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Abstract. We consider the set of permutations all of whose descents are from an even value to an even
value. Proving a conjecture of Kitaev and Remmel, we show that these permutations are enumerated by
Genocchi numbers, hence equinumerous to Dumont permutations of the first and second kind, and thus

may be called Dumont permutations of the third kind. We also define the related Dumont permutations of
the fourth kind. We prove bijectively that the pattern bistatistic (2-31, 31-2) has the same distribution on
Dumont permutations of the first kind as it does on those of the third kind. We then use the properties of
that bijection to find certain statistics on Dumont permutations of the first and third kind that generate
the Seidel triangle for Genocchi numbers. Finally, we use Laguerre histories to show that the bistatistic
(crossings,nestings) has the same distribution on Dumont permutations of the second and fourth kind as
does the bistatistic (2-31, 31-2) on Dumont permutations of the first or third kind.

1. Introduction

Dumont [7] showed that the certain sets of permutations are enumerated by Genocchi numbers G2n, which
are multiples of Bernoulli numbers B2n, namely G2n = 2(1 − 22n)(−1)nB2n, so that
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Definition 1.1. A Dumont permutation of the first kind (or a Dumont-1 permutation, for short) is a
permutation π ∈ S2n in which each even entry begins a descent and each odd entry begins an ascent or ends
the string. In other words, for every i = 1, 2, . . . , 2n,

π(i) is even =⇒ i < 2n and π(i) > π(i+ 1),

π(i) is odd =⇒ i = 2n or π(i) < π(i+ 1).

Definition 1.2. A Dumont permutation of the second kind (or Dumont-2 permutation, for short) is a
permutation π ∈ S2n in which all entries at even positions are deficiencies and all entries at odd positions
are fixed points or excedances. In other words, for every i = 1, 2, . . . , n,

π(2i) < 2i, π(2i− 1) ≥ 2i− 1.

Notation 1.3. We denote the set of Dumont permutations of the first (resp. second) kind of length 2n by
D

1
2n (resp. D

2
2n). We also let [m] = {1, 2, . . . ,m} for any positive integer m.

Example 1.4. D
1
2 = D

2
2 = {21}, D

1
4 = {2143, 3421, 4213}, D

2
4 = {2143, 3142, 4132}.

Dumont [7] proved that |D1
2n| = |D2

2n| = G2n+2. In this paper, we define two more sets of permutations,
D

3
2n and D

4
2n, whose cardinalities we also prove to be Genocchi numbers. That is, we prove that |D3

2n| =
|D4

2n| = G2n+2.

Definition 1.5. Let D
3
2n be the set of permutations π ∈ S2n in which all descents occur only from an even

value to an even value; in other words, for every i = 1, 2, . . . , 2n− 1,

π(i) > π(i+ 1) =⇒ π(i) and π(i+ 1) are both even.
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Note that this implies that all permutations in D
3
2n (n ≥ 1) must start with 1. Also note that the set

of permutations in D
3
2n are almost centrally symmetric: if π ∈ D

3
2n and ρ ∈ S2n is given by ρ(1) = 1,

ρ(i) = 2n + 2 − π(2n + 2 − i) for i ≥ 2, then ρ ∈ D
3
2n as well. If we form the diagram of π by plotting

the points (i, π(i)) in the xy plane, this means that reflecting the diagram through the point (n+ 1, n+ 1)
(except for the point (1, 1)) yields a permutation in D

3
2n. Equivalently, if we strip the initial 1’s from both

π and ρ, the results are reverse-complements of each other.
Kitaev and Remmel [13, 14] conjectured that the sets of permutations where all descents occur only from

an even value to an even value are also enumerated by Genocchi numbers. Our main result is a combinatorial
proof of their conjecture.

Theorem 1.6 (Main Theorem). There is a bijection between sets D
3
2n and D

1
2n, and hence |D3

2n| = |D1
2n|.

Definition 1.7. Given the result of our Theorem 1.6, we call permutations in D
3
2n Dumont permutations

of the third kind (or Dumont-3 permutations).

There is a simple natural bijection [7] between Dumont-1 and Dumont-2 permutations. Given a Dumont-
1 permutation written in a one-line form, insert parentheses to indicate cycles so that cycles start with
each successive left-to-right maximum (an entry π(j) for which π(j) > π(i) whenever i < j). This yields a
Dumont-2 permutation.

Example 1.8.

D
1
4 ∋ 2143 7→ (21)(43)= 2143 ∈ D

2
4,

D
1
4 ∋ 3421 7→ (3)(421)= 4132 ∈ D

2
4,

D
1
4 ∋ 4213 7→ (4213) = 3142 ∈ D

2
4.

The same bijection can be applied to Dumont-3 permutations to obtain the set D
4
2n that we may call

Dumont permutations of the fourth kind, or Dumont-4 permutations. One can easily show the following.

Proposition 1.9. The set D
4
2n consists exactly of all permutations π ∈ S2n all of whose deficiencies occur

at even positions and have even values, in other words,

π(i) < i =⇒ i and π(i) are both even.

Example 1.10. D
3
2 = D

4
2 = {12}, D

3
4 = {1234, 1342, 1423}, D

4
4 = {1234, 1342, 1432}.

D
3
4 ∋ 1234 7→ (1)(2)(3)(4)= 1234 ∈ D

4
4,

D
3
4 ∋ 1342 7→ (1)(3)(42) = 1432 ∈ D

4
4,

D
3
4 ∋ 1423 7→ (1)(423) = 1342 ∈ D

4
4.

Note that that all permutations in D
4
2n (n ≥ 1) must also start with 1, and that the set of graphs of

all π ∈ D
4
2n with “1” deleted is invariant under reflection across the diagonal x + y = 2n + 2. That is, if

π ∈ D
4
2n and ρ ∈ S2n is given by ρ(1) = 1, ρ(i) = 2n + 2 − π−1(2n + 2 − i) for i ≥ 2, then ρ ∈ D

4
2n as

well. Equivalently, if we strip the initial 1’s from π and ρ, the results are inverse-reverse-complements of
each other.

We will prove bijectively that the pattern bistatistic (2-31, 31-2) has the same distribution on Dumont
permutations of the first kind as it does on those of the third kind. See Section 4 for the definition of these
statistic, and let us first give some motivation for our interest in the pair of patterns 31-2 and 2-31 and their
joint distribution. This pair of patterns was considered by Corteel in [6], who used it to give a combinatorial
interpretation of a (p, q)-analog of Eulerian numbers that naturally appears when each integer i is replaced

with [i]p,q = pi−qi

p−q
in a continued fraction representation of generating function of Eulerian numbers. These

(p, q)-Eulerian numbers were also studied in [4, 17]. Besides this link with Eulerian numbers, Corteel shows
that the two patterns are equidistributed (among all permutations) with a certain pair of statistics called
crossings and nestings. The latter statistics are reminiscent of statistics with the same name on other
combinatorial objects such as set partitions and perfect matchings.

Some results are also known about the distribution of same pair of statistics (2-31,31-2) when restricted
to certain special subsets of permutations. For example, the case of alternating permutations and Euler
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numbers was investigated in [18], and it turns out that as in the case of all permutations, the pair of patterns
yields a natural (p, q)-analog of Euler numbers such that their generating function have simple continued
fraction representation using (p, q)-integers. We will show that the same phenomenon occurs for Dumont
permutations, so that these patterns are really natural statistics to consider: the refined Genocchi numbers
obtained by counting patterns 31-2 and 2-31 in Dumont permutations yield a nice continued fraction (see
Theorem 6.8).

1.1. Organization of the paper. We will give several proofs of the Main Theorem. The first proof, in
Section 2, is a counting argument that does not include a bijection, but rather partitions the sets D

1
2n and

D
3
2n into subsets that are shown to have the same cardinality.
In Section 3, we explicitly give two bijections from subexcedent functions to permutations of the same

length that restrict to bijections from surjective pistols (also enumerated by Genocchi numbers) to D
1
2n and

D
3
2n, respectively. Composing these bijections gives an explicit bijection between D

1
2n and D

3
2n.

In Section 4, we give a proof of a refined version of the Main Theorem, namely that the bistatistic
(2-31, 31-2) of the numbers of occurrences of generalized patterns 2-31 and 31-2 in permutations has the
same distribution on D

1
2n and D

3
2n. Then in Section 5 we will use the refined form of our Main Theorem to

produce statistics on Dumont permutations that yield the Seidel triangle for Genocchi numbers.
Finally, in Section 6, we will restate the bijection of Section 4 using Laguerre histories, then use the same

bijection on Laguerre histories to show that the bistatistic (cr, ne) of the numbers of crossings and nestings
has the same distribution on D

2
2n and D

4
2n.

2. There are as many Dumont-3 permutations as Dumont-1 permutations

Our initial strategy for proving our main theorem is to define a combinatorial structure called a signature
for each Dumont-1 permutation, and, in a different way, a signature for each Dumont-3 permutation. We
will then count the Dumont-1 permutations and Dumont-3 permutations corresponding to each possible
signature. To help with the counting, we define a signature function for each signature. We will see that
the number of Dumont-1 permutations with a given signature is equal to the product of the values of the
associated signature function, and the same is true of Dumont-3 permutations. Since, for each signature,
there are as many Dumont-3 permutations with that signature as Dumont-1 permuations with that signature,
we conclude that |D3

2n| = |D1
2n|.

2.1. Signatures and signature functions. We will first define signatures in the abstract, and then show
how to associate signatures with Dumont-1 and Dumont-3 permutations.

Definition 2.1. A signature of order k and size 2n consists of a set of k even numbers from [2n] called the
peaks and a set of k odd numbers from [2n] called the pits. We also insist that peaks include 2n and pits
include 1. Given a particular signature, let pk(x) and pt(x) be the numbers of peaks and pits, respectively,
that are at least x. The associated signature function has domain [2n] and is given by

f(x) = pk(x) − pt(x) + (1 if x is odd).

We are not interested in signatures for which f(x) takes on non-positive values, since they will not
correspond to any Dumont-1 or Dumont-3 permutations.

Example 2.2. ({6, 8}, {1, 3}) is a signature of size 8 and order 2. Its signature function is given by

x 1 2 3 4 5 6 7 8
f(x) 1 1 2 2 3 2 2 1

The product of these 8 values is 48. Note that f(1) = 1 and f(2n) = 1 for every signature function f of size
2n.

2.2. Signatures of Dumont-1 permutations. The peaks of a Dumont-1 permutation are the even values
that do not end descents, and the pits are the odd values that do end descents. (In other words: the peaks
are the even non-descent-bottoms, and the pits are the odd descent-bottoms. Or, equivalently: the peaks are
the local maxima, possibly including the initial entry, and the peaks are the local minima, possibly including
the terminal entry.) The sequence from each peak to the next pit is a descent block ; it can contain only
descents, and can contain only even values except for the pit itself. The gaps before, after, and between
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descent blocks are called ascent blocks ; they can contain only odd values, and any or all of them may be
empty. Note that each descent block includes exactly one peak and one pit. The ascent blocks do not include
peaks or pits, and (including the empty ones) there is one more ascent block than there are descent blocks.

Notation 2.3. We denote a descent block starting from a and ending at b by aց b.

The signature of a Dumont-1 permutation consists of the set of its peaks and the set of its pits, without
any indication of their sequence.

Example 2.4. 58364217 is a Dumont-1 permutation. Its peaks are 6 and 8, its pits are 1 and 3, and we
may write its signature as ({6, 8}, {1, 3}). The descent blocks are 83 and 6421. The ascent blocks are 5 and
7, plus an empty ascent block between 3 and 6.

Theorem 2.5. Given a signature of size 2n and its associated signature function f , the number of Dumont-1

permutations with that signature is exactly
∏2n

x=1 f(x).

Proof. To construct a Dumont-1 permutation with a given signature, we must first match the pits with the
peaks to form descent blocks. Each pit must be matched with a peak larger than itself. We construct the
matching beginning with the largest pit, x1. There are pk(x1) peaks to which it might be assigned. That is
equal to f(x1), since there is exactly one pit ≥ x1 (x1 itself) and x1 is odd.

After picking one of those assignments, let x2 be the next largest pit. It has pk(x2) peaks to which it
might be assigned, minus the peak assigned to x1; the number of choices is therefore pk(x2) − 1, which is
f(x2).

Continuing to assign the pits in decreasing order, the number of choices we have when dealing with pit x
is precisely pk(x) − pt(x) + 1 = f(x).

The next step in constructing a Dumont-1 permutation is to put our new descent blocks into some
sequence. We start with the block continuing the smallest peak; now call that peak y1. It can become the
first descent block of the permutation, or it can follow any block whose pit is less than y1 — excluding the
pit that has been matched with y1. The number of choices is therefore

1 + (#pits < y1) − 1 = (#pits < y1) = k − pt(y1) = pk(y1) − pt(y1) = f(y1)

since every peak is at least y1.
Letting y2 be the next smallest peak, we can place its descent block at the start (if that choice remains)

or after any pit that is less than y2 (excluding the pit matched with y2 and the pit, if any, followed by y1’s
block). The number of choices is

1 + (#pits < y2) − 2 = (#pits < y2) − 1 = k − pt(y2) − 1 = pk(y2) − pt(y2) = f(y2).

Continuing to assign the peaks in increasing order, we see that the number of locations available for any
peak y is f(y). Making assignments for each descent block determines the sequence of the blocks.

Now we have all of the peaks and pits in order, and we know the bounds of each descent block and each
ascent block.

We now assign each even value (other than peaks) to a descent block, and each odd value (other than
pits) to an ascent block. These choices can be made independently, and they complete the construction of
the permutation, because the order in which values occur within any block is determined by the Dumont
definition. The number of descent blocks available to any even value x is f(x), and the number of ascent
blocks available to any odd value x is f(x).

We have completed the construction of the permutation. For each x ∈ [2n], we made a choice from among
f(x) alternatives, so the number of Dumont-1 permutations that can be constructed from this signature is
exactly the product of the values f(x). �

Example 2.6. There are exactly 48 Dumont-1 permutations in D
1
8 with signature ({6, 8}, {1, 3}). For

example, the permutation 58364217 is constructed as follows:

(1) match pit 3 with peak 8 (it could have been matched with 6; f(3) = 2)
(2) match pit 1 with peak 6 (only choice; f(1) = 1)
(3) put the descent sequence 6 ց 1 immediately after 8 ց 3 (it could have been put at the start of the

permutation; f(6) = 2)
(4) put the descent sequence 8 ց 3 at the start of the permutation (only choice; f(8) = 1)
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(5) insert 2 into 6 ց 1 (only choice; f(2) = 1)
(6) insert 4 into 6 ց 1 (it could have fit into 8 ց 3; f(4) = 2)
(7) insert 5 before 8 ց 3 (it could have gone between 8 ց 3 and 6 ց 1 or after 6 ց 1; f(5) = 3)
(8) insert 7 after 6 ց 1 (it could have gone before 8 ց 3; f(7) = 2).

2.3. Signatures of Dumont-3 permutations. We will define peaks, pits, and signatures differently for
Dumont-3 permutations than for Dumont-1 permutations. Some of the definitions may seem peculiar. This
is because we are not trying to describe the Dumont-3 permutation itself. Instead, we are trying to identify
the ghost of a Dumont-1 permutation that is hidden within it.

The peaks of a Dumont-3 permutation are the even values that do not end descents. The pits of a
Dumont-3 permutation are the even values that do not begin descents. A peak that is also a pit is called a
singleton.

(In other words: the peaks are the even non-descent-bottoms, and the pits are the even non-descent-tops.
The non-singleton peaks are local maxima and the non-singleton pits are local minima, but the singletons
need not be maxima or minima.)

The sequence from each peak to the following pit (or to itself if it is a singleton) is called a descent block.
Note that a singleton is called a descent block even though it contains zero descents. The (possibly empty)
sequences before, after, and between the descent blocks are called ascent blocks. Descent blocks contain only
even values; ascent blocks contain only odd values (if they contain any values at all).

The signature of a Dumont-3 permutation consists of

(1) a list of its peaks, and
(2) a list of the values of the form x− 1 for each pit x.

The second list contains odd numbers that we call pit list entries. (The slippage from x to x− 1 is required
because we have defined the pits to be even numbers, and the pit list in a signature must consist of odd
numbers.)

Example 2.7. 15846237 is a Dumont-3 permutation. Its peaks are 6 and 8. Its pits are 2 and 4, so the pit
list entries are 1 and 3, and its signature is ({6, 8}, {1, 3}). The descent blocks are 84 and 62. The ascent
blocks are 15 and 37, plus an empty ascent block between 4 and 6.

Theorem 2.8. Given a signature with size 2n and its associated signature function f , the number of Dumont-
3 permutations with that signature is exactly

∏2n

x=1 f(x).

Proof. We can construct a Dumont-3 permutation as follows.
From the signature, determine the pits. In order from the largest pit to the smallest, assign the pits

to peaks to form descent blocks. We only need to make assignments for non-singleton pits since a unique
assignment is made by definition in the case of the singletons.

When assigning a pit x, we may choose any peak larger than x, excluding those chosen for pits greater
than x. The number of alternatives is therefore

pk(x) − (pt(x) − 1) = pk(x) − pt(x) + 1 = f(x).

Note that we are acquiring a factor of f(x) only when x is a non-singleton pit. Singletons do not contribute
factors at this stage.

We next assemble the descent blocks in sequence. We proceed in the order from smallest peak to largest.
When dealing with a peak x, we can put its descent block at the start of the permutation (if that choice
has not been taken) or immediately after any pit that is smaller than x (excluding those already taken by
smaller peaks, and the pit matched with x itself). Thus, the number of alternatives is

1 + (#pits < x) − (#peaks < x) − 1 = (#pits < x) − (#peaks < x) = pk(x) − pt(x) = f(x).

We have now acquired a factor of f(x) for each peak x, singleton or not.
We now have the full sequence of peaks and pits, including singletons. We can assign the remaining

odd numbers and even numbers to ascent blocks and descent blocks exactly as in the case of Dumont-1
permutations, hence the theorem follows. �

Example 2.9. There are exactly 48 Dumont-3 permutations in D
3
8 with signature ({6, 8}, {1, 3}). The

permutation 15846237 is constructed as follows:
5



(1) match pit 4 with peak 8 (it could have been matched with 6; f(4) = 2)
(2) match pit 2 with peak 6 (only choice; f(2) = 1)
(3) put the descent sequence 6 ց 2 immediately after 8 ց 4 (it could have been put at the start of the

permutation; f(6) = 2)
(4) put the descent sequence 8 ց 4 at the start of the permutation (only choice; f(8) = 1)
(5) insert 1 before 8 ց 4 (only choice; f(1) = 1)
(6) insert 3 after 6 ց 2 (it could have fit before 8 ց 4; f(3) = 2)
(7) insert 5 before 8 ց 4 (it could have gone between 8 ց 4 and 6 ց 2 or after 6 ց 2; f(5) = 3)
(8) insert 7 after 6 ց 2 (it could have gone before 8 ց 4; f(7) = 2).

Corollary 2.10. Given a signature, there are as many Dumont-3 permutations with that signature as
Dumont-1 permutations with that signature.

Corollary 2.11. For each n, there are as many Dumont-3 permutations of size 2n as Dumont-1 permutations
of size 2n. In other words, |D3

2n| = |D1
2n|.

It would not be hard now to construct a bijection from D
1
2n to D

3
2n, by making arbitrary matchings

within each signature group. Bijections constructed in this way would preserve signatures, but apparently
would not have any other interesting properties. Therefore, we will skip this step and construct more natural
bijections in the following sections.

3. Dumont-3 permutations and surjective pistols

In this section we give a pair of bijections between subexcedent functions and permutations of size 2n. One
of the bijections maps a certain class of subexcedent functions (the “odd-surjective” subexcedent functions)
onto D

1
2n, and the other maps the same class onto D

3
2n. Composing these bijections gives an explicit bijection

between D
1
2n and D

3
2n.

Definition 3.1. A subexcedent function (or SE function) on [2n] is a function α : [2n] → [2n] such that
α(i) ≤ i for all i ∈ [2n]. Let SE2n be the set of all subexcedent functions on [n].

Definition 3.2. A subexcedent function α is called odd if all of its values are odd; that is, if α(i) is odd
for each i ∈ [2n]. If, also, α takes on all possible odd values, then α is called odd-surjective. Thus, α is
odd-surjective if its image is precisely {1, 3, 5, . . . , 2n− 1}. We denote the set of odd-surjective subexcedent
functions on [2n] by OSSE2n.

Odd-surjective SE functions are related to “surjective pistols,” which were studied by Dumont and
Foata [8] and by Zeng and Zhao [20]. These authors have shown that surjective pistols are also enumerated
by the Genocchi numbers.

Definition 3.3. A surjective pistol on [2n] is a surjective map p : [2n] → 2[n] = {2, 4, . . . , 2n} such that
p(i) ≥ i for each i ∈ [2n]. We denote the set of surjective pistols on [2n] by SP2n.

Odd-surjective SE functions are just reverse-complements of surjective pistols. If p is a surjective pistol
on [2n], then the function α on [2n] given by α(i) = 2n+ 1− p(2n+ 1− i) is an odd-surjective subexcedent
function. The range of p is {2, 4, 6, . . . , 2n} and the range of α is {1, 3, 5, . . . , 2n− 1}.

It is well known that there SE2n is equinumerous to S2n. The SE functions are used (in many different
ways) as recipes for constructing permutations.

Here we give two more bijections:

• IAX : SE2n → S2n, which maps the odd-surjective SE functions in OSSE2n onto D
1
2n, and

• IBOP : SE2n → S2n, which maps the odd-surjective SE functions in OSSE2n onto D
3
2n.

The names IAX and IBOP stand for “insert after, with exchange” and “insert before opposite parity,”
respectively.

If α ∈ SE2n, then construct a permutation π = IAX(α) as follows. For each i ∈ [2n], in the order from 1
to 2n:

(1) If α(i) = i, insert i at the end.
(2) If α(i) < i, then insert i after α(i), except if that would put i at the end, insert i at the beginning

instead.
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(The “exchange” in IAX is that “except” clause, which exchanges what might have been the natural roles
of the beginning and end locations.)

If α ∈ SE2n, then construct a permutation π = IBOP(α) as follows. For each i ∈ [2n], in the order from
1 to 2n:

(1) If α(i) is even, then insert the value i before the value α(i) − 1. Thus, if α(i) is even, we insert i
before an odd value.

(2) If α(i) is odd and the value α(i) happens to precede an even value, then insert the value i between
them. Thus, in this case, if α(i) is odd, insert before an even value.

(3) Suppose that α(i) is odd and is not a value that precedes an even value, and in fact, suppose that
α(i) is the k-th smallest of such values. Then insert the value i in the k-th leftmost available insertion
point, where the available points are

• before evens that don’t follow odds, and
• at the end.

Thus, in this case, too, if α(i) is odd, insert before an even or at the end.

(Note that the “opposite parity” in IBOP is the parity opposite to that of α(i), not i. Note also that,
while we are interested only in permutations of even length, the definitions of IAX and IBOP would work
just as well for permutations of odd length.)

Theorem 3.4.

(1) IAX and IBOP are indeed bijections from SE2n to S2n.
(2) If α ∈ SE2n, then the image of α contains exactly all odd numbers less than 2n if and only if

π = IBOP(α) is a D
3-permutation. Likewise for IAX and D

1. Therefore, D
3-permutations, D

1-
permutations, odd-surjective SE functions, and surjective pistols are all equinumerous.

(3) The image of α contains only odd numbers—that is, α is an odd SE function—if and only if π =
IBOP (α) is a potential D

3-permutation, meaning that π represents the order of 1, 2, . . . , n in some
longer D

3-permutation. Likewise for IAX and D
1.

Example 3.5. IBOP(1133) = 1234, IBOP(1131) = 1423, IBOP(1113) = 1342. Note that 111 does not
contain all odd integers in {1, 2, 3}, so IBOP(111) = 132 is not a D

3-permutation, but does occur as a
subsequence of a larger D

3-permutation 1342.
Likewise, IAX(1133) = 4213, IAX(1131) = 2143, IAX(1113) = 3421. Note also that IAX(111) = 321 is

not a D
1-permutation, but does occur as a subsequence of a larger D

1-permutation 3421.

Note that the bijections constructed in this section do not usually preserve signatures, so they are different
from the bijections that might have arisen from the methods of the previous section.

4. A bijection between Dumont-1 and Dumont-3 permutations

Here we will consider the distribution of certain pattern statistics on Dumont-1 and Dumont-3 permuta-
tions. Recall that a pattern is an order-isomorphism type of a subsequence. Thus, for example, an instance,
or an occurrence, of a pattern 231 in a permutation π is a subsequence (a, b, c) of π such that c < a < b and
π−1(a) < π−1(b) < π−1(c). A permutation avoids a pattern if it contains no instances of it. A generalized
pattern [1] is a pattern where some consecutive terms of a subsequence must also be consecutive in the whole
permutation. For example, an instance of 2-31 in π is an instance of 231 where elements corresponding to
“3” and “1” are consecutive in π. We denote the subset of permutations of a set S avoiding a certain pattern
τ by S(τ).

We can now refine our Main Theorem as follows.

Theorem 4.1. The bistatistic (2-31, 31-2) of the numbers of occurrences of patterns 2-31 and 31-2 has the
same distribution on the sets D

1
2n and D

3
2n of Dumont permutations of the first and third kinds of length 2n,

for any n ≥ 0.

Our strategy is to start with a Dumont-1 permutation and to successively rearrange certain blocks so
as to make them “D

3-legal.” Notice that there are only two types of elements that do not occur in both
Dumont-1 and Dumont-3 permutations:

7



• Dumont-1, but not Dumont-3, permutations contain odd descent bottoms (i.e. entries that are
immediately preceded by a larger value).

• Dumont-3, but not Dumont-1, permutations contain even ascent bottoms (i.e. entries that are
immediately followed by a larger value) and/or even rightmost entries.

4.1. The bijection. Each step φ2k−1, k ∈ [n] of our bijection φ∗ = φ1 ◦ φ3 ◦ · · · ◦ φ2n−1 : D
1
2n → D

3
2n will

rearrange certain blocks of a given permutation in two cases:

• if b = 2k − 1 is an odd descent bottom and t = 2k starts a descent run (a sequence of consecutive
descents), i.e. t is an ascent top and a descent top.

• if b = 2k−1 is an odd descent bottom and t = 2k is in the middle of a descent run, i.e. t is a descent
bottom and a descent top.

In addition, we always consider initial entries to be ascent tops and final entries to be ascent bottoms (as
if prepending 0 at the beginning and appending ∞ at the end of every permutation).

We define φb as follows (see Figure 1). Let π ∈ S2n be any permutation. Given a block (substring) S of
permutation π define ℓ(S) and r(S) to be the leftmost and rightmost elements of S. Also, for a string S and
element x, we write S > x (resp. S < x) if each element of S is greater (resp. less) than x.

Case 0. If b is not a descent bottom, then φb(π) = π.

Case 1. Suppose b is a descent bottom and t = b + 1 starts a descent run, i.e. t = π(j) > π(j + 1) for some
j ∈ [2n− 1], and either j = 1 or π(j − 1) < t. Then either b is to the left of t or t is to the left of b.

Sub-Case 1a. Suppose b is to the left of t. Then π can be represented uniquely as a concatenation of substrings

π = IT1bT2B1T3B2 . . . TmBm−1tBmF,

where m ≥ 1, each Ti > t, each Bi < b, I = ∅ or r(I) < b, F = ∅ or ℓ(F ) > t, T1 6= ∅, Bm 6= ∅, and if the
sequence T2B1 . . . TmBm−1 is nonempty, then all Ti’s and Bi’s are nonempty. Then we define

φb(π) = IbT1B1T2B2T3 . . . Bm−1TmBmtF.

Note that, defining B0 = b and Tm+1 = t, we see that φb exchanges Ti+1 and Bi for every i ∈ [0,m].

Sub-Case 1b. Suppose t is to the left of b but not immediately to the left of b. Then π can be represented
uniquely as a concatenation of substrings

π = ItB1T1B2T2 . . . BmTmbF,

where m ≥ 1, each Ti > t, each Bi < b, I = ∅ or r(I) < b, F = ∅ or ℓ(F ) > t, and all Ti’s and Bi’s are
nonempty. Then we define

φb(π) = ItT1B1T2B2 . . . TmBmbF.

Note that φb simply exchanges Ti and Bi for every i ∈ [m].

Sub-Case 1c. Suppose t is immediately to the left of b. Then

π = ItbF,

where I = ∅ or r(I) < b, and F = ∅ or ℓ(F ) > t. Then we define

φb(π) = IbtF.

Case 2. Suppose b is a descent bottom and t = b+ 1 is in the middle of a descent run, i.e. t = π(j) for some
j ∈ [2, 2n− 1] and π(j − 1) > t > π(j + 1). Then either b is to the left of t or t is to the left of b.

Sub-Case 2a. Suppose that b is to the left of t. Then π can be represented uniquely as a concatenation of
substrings

π = IbMtBF,

where I 6= ∅, r(I) > t, F = ∅ or ℓ(F ) > t, M 6= ∅, B 6= ∅, ℓ(M) > t, r(M) > t, B < b. Then we define

φb(π) = ItMBbF.
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Sub-Case 2b. Suppose that t is to the left of b. Then π can be represented uniquely as a concatenation of
substrings

π = IT tMbF,

where I = ∅ or r(I) < b, F = ∅ or ℓ(F ) > t, T 6= ∅, T > t, M = ∅ or ℓ(M) < b and r(M) > t. Then we
define

φb(π) = IbTMtF.

We leave it to the reader to verify the following facts:

• φb is invertible for any b. We define ψb = φ−1
b and ψ∗ = (φ∗)−1.

• φb1 and φb2 commute if |b1 − b2| > 1. This is because each φb leaves unchanged the subsequence of
elements greater than t and the subsequence of elements less than b.

• after applying φ∗ =
∏n

i=1 φ2i−1 to a permutation in π ∈ D
1
2n (where no odd entry is a descent top

and only odd entries can be descent bottoms), we obtain a permutation φ∗(π) in which no odd entry
is a descent top and, in addition, no odd entry is a descent bottom. Thus, descents in φ∗(π) may
occur only from an even value to an even value, so φ∗(π) ∈ D

3
2n, in other words, φ∗ is an injection

from D
1
2n to D

3
2n.

• we can similarly prove that ψ∗ is an injection from D
3
2n to D

1
2n, so in fact, both φ∗ and ψ∗ are

bijections.

b

t

7→
1a

b

t

t

b

7→
1b t

b

t

b

7→
1c

b

t

b

t

7→
2a t

b

t

b

7→
2b

b

t

Figure 1. The cases of bijection φb (from top to bottom: Cases 1a, 1b, 1c, 2a, 2b).

4.2. The occurrences of 2-31 and 31-2. As follows from the above observation, the only instances of
patterns 2-31 and 31-2 that may occur not in both π and φb(π) are those where the “3” is at least t and
the “1” is at most b. Thus, we only need to consider subsequences yzx and zxy of π, where x < y < z, and
z and x are consecutive entries of π such that z ≥ t and x ≤ b. Note that, in Case 0 and Sub-Case 1c, the
instances of 2-31 and 31-2 in π and φb(π) are exactly the same, so we only need to deal with Sub-Cases 1a,
1b, 2a and 2b.
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Even in those remaining cases, if the descent zx is in the substring I or F , then the instances yzx and
zxy of patterns 2-31 and 31-2 are the same in π and φb(π). Thus, we only need to consider the descents zx
not in I or F and such that z ≥ t and x ≤ b.

We will consider Sub-Cases 1a and 2a and leave similar Sub-Cases 1b and 2b to the reader.

Sub-Case 1a. We will use our previous definitions B0 = b and Tm+1 = t. The only descents of π that are
not in φb(π) are r(Ti+1)ℓ(Bi) for all i ∈ [0,m]. Likewise, the only descents of φb(π) that are not in π are
r(Ti)ℓ(Bi) for all i ∈ [m]. If yzx (resp. zxy) is an instance of 2-31 (resp. 31-2), z = r(Ti+1) > t and
x = ℓ(Bi) < b, then there are two cases.

(1) If y ≥ t, then the instance yr(Ti+1)ℓ(Bi) (resp. r(Ti+1)ℓ(Bi)y) of 2-31 (resp. 31-2) in π corresponds
to the instance yr(Ti+1)ℓ(Bi+1) (resp. r(Ti+1)ℓ(Bi+1)y) of 2-31 (resp. 31-2) in φb(π). Note that, in
fact, i < m, since r(Tm+1) = t ≤ y cannot be the “3” if y is the “2”.

(2) If y ≤ b, then the instance yr(Ti+1)ℓ(Bi) (resp. r(Ti+1)ℓ(Bi)y) of 2-31 (resp. 31-2) in π corresponds
to the instance yr(Ti)ℓ(Bi) (resp. r(Ti)ℓ(Bi)y) of 2-31 (resp. 31-2) in φb(π). Note that, in fact,
i > 0, since ℓ(B1) = b ≥ y cannot be the “1” if y is the “2”.

Sub-Case 2a. The mapping π = IbMtBF 7→ ItMBbF = φb(π) can be achieved by exchanging b and t, then
exchanging b and B.

Consider the first step, exchanging b and t, IbMtBF 7→ ItMbBF . Since b and t are consecutive integers,
we only need to consider the occurrences of 2-31 and 31-2 in π that involve both t and b (in the rest, we
simply exchange b for t or t for b). In π, these are r(I)bt (an occurrence of 31-2) and btℓ(B) (an occurrence
of 2-31). Exchanging b and t in π, we lose these subsequences but gain an occurrence tr(M)b of 2-31 in
ItMbBF . Thus, exchanging t and b preserves the number of occurrences of 2-31 and reduces the number of
occurrences of 31-2 by 1.

Now consider the second step, exchanging b and B, ItMbBF 7→ ItMBbF . This means that the consecu-
tive descents r(M)b and bℓ(B) in occurrences of 2-31 and 31-2 in ItMbBF are replaced by a single descent
r(m)ℓ(B) in the corresponding occurrences of 2-31 and 31-2 in ItMBbF . The rest of the occurrences of
these patterns remain the same. However, we also gain one extra occurrence r(M)ℓ(B)b of 31-2.

Thus, after performing both steps, we see that their composition φb preserves the number of occurrences
of both 2-31 and 31-2.

This ends the proof of Theorem 4.1, a refined version of the Main Theorem.

4.3. Pattern avoidance on Dumont permutations. Dumont-1 and Dumont-2 permutations avoiding
various small patterns were considered in [2, 3, 15]. We will mention one result in particular:

Theorem 4.2 (Mansour [15]). |D1
2n(2-31)| = |D1

2n(31-2)| = Cn, the n-th Catalan number.

Theorem 4.1 implies that we have a similar result on D
3.

Theorem 4.3. |D3
2n(2-31)| = |D3

2n(31-2)| = Cn.

Note also that since 2-31 and 31-2 are obviously equidistributed on D
3 as reverse complements of each

other, it implies that 2-31 and 31-2 are also equidistributed on D
1.

4.4. Equidistribution of 2-31 and 31-2. An obvious corollary of the refined Main Theorem is the following.

Corollary 4.4. The distribution of the number of occurrences of 2-31 (resp. 31-2) is the same on D
1
2n and

D
3
2n.

In [5], the following fact is noted: every Dumont-3 permutation begins with 1, and if the initial 1 is
deleted from every permutation in D

3
2n, the resulting set is centrally symmetric, i.e. invariant under the

operation of reversal of complement (180◦ degree rotation). Since 2-31 and 31-2 are 180◦ rotations of each
other, it follows that the distributions of 2-31 and 31-2 are the same on D

3
2n. Thus, Corollary 4.4 implies

the following.

Corollary 4.5. The distributions of the numbers of occurrences of 2-31 and 31-2 are the same on D
1
2n and

D
3
2n.

Note that this is not an obvious statement on D
1
2n since the set D

1
2n is not centrally symmetric.
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5. Seidel triangle generation on Dumont-1 and Dumont-3 permutations

Define the following subsets of D
1
2n and D

3
2n as in [5].

Definition 5.1. Let H3
2n,2k be the set of permutations π ∈ D

3
2n such that π(2) = 2k. Let G3

2n,2k be the set

of permutations π ∈ D
3
2n whose leftmost even letter is 2k. Similarly, let G1

2n,2k be the set of permutations

π ∈ D
1
2n whose leftmost even letter is 2k, and let H1

2n,2k be the set of permutations π ∈ D
1
2n such that

π(1) = 2k and the descending run starting at 2k ends at 1.

Notice that the description of bijections φ∗ and ψ∗ in the previous section implies the following:

Corollary 5.2. The maps φ∗ and ψ∗ map G1
2n,2k onto G3

2n,2k and vice versa. In other words, both maps

preserve the value of the leftmost even letter (i.e. the leftmost peak). Furthermore, φ∗ and ψ∗ map H1
2n,2k

onto H3
2n,2k and vice versa.

The Seidel triangle for Genocchi numbers [5, 9, 10, 19, 20] is a Pascal triangle-type array of integers
(gi,j)i,j≥1 that is a refinement of Genocchi numbers. It is defined by the following recursive relation:

(5.1)

{

g2i+1,j = g2i+1,j−1 + g2i,j for j = 1, 2, . . . , i+ 1,

g2i,j = g2i,j+1 + g2i−1,j for j = i, i− 1, . . . , 1,

where g1,1 = 1 and gi,j = 0 if j ≤ 0 or i ≤ 0 or i > ⌈j/2⌉. Then

g2n−1,n−1 = g2n−1,n = g2n,n = G2n+2, g2n−1,1 = g2n−2,1 = H2n−1,

where G2n is the nth Genocchi number, and H2n−1 is the nth median Genocchi number (or nth Genocchi
number of the second kind).

The first few values of the Seidel triangle are as follows (numbering rows i from bottom to top and columns
j from left to right):

5 155 155
4 17 17 155 310
3 3 3 17 34 138 448
2 1 1 3 6 14 48 104 552
1 1 1 1 2 2 8 8 56 56 608
j/i 1 2 3 4 5 6 7 8 9 10

Note that the odd columns 2n− 1 sum to H2n−1, while even columns 2n sum to G2n+2.
It was proven in [5] that

|H1
2n,2k| = g2n−1,n−k+1 and |G1

2n,2k| = g2n,n−k+1.

In particular, H2n−1 = |H1
2n,2n|, H2n+1 = |∪n

k=1H
1
2n,2k| = |H1

2n,even|, G2n = |G1
2n,2|, G2n+2 = |∪n

k=1G
1
2n,2k| =

|G1
2n,even| = |D1

2n|.
This, together with Corollary 5.2, implies that

Theorem 5.3. We have

|H3
2n,2k| = g2n−1,n−k+1 and |G3

2n,2k| = g2n,n−k+1.

In particular, H2n−1 = |H3
2n,2n|, H2n+1 = |∪n

k=1H
3
2n,2k| = |H3

2n,even|, G2n = |G3
2n,2|, G2n+2 = |∪n

k=1G
3
2n,2k| =

|G3
2n,even| = |D3

2n|.

Then |H1
2n,2k| = |H3

2n,2k| and |G1
2n,2k| = |G3

2n,2k|, so we only need to prove the following theorem.

Theorem 5.4. |H1
2n,2k| = g2n−1,n−k+1 and |G1

2n,2k| = g2n,n−k+1. In particular, H2n−1 = |H1
2n,2n|, H2n+1 =

| ∪n
k=1 H

1
2n,2k| = |H1

2n,even|, G2n = |G1
2n,2|, G2n+2 = | ∪n

k=1 G
1
2n,2k| = |G1

2n,even| = |D1
2n|.
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Proof. We will prove that that the functions h(n, k) = |H1
2n,2k| and g(n, k) = |G1

2n,2k| satisfy the same
recurrences as g2n−1,n−k+1 and g2n,n−k+1, respectively:

h(n, k) = h(n, k + 1) +

k−1
∑

j=1

h(n− 1, j),(5.2)

g(n, k) = g(n, k − 1) +
n−1
∑

j=k−1

g(n− 1, j).(5.3)

We will now describe two bijections, β1 and β2, that prove the recurrences (5.2) and (5.3).
Bijection β1. Given a permutation that starts with 2k, . . . , 2, 1:

(1) exchange 2k and 2k + 2 if 2k + 2 is not preceded or followed by 2k + 1,
(2) if 2k + 2 is followed by 2k + 1, remove 2k + 2 and insert it in front of 2k (i.e. at the beginning),
(3) if 2k + 2 is preceded by 2k + 1, then remove 2k (at the beginning), replace the block 2k + 1, 2k + 2

with 2k, and subtract 2 from every letter greater than 2k + 2.

The first two cases yield a permutation of the same size that starts with 2k + 2, . . . , 2, 1. The last case
yields a permutation of size 2 less than the original permutation, that starts with an even letter less than
2k.
Bijection β2. Given a permutation with first even letter 2k + 2:

(1) if 2k+ 2 is not preceded or followed by 2k+ 1 and not followed by 2k, then exchange 2k and 2k+ 2,
(2) if 2k + 2 is followed by 2k and not preceded by 2k + 1, then remove 2k + 2 and insert it in front of

2k + 1,
(3) if 2k + 2 is followed by 2k + 1, remove 2k + 2, 2k + 1 and subtract 2 from every letter greater than

2k + 2.
(4) if 2k + 2 is preceded by 2k + 1 and followed by 2k, remove 2k + 1, 2k+ 2 and subtract 2 from every

letter greater than 2k + 2.

The first two cases yield a permutation of the same size that with first even letter 2k. The last two cases
yield a permutation of size 2 less than the original permutation, with the first even letter at least 2k. �

We conjecture that Theorem 5.3 can be refined further as follows. Consider D
3-permutations in the set

difference G3
2n,2k \ H3

2n,2k, i.e. those whose leftmost even value 2k does not occur immediately after 1.

Conjecture 5.5. Given m < k ≤ n, let f(n, k,m) be the number of permutations in G3
2n,2k \ H3

2n,2k whose

rightmost (alternatively, leftmost after 2k) even entry less than 2k is 2m. Then f(n, k,m) = h(n,m) =
g2n−1,n−m+1.

Note that f(n, k,m) is apparently independent of k. In fact, we conjecture that the overage

f(n, k,m) − f(n, k,m+ 1) = h(n,m) − h(n,m+ 1) = g2n−2,n−m+1 = f(n− 1, k − 1,m− 1)

counts permutations where 2k is the leftmost even value, 2m is the rightmost even value less than 2k, and
2m− 1 immediately precedes 2m.

We also conjecture that the even columns of the Seidel triangle can be obtained using a different statistic
on D

3.

Conjecture 5.6. The number of D
3
2n-permutations where 2k immediately follows 2n is g2n,k. Equivalently,

the number of D
3
2n-permutations where 2k immediately precedes 2 is g2n,n−k+1.

This last conjecture can be easily restated for D
4-permutations as follows.

Conjecture 5.7. The number of D
4
2n-permutations that end on 2k is g2n,k. Equivalently, the number of

D
4
2n-permutations where 2 is in position 2k is g2n,n−k+1.

Finally, we make a conjecture on the complementary statistic on D
4-permutations that generates the odd

columns of the Seidel triangle.

Conjecture 5.8. The number of permutations π ∈ D
4
2n such that π(2n) = 2 and m ∈ [n − 1] is the least

integer such that π(2m + 1) = 2m + 2 is g2n−1,m. Also, the number of permutations π ∈ D
4
2n such that

π(2n) = 2 and there is no m ∈ [n− 1] for which π(2m+ 1) = 2m+ 2 is g2n−1,n−1.
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6. Laguerre histories and bijections on Dumont permutations

In this section, we describe how to make use of some weighted Motzkin paths and bijections given by
Corteel [6] to give an alternative description of the bijection in Section 4, and obtain further results of
equidistribution for some statistics in Dumont permutations. These weighted Motzkin paths were originally
studied by Viennot in the general context of combinatorial theory of orthogonal polynomials, and the bijec-
tions we use are originally due to Françon and Viennot, Foata and Zeilberger. Corteel showed that several
statistics of interest can be followed through these bijections, and we refer to [6] for more precisions.

Definition 6.1. A Motzkin path of length n is a path from (0, 0) to (n, 0) on or above the x-axis with steps
ր= (1, 1), →= (1, 0) and ց= (1,−1).

Definition 6.2. A Laguerre history is a weighted Motzkin path with the following properties:

• the weight of a step ր starting at height h is ypiqh−i with 0 ≤ i ≤ h,
• the weight of a step → starting at height h is either ypiqh−i with 0 ≤ i ≤ h, or piqh−1−i with

0 ≤ i ≤ h− 1,
• the weight of a step ց starting at height h is piqh−1−i with 0 ≤ i ≤ h− 1

We call the product of weights of each step total weight of the history.

The Françon-Viennot [11] bijection ΨFV between permutations of Sn and Laguerre histories of size n has
the property that for any permutation σ, the total weight of ΨFV (σ) is yasc(σ)p31-2(σ)q2-31(σ), where asc(σ)
is the number of ascent (using the convention that n is an ascent of any permutation of [n]), and 31-2(σ)
(respectively, 2-31(σ)) is the number of occurrences of the pattern 31-2 (respectively, 2-31) in σ. More
precisely, the i-th step in a ΨFV (σ) has a weight y if and only if σ−1(n) is an ascent of σ, and this property
is particularly efficient in characterizing Dumont-1 and Dumont-3 permutations as we will see below.

The Foata-Zeilberger [12] bijection ΨFZ between permutations of [n] and Laguerre histories of size n has
the property that for any permutation of [n], the total weight of ΨFZ(σ) is ywex(σ)pcr(σ)qne(σ), where we use
the following definition from [6].

Definition 6.3. Let σ be a permutation of [n]. We call a position i such that σ(i) ≥ i a weak excedance of
σ. We call a pair of positions (i, j) such that i < j ≤ σ(i) < σ(j) a crossing of σ, and a pair of positions
(i, j) such that i < j ≤ σ(j) < σ(i) a nesting of σ. We denote by wex(σ) (respectively, cr(σ) and ne(σ)) the
number of weak excedances (respectively, crossings and nestings) of σ.

And more precisely, the ith step in ΨFZ(σ) has y as a factor in its weight if and only if i is a weak
excedance of σ. From the known properties of the bijections ΨFV and ΨFZ we have the following result.

Proposition 6.4. Let H be a Laguerre history of length 2n. The following conditions are equivalent:

• H = ΨFV (σ) for some permutation σ ∈ D
1
2n,

• H = ΨFZ(σ) for some permutation σ ∈ D
2
2n,

• every odd step of H has weight ypiqj, and every even step of H has weight piqj (in other words, the
factor y appears in the weight of every odd step and no even step).

In a similar manner, these bijections can be used to characterize Dumont-3 and Dumont-4 permutations.

Proposition 6.5. Let H be a Laguerre history of length 2n. The following conditions are equivalent:

• H = ΨFV (σ) for some permutation σ ∈ D
3
2n,

• H = ΨFZ(σ) for some permutation σ ∈ D
4
2n,

• every odd step of H is a step → with weight ypiqj (in other words, every odd step is horizontal and
has the factor y in its weight).

We come now to the main result of this section.

Theorem 6.6. The following pairs of statistics have the same joint distribution:

• (31-2, 2-31) on the set D
1
2n,

• (cr, ne) on the set D
2
2n,

• (31-2, 2-31) on the set D
3
2n,

• (cr, ne) on the set D
4
2n.

13



Proof. Proposition 6.4 (respectively, Proposition 6.5) shows the equality between the first and second (re-
spectively, the third and fourth) items in this list. So it remains only to give a bijection between the sets
ΨFV (D1

2n) and ΨFV (D3
2n) so that the total weight in p and q is preserved.

To this end, letting H be in ΨFV (D1
2n), i.e. the factor y appears in every odd step and no even step,

we will construct Γ(H) in ΨFV (D3
2n) with the same weight in p and q (but possibly with different weight

in y). We consider the n pairs of consecutive steps in H such that the first element is an odd step and the
second an even step. We obtain Γ(H) by acting on successive pairs of consecutive steps of H by the following
transformation.

• A pair of consecutive steps րց with respective weights ypi1qj1 and pi2qj2 in H becomes a pair of
consecutive steps →→ with weights ypi1qj1 and ypi2qj2 in Γ(H).

• A pair of consecutive steps ր→ with weights ypi1qj1 and pi2qj2 in H becomes a pair of consecutive
steps →ր with weights ypi1qj1 and ypi2qj2 in Γ(H).

• In other cases, the first step of the pair is already a step → with weight ypiqj , so this pair is not
modified in Γ(H).

To check that the weights are valid in the obtained path, note that there are two cases where the starting
height of a step is changed:

• When րց becomes →→, but both after and before the transformation the needed criterion is
i2 + j2 = h, where h is the starting height in րց.

• When ր→ becomes →ր, but similarly both after and before the transformation the needed criterion
is i2 + j2 = h, where h is the starting height in ր→.

Once we know that the weights are valid, it is clear that Γ(H) is indeed in ΨFV (D3
2n), from the very definition

of this bijection Γ. The inverse bijection can also be defined by acting on the pairs of consecutive steps. See
Figure 2 for an example. �
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Figure 2. Laguerre histories in ΨFV (D1
2n) and ΨFV (D3

2n).

Remark 6.7. It can be checked that permutations with a given signature, as defined in Section 4, are in
bijection with Laguerre histories corresponding to a given Motzkin path. Note that the fact that their
number can be expressed as a product is more apparent knowing their interpretation in terms of Laguerre
histories.

To end this section, we make a link with continued fractions. In the weighted Motzkin paths considered
above, there are some parity conditions on the steps so that it is not immediate to link these paths and
continued fractions, but we will give a bijection with weighted Dyck paths such that there is no parity
condition, and obtain the theorem below. The continued fraction we obtain is a natural extension of the one
given by Viennot [19] for the generating function of G2n.

Theorem 6.8. Let

(6.1) G2n+2(p, q) =
∑

σ∈D1

2n

p2-31(σ)q31-2(σ).
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Let [i]p,q = pi−qi

p−q
, then we have:

(6.2)

∞
∑

n=1

G2n(p, q)z2n =
z2

1 −
[1]p,q[1]p,qz

2

1 −
[1]p,q[2]p,qz

2

1 −
[2]p,q[2]p,qz

2

1 −
[2]p,q[3]p,qz

2

. . .

.

Proof. We can forget the parameter y in a Laguerre history satisfying the criterion in Proposition 6.4 (the
Laguerre history can be recovered since the y occurs exactly at odd steps). This shows that G2n(p, q) is the
generating function of Motzkin paths such that:

• an odd step starting at height h is ր or →, and has a weight [h+ 1]p,q,

• an even step starting at height h is → or ց, and has a weight [h]p,q.

(To be precise, the weight of one of these Motzkin paths is the generating function of all Laguerre histories
of a given “shape”.) There is a bijection between these paths, and weighted Dyck paths of same length such
that the weight of a step starting at height h is [i]p,q where i = 1 + ⌊h

2 ⌋. Indeed, it suffices to group steps

by pairs as in the previous theorem, then each consecutive pair ր→ (respectively, րց, →→, and →ց) in
the Motzkin path, becomes a pair of steps րր (respectively, րց, ցր, and ցց) in the Dyck path. See
Figure 3 for an example. This transformation of the path is such that the height after 2k steps in the second
path is twice the height after 2k steps in the first path. More precisely:

• a step ր from height h to h + 1 becomes a step ր from height 2h to 2h + 1 (and with weight
[h+ 1]p,q),

• an even step → at height h becomes a step ր from height 2h− 1 to 2h (and with weight [h]p,q),
• an odd step → at height h becomes a step ց from height 2h to 2h− 1 (and with weight [h+ 1]p,q),
• a step ց from height h + 1 to h becomes a step ց from height 2h to 2h − 1 (and with weight

[h+ 1]p,q).

From these properties it follows that in the obtained Dyck paths, the weight of each step only depends on
its direction and its height. Hence they have a continued fraction as generating function, and it is as given
in (6.2). �

[1]
[1]

[2] [2] [2] [2] [3] [2]

[2] [1] [2] [1] [1]

[1]

[2] [2] [2]

[2] [3]

[2]

[2] [1] [2]

[1]

Figure 3. A bijection showing the continued fraction for G2n(p, q). We omit indices p, q
in the weights [i]p,q.
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