Reduction ratio of the IS-algorithm: worst and random cases

Vincent Jugé

Université Gustave Eiffel (LIGM)

28/06/2022

Contents

(1) Induced-sorting algorithm for computing the suffix array of a word
(2) Worst-case reduction ratio
(3) Average reduction ratio: Letters generated by a nice Markov chain
(4) Number of recursive calls: Letters generated by a finite Markov chain

Suffix arrays ${ }^{[1]}$

Suffix array: permutation that orders lexicographically suffixes of a word

$$
\begin{array}{lllllllll}
B & A & L & A & L & A & I & K & A
\end{array}
$$

Suffix arrays ${ }^{[1]}$

Suffix array: permutation that orders lexicographically suffixes of a word

$$
\begin{array}{llllllllll}
\text { B } & \text { A } & \text { L } & \text { A } & \text { L } & \text { A } & \text { I }
\end{array}
$$

A								
K	A							
I	K	A						
A	I	K	A					
L	A	I	K	A				
A	L	A	I	K	A			
L	A	L	A	I	K	A		
A	L	A	L	A	I	K	A	
B	A	L	A	L	A	I	K	A

Suffix arrays ${ }^{[1]}$

Suffix array: permutation that orders lexicographically suffixes of a word

A								
A	I	K	A					
A	L	A	I	K	A			
A	L	A	L	A	I	K	A	
B	A	L	A	L	A	I	K	A
I	K	A						
K	A							
L	A	I	K	A				
L	A	L	A	I	K	A		

Suffix arrays ${ }^{[1]}$

Suffix array: permutation that orders lexicographically suffixes of a word

B	A	L	A	L	A	I	K	A
4	3	8	2	7	1	5	6	0
A								
A	I	K	A					
A	L	A	I	K	A			
A	L	A	L	A	I	K	A	
B	A	L	A	L	A	I	K	A
I	K	A						
K	A							
L	A	I	K	A				
L	A	L	A	I	K	A		

Suffix arrays ${ }^{[1]}$

Suffix array: permutation that orders lexicographically suffixes of a word

B	A	L	A	L	A	I	K	A
4	3	8	2	7	1	5	6	0
A								
A	I	K	A					
A	L	A	I	K	A			
A	L	A	L	A	I	K	A	
B	A	L	A	L	A	I	K	A
I	K	A						
K	A							
L	A	I	K	A				
L	A	L	A	I	K	A		

Useful for longest common factors, Burrows-Wheeler transform ${ }^{[2]}, \ldots$

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$
Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet

$$
\begin{array}{lllllllll}
B & A & L & A & L & A & I & K & A
\end{array}
$$

(0) If no symbol of w occurs twice, just sort them

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$
Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet
(0) If no symbol of w occurs twice, just sort them
(1) Append a $\$$ symbol (minimal symbol) to w

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$
Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet
B $\quad A \quad L \quad A \quad L \quad A \quad I \quad K \quad A \quad \$$

A L A
A L A
A I K A \$
(0) If no symbol of w occurs twice, just sort them
(1) Append a $\$$ symbol (minimal symbol) to w
(2) Subdivide $w \cdot \$$ into unimodal (LMS) factors

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$

Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet

B A L A L A I K A \$

1	A	L	A							
1				A	L	A				
0						A	I	K	A	S

- If no symbol of w occurs twice, just sort them
(1) Append a $\$$ symbol (minimal symbol) to w
(2) Subdivide $w \cdot \$$ into unimodal (LMS) factors
- Sort these and relabel them in increasing order

(gives you w^{\prime})

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$

Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet

1		A	L	A						
1				A	L	A				
0						A	I	K	A	S

(0) If no symbol of w occurs twice, just sort them
(1) Append a $\$$ symbol (minimal symbol) to w
(2) Subdivide $w \cdot \$$ into unimodal (LMS) factors
(3) Sort these and relabel them in increasing order

(9) Compute the suffix array of w^{\prime}

Induced-sorting (SA-IS) algorithm ${ }^{[3]}$

Goal: Computing the suffix array of a word w with letters in $\{0,1, \ldots,|w|\}$ or in a finite alphabet

B	A	L	A	L	A	I	K	A	\$
4	3	8	2	7	1	5	6	0	

1		A	L	A						
1				A	L	A				
0						A	I	K	A	S

(0) If no symbol of w occurs twice, just sort them
(1) Append a $\$$ symbol (minimal symbol) to w
(2) Subdivide $w \cdot \$$ into unimodal (LMS) factors
(3) Sort these and relabel them in increasing order

(gives you w')
(9) Compute the suffix array of w^{\prime}
(3) Finish computing the suffix array of w

Induced sorting (SA-IS) algorithm

Theorem

IS algorithm computes the suffix array of w in time linear in $|w|$.

Proof elements:

- Steps $1(2$ and (2) can be performed in time $\mathcal{O}(|w|)$
- Unimodal words of total length ℓ and their suffixes can be sorted in time $\mathcal{O}(\ell)$: Steps $\boldsymbol{3}$ and (3) can be performed in time $\mathcal{O}(|w|)$
- Step (4) is performed on a word of length $\left|w^{\prime}\right| \leqslant(|w|-1) / 2$

Suffix array computed in time $\mathcal{O}(|w|+|w| / 2+|w| / 4+\cdots)=\mathcal{O}(|w|)$

Induced sorting (SA-IS) algorithm

Theorem

IS algorithm computes the suffix array of w in time linear in $|w|$.

Proof elements:

- Steps $1(2$ and (2) can be performed in time $\mathcal{O}(|w|)$
- Unimodal words of total length ℓ and their suffixes can be sorted in time $\mathcal{O}(\ell)$: Steps $\boldsymbol{3}$ and (6 can be performed in time $\mathcal{O}(|w|)$
- Step (4) is performed on a word of length $\left|w^{\prime}\right| \leqslant(|w|-1) / 2$

Suffix array computed in time $\mathcal{O}(|w|+|w| / 2+|w| / 4+\cdots)=\mathcal{O}(|w|)$

Further questions:

- Can we repeatedly have $\left|w^{\prime}\right|=(|w|-1) / 2$?
- What is the reduction ratio $\left|w^{\prime}\right| /|w|$ in practice?
- How many recursive calls shall we expect?

Reduction ratio: worst case

Worst-case scenario ${ }^{[5]}$

We can keep having $\left|w^{\prime}\right|=(|w|-1) / 2$ for $\log _{2}(|w|)$ recursive steps

Example:

$$
\begin{array}{lllllllllllllllll}
2 & 1 & 2 & 0 & 4 & 1 & 4 & 0 & 2 & 1 & 4 & 0 & 4 & 1 & 3 & \$
\end{array}
$$

Reduction ratio: worst case

Worst-case scenario ${ }^{[5]}$
We can keep having $\left|w^{\prime}\right|=(|w|-1) / 2$ for $\log _{2}(|w|)$ recursive steps

Example:

$$
\begin{array}{ccccccccccccccccc}
2 & 1 & 2 & 0 & 4 & 1 & 4 & 0 & 2 & 1 & 4 & 0 & 4 & 1 & 3 & \$ \\
& 1 & 2 & 0 & & 1 & 4 & 0 & & 1 & 4 & 0 & & 1 & 3 & \$
\end{array}
$$

Reduction ratio: worst case

Worst-case scenario ${ }^{[5]}$

We can keep having $\left|w^{\prime}\right|=(|w|-1) / 2$ for $\log _{2}(|w|)$ recursive steps

Example:

$$
\begin{array}{llllllllllllllll}
2 & 1 & 2 & 0 & 4 & 1 & 4 & 0 & 2 & 1 & 4 & 0 & 4 & 1 & 3 & \$ \\
& 2 & & 1 & & 4 & & 0 & & 4 & & 1 & & 3 & & \\
& 1 & 2 & 0 & & 1 & 4 & 0 & & 1 & 4 & 0 & & 1 & 3 & \$ \\
& & & 0 & 4 & 1 & & 0 & 2 & 1 & & 0 & 4 & 1 & &
\end{array}
$$

Reduction ratio: worst case

Worst-case scenario ${ }^{[5]}$

We can keep having $\left|w^{\prime}\right|=(|w|-1) / 2$ for $\log _{2}(|w|)$ recursive steps

Example:

$$
\begin{array}{lllllllllllllllll}
2 & 1 & 2 & 0 & 4 & 1 & 4 & 0 & 2 & 1 & 4 & 0 & 4 & 1 & 3 & \$ \\
& 2 & & 1 & & 4 & & 0 & & 4 & & 1 & & 3 & & \\
& 1 & 2 & 0 & & 1 & 4 & 0 & & 1 & 4 & 0 & & 1 & 3 & \$ \\
& & & 0 & 4 & 1 & & 0 & 2 & 1 & & 0 & 4 & 1 & &
\end{array}
$$

Word obtained by applying the increasing morphism

$$
0 \mapsto 02 \quad 1 \mapsto 04 \quad 2 \mapsto 12 \quad 3 \mapsto 13 \quad 4 \mapsto 14
$$

k times on the letter 3, and then deleting the first letter

Infinitely many independent letters

Sample the letters of $w: \mathbb{Z} \mapsto\{0,1\}$ independently uniformly at random:

Example:
$\begin{array}{lllllllllllllllllll}\ldots & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & \ldots\end{array}$

Infinitely many independent letters

Sample the letters of $w: \mathbb{Z} \mapsto\{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords 10: $\left|w^{\prime}\right| \sim|w| / 4$

Example:
$\begin{array}{llllllllllllllllll}\ldots & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & \ldots \\ \ldots & 1 & 0 & & & 0 & 1 & 0 & & & 0 & 0 & 1 & 1 & 0 & & & \\ & & 0 & 1 & 1 & 0 & & 0 & 1 & 1 & 0 & & & & 0 & 1 & 1 & \ldots\end{array}$

Infinitely many independent letters

Sample the letters of $w: \mathbb{Z} \mapsto\{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords $10:\left|w^{\prime}\right| \sim|w| / 4$
- Unimodal factors of w are independent words, with $\mathbb{P}\left[0^{a} 1^{b} 0\right]=2^{-a-b}$

Example:

\ldots	1	0	1	1	0	1	0	1	1	0	0	1	1	0	1	1	\ldots
\ldots	1	0			0	1	0			0	0	1	1	0			
		0	1	1	0		0	1	1	0				0	1	1	\ldots

Infinitely many independent letters

Sample the letters of $w: \mathbb{Z} \mapsto\{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords 10: $\left|w^{\prime}\right| \sim|w| / 4$
- Unimodal factors of w are independent words, with $\mathbb{P}\left[0^{a} 1^{b} 0\right]=2^{-a-b}$
- Infinite alphabet!
(countable, not isomorphic to \mathbb{Z} or \mathbb{N})

Example:

\ldots	1	0	1	1	0	1	0	1	1	0	0	1	1	0	1	1	\ldots
\ldots	1	0			0	1	0			0	0	1	1	0			
		0	1	1	0		0	1	1	0				0	1	1	\ldots

$\ldots \quad 0^{1} 1^{2} 0 \quad 0^{2} 1^{2} 0 \quad 0^{1} 1^{1} 0 \quad 0^{2} 1^{1} 0 \quad 0^{2} 1^{2} 0 \quad 0^{2} 1^{2} 0 \quad 0^{3} 1^{1} 0 \quad 0^{1} 1^{4} 0 \quad \ldots$

Infinitely many independent letters

Sample the letters of $w: \mathbb{Z} \mapsto\{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords 10: $\left|w^{\prime}\right| \sim|w| / 4$
- Unimodal factors of w are independent words, with $\mathbb{P}\left[0^{a} 1^{b} 0\right]=2^{-a-b}$ - Infinite alphabet!
(countable, not isomorphic to \mathbb{Z} or \mathbb{N})
- Unimodal factors of w^{\prime} are not independent, and $\left|w^{\prime \prime}\right| \sim 0.353 \ldots\left|w^{\prime}\right|$
- Things keep getting more complicated after further recursive calls

Example:

\ldots	1	0	1	1	0	1	0	1	1	0	0	1	1	0	1	1	\ldots
\ldots	1	0			0	1	0			0	0	1	1	0			
		0	1	1	0		0	1	1	0				0	1	1	\ldots

\ldots	$0^{1} 1^{2} 0$	$0^{2} 1^{2} 0$	$0^{1} 1^{1} 0$	$0^{2} 1^{1} 0$	$0^{2} 1^{2} 0$	$0^{2} 1^{2} 0$	$0^{3} 1^{1} 0$	$0^{1} 1^{4} 0$	\ldots
\ldots	$0^{1} 1^{2} 0$	$0^{2} 1^{2} 0$		$0^{2} 1^{1} 0$	$0^{2} 1^{2} 0$	$0^{2} 1^{2} 0$	$0^{3} 1^{1} 0$		
		$0^{2} 1^{2} 0$	$0^{1} 1^{1} 0$	$0^{2} 1^{1} 0$			$0^{3} 1^{1} 0$	$0^{1} 1^{4} 0$	\ldots

Main challenges

Questions:

- What about relabelling (in step (2)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Main challenges

Questions:

- What about relabelling (in step (2)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

Main challenges

Questions:

- What about relabelling (in step (2)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

Main challenges

Questions:

- What about relabelling (in step (2)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

$$
\begin{array}{lllllllllllllll}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \$ \\
& 0 & 1 & 1 & 0 & & 0 & 1 & 1 & 0 & & & & \$ & \\
& & & & 0 & 1 & 0 & & & 0 & 0 & 1 & 1 & 0 &
\end{array}
$$

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain ${ }^{[5]}$

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain ${ }^{[5]}$

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

[^0]

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain ${ }^{[5]}$

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

Counter-example: $\mathbb{E}[2 \rightarrow 1]=+\infty$

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain ${ }^{[5]}$

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

Counter-example: $\mathbb{E}[1 \rightarrow 0]=+\infty$

Nice Markov chains

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain ${ }^{[5]}$

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

[^1]

Letters generated by a nice Markov chain

Theorem ${ }^{[5]}$

Let w be a word whose letters are generated by an EPRI Markov chain, and let $w^{(k)}$ be the word obtained after k recursive calls. The ratios

$$
\frac{\left|w^{(k)}\right|}{|w|}
$$

converge, in probability, towards a constant $\gamma^{(k)}$.

Letters generated by a nice Markov chain

Theorem ${ }^{[5]}$

Let w be a word whose letters are generated by an EPRI Markov chain, and let $w^{(k)}$ be the word obtained after k recursive calls. The ratios

$$
\frac{\left|w^{(k)}\right|}{|w|}
$$

converge, in probability, towards a constant $\gamma^{(k)}$.

Bonus result ${ }^{[4,5]}$

If the letters of w are i.i.d, $\gamma^{(1)}<1 / 3$.

Number of recursive calls
Step (0 (direct letter sorting if possible) is very useful!

Number of recursive calls

Step © (direct letter sorting if possible) is very useful!

Theorem ${ }^{[5]}$

Let w be a word whose letters are generated by a finite Markov chain. There exists a constant k such that, for all $\ell \geqslant 0$, the SA-IS algorithm has a probability

$$
\mathbb{P} \leqslant k /|w|^{2^{\ell}}
$$

of performing more than $2 \log _{2}\left(\log _{2}(|w|)\right)+\ell$ recursive calls.

Number of recursive calls

Step (direct letter sorting if possible) is very useful!

Theorem ${ }^{[5]}$

Let w be a word whose letters are generated by a finite Markov chain. There exists a constant k such that, for all $\ell \geqslant 0$, the SA-IS algorithm has a probability

$$
\mathbb{P} \leqslant k /|w|^{2^{e}}
$$

of performing more than $2 \log _{2}\left(\log _{2}(|w|)\right)+\ell$ recursive calls.

Proof elements:

- Each letter of $w^{(i)}$ represents at least 2^{i} letters of w
- Letters of w reach a terminal component \mathcal{X} in expected time $\mathcal{O}(1)$
- If \mathcal{X} is a cycle, end up with a one-letter word in $\mathcal{O}(1)$ recursive calls
- Otherwise, factors of w of length $2^{\ell}\left(\log _{2}(|w|)\right)^{2}$ are likely to be distinct

Some references

[1] Suffix arrays: a new method for on-line string searches, U. Manber \& G. Meyers
[2] A block-sorting lossless data compression algorithm M. Burrows \& D. Wheeler
[3] Two efficient algorithms for linear time suffix array construction G. Nong, S. Zhang \& W. H. Chan
[4] A probabilistic analysis of the reduction ratio in the suffix-array IS-algorithm C. Nicaud
[5] Reduction ratio of the IS-algorithm: worst and random cases V. Jugé

THWWOUFOBUSTENTHET

[^0]: Example:
 $\mathbb{E}[1 \rightarrow 3]=2$

[^1]: Example:
 $\mathbb{E}[1 \rightarrow 0]=3$

