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IRIF CNRS UMR 8243
8 place Aurélie Nemours
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Abstract
We introduce an algorithm for the uniform generation of infinite traces,

i.e., infinite words up to commutation of some letters. The algorithm
outputs on-the-fly approximations of a theoretical infinite trace, the latter
being distributed according to the exact uniform probability measure. The
average size of the approximation grows linearly with the time of execution
of the algorithm, provided that some—costly—precomputations have been
done.

1 Introduction
Trace monoids are models of discrete-event concurrent systems. Consider an
alphabet Σ equipped with a binary, symmetric and reflexive relation R, and let
I = (Σ × Σ) \ R. The trace monoid M = M(Σ,R) is the presented monoid
〈Σ |I 〉 where I is the collection of pairs (ab, ba) for (a, b) ranging over I. Hence,
an element inM, called a trace, is the congruence class of some word x ∈ Σ∗, and
congruent words are obtained from x by successively exchanging the places of
contiguous letters a and b such that (a, b) ∈ I. For (a, b) ∈ I, the corresponding
elements a and b are therefore commutative inM, which corresponds, from the
systems point of view, to the concurrency of actions represented by a and b.
Trace monoids have been ubiquitous in computer science and in combinatorics,
since their very first use as models for databases with concurrency [7, 8].

A trace x of a trace monoid M represents an execution of some concurrent
system. It is thus natural to inquiry the random generation of traces, and
more precisely the random generation of large traces—the length of a trace is
simply the length of the associated congruent words. Given a large integer N ,
one could turn toward Boltzmann generation techniques to operate the random
generation of traces of length N . However, when this is done, this technique is
of little help for the generation of traces of a larger length; that would require to
start again the procedure back from the beginning. Whereas, when seeking for
the simulation of “real-life” executions of a system, there is often little argument
for stopping the execution at a particular size.

It is therefore more appealing to design techniques for the random generation
of “infinite” executions. The precise target is the following: given a notion of
infinite traces and a uniform measure for the space of these infinite traces, we
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Figure 1: (i) Hasse diagram of the labeled partial order corresponding to the el-
ement x = a · b · d · c · b · a · d of the trace monoidM(Σ,R) with Σ = {a, b, c, d}
and where R is the reflexive and symmetric closure of {(a, b), (b, c), (c, d)}.
(ii) Heap of pieces representing the same element.

look for an algorithm that produces, for each integer n, a finite random trace
of length proportional to n on average, and which coincides with a prefix of a
uniformly distributed infinite trace. Our solution makes an extensive use of two
tools: some discrete probability distributions on traces of a particular kind, and
the combinatorics of so-called pyramidal traces. It applies to any irreducible
trace monoid, which extends a work by one of the authors that was restricted
to “dimer-like” trace monoids [2].

The problem studied in this paper contrasts with the work in [4] which
focuses on two other problems: 1) uniformly generating traces of fixed length;
and 2) evaluating the expectation of cost functions on traces of fixed length.

Outline. Section 2 introduces the basic combinatorial and probabilistic ma-
terial for trace monoids. Section 3 contains the contributions, in the form of
random generation algorithms.

2 Trace monoids and probability distributions
Let M = M(Σ,R) be a trace monoid. It is known that elements of M can
be represented by heaps [12], according to a bijective correspondence which we
briefly recall now, following the presentation of [10]. As illustrated in Fig. 1 (i),
a heap is a triple (P,4, `), where (P,4) is a poset and ` : P → Σ is a labeling
of P by elements of Σ, satisfying the two following properties: (1) if x, y ∈ P are
such that `(x)R`(y), then, x 4 y or y 4 x; (2) the relation 4 is the transitive
closure of the relations from (1). More precisely, the heap is the equivalence
class of (P,4, `) up to isomorphism of labeled partial orders.

To picture heaps corresponding to traces in M, one represents elements
of Σ as elementary pieces that can be piled up with the following constraints,
as illustrated in Fig. 1 (ii): (1) pieces can only be moved vertically; (2) pieces
labeled by the same letter move along the same vertical lane; and (3) two pieces
labeled by a and b in Σ can be moved independently of each other if and only
if (a, b) /∈ R.

If Σ′ is a subset of Σ, we denote by MΣ′ the sub-monoid of M(Σ,R) gen-
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erated by Σ′. In particular, M(Σ,R) =MΣ, a notation that we shall use from
now on.

A clique of M is any commutative product a1 · . . . · ak, where a1, . . . , ak are
distinct elements of Σ such that (ai, aj) /∈ R for all distinct i and j. We denote
by CΣ the set of cliques of MΣ .

Cliques of MΣ play an important role for the study of its combinatorics.
Indeed, each pair (Σ,R) is associated with the Möbius polynomial µΣ(X) and
the generating series GΣ(X) defined as in [5] by:

µΣ(X) =
∑
γ∈CΣ

(−1)|γ|X |γ| and GΣ(X) =
∑
x∈MΣ

X |x| .

More generally, let U be a subset of Σ. For x ∈MΣ , let us write max(x) ⊆ U
if the heap (P,4, `) corresponding to x has the property that all the maximal
elements of the poset (P,4) are labeled by elements in U. Let GΣ,U(X) be the
generating series of the elements of MΣ satisfying this property:

GΣ,U(X) =
∑

x∈MΣ : max(x)⊆U

X |x| .

Then the following formula holds [12]:

GΣ,U(X) =
µΣ\U(X)
µΣ(X) . (1)

If Σ 6= ∅, then µΣ(X) has a unique root of smallest modulus in the complex
plane [9, 6, 11]. This root, which we denote by pΣ , is positive real and is at
most 1. It coincides with the radius of convergence of the power series GΣ,U(X)
for any non empty subset U of Σ. Hence, substituting p to X in the above
identity provides an equality in R if p ∈ (0, pΣ).

As a particular case, obtained for U = Σ, one has: GΣ(p) = 1/µΣ(p) ,
for all p ∈ (0, pΣ). Consequently, for each p ∈ (0, pΣ), the following formula
defines a probability distribution on the countable set MΣ:

∀x ∈MΣ BΣ,p
(
{x}
)

= µΣ(p)p|x| (2)

Let ≤ denote the left-divisibility relation on MΣ , defined by x ≤ y if and
only if x·z = y for some z ∈MΣ . For every x ∈MΣ , let ⇑ x = {y ∈MΣ : x ≤ y}.
Then, for every p ∈ (0, pΣ), the distribution BΣ,p is the unique probability dis-
tribution on MΣ satisfying the following identities [4] for all x ∈MΣ,p :

BΣ,p
(
⇑ x
)

= p|x| . (3)

Now, we briefly explain the construction of infinite traces and of the uniform
measure on their set. If x = (xn)n>0 and y = (yn)n>0 are two non-decreasing
sequences in MΣ , we define x v y whenever, for all n > 0, there exists k > 0
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such that xn ≤ yk. The relation v is a preorder relation on the set of non-
decreasing sequences. Let � be the equivalence relation defined by x � y if
and only if x v y and y v x. Equivalence classes of non-decreasing sequences
modulo � are called generalized traces, and their set is denoted by MΣ . The
set MΣ is equipped with an ordering relation, denoted by ≤, which is the
collapse of the preordering relation v.

The partial order (MΣ,≤) is embedded into (MΣ,≤), by sending an el-
ement x ∈ MΣ to the equivalence class of the constant sequence (xn)n>0
with xn = x for all n > 0. Hence, we identify MΣ with its image in MΣ ,
and we put ∂MΣ = MΣ \ MΣ . Elements of ∂MΣ are called infinite traces.
Visually, infinite traces can be pictured as heaps obtained as in Fig. 1, but with
infinitely many pieces piled up.

For every x ∈ MΣ , we define the visual cylinder of base x as the following
subset of ∂MΣ : ↑ x = {ξ ∈ ∂MΣ : x ≤ ξ}.

Via the embedding MΣ →MΣ , the family (BΣ,p)p∈(0,pΣ) can be seen as a
family of discrete distributions on the compactificationMΣ rather than onMΣ .
Standard techniques from functional analysis allow to prove the weak conver-
gence of BΣ,p , when p→ pΣ , toward a probability measure B on ∂MΣ , char-
acterized by the following Bernoulli-like identities [3, 4] for all x ∈MΣ :

B(↑ x) = p
|x|
Σ . (4)

Definition 2.1. The probability measure B on ∂MΣ is the uniform measure
at infinity.

So far, we have thus defined a family of probability measures BΣ,p on MΣ ,
for p ranging over the open interval (0, pΣ), completed by a probability mea-
sure B. Note the alternative: BΣ,p is concentrated on MΣ for all p < pΣ;
whereas B is concentrated on ∂MΣ .

3 Random generation of traces
For the random generation of infinite traces, we consider as a first task the
random generation of finite traces according to a probability distribution BΣ,p
for p ∈ (0, pΣ). We target an incremental procedure, where elements of Σ are
added one after the other.

We fix an arbitrary element a1 ∈ Σ. The link L (a1) of a1 is defined by:

L (a1) =
{
b ∈ Σ: (a1, b) ∈ R

}
; (5)

the a1-pyramidal elements of M are the traces belonging to the following subset:

PyrΣ(a1) =
{
z · a1 : z ∈MΣ\{a1} and max(z) ⊆ L (a1)

}
. (6)

Hence, a trace x ∈ PyrΣ(a1) has only one occurrence of a1. This occurrence is
the only maximal element of the heap representing x, as illustrated in Fig. 2 (i).
For a generic trace x, the successive occurrences of a1 within x are associated
with a1-pyramidal elements, which yields the following decomposition result.
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Figure 2: (i) Heap representing the c-pyramidal element b · a · b · d · d · c in the
trace monoid MΣ , where (Σ,R) is as in Figure 1. (ii) An element x ∈ MΣ
whose decomposition through c-pyramidal traces is (babddc) · (bdc) · a.

Proposition 3.1. Let MΣ be a trace monoid, let a1 ∈ Σ, and let x ∈ MΣ .
There exists a unique integer k > 0, given by k = |x|a1 (the number of occur-
rences of a1 in x), and a unique tuple (u0, . . . , uk−1, uk) such that:

(1) u0, . . . , uk−1 ∈ PyrΣ(a1), (2) uk ∈MΣ\{a1}, (3) x = u0 · . . . · uk.

For example, if a1 = c, the element x = b ·a · b ·d ·d · c · b ·d ·a · c, represented
in Fig. 2 (ii), is decomposed as the product u0 ·u1 ·u2 of a1-pyramidal elements
given by u0 = b · a · b · d · d · c, u1 = b · d · c and u2 = a.

Based on the decomposition of traces given by Proposition 3.1 on the one
hand, and on the inversion formula (1) on the other hand, we obtain the follow-
ing generation procedure.

Theorem 3.2. Let MΣ be a trace monoid and let p ∈ (0, pΣ). Assume that,
for all subsets X of Σ, the real µX(p) has been precomputed. Then, Algorithm 1
is a random recursive algorithm which, provided with the input (Σ,Σ), outputs
an element ξ ∈MΣ distributed according to BΣ,p .

We assume that every function call, variable assignation and multiplication
inMΣ takes a constant number of steps, and that the call to a routine outputting
a random integer X takes a number of steps bounded by X. Then, Algorithm 1
outputs an element ξ of MΣ in O(|Σ|

(
|ξ|+ 1)

)
steps.

From now on, we assume that the monoid MΣ is irreducible, meaning that
the graph (Σ,R) is connected.

It must be noted that a naive approach, consisting for example in concate-
nating i.i.d. samples of elements in MΣ distributed according to some distri-
bution BΣ,p with p < pΣ , would not yield infinite traces uniformly distributed
in general: see a counter-example in [2, § 6.1.2]. Instead, we make use of an
extension of Proposition 3.1 for infinite traces and obtain the following result.

Theorem 3.3. Let MΣ be an irreducible trace monoid and let a1 ∈ Σ. Then,
pΣ < pΣ\{a1} and, if we use pΣ in place of p, Algorithm 1 is well-defined for all
inputs (S, T ) such that S ⊆ Σ \ {a1}.
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Algorithm 1 Outputs ξ ∈MS distributed according to BS,p(· | max(ξ) ⊆ T )
Require: Real parameter p ∈ (0, pS), Subsets S and T of Σ

1: if S ∩ T = ∅ then
2: return e . e is the unit element of the monoid
3: else
4: choose a1 ∈ S ∩ T
5: r ← 1− µS(p)/µS\{a1}(p)
6: K ← G(r) . Random integer with a geometric law
7: ξ ← e . Initialization with the unit element of the monoid
8: for i = 0 to K − 1 do
9: v ← output of Algorithm 1 on input (p, S \ {a1},L (a1))

10: ξ ← ξ · v · a1

11: u← output of Algorithm 1 on input (p, S \ {a1}, T )
12: ξ ← ξ · u
13: return ξ

Moreover, Algorithm 2 is a random endless algorithm that outputs at its kth

loop an element ξk ∈MΣ with the following properties:

1. (ξk)k>1 is a non-decreasing sequence.
2. The element ξ =

∨
k>1 ξk, i.e., the equivalence class of (ξk)k>1 for the

relation �, is an infinite trace distributed according to the uniform mea-
sure B.

3. Under the same assumptions as in Theorem 3.2, the first k loops require
the execution of O(|Σ||ξk|) steps overall, and the average and minimal
sizes of ξk are linear in k. Hence, the algorithm produces on average a
constant number of additional elements of Σ by unit of time.

Algorithm 2 Outputs approximation of ξ ∈ ∂MΣ distributed according to B
Require: — . No input

1: ξ ← e . Initialization with the unit element of the monoid
2: repeat forever:
3: v ← output of Algorithm 1 on input (pΣ,Σ \ {a1},L (a1))
4: ξ ← ξ · v · a1
5: output ξ . Writes on a register

One might be concerned by the fact that the sequence (ξk)k>1 , output of Al-
gorithm 2, has a particular “shape”, since it is the concatenation of a1-pyramidal
traces. For instance, if one wishes to use it for parametric estimation or to sam-
ple some statistics on traces, the result could a priori depend on the choice
of a1 . But asymptotically, for a large class of statistics, the result will not de-
pend on the choice of a1 ; a precise justification of this fact can be found in [1].
For instance, the density of appearance of an arbitrary letter in an infinite trace
can be approximated in this way.
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