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Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!

Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!Remove 7!
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Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)
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Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes
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Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations

Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

31

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2 3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2 7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Contents

1 Balanced binary search trees

2 Efficiently rebalancing AVL trees bottom-up

3 Efficiently rebalancing AVL trees top-down

4 Conclusion

Vincent Jugé Efficient top-down updates in AVL trees 6



Updating AVL trees: Eliminating anomalies in node ranks

Goals: Avoiding zero-edges.
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Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.
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Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.
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Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

:

(descendants at rank ⩾ r − 2 have a 2-child)
when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!
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Updating AVL trees efficiently
Using our fast stopping procedure,
Transient deletion operations create no full nodes and destroy one 2-child.
Transient insertion operations destroy one full node and create one 2-child.

Theorem
Starting from the empty AVL tree, q queries trigger O(q) write operations.

Proof:
Tree potential: 2 × #(full nodes) + #(2-children)

decreases with each transient operation!
With q queries + T transient operations:

tree potential increases by O(q)− T or less, and
tree potential remains non-negative, hence
T = O(q).
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Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

4

4

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

4

4

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.
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Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.
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Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.

2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)
▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!
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Finding or creating safe nodes (2/2)
Top-down deletion algorithm:

1 Look for a safe node on your deletion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail, (write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ demote an unsafe node at depth d & make it safe;
▶ propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!
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Updating AVL trees efficiently top-down

Theorem
Starting from the empty AVL tree, q top-down queries trigger O(q) write operations.

Proof:
Tree potential decreases with each batch of d transient operations once d is large enough.
With q queries + B batches:

tree potential increases by O(q)− B or less, and
tree potential remains non-negative, hence
B = O(q).
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Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms.

;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner.

;

5 Adapting rank-based analysis from weak AVL trees.

;

6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!
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