Finding automatic sequences with few correlations

> Vincent Jugé¹ \& Irène Marcovici²

1: Université Gustave Eiffel (LIGM) - 2: Université de Lorraine (IECL)

$$
14 / 06 / 2022
$$

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $\left(u_{n}\right)_{n \geqslant 0}$
that share similarities with i.i.d. symbol sequences

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $\left(u_{n}\right)_{n \geqslant 0}$

$$
\left(u_{n}\right)_{n \geqslant 0} \text { generated by finite automata }
$$

that share similarities with i.i.d. symbol sequences
terms $\left(u_{n}\right)_{n \geqslant 0}$ should be equidistributed

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $\left(u_{n}\right)_{n \geqslant 0}$

$$
\left(u_{n}\right)_{n \geqslant 0} \text { generated by finite automata }
$$

that share similarities with i.i.d. symbol sequences
terms $\left(u_{n}\right)_{n \geqslant 0}$ should be equidistributed pairs $\left(u_{n}, u_{n+a}\right)_{n \geqslant 0}$ should be equidistributed triples $\left(u_{n}, u_{n+a}, u_{n+a+b}\right)_{n \geqslant 0}$ should be equidistributed

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}=\left\{\begin{array}{l}0 \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 \text { otherwise }\end{array}\right.$
$u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots$

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton:
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences ${ }^{[2]}$

Example \#1: Thue-Morse sequence
$u_{n}= \begin{cases}0 & \text { if the binary digit expansion of } n \text { contains an even number of } 1 \mathrm{~s} \\ 1 & \text { otherwise }\end{cases}$

$$
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
$$

Computing u_{23} with an automaton: $u_{23}=0$
(1) Write 23 in base 2 (little-endian convention): $\langle 23\rangle_{2}=111010000 \ldots$
(2) Feed $\langle 23\rangle_{2}$ to the Thue-Morse automaton and output the state label you get stuck seeing

Automatic sequences

Example \#2: Mod2

$$
u_{n}=\left\{\begin{array}{l}
0 \text { if } n \text { is even } \\
1 \text { otherwise }
\end{array}\right.
$$

$$
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
$$

Automatic sequences

Example \#2: Mod2

$$
\begin{gathered}
u_{n}=\left\{\begin{array}{l}
0 \text { if } n \text { is even } \\
1 \text { otherwise }
\end{array}\right. \\
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
\end{gathered}
$$

Computing u_{n} with an automaton:
(1) Write n in base 2 (little-endian convention)
(2) Feed $\langle n\rangle_{2}$ to the following automaton and output the state label you get stuck seeing

Automatic sequences

Example \#3: Powers of 3

$$
\begin{gathered}
u_{n}=\left\{\begin{array}{l}
1 \text { if } n \text { is a power of } 3 \\
0 \text { otherwise }
\end{array}\right. \\
u_{n}=0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, \ldots
\end{gathered}
$$

Automatic sequences

Example \#3: Powers of 3
3-automatic

$$
\begin{gathered}
u_{n}= \begin{cases}1 & \text { if } n \text { is a power of } 3 \\
0 & \text { otherwise }\end{cases} \\
u_{n}=0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, \ldots
\end{gathered}
$$

Computing u_{n} with an automaton:
(1) Write n in base 3 (little-endian convention)
(2) Feed $\langle n\rangle_{3}$ to the following automaton and output the state label you get stuck seeing

Automatic sequences: Big-endian variant

Computing u_{n} with an automaton:
(1) Write n in base k (big-endian convention): $\langle\langle 23\rangle\rangle_{2}=\ldots 000010111$
(2) Feed $\langle\langle n\rangle\rangle_{k}$ to your favourite automaton and output the last state label you see

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-1 window with function $f: x \mapsto x$

$$
\begin{aligned}
\langle 23\rangle_{2} & =\begin{array}{|lllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
& \ldots \downarrow \\
& \\
u_{23} & = & 1+
\end{array}
\end{aligned}
$$

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-1 window with function $f: x \mapsto x$

$$
\begin{aligned}
\langle 23\rangle_{2} & =1 \begin{array}{|cccccccc}
1 \\
f \downarrow \\
& 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\ldots
\end{array} \\
u_{23} & =1+1+
\end{aligned}
$$

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-1 window with function $f: x \mapsto x$

$$
\begin{aligned}
\langle 23\rangle_{2} & = \\
& 1 \\
& 1 \\
\hline & \begin{array}{lllllllll}
1 \\
& & 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
u_{23} & = & 1+1+1+
\end{array}
\end{aligned}
$$

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-1 window with function $f: x \mapsto x$

$$
\begin{aligned}
\langle 23\rangle_{2} & = \\
& 1 \\
& 1
\end{aligned} 1 \begin{array}{lllllllll}
& 1 & 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
f \downarrow \\
u_{23} & = & 1+1+1+0+
\end{array}
$$

Automatic sequences and block-additive sequences ${ }^{[3,7]}$

Example \#1: Thue-Morse sequence (in \mathbb{Z}_{2}) rank-1 block-additive

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { is even } \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { is odd }\end{cases} \\
u_{n}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window: $u_{23}=0$
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-1 window with function $f: x \mapsto x$

$$
\begin{array}{rl}
\langle 23\rangle_{2} & = \\
& 1 \\
1 & 1
\end{array} 1 \begin{array}{lllllllll}
& 0 & \begin{array}{|c}
1 \\
f \downarrow
\end{array} & 0 & 0 & 0 & 0 & \ldots \\
u_{23} & = & 1+1+1+0+1
\end{array}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p})

$$
\begin{array}{r}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{array}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p})

$$
\begin{array}{r}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{array}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x y$

$$
\begin{aligned}
&\langle 23\rangle_{2}=\begin{array}{|ccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0
\end{array} \ldots \\
& f \downarrow \\
& u_{23}=\begin{array}{ll}
1+
\end{array} \\
& \\
& \\
&
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p})

$$
\begin{array}{r}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{array}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x y$

$$
\begin{aligned}
& \langle 23\rangle_{2}=1 \begin{array}{cccccccc}
1 & \begin{array}{ll}
1 & 1 \\
f \downarrow \\
& 1
\end{array} & 1 & 0 & 0 & 0 & 0 & \ldots \\
\hline
\end{array} \\
& u_{23}=1+1+
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p})

$$
\begin{array}{r}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{array}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x y$

$$
\begin{aligned}
\langle 23\rangle_{2} & =\begin{array}{lcllllll}
1 & 1 & \begin{array}{cc}
1 & 0 \\
f \downarrow & 1
\end{array} 0 & 0 & 0 & 0 & \ldots \\
u_{23} & = & 1+1+0+
\end{array}
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p})

$$
\begin{array}{r}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{array}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x y$

$$
\begin{aligned}
\langle 23\rangle_{2} & = \\
& 1 \\
\hline & 1 \\
\hline & 1 \begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
f \downarrow \\
u_{23} & = & 1+1+0+0+
\end{array}
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#2: Generalised Golay-Rudin-Shapiro sequence (in \mathbb{Z}_{p}) rank-2 block-additive

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / p\rfloor}+i j & \text { if } n \geqslant 1 \text { and } n \equiv i+p j \bmod p^{2}\end{cases} \\
u_{n}=0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1, \ldots \\
\text { for } p=2
\end{gathered}
$$

Computing u_{23} with a sliding window: $u_{23}=0$
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x y$

$$
\begin{array}{rl}
\langle 23\rangle_{2} & = \\
& 1 \\
1 & 1
\end{array} 1 \begin{array}{cccccc}
\frac{1}{f \downarrow} & 0 & 0 & 0 & \ldots \\
u_{23} & = & 1+1+0+0+0
\end{array}
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases} \\
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
\end{gathered}
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\ u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases}
$$

$$
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x+y$

$$
\begin{aligned}
&\langle 23\rangle_{2}=\frac{1}{1} 1 \\
& f \downarrow 0 \\
& \downarrow
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\ u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases}
$$

$$
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x+y$

$$
\begin{aligned}
\langle 23\rangle_{2} & =1 \begin{array}{|ccccccc}
\hline 1 & 1 \\
f \downarrow
\end{array} 0 \quad 1 \\
u_{23} & =0+0+
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\ u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases}
$$

$$
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x+y$

$$
\begin{aligned}
\langle 23\rangle_{2} & =10 \begin{array}{llllllll}
1 & 1 & 0 \\
f \downarrow \\
& 1 & 0 & 0 & 0 & 0 & \ldots \\
u_{23} & = & 0+0+1+
\end{array} \\
& 0+1
\end{aligned}
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})

$$
\begin{gathered}
u_{n}= \begin{cases}0 & \text { if } n=0 \\
u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\
u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases} \\
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
\end{gathered}
$$

Computing u_{23} with a sliding window:
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x+y$

$$
\left.\begin{array}{rl}
\langle 23\rangle_{2} & = \\
1 & 1
\end{array} 1 \begin{array}{ccccccc}
\hline 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
f \downarrow
\end{array}\right]
$$

Automatic sequences and block-additive sequences

Example \#3: Mod2 (in \mathbb{Z}_{2})
rank-2 block-additive

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / 2\rfloor} & \text { if } n \geqslant 1 \text { and } n \equiv 0 \text { or } 3 \bmod 4 \\ u_{\lfloor n / 2\rfloor}+1 & \text { if } n \geqslant 1 \text { and } n \equiv 1 \text { or } 2 \bmod 4\end{cases}
$$

$$
u_{n}=0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots
$$

Computing u_{23} with a sliding window: $u_{23}=1$
(1) Write 23 in base 2 (little-endian convention)
(2) Feed $\langle 23\rangle_{2}$ to the size-2 window with function $f:(x, y) \mapsto x+y$

$$
\left.\begin{array}{rl}
\langle 23\rangle_{2} & = \\
1 & 1
\end{array} 1 \begin{array}{llllllll}
\hline 1 & 0 & 0 & 0 & 0 & \ldots \\
f \downarrow
\end{array}\right]
$$

Automatic sequences: Take-away home...

Automatic sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is k-automatic if there exists a labelled DFA that, upon reading the base- k digits of n, gets stuck in states labelled u_{n}.

Automatic sequences: Take-away home. . .

Automatic sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is k-automatic if there exists a labelled DFA that, upon reading the base- k digits of n, gets stuck in states labelled u_{n}.

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS
Counter-examples: Squares, Primes

Automatic sequences: Take-away home. . .

Automatic sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is k-automatic if there exists a labelled DFA that, upon reading the base- k digits of n, gets stuck in states labelled u_{n}.

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS
Counter-examples: Squares, Primes

Block-additive sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is rank- r block-additive in \mathbb{Z}_{k} if there exists a function
$\varphi: \mathbb{Z}_{k^{r}} \mapsto \mathbb{Z}_{k}$ such that

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / k\rfloor}+\varphi\left(n \bmod k^{r}\right) & \text { if } n \geqslant 0\end{cases}
$$

Automatic sequences: Take-away home. . .

Automatic sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is k-automatic if there exists a labelled DFA that, upon reading the base- k digits of n, gets stuck in states labelled u_{n}.

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS
Counter-examples: Squares, Primes

Block-additive sequence

A sequence $\left(u_{n}\right)_{n \geqslant 0}$ is rank- r block-additive in \mathbb{Z}_{k} if there exists a function
$\varphi: \mathbb{Z}_{k^{r}} \mapsto \mathbb{Z}_{k}$ such that

$$
u_{n}= \begin{cases}0 & \text { if } n=0 \\ u_{\lfloor n / k\rfloor}+\varphi\left(n \bmod k^{r}\right) & \text { if } n \geqslant 0\end{cases}
$$

Examples: Mod2, Thue-Morse, Generalised GRS, Non-multiples of 3
Counter-examples: Powers of 3, Multiples of 3
Proposition: Every block-additive sequence is automatic.

What makes a deterministic sequence look random?
You should have no idea of what you will find!

What makes a deterministic sequence look random?
You should have no idea of what you will find!

Equidistributed terms

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 1 -uncorrelated if

$$
|S| \cdot\left|\left\{k \leqslant n: u_{k}=s\right\}\right| \sim n
$$

for all symbols $s \in S$.

What makes a deterministic sequence look random?
You should have no idea of what you will find!

Equidistributed terms

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 1-uncorrelated if

$$
|S| \cdot\left|\left\{k \leqslant n: u_{k}=s\right\}\right| \sim n
$$

for all symbols $s \in S$.

Examples:

Mod2
Thue-Morse
Generalised GRS (for all p)

$0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1, \ldots$
$0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, \ldots$
$0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1, \ldots$

What makes a deterministic sequence look random?
You should have no idea of what you will find!

Equidistributed terms

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 1-uncorrelated if

$$
|S| \cdot\left|\left\{k \leqslant n: u_{k}=s\right\}\right| \sim n
$$

for all symbols $s \in S$.

Examples:

Mod2

Thue-Morse
Generalised GRS (for all p)
Counter-examples:
Squares
$1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0, \ldots$
$1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, \ldots$
$0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0, \ldots$
$1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, \ldots$

What makes a deterministic sequence look random?

No single past observation should help you!

What makes a deterministic sequence look random?

No single past observation should help you!

Equidistributed pairs

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 2-uncorrelated if

$$
\left|S^{2}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k}, u_{k+a}\right)=(s, t)\right\}\right| \sim n
$$

for all symbols $s, t \in S$ and integers $a>0$.

What makes a deterministic sequence look random?

No single past observation should help you!

Equidistributed pairs

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 2-uncorrelated if

$$
\left|S^{2}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k}, u_{k+a}\right)=(s, t)\right\}\right| \sim n
$$

for all symbols $s, t \in S$ and integers $a>0$.

Examples:

Generalised GRS ${ }^{[4]}($ for all $p) \quad 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1, \ldots$

What makes a deterministic sequence look random?

No single past observation should help you!

Equidistributed pairs

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is 2-uncorrelated if

$$
\left|S^{2}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k}, u_{k+a}\right)=(s, t)\right\}\right| \sim n
$$

for all symbols $s, t \in S$ and integers $a>0$.

Examples:

Generalised GRS ${ }^{[4]}$ (for all p) $\quad 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1, \ldots$
Counter-examples:
Mod2
Thue-Morse

$$
\begin{aligned}
& \mathbb{P}[01]=1 / 2 \\
& \mathbb{P}[00]=1 / 3
\end{aligned}
$$

What makes a deterministic sequence look random?

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is ℓ-uncorrelated if

$$
\left|S^{\ell}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k+a_{1}}, u_{k+a_{2}}, \ldots, u_{k+a_{\ell}}\right)=\left(s_{1}, s_{2}, \ldots, s_{\ell}\right)\right\}\right| \sim n
$$

for all symbols $s_{1}, s_{2}, \ldots, s_{\ell} \in S$ and integers $0=a_{1}<a_{2}<\ldots<a_{\ell}$.

What makes a deterministic sequence look random?

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is ℓ-uncorrelated if

$$
\left|S^{\ell}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k+a_{1}}, u_{k+a_{2}}, \ldots, u_{k+a_{\ell}}\right)=\left(s_{1}, s_{2}, \ldots, s_{\ell}\right)\right\}\right| \sim n
$$

for all symbols $s_{1}, s_{2}, \ldots, s_{\ell} \in S$ and integers $0=a_{1}<a_{2}<\ldots<a_{\ell}$.

Example for $\ell=3$:
Generalised GRS ${ }^{[8]}($ for $p=2) \quad 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1, \ldots$
Counter-example for $\ell=3$:
Generalised GRS (for $p=3$)

$$
\mathbb{P}[000]=5 / 81
$$

What makes a deterministic sequence look random?

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $\left(u_{n}\right)_{n \geqslant 0} \in S^{\mathbb{N}}$ is ℓ-uncorrelated if

$$
\left|S^{\ell}\right| \cdot\left|\left\{k \leqslant n:\left(u_{k+a_{1}}, u_{k+a_{2}}, \ldots, u_{k+a_{\ell}}\right)=\left(s_{1}, s_{2}, \ldots, s_{\ell}\right)\right\}\right| \sim n
$$

for all symbols $s_{1}, s_{2}, \ldots, s_{\ell} \in S$ and integers $0=a_{1}<a_{2}<\ldots<a_{\ell}$.

Example for $\ell=3$:
Generalised GRS ${ }^{[8]}($ for $p=2) \quad 0,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1, \ldots$
Counter-example for $\ell=3$:
Generalised GRS (for $p=3$)

$$
\mathbb{P}[000]=5 / 81
$$

Counter-example for $\ell=4$:
Generalised GRS (for $p=2$)

$$
\mathbb{P}[0000]=3 / 32
$$

Avoiding small- ℓ correlations

Theorem ${ }^{[2]}$
Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1}-correlated.

Avoiding small- ℓ correlations

Theorem ${ }^{[2]}$

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1}-correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $\left(u_{n}\right)_{n \geqslant 0}$ has at most ℓs^{2} distinct subsequences of length ℓ :

Avoiding small- ℓ correlations

Theorem ${ }^{[2]}$

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1}-correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $\left(u_{n}\right)_{n \geqslant 0}$ has at most ℓs^{2} distinct subsequences of length ℓ :

Avoiding small- ℓ correlations

Theorem ${ }^{[2]}$

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1}-correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $\left(u_{n}\right)_{n \geqslant 0}$ has at most ℓs^{2} distinct subsequences of length ℓ :

Avoiding small- ℓ correlations

Theorem ${ }^{[2]}$

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1}-correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $\left(u_{n}\right)_{n \geqslant 0}$ has at most ℓs^{2} distinct subsequences of length ℓ :

Thus, at least one of the $k^{\ell} \geqslant 2^{\ell}>\ell s^{2}$ sequences of length ℓ is missing.

Avoiding small- ℓ correlations

Theorem ${ }^{[8]}$
Every 2ℓ-uncorrelated block-additive sequence in \mathbb{Z}_{2} is also $(2 \ell+1)$-uncorrelated.

Avoiding small- ℓ correlations

Theorem ${ }^{[8]}$

Every 2ℓ-uncorrelated block-additive sequence in \mathbb{Z}_{2} is also $(2 \ell+1)$-uncorrelated.

Good side:
Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_{2} !

Avoiding small- ℓ correlations

Theorem ${ }^{[8]}$

Every 2ℓ-uncorrelated block-additive sequence in \mathbb{Z}_{2} is also $(2 \ell+1)$-uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_{2} !
Bad sides:
Statement fails in \mathbb{Z}_{p} for $p \geqslant 3$.

Avoiding small- ℓ correlations

Theorem ${ }^{[8]}$

Every 2ℓ-uncorrelated block-additive sequence in \mathbb{Z}_{2} is also $(2 \ell+1)$-uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_{2} !
Bad sides:
Statement fails in \mathbb{Z}_{p} for $p \geqslant 3$.
No 4-uncorrelated block-additive sequences in \mathbb{Z}_{2} are yet known. ().

Avoiding small- ℓ correlations

Theorem ${ }^{[8]}$

Every 2ℓ-uncorrelated block-additive sequence in \mathbb{Z}_{2} is also $(2 \ell+1)$-uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_{2} !

Bad sides:

Statement fails in \mathbb{Z}_{p} for $p \geqslant 3$.
No 4-uncorrelated block-additive sequences in \mathbb{Z}_{2} are yet known. ().
Results so far:
Simple criteria for 2-/3-uncorrelated rank-3 block-additive sequences in \mathbb{Z}_{2}.
Rank-5 block-additive sequences in \mathbb{Z}_{2} are 4-correlated. Rank-3 block-additive sequences in \mathbb{Z}_{3} are 3-correlated.

What is coming next?

- Extending our criteria to all 2-uncorrelated block-additive sequences in \mathbb{Z}_{2}.
- Finding a 4-uncorrelated block-additive sequence or proving none exists.
- Finding a 4-uncorrelated automatic sequence or proving none exists.
- Deciding whether an automaton \mathcal{A} gives an ℓ-uncorrelated sequence.

Some references

[1] Une nouvelle propriété des suites de Rudin-Shapiro, Queffélec (1987)
[2] Automatic sequences, Allouche \& Shallit (2003)[3] Block-additive functions on the Gaussian integers,Drmota, Grabner \& Liardet(2008)
[4] Bounds for the discrete correlations of infinite sequences on k symbols and generalized Rudin-Shapiro sequences, Grant, Shallit \& Stoll (2009)
[5] On a Golay-Shapiro-like sequence, Allouche(2016)
[6] Discrete correlations of order 2 of generalized Rudin-Shapiro sequenceson alphabets of arbitrary size, Tahay(2020)[7] Discrete correlations of order 2 of generalized Golay-Shapiro sequences:a combinatorial approach, Marcovici, Stoll \& Tahay(2021)
[8] Finding automatic sequences with few correlations Jugé \& Marcovici (2022)

THWWOUFOBUSTENTHET

