
Efficient top-down updates in AVL trees

Vincent Jugé

Université Gustave Eiffel

08/05/2025

Vincent Jugé Efficient top-down updates in AVL trees 1



Contents

1 Balanced binary search trees

2 Efficiently rebalancing AVL trees bottom-up

3 Efficiently rebalancing AVL trees top-down

4 Conclusion

Vincent Jugé Efficient top-down updates in AVL trees 2



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?

Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!

Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?

Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?

3 ∈ S? No!

Add 3!Remove 7!

1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy.

Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

191

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .

Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!

Add 3!

Remove 7! 1 2 4 7 8 10 19

1 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Maintaining ordered sets

Which data structure should I use to manipulate ordered sets?
Query #1: Does key k belong to my set S?
Query #2: Insert key k in my set S .
Query #3: Delete key k from my set S .

Answer: Use a sorted array + dichotomy. Oops!
Answer: Use a low-height binary search tree instead.

3 ∈ S?3 ∈ S? No!Add 3!

Remove 7!

1 2 4 7 8 10 191 2 3 4 7 8 10 19

1

2

4

7

8

10

19

1

2

4

7

8

10

19

3

1 2 3 4 8 10 19

1

2

3

4

8

10

19

Vincent Jugé Efficient top-down updates in AVL trees 3



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

2

2

5

2

3

9

2

4

20

2

0

1

3

0

1

00

2

0

1

3

0

1

01

2

0

1

4

0

2

00

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

2

2

5

2

3

9

2

4

2

0

2

0

1

3

0

1

00

2

0

1

3

0

1

01

2

0

1

4

0

2

00

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

2

0

2

0

1

3

0

1

0

0

2

0

1

3

0

1

01

2

0

1

4

0

2

00

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1

4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

0

0

2

0

1

3

0

1

0

1

2

0

1

4

0

2

00

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1

4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

00

2

0

1

3

0

1

0

1

2

0

1

4

0

2

0

0

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

00

2

0

1

3

0

1

01

2

0

1

4

0

2

0

0

2

0

1

4

0

2

0

1

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

00

2

0

1

3

0

1

01

2

0

1

4

0

2

00

2

0

1

4

0

2

0

1

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Balanced binary search trees
Maintaining search trees of height O(log(n)) often requires some kind of rank and balance.

1 Weight-bounded trees: r(x) = #T (x) + 1 (r(x) = r(x1) + r(x2) and r(⊥) = 1)
Weight-bounded trees: r(xi ) ⩽ αr(x) (1/

√
2 ⩽ α < 9/11)

2 AVL trees: r(x) = h(x) (r(x) = max{r(x1), r(x2)}+ 1 and r(⊥) = −1)
AVL trees: r(x) ⩽ r(xi ) + 2

3 Weak AVL trees: r(x) = ?

Weak AVL trees: r(xi ) + 1 ⩽ r(x) ⩽ r(xi ) + 2 and r(⊥) = −1
4 Red-black trees: idem (xi red ⇔ ⌊r(xi )/2⌋ = ⌊r(x)/2⌋)

1

2

2

5

3

2

4

3

7

9

8

2

10

4 19

22

5

2

3

9

2

4

20

2

0

1

3

0

1

00

2

0

1

3

0

1

01

2

0

1

4

0

2

00

2

0

1

4

0

2

01

2

0

1

3

0

1

0

x

r(x)x1

r(x1)

x2

r(x2)

Tree Invented Height Am. writes/update Top-down
Weight-balanced 1972 2 log2(n) Θ(1) yes

AVL 1962 1.44 log2(n) Θ(log(n)) no
Weak AVL 2015 2 log2(n) Θ(1) yes
Red-black 1978 2 log2(n) Θ(1) yes

Vincent Jugé Efficient top-down updates in AVL trees 4



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations

Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

2

0

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

31

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2 3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2 7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Amortised write operations and top-down updates
Write operations are quite more expensive than read operations.

Amortised complexity: Worst-case average complexity over arbitrary sequences of operations
Example:
In weak AVL trees, the first q queries trigger at most 13q rank updates and/or pointer rewrites:
Their amortised write complexity is 13 operations per update.

2

0

8

0

3

0

3

1

1

1

1

2

4

2

4

3

7

0

7

1

6

1

6

20

0

5

0

Insert 2, then 8, bottom-up

2

0

8

0

4

2

4

3

1

1

1

2

3

0

3

1

6

1

6

2

7

0

7

1

0

0

5

0

Insert 2, then 8, top-down

Vincent Jugé Efficient top-down updates in AVL trees 5



Contents

1 Balanced binary search trees

2 Efficiently rebalancing AVL trees bottom-up

3 Efficiently rebalancing AVL trees top-down

4 Conclusion

Vincent Jugé Efficient top-down updates in AVL trees 6



Updating AVL trees: Eliminating anomalies in node ranks

Goals: Avoiding zero-edges.

and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges.

and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges.

and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges.

and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2

0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2

0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: Eliminating anomalies in node ranks
Goals: Avoiding zero-edges and four-nodes.

1

0

2

1 4

0

7

2

8

0

10

1 19

0

1

0

2

1 4

0

7

2

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

03

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0

1

0

2

2 4

1

7

3

8

0

10

1 19

0⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

⊥
-1

r

r ?

r

r-2 r-2

r

r-1 r-3

spurious! ! terminal♥ ♥

terminal♥ ♥ transient" "

terminal♥ ♥ transient" "

transient" " transient" "

r

r

r-1 r-1

r-2

r+1

rr-1

r-1 r-2

0
0

3
0

5
0

1
1

2
2

4
1

6
2

7
0

0
0

3
0

5
0

1
1

2
3

4
1

6
2

7
0

r

r

r-1 r-2

r-2

r

r-1r-1

r-2 r-2

0
0

1
1

2
2

3
0

4
2

5
0

0
0

1
1

2
2

3
0

4
1

5
0

r

r-1

r

r-2

r-2/3 r-2/3

r-2 r-1

r

r-1

r-2 r-2/3 r-2/3 r-2
0
0

1
2

2
1

3
0

4
2

5
0

⊥
-1

0
0

1
1

2
2

3
0

4
1

5
0

⊥
-1

r

r r-1

r+1

r r-1

r-1

r

r-2 r-2

r-3

r

r-1r-2

r-2 r-3

r-1

r

r-2 r-3

r-3

r-1

r-2r-2

r-3 r-3

r-1

r-2

r

r-3

r-3/4 r-3/4

r-3 r-2

r-1

r-2

r-3 r-3/4 r-3/4 r-3

r

r-2 r-2

r-1

r-2 r-2

Vincent Jugé Efficient top-down updates in AVL trees 7



Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair

. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: The evil pair. . . and how to defeat it!

r

r r-1

r+1

r r-1

r

r-2 r-2

r-1

r-2 r-2

4

3 3

2 2

1 1

0 0

5

3 4

3 2

1 2

1 0

0

4

3 3

2 2

1 1

0 0

Vincent Jugé Efficient top-down updates in AVL trees 8

www.leparisien.fr/sports/football/ligue-des-champions/psg-arsenal-2-1-gigio-lamoroso-donnarumma-gagne-les-coeurs-de-paris-07-05-2025-Z4X3WQQZ5RDJ7IVODWOLZHXAHY.php


Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

:

(descendants at rank ⩾ r − 2 have a 2-child)
when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

:

(descendants at rank ⩾ r − 2 have a 2-child)

when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

:

(descendants at rank ⩾ r − 2 have a 2-child)

when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted.

:

(descendants at rank ⩾ r − 2 have a 2-child)

when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted: (descendants at rank ⩾ r − 2 have a 2-child)
when propagating a 0-edge creates an empty node, just demote it!

Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted: (descendants at rank ⩾ r − 2 have a 2-child)
when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted.

:

(node, children & central grand-child have 1-children only)

when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees: Stopping anomalies faster
Stop propagating 0-edges and 4-nodes faster by demoting and promoting nodes.

Hollow nodes can be demoted: (descendants at rank ⩾ r − 2 have a 2-child)
when propagating a 0-edge creates an empty node, just demote it!
Full nodes can be promoted: (node, children & central grand-child have 1-children only)
when propagating a 4-node creates a full node, just promote it!

r-4/5 r-4/5 r-4/5 r-4/5

r

r-1

r-2

r-3 r-4

r-3

r-2

r-3 r-4

r-1

r-2

r-3 r-3

r-4 r-4/5

r-2

r-4/5 r-4/5

r-3

r-4/5 r-4

r-3/4

r

r ?

r+1

? ?

HOLLOW

r

? ?

r

r-1

r-2 r-2

r-3 r-3

r-1

r-2 r-2

r+1

r-1

r-2 r-3

r

r-1

r-3 r-2

r-2

r

? ?

r-1

? ?

FULL

r

? ?

Vincent Jugé Efficient top-down updates in AVL trees 9



Updating AVL trees efficiently
Using our fast stopping procedure,
Transient deletion operations create no full nodes and destroy one 2-child.
Transient insertion operations destroy one full node and create one 2-child.

Theorem
Starting from the empty AVL tree, q queries trigger O(q) write operations.

Proof:
Tree potential: 2 × #(full nodes) + #(2-children)

decreases with each transient operation!
With q queries + T transient operations:

tree potential increases by O(q)− T or less, and
tree potential remains non-negative, hence
T = O(q).

Vincent Jugé Efficient top-down updates in AVL trees 10



Updating AVL trees efficiently
Using our fast stopping procedure,
Transient deletion operations create no full nodes and destroy one 2-child.
Transient insertion operations destroy one full node and create one 2-child.

Theorem
Starting from the empty AVL tree, q queries trigger O(q) write operations.

Proof:
Tree potential: 2 × #(full nodes) + #(2-children)

decreases with each transient operation!
With q queries + T transient operations:

tree potential increases by O(q)− T or less, and
tree potential remains non-negative, hence
T = O(q).

Vincent Jugé Efficient top-down updates in AVL trees 10



Updating AVL trees efficiently
Using our fast stopping procedure,
Transient deletion operations create no full nodes and destroy one 2-child.
Transient insertion operations destroy one full node and create one 2-child.

Theorem
Starting from the empty AVL tree, q queries trigger O(q) write operations.

Proof:
Tree potential: 2 × #(full nodes) + #(2-children)

decreases with each transient operation!

With q queries + T transient operations:
tree potential increases by O(q)− T or less, and
tree potential remains non-negative, hence
T = O(q).

Vincent Jugé Efficient top-down updates in AVL trees 10



Updating AVL trees efficiently
Using our fast stopping procedure,
Transient deletion operations create no full nodes and destroy one 2-child.
Transient insertion operations destroy one full node and create one 2-child.

Theorem
Starting from the empty AVL tree, q queries trigger O(q) write operations.

Proof:
Tree potential: 2 × #(full nodes) + #(2-children)

decreases with each transient operation!
With q queries + T transient operations:

tree potential increases by O(q)− T or less, and
tree potential remains non-negative, hence
T = O(q).

Vincent Jugé Efficient top-down updates in AVL trees 10



Contents

1 Balanced binary search trees

2 Efficiently rebalancing AVL trees bottom-up

3 Efficiently rebalancing AVL trees top-down

4 Conclusion

Vincent Jugé Efficient top-down updates in AVL trees 11



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

4

4

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

4

4

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.

Nodes of rank r ⩾ 2 are insertion-safe when they are not full.
(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

00

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Safe nodes: When do we stop anomalies?
A node is insertion-safe if its stops propagating zero-edges.
Nodes of rank r ⩾ 2 are insertion-safe when they are not full.

(Other insertion-safe nodes are those with rank r = 1 and one 2-child.)

A node is deletion-safe if it stops propagating four-nodes.
Whether a node is deletion-safe depends on a finite neighbourhood and

on which branch contains the leaf to delete.

1

0

1

0 0 0 0

0 1

0

0

0

1

2

3

4

2

1

3

2 1

0

1

2

3

44

2 3

2 1

3

2 1

↓
5

U

U

U

U

S

?

S

S S

S

S

S

S

U U U

U

U U

U

U

U

5

4

3

2

1 0

1

0

2

1

0

1

0 0

3

1

0

2

0 1

0

0

U

U

U

U

U

0

U

U

U

S

Vincent Jugé Efficient top-down updates in AVL trees 12



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.

2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)
▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)

3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)
▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S
r

U

U

U

U

U

U

d

r+1r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ promote an unsafe node at depth d & make it safe;

▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail,

(write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (1/2)
Top-down insertion algorithm:

1 Look for a safe node on your insertion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail, (write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ promote an unsafe node at depth d & make it safe;
▶ propagate to the top the zero-edge you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (2/2)
Top-down deletion algorithm:

1 Look for a safe node on your deletion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail, (write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ demote an unsafe node at depth d & make it safe;
▶ propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (2/2)
Top-down deletion algorithm:

1 Look for a safe node on your deletion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail, (write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ demote an unsafe node at depth d & make it safe;
▶ propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!

Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Finding or creating safe nodes (2/2)
Top-down deletion algorithm:

1 Look for a safe node on your deletion branch.
2 If you succeed quickly, restart from that node. (write cost = 0)
3 If you fail, (write cost = O(d + 1) & ∆Pot ⩽ O(1)− d)

▶ demote an unsafe node at depth d & make it safe;
▶ propagate to the top the four-node you just created.

Challenge: Demote deletion-unsafe nodes & make them safe!
Answer: When facing 4 unsafe nodes in a row, you can do it!

S

U

U

U

U

U

U

U

S

r

U

U

U

U

U

U

d

r+1

r-1

U

U

U

S

U

U

Vincent Jugé Efficient top-down updates in AVL trees 13



Updating AVL trees efficiently top-down

Theorem
Starting from the empty AVL tree, q top-down queries trigger O(q) write operations.

Proof:
Tree potential decreases with each batch of d transient operations once d is large enough.
With q queries + B batches:

tree potential increases by O(q)− B or less, and
tree potential remains non-negative, hence
B = O(q).

Vincent Jugé Efficient top-down updates in AVL trees 14



Contents

1 Balanced binary search trees

2 Efficiently rebalancing AVL trees bottom-up

3 Efficiently rebalancing AVL trees top-down

4 Conclusion

Vincent Jugé Efficient top-down updates in AVL trees 15



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms.

;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner.

;

5 Adapting rank-based analysis from weak AVL trees.

;

6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner.

;

5 Adapting rank-based analysis from weak AVL trees.

;

6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner.

;
5 Adapting rank-based analysis from weak AVL trees.

;

6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner;
5 Adapting rank-based analysis from weak AVL trees.

;
6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner;
5 Adapting rank-based analysis from weak AVL trees;
6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Like all over balanced tree structures. . .

AVL trees enjoy:
1 Efficient bottom-up updating algorithms;
2 Efficient top-down updating algorithms.

Ongoing tasks:
3 Improving d ; (Currently, d = 20)
4 Deleting internal nodes in an (efficient) top-down manner;
5 Adapting rank-based analysis from weak AVL trees;
6 Adapting these algorithms to stratified AVL trees.

Main take-away:
7 Analyse algorithms and data structures that you love and adapt them!

Vincent Jugé Efficient top-down updates in AVL trees 16



Bibliography

G. Adel’son-Velskii & E. Landis, An algorithm for organization of information 1962
J. Nievergelt & E. Reingold, Binary search trees of bounded balance 1972
L. Guibas & R. Sedgewick, A dichromatic framework for balanced trees 1978
N. Blum and K. Mehlhorn, Average number of rebalancing operations in weight-balanced trees 1980
J. van Leeuwen & M. Overmars, Stratified balanced search trees 1983
K. Mehlhorn & A. Tsakalidis, An amortized analysis of insertions into AVL-trees 1986
T. Lai & D. Wood, A top-down updating algorithm for weight-balanced trees 1993
B. Haeupler, S. Sen & R. Tarjan, Rank-balanced trees 2015
M. Amani, K. Lai & R. Tarjan, Amortized rotation cost in AVL trees 2016
V. Jugé, Efficient top-down updates in AVL trees 2025+

Vincent Jugé Efficient top-down updates in AVL trees 17




	Balanced binary search trees
	Efficiently rebalancing AVL trees bottom-up
	Efficiently rebalancing AVL trees top-down
	Conclusion

