Efficient top-down updates in AVL trees

Vincent Jugé

Université Gustave Eiffel

08/05/2025

Contents

- Balanced binary search trees
- 2 Efficiently rebalancing AVL trees bottom-up
- 3 Efficiently rebalancing AVL trees top-down
- 4 Conclusion

Which data structure should I use to manipulate ordered sets?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

1 2 4 7 8 1	19
-------------	----

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ *S*?

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Answer: Use a sorted array + dichotomy.

3 ∈ S? No!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Add 3!

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S. Query #3: Delete key k from my set S.

Answer: Use a sorted array + dichotomy. Oops!

Use a low-height binary search tree instead.

Remove 7!

• Weight-bounded trees:
$$\mathbf{r}(x) = \#\mathcal{T}(x) + 1$$

 $\mathbf{r}(x_i) \leqslant \alpha \mathbf{r}(x)$

$$(\mathsf{r}(x) = \mathsf{r}(x_1) + \mathsf{r}(x_2) \text{ and } \mathsf{r}(\bot) = 1) \ (1/\sqrt{2} \leqslant \alpha < 9/11)$$

• Weight-bounded trees:
$$\mathbf{r}(\mathbf{x}) = \#\mathcal{T}(\mathbf{x}) + 1$$

 $\mathbf{r}(\mathbf{x}_i) \leqslant \alpha \mathbf{r}(\mathbf{x})$

$$(\mathsf{r}(x) = \mathsf{r}(x_1) + \mathsf{r}(x_2) \text{ and } \mathsf{r}(\bot) = 1) \ (1/\sqrt{2} \leqslant \alpha < 9/11)$$

- $\text{Weight-bounded trees: } r(x) = \#\mathcal{T}(x) + 1 \\ r(x_i) \leqslant \alpha r(x)$ $(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1) \\ (1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$

- $\text{Weight-bounded trees: } r(x) = \#\mathcal{T}(x) + 1 \\ r(x_i) \leqslant \alpha r(x)$ $(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1) \\ (1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$
- Weak AVL trees: r(x) = ? $r(x_i) + 1 \le r(x) \le r(x_i) + 2$ and $r(\bot) = -1$

- $\text{Weight-bounded trees: } r(x) = \#\mathcal{T}(x) + 1 \\ r(x_i) \leqslant \alpha r(x)$ $(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1) \\ (1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$
- Weak AVL trees: r(x) = ? $r(x_i) + 1 ≤ r(x) ≤ r(x_i) + 2 \text{ and } r(\bot) = -1$

- Weight-bounded trees: $\mathbf{r}(x) = \#\mathcal{T}(x) + 1$ $(\mathbf{r}(x) = \mathbf{r}(x_1) + \mathbf{r}(x_2) \text{ and } \mathbf{r}(\bot) = 1)$ $r(x_i) \leqslant \alpha \mathbf{r}(x)$ $(1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$
- Weak AVL trees: r(x) = ? $r(x_i) + 1 \le r(x) \le r(x_i) + 2$ and $r(\bot) = -1$
- Red-black trees: idem $(x_i \text{ red} \Leftrightarrow \lfloor r(x_i)/2 \rfloor = \lfloor r(x)/2 \rfloor)$

- Weight-bounded trees: $\mathbf{r}(x) = \#\mathcal{T}(x) + 1$ $(\mathbf{r}(x) = \mathbf{r}(x_1) + \mathbf{r}(x_2) \text{ and } \mathbf{r}(\bot) = 1)$ $r(x_i) \leqslant \alpha \mathbf{r}(x)$ $(1/\sqrt{2} \leqslant \alpha < 9/11)$
- ② AVL trees: r(x) = h(x) $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$
- Weak AVL trees: r(x) = ? $r(x_i) + 1 \le r(x) \le r(x_i) + 2$ and $r(\bot) = -1$
- Red-black trees: idem $(x_i \text{ red} \Leftrightarrow \lfloor r(x_i)/2 \rfloor = \lfloor r(x)/2 \rfloor)$

Maintaining search trees of height $\mathcal{O}(\log(n))$ often requires some kind of rank and balance.

$$\text{Weight-bounded trees: } r(x) = \#\mathcal{T}(x) + 1 \\ r(x_i) \leqslant \alpha r(x)$$

$$(r(x) = r(x_1) + r(x_2) \text{ and } r(\bot) = 1) \\ (1/\sqrt{2} \leqslant \alpha < 9/11)$$

② AVL trees:
$$r(x) = h(x)$$
 $(r(x) = max\{r(x_1), r(x_2)\} + 1 \text{ and } r(\bot) = -1)$ $r(x) \le r(x_i) + 2$

• Weak AVL trees: r(x) = ?

$$\mathsf{r}(x_i) + 1 \leqslant \mathsf{r}(x) \leqslant \mathsf{r}(x_i) + 2 \text{ and } \mathsf{r}(\bot) = -1$$

Tree	Invented	Height	Am. writes/update	Top-down
Weight-balanced	1972	$2\log_2(n)$	Θ(1)	yes
AVL	1962	$1.44\log_2(n)$	$\Theta(\log(n))$	no
Weak AVL	2015	$2\log_2(n)$	Θ(1)	yes
Red-black	1978	$2\log_2(n)$	Θ(1)	yes

Write operations are quite more expensive than read operations.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites: Their amortised write complexity is 13 operations per update.

Insert 2, then 8, bottom-up

Insert 2, then 8, top-down

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

Insert 2, then 8, bottom-up

Insert 2, then 8, top-down

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

Insert 2, then 8, bottom-up

Insert 2, then 8, top-down

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

Insert 2, then 8, bottom-up

Insert 2, then 8, top-down

Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case **average** complexity over **arbitrary** sequences of operations **Example**:

Insert 2, then 8, bottom-up

Insert 2, then 8, top-down

Contents

- Balanced binary search trees
- Efficiently rebalancing AVL trees bottom-up
- 3 Efficiently rebalancing AVL trees top-down
- 4 Conclusion

Goals: Avoiding zero-edges.

Goals: Avoiding zero-edges.

Goals: Avoiding zero-edges.

Updating AVL trees: The evil pair...and how to defeat it!

Updating AVL trees: The evil pair...and how to defeat it!

Updating AVL trees: The evil pair...and how to defeat it!

ACM Transactions on **Algorithms**

Article 30 (26 pages)

B. Haeupler S. Sen Rank-Balanced Trees

R. E. Tarjan

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

(descendants at rank $\geqslant r-2$ have a 2-child)

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

(descendants at rank $\geqslant r-2$ have a 2-child)

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

(descendants at rank $\geqslant r-2$ have a 2-child)

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

• Hollow nodes can be demoted: (descendants at rank \geqslant r - 2 have a 2-child) when propagating a 0-edge creates an empty node, just demote it!

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

- Hollow nodes can be demoted: (descendants at rank \geqslant r 2 have a 2-child) when propagating a 0-edge creates an empty node, just demote it!
- Full nodes can be promoted. (node, children & central grand-child have 1-children only)

Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

- Hollow nodes can be demoted: (descendants at rank \geqslant r 2 have a 2-child) when propagating a 0-edge creates an empty node, just demote it!
- Full nodes can be promoted: (node, children & central grand-child have 1-children only) when propagating a 4-node creates a full node, just promote it!

Using our fast stopping procedure,

Transient deletion operations create no full nodes and destroy one 2-child. insertion operations destroy one full node and create one 2-child.

Using our fast stopping procedure,

Transient deletion operations create no full nodes and destroy one 2-child. insertion operations destroy one full node and create one 2-child.

Theorem

Starting from the empty AVL tree, q queries trigger $\mathcal{O}(q)$ write operations.

Using our fast stopping procedure,

Transient deletion operations create no full nodes and destroy one 2-child. insertion operations destroy one full node and create one 2-child.

Theorem

Starting from the empty AVL tree, q queries trigger $\mathcal{O}(q)$ write operations.

Proof:

Tree potential: $2 \times \#(\text{full nodes}) + \#(2\text{-children})$

decreases with each transient operation!

Using our fast stopping procedure,

Transient deletion operations create no full nodes and destroy one 2-child. insertion operations destroy one full node and create one 2-child.

Theorem

Starting from the empty AVL tree, q queries trigger $\mathcal{O}(q)$ write operations.

Proof:

Tree potential: $2 \times \#(\text{full nodes}) + \#(2\text{-children})$

decreases with each transient operation!

With q queries + T transient operations:

- ullet tree potential increases by $\mathcal{O}(q)-\mathsf{T}$ or less, and
- tree potential remains non-negative, hence
- $T = \mathcal{O}(q)$.

Contents

- Balanced binary search trees
- Efficiently rebalancing AVL trees bottom-up
- 3 Efficiently rebalancing AVL trees top-down
- 4 Conclusion

Safe nodes: When do we stop anomalies?

A node is insertion-safe if its stops propagating zero-edges.

A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank $r \geqslant 2$ are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank $\mathsf{r}=1$ and one 2-child.)

A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank $r \ge 2$ are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.

Whether a node is deletion-safe depends on a finite neighbourhood and on which branch contains the leaf to delete.

A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank $r \ge 2$ are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.

Whether a node is deletion-safe depends on a finite neighbourhood and on which branch contains the leaf to delete.

A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank $r \ge 2$ are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.

Whether a node is deletion-safe depends on a finite neighbourhood and on which branch contains the leaf to delete.

Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.

Top-down insertion algorithm:

- 1 Look for a safe node on your insertion branch.
- If you succeed quickly, restart from that node.

Top-down insertion algorithm:

- **1** Look for a safe node on your insertion branch.
- ② If you succeed quickly, restart from that node.
- If you fail,
 - promote an unsafe node at depth d & make it safe;

Top-down insertion algorithm:

- Look for a safe node on your insertion branch.
- ② If you succeed quickly, restart from that node.
- If you fail,
 - promote an unsafe node at depth d & make it safe;
 - propagate to the top the zero-edge you just created.

Top-down insertion algorithm:

- Look for a safe node on your insertion branch.
- ② If you succeed quickly, restart from that node.
- If you fail,
 - promote an unsafe node at depth d & make it safe;
 - **propagate** to the top the **zero-edge** you just created.

Top-down insertion algorithm:

- Look for a safe node on your insertion branch.
- 2 If you succeed quickly, restart from that node.
- If you fail,
 - promote an unsafe node at depth d & make it safe;
 - **propagate** to the top the **zero-edge** you just created.

Top-down insertion algorithm:

- Look for a safe node on your insertion branch.
- ② If you succeed quickly, restart from that node. (write cost = 0)
- - promote an unsafe node at depth d & make it safe;
 - propagate to the top the zero-edge you just created.

Top-down deletion algorithm:

- 1 Look for a safe node on your deletion branch.
- If you succeed quickly, restart from that node. (write cost = 0)
- $\textbf{ § If you fail,} \qquad \qquad (\mathsf{write cost} = \mathcal{O}(d+1) \ \& \ \Delta \mathsf{Pot} \leqslant \mathcal{O}(1) d)$
 - demote an unsafe node at depth d & make it safe;
 - propagate to the top the four-node you just created.

Top-down deletion algorithm:

- Look for a safe node on your deletion branch.
- ② If you succeed quickly, restart from that node. (write cost = 0)
- $\textbf{ § If you fail,} \qquad \qquad (\mathsf{write cost} = \mathcal{O}(d+1) \ \& \ \Delta \mathsf{Pot} \leqslant \mathcal{O}(1) d)$
 - demote an unsafe node at depth d & make it safe;
 - ▶ propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!

Top-down deletion algorithm:

- Look for a safe node on your deletion branch.
- ② If you succeed quickly, restart from that node. (write cost = 0)
- $\textbf{ (write cost} = \mathcal{O}(d+1) \ \& \ \Delta \mathsf{Pot} \leqslant \mathcal{O}(1) d)$
 - demote an unsafe node at depth d & make it safe;
 - propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe! Answer: When facing 4 unsafe nodes in a row, you can do it!

Updating AVL trees efficiently top-down

Theorem

Starting from the empty AVL tree, q top-down queries trigger $\mathcal{O}(q)$ write operations.

Proof:

Tree potential decreases with each batch of d transient operations once d is large enough.

With q queries + B batches:

- ullet tree potential increases by $\mathcal{O}(q)-\mathsf{B}$ or less, and
- tree potential remains non-negative, hence
- $B = \mathcal{O}(q)$.

Contents

- Balanced binary search trees
- 2 Efficiently rebalancing AVL trees bottom-up
- 3 Efficiently rebalancing AVL trees top-down
- 4 Conclusion

AVL trees enjoy:

• Efficient bottom-up updating algorithms.

AVL trees enjoy:

- Efficient bottom-up updating algorithms;
- Efficient top-down updating algorithms.

AVL trees enjoy:

- Efficient bottom-up updating algorithms;
- 2 Efficient top-down updating algorithms.

Ongoing tasks:

• Improving d; (Currently, d = 20)

Deleting internal nodes in an (efficient) top-down manner.

AVL trees enjoy:

- Efficient bottom-up updating algorithms;
- Efficient top-down updating algorithms.

Ongoing tasks:

- 3 Improving *d*; (Currently, d = 20)
- Deleting internal nodes in an (efficient) top-down manner;
- Adapting rank-based analysis from weak AVL trees.

AVL trees enjoy:

- Efficient bottom-up updating algorithms;
- Efficient top-down updating algorithms.

Ongoing tasks:

- Oeleting internal nodes in an (efficient) top-down manner;
- Adapting rank-based analysis from weak AVL trees;
- Adapting these algorithms to stratified AVL trees.

AVL trees enjoy:

- Efficient bottom-up updating algorithms;
- Efficient top-down updating algorithms.

Ongoing tasks:

- Obleting internal nodes in an (efficient) top-down manner;
- Adapting rank-based analysis from weak AVL trees;
- Adapting these algorithms to stratified AVL trees.

Main take-away:

Analyse algorithms and data structures that you love and adapt them!

Bibliography

G. Adel'son-Velskii & E. Landis, An algorithm for organization of information	1962
J. Nievergelt & E. Reingold, Binary search trees of bounded balance	1972
L. Guibas & R. Sedgewick, A dichromatic framework for balanced trees	1978
N. Blum and K. Mehlhorn, Average number of rebalancing operations in weight-balanced trees	1980
J. van Leeuwen & M. Overmars, Stratified balanced search trees	1983
K. Mehlhorn & A. Tsakalidis, An amortized analysis of insertions into AVL-trees	1986
T. Lai & D. Wood, A top-down updating algorithm for weight-balanced trees	1993
B. Haeupler, S. Sen & R. Tarjan, Rank-balanced trees	2015
M. Amani, K. Lai & R. Tarjan, Amortized rotation cost in AVL trees	2016
V. Jugé, Efficient top-down updates in AVL trees	2025+

