 0$

Finding an integer x by asking y and being told whether $y \geqslant x$:
(1) Ask $y=1,2,3,4 \ldots$
(2) First ask $y=1,2,4,8, \ldots$, then find the bits of x

Find $\log _{2}(x)$ with method 1 , then find the bits of x

Galloping merging procedure

Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 0 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Finding an integer x by asking y and being told whether $y \geqslant x$:
(1) Ask $y=1,2,3,4 \ldots$
(2) First ask $y=1,2,4,8, \ldots$, then find the bits of x

Find $\log _{2}(x)$ with method 1 , then find the bits of x
(3) Find $\log _{2}(x)$ with method 2 , then find the bits of x

Galloping merging procedure

Merging runs \approx finding an integer (several times) ${ }^{[1,2]}$

Finding an integer x by asking y and being told whether $y \geqslant x$:
(1) Ask $y=1,2,3,4 \ldots$
(2) First ask $y=1,2,4,8, \ldots$, then find the bits of x

Find $\log _{2}(x)$ with method 1 , then find the bits of x
(3) Find $\log _{2}(x)$ with method 2 , then find the bits of x

Timsort merging procedure \approx methods $1+2$ with threshold $t^{[2,3]}$:
(4. Ask $y=1,2, \ldots, \mathrm{t}+1, \mathrm{t}+2, \mathrm{t}+4, \mathrm{t}+8, \ldots$, then find the bits of $x-\mathrm{t}$

- Merge cost: $\sum_{i} \min \left\{\left(1+\mathbf{t}^{-1}\right)\left(k_{\rightarrow i}+\ell_{\rightarrow i}\right), 6 \mathbf{t}+4 \log _{2}\left(k_{\rightarrow i}+\ell_{\rightarrow i}+1\right)\right\} \geqslant$ \#comparisons

Conclusions (after a few more computations)

- For fixed thresholds t , fast-growth natural merge sorts require $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ comparisons.
- Choosing adequate choices of t , Powersort requires $\mathcal{O}(n)+(1+o(1)) n \mathcal{H}^{\star}$ comparisons. Choose $\mathrm{t} \approx \log (k+\ell)$ to merge runs of lengths k and ℓ

Conclusions (after a few more computations)

- For fixed thresholds t , fast-growth natural merge sorts require $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ comparisons.
- Choosing adequate choices of t , Powersort requires $\mathcal{O}(n)+(1+o(1)) n \mathcal{H}^{\star}$ comparisons.

$$
\text { Choose } t \approx \log (k+\ell) \text { to merge runs of lengths } k \text { and } \ell
$$

- Timsort updates t in a way that makes the $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ upper bound look dubious.
- Trotsort requires $\Omega(n \log (n))$ comparisons to sort $010101010101010101 \ldots$

Conclusions (after a few more computations)

- For fixed thresholds t , fast-growth natural merge sorts require $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ comparisons.
- Choosing adequate choices of t , Powersort requires $\mathcal{O}(n)+(1+o(1)) n \mathcal{H}^{\star}$ comparisons.

$$
\text { Choose } t \approx \log (k+\ell) \text { to merge runs of lengths } k \text { and } \ell
$$

- Timsort updates t in a way that makes the $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ upper bound look dubious.
- Trotsort requires $\Omega(n \log (n))$ comparisons to sort $010101010101010101 .$.
- Studying widely-used algorithms/heuristics rocks!

Conclusions (after a few more computations) and references

- For fixed thresholds t , fast-growth natural merge sorts require $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ comparisons.
- Choosing adequate choices of t , Powersort requires $\mathcal{O}(n)+(1+o(1)) n \mathcal{H}^{\star}$ comparisons.

$$
\text { Choose } t \approx \log (k+\ell) \text { to merge runs of lengths } k \text { and } \ell
$$

- Timsort updates t in a way that makes the $\mathcal{O}\left(n+n \mathcal{H}^{\star}\right)$ upper bound look dubious.
- Trotsort requires $\Omega(n \log (n))$ comparisons to sort $010101010101010101 \ldots$
- Studying widely-used algorithms/heuristics rocks!
[1] An almost optimal algorithm for unbounded searching, Bentley \& Yao
[2] Optimistic Sorting and Information Theoretic Complexity, Mcllroy
[3] Description of TimSort, Peters svn.python.org/projects/python/trunk/Objects/listsort.txt
[4] On compressing permutations and adaptive sorting, Barbay \& Navarro
[5] Nearly-optimal mergesorts, Munro \& Wild
[6] Galloping in natural merge sorts, Ghasemi, Jugé \& Khalighinejad

THANK YOU FOR YOUR ATTENTION!

DO YOU HAVE ANY EASY QUESTIONS?

