Average Complexity of Moore’s and Hopcroft’s
Algorithms

Julien David
Institut Gaspard Monge, Université Paris Est
77454 Marne-la-Vallée Cedex 2, France.

Abstract

In this paper we prove that for the uniform distribution on complete deter-
ministic automata, the average time complexity of Moore’s state minimization
algorithm is O(nloglogn), where n is the number of states in the input au-
tomata and the number of letters in the alphabet is fixed. Then, an unusual
family of implementations of Hopcroft’s algorithm is characterized, for which the
algorithm will be proved to be always faster than Moore’s algorithm. Finally,
we present experimental results on the usual implementations of Hopcroft’s al-
gorithm.

1. Introduction

The average complexity of an algorithm is its average cost for all the in-
stances of a given input set, on which a probability law as been defined. If
a distribution matches a particular context, then the average time complexity
gives the expected duration of an algorithm execution in this context. Without
a particular context, the distribution is supposed to be uniform. In this case,
the average complexity should be considered as an additional information to the
worst-case complexity: it gives a better understanding of the efficiency of the
studied algorithm. The reader is refered to [14, 15, 26] for a general presentation
of this topic.

The notion of generic complezity has been defined in [19]. For a given prob-
ability distribution on the input set of data, the idea is to identify which inputs
happen rarely, and to conduct a worst case analysis on the other inputs. This
type of analysis is very useful for the study of NP-complete problems or unde-
cidable problems, if the “bad” instances can be proved to happen rarely. As we
will see, one can sometimes obtain the average and the generic complexity of an
algorithm using the same arguments.

A minimal automaton is the unique smallest complete deterministic au-
tomata that can be associated to a regular language. Most state minimization
algorithms compute the minimal automaton of a regular language taking a de-
terministic automaton as an input, by identifying the indistinguishable states.
Their efficiency has an important impact on the tools in which they are in-
volved, in various fields such computational linguistics or bioinformatics. The
worst-case complexity of those algorithms is well known, but it is only since the
last decade that authors started describing minimization algorithms along with
their average complexity [3, 24] .

Preprint submitted to Elsevier October 8, 2010

Moore’s state minimization algorithm [22] is one of the most simple to im-
plement. It is based on the computation of the Myhill-Nerode equivalence, by
refinements of partitions of the set of states. There are at most n — 2 such
refinements, each of them requiring a linear running time: in the worst case, the
complexity is quadratic. Though, in [3], it is proved that the average complexity
of the algorithm is bounded by O(nlogn). Note that since this result does not
rely on the underlying graph of the automaton, it holds for any probabilistic
distribution on this graph. Also, the bound is tight for unary automata.

Hopcroft’s state minimization algorithm [17] is the best known algorithm
with a O(nlogn) worst-case complexity. It also uses partition refinements to
compute the minimal automaton, but the order of the operations is not fixed,
making its analysis complicated. Different proofs of its correctness were given
[16, 20] and several authors [8, 7, 10, 11] proved the tightness of the upper bound
of the complexity for different families of automata. Thanks to those papers,
it is known that there exist some automata for which all possible executions of
Hopcroft algorithms reach the worst case complexity.

Other minimization algorithms exist, but we won’t study their average com-
plexity in this paper because it is already known. For instance, the algorithm
of Hopcroft and Ullman [18] tests, for every pair of states of the input automa-
ton, whether the two states are equivalent or not. It is known be quadratic
in both worst and average complexity. Other algorithms are dedicated to par-
ticular classes of deterministic automata or non-deterministic automata. For
instance, [25] is restricted to acyclic automata, [24] to unary automata, [5] to
local automata. The algorithms [6, 27] are both based on Hopcroft’s algorithm
and are specialized in incomplete deterministic automata. Finally, Brzozowski’s
algorithm 19, 13, 12] is different from the other ones. Its inputs may be non-
deterministic automata. It is not based on partitions refinements, but on two
successive determinization steps.

In this paper, we prove that for the uniform distribution on complete deter-
ministic automata, the average and generic time complexity of the algorithms
due to Moore and Hopcroft are O(nloglogn). The main result is the average
complexity of Moore’s algorithm. Simply stated, we prove that the set of au-
tomata minimised in more than O(loglogn) partition refinements by Moore’s
algorithm is negligible. The result on the average complexity of Hopcroft’s
algorithm is a consequence of the main result.

The article is organized as follows: after recalling the basics of automata
minimization (Sections 2.1 and 2.2), we introduce the tools we use for the anal-
ysis (Sections 2.3 to 2.5): two kinds of dependency graph and a dependency tree
that models different constraints on sets of automata. Section 3 is dedicated to
the study of the average time complexity analysis of Moore’s algorithm. Sec-
tion 4 introduces a set of Hopcroft’s algorithm executions which are faster than
Moore’s one, for any input automata. The paper closes with conjectures on the
average complexity of both algorithms, for various distributions of probability
on automata.

2. Preliminaries

2.1. Definitions and notations
A finite deterministic automaton A = (A, Q, -, qo, F') is a quintuple where @
is a finite set of states, A is a finite set of letters called alphabet, the transition

function - is a mapping from @Q X A to Q, qo € Q is the initial state and F' C @
is the set of final states. An automaton is complete when its transition function
is total. The transition function can be extended by morphism to all words of
A*: p-e = pfor any p € Q and for any u,v € A*, p- (ww) = (p-u)-v. A
word u € A* is recognized by an automaton when p-u € F. The set of all
words recognized by A is denoted by L(A). We note A’ the set of all the words
of length i and AS? the set of all the word of length less or equal to i. An
automaton is accessible when for any state p € @Q, there exists a word u € A*
such that qo - u = p.

A transition structure is an automaton where the set of final states is not
specified. Given such a transition structure 7 = (4, Q, -, qo) and a subset F of
Q, we denote by (7, F) the automaton (A, @, -, qo, F'). For a given determinis-
tic transition structure with n states there are exactly 2™ distinct deterministic
automata that can be built from this transition structure. Each of them corre-
sponds to a choice of set of final states.

In the following we only consider complete deterministic automata and com-
plete deterministic transition structures, the accessibility is not guaranteed.
Consequently, most of the time, these objects will just be called respectively
automata or transition structures. The set () of an n-state transition structure
will be denoted by {1,...,n}. The set of automata and the set of transition
structures with n states will respectively be denoted A, and 7,. Also, since
there are kn transitions and since for each transition, there are n possible ar-
rival states, we have |7,,| = n*" and |A,| = 2"n*" (when |E| is the cardinal of
the set F). The term 2™ comes from the choice of the set of final states.

The military order on words, noted <,,;, is defined as follows: Yu,v € A*,
U <mq v if Ju| < |v| or |u| = |v| and w is smaller than v in the lexicographical
order.

Let Cond be a Boolean condition, the Iverson bracket [Cond] is equal to 1
if the condition C'ond is satisfied and 0 otherwise.

For any non-negative integer i, two states p,q € @Q are i-equivalent, denoted
by p ~; q, when for all words u € AS? | [p-u € F] = [q-u € F]. Two states p
and q are equivalent (noted p ~ ¢) when for allu € A* [p-u € F] =[q-u € F].
This equivalence relation on @ is called Myhill-Nerode equivalence [23]. This
relation is said to be right invariant, meaning that

foralu e A* and allp,ge @, p~g=p-u~gq-u.

Proposition 1. Let A = (A,Q,-,qo, F) be a deterministic automaton with n
states. The following properties hold:

(1) For alli € N, ~; 1 is a partition refinement of ~;, that is, for all p,q € Q,
if p~it1 q then p ~; q.

(2) For alli € N and for all p,q € Q, p ~i+1 q if and only if p ~; q and for all
a€A p-ar~;q-a.

(3) If for some i € N (i+ 1)-equivalence is equal to i-equivalence then for every
7 > 1, j-equivalence is equal to Myhill-Nerode equivalence.

For any integer n > 1 and any m € N, we denote by A" the set of automata
with n states for which m is the smallest integer such that the m-equivalence
~.m, is equal to Myhill-Nerode equivalence. It is well known that m < n — 2.

2.2. Moore’s State Minimization Algorithm

In this section we describe Moore’s algorithm [22] to compute the minimal
automaton of a regular language represented by a deterministic automaton. It
builds the partition of the set of states corresponding to Myhill-Nerode equiva-
lence and mainly relies on properties (2) and (3) of Proposition 1: The partition
m is initialized according to the 0-equivalence ~¢, then at each iteration the par-
tition corresponding to the (i + 1)-equivalence ~; 1 is computed from the one
corresponding to the i-equivalence ~; using property (2). The algorithm halts
when no new partition refinement is obtained, and the result is Myhill-Nerode
equivalence according to property (3). The minimal automaton can then be
computed from the resulting partition since it is the quotient automaton by
Myhill-Nerode equivalence.

Algorithm 1: Moore’s algorithm

In this description of Moore’s algo-

1 if F' =0 then rithm, * denotes the function such that
2 L return (4, {1}, *,1,0) 1+*a =1 for all @ € A. Lines 1-4
3 if F={1,---,n} then correspond to the special cases where
4 L return (A4, {1}, %,1,{1}) F =0 or F = Q. In the process, 7’

is the new partition and 7 the former
5 forall p € {1,--- ,n} do one. Lines 5-6 is the initialization of 7’
6 L 7'[p] = [p € F] to the partition of ~g, 7 is initially un-

defined. Lines 8-10 are the main loop
of the algorithm where the new parti-
tion is computed, using the second al-

7 m = undefined
8 while m # 7’ do

_

9 L T=T to o f gorithm below. The number of itera-
10 compute - trom T tions of Moore’s algorithm is the num-
11 return the quotient of A by w ber of times those lines are executed.
The computation of the new partition
is done using the following property on Algorithm 2: Computing 7’ from 7
associated equivalence relations: 1 forallpe {1,--- ,n} do

2 L 5[17] = (71'[1)]771'[1)'(11]7 T 771'[1)-(1]@])
Ny p~ig
pPrit1 4= p-a~iq-a Ya€A 3 compute the permutation o that
sorts the states according to s|]

To each state p is associated a signa- 4i=0
ture s[p] such that p ~;y1 ¢ if and 5 'lo(1)] =i
only if s[p] = s[g]. The states are then forall 5 d
sorted according to their signature, in 6 lorallp €{2,---,n} do o

I 7 if s[p] #slp—1] then i=i+1
order to compute the new partition. , e
The use of a lexicographic sort provides 8 mo(p)] =i
a complexity of ©(kn) for this part of 9 return 7’

the algorithm.

Figure 1: Description of Moore’s algorithm

According to Proposition 1, if an automaton is minimized in more than ¢
partition refinements, then there exists at least a pair of states p, ¢ and a word
u of length ¢ + 1, such that p ~; ¢ and p - u g q - u, that is to say at least two
states are separated during the £ + 1-th partition refinement. In the remainder
of this section we introduce a dependency tree and a dependency graph
that models constraints on sets of transition structures and a modification of
the dependency graph introduced in [3] that models contraints on sets of

final states. Those tools will allow us to give an upper bound on the number of
automata minimized in more than ¢ partition refinements, which is useful for
the average complexity analysis.

2.3. The Dependency Tree

In the following, we introduce a dependency tree to model a set of transition
structures. To begin with, we explain how a dependency tree R(p) can be
obtained from a fixed transition structure 7 and a fixed state p and then how
this object will help us to estimate the cardinal of a set of transition structures.
For a fixed transition structure with n states over a k-letter alphabet and a fixed
state p, we define the function isnode mapping A* to {0,1} as follows:

0 if Jv € A* such that p-w =p-v and v <4 W,

isnode(w) = {

1 otherwise.

Then R(p) is a tree in which nodes and leaves of depth h are labelled by
words of length h, built recursively, using a breadth-first traversal of the nodes
of the tree starting from the node p. For each node of depth h labelled by w,
and each letter a in the alphabet, we add a node labelled by wa at depth h+ 1
if isnode(wa) is equal to 1, and a leaf otherwise. Figure 2 gives an example
of a dependency tree. Note that this construction resembles the method used
in [4] to randomly generate accessible automata, but the authors use a depth-
first traversal. A same dependency tree can be obtained from several fixed
transition structures and states. In the remainder of the paper, we characterize
sets of transition structures corresponding to particular dependency trees.

We introduce some notations associated to a dependency tree R(p): Si(p)
is the set of all nodes of depth less or equal to h and Ly (p) denotes the set of all
the nodes at given depth h. Since every node in the tree is labelled by a word,
we note w € Sk(p) or w € Ly(p) if w is a word labelling a node in these sets.
We also define the set s;,(p) of all the states that are reached, starting from a
state p and following a path labelled by a word of length less or equal to h.
For all the transition structures associated to a dependency tree R(p), we have

[sn(p)| = [Sn(p)|-

Lemma 1. For any fized state p, if a dependency tree R(p) contains f leaves
of depth less or equal to h, then the number of associated transition structures

f
is bounded above by |7y, (W) ,

Proof. We recall that |7,,| is equal to the product of the cardinals of the sets
of possible arrival states, for each transition. Let wa be the label of a leaf at
depth less than h. For every transition structure associated to the tree R(p),
the transition labelled by a outgoing from the state p-w ends in a state p-v, with
v € Sp(p). Therefore, the number of possible arrival states for this transition
is bounded above by |Sy(p)| instead of n. This is a rough upper bound but
sufficient for the needs of the proof. [l

2.4. The T-Dependency graph

We introduce another model for sets of transition structures. Its involves
two fixed states instead of only one in the case of dependency tree.

Figure 2: Let (a) be the fixed transition structure and 2 be the fixed state, (b) is the
associated dependency tree R(2). We have S2(2) = {¢,a,b, aa, ab}, L2(2) = {aa, ab} and
s2(2) ={2,3,4,5,6}.

For two fixed states p and ¢, two fixed a-tuples (z is an integer) of non-empty
words U = (u1,...,u;) and ¥ = (vq,...,v;), two fixed sets ¢, and ¢, of pairs
of words (w,w’) such that w' <,,; w, we define the set 7,,(p, ¢, pp, pq, U, V) as
follows:

N
)

/];l(paqvgopawqaﬁa :{TGZL |V(wp,w;)€g0p,p~wp:p~w;),

V(wq,w;) € Yg,q Wg=q- w(/p

Vi<z, pou;=q-vi}

— —
We define the z-tuples of words v’ = (u},...,u,) and v/ = (vf,...,v.) and

(64,...,0,), such that for

T0.(p, 4, s qs W,), one
), called the T -dependency

— —
the a-tuples of letters o/ = (of,...,a,) and 3
all i < x we have u; = ulo; and v; = v}f3;. Fro
can define the undirected graph G, (p, ¢, ¢p, 9q, U,
graph, as follows:

<] B

e its vertices are pairs (r,a), with r € @ and a € A, that model transitions.

e There is an edge ((r,a), (t,b)) in G,(p, ¢, ¢p, ¢q, U, V) if and only if for
all 7 € T,,(p, ¢, p, 0q, W, V), 7.0 = t.b.

The 7-Dependency graph satisfies the two following properties:
e Foralli < , there is an edge ((p-u, s), (v} 52)) it G (0, 6, 0 002 T T).

e For all (wi,w2) € ¢, (resp. (ws,ws) € @,), we have w1 = wja; and
wg = whas with a1, as € A and such that there is an edge ((p - w},a1), (p-
/ Lo Lo in G (- —>)
w25a’2)) (resp. ((q ’LU3,0,3), (q ’LU3,0,3))) m Gp(p,q,Pp, Pq, U, V).

Lemma 2. If G, (p, q, ¥p, ¢q W, V) contains an acyclic subgraph with j edges,

then:
|7,

|7;l(paqa (ppa ‘an 7) 7)| S F

(b)

Figure 3: (a) is a fixed transition structure and (b) the F-dependency graph for p = 3,
g =9 and u = abbaa. Thanks to (b), we know that all states in a same connected component
will be either all final or all non-final. Hence, there are at most 24 possible sets of final states,
instead of 2°.

Proof. Two vertices in the same connected components of Gy, (p, ¢, p, g, U, V')
model two transitions of the transition structure, ending in the same arrival
state. Hence if z is the number of connected components in the graph, then
|70 (s @, 0ps Pgy W, V)| < 0. If Gr(p, q, p, 0q, W, V) contains an acyclic sub-
graph with exactly j edges, then there is at most kn — j connected compo-
nents. |

2.5. The F-Dependency Graph

In this subsection, we slightly modify the notion of dependency graph intro-
duced in [3]. Let 7 be a fixed transition structure with n states and ¢ be an
integer such that 1 < ¢ < n. Let p,q be two states of 7 such that p # ¢ and u
a word of length ¢. We define F,(p, ¢, u) as the set of sets of final states F for
which in the automaton (7, F') the states p and ¢ are separated by the word w.
That is to say:

Fr(p:qou) ={F C{l,...,n}| for (TaF)apN\u|—1q
and [p-u e F] # [¢-u € F]}

From the set F.(p, g, u) one can define the undirected graph G, (p, ¢, u), called
the F-dependency graph, as follows:

e its set of vertices is {1,--- ,n}, the set of states of 7;

e there is an edge (s,t) between two vertices s and t if and only if there
exists a word w of length less than ¢ such that s =p-w and ¢t = ¢ - w and
for all F € F.(p,q,u), [s € F] =[t € F].

The F-dependency graph contains some information that is a basic ingredient
of the proof: it is a convenient representation of necessary conditions for a set
of final states to be in F.(p,q,u), that is, for Moore’s algorithm to require
more than |u| iterations because of p, ¢ and u. Figure 3 shows an example of a
F-dependency graph.

Lemma 3. [3] If G (p, q,u) contains an acyclic subgraph with at least i edges,
then |Fr(p, q,u)| < 2"

The notions of dependency graphs and dependency tree will be used in sub-
sections 3.2 and 3.3 to obtain upper bounds on the cardinal of sets of automata
with given properties and prove that their contributions to the average com-
plexity is negligible.

3. Moore’s Algorithm: average case analysis

In [3], it is proved that the average complexity of Moore’s state minimization
algorithm is O(nlogn). Since the result is obtained by studying only properties
on the sets of final states of automata minimized in a given complexity, it holds
for any distribution on the set of transition structures. In this paper, in order
to improve the upper bound on the average complexity, we also have to study
some properties of transition structures. Since the enumeration of accessible
automata with given properties is difficult, we focus our study on the uniform
distribution over the set of complete deterministic automata.

3.1. Main Result and Decomposition of the Proof
The main result of this paper is the following.
Theorem 1. For any fized integer k > 2 and for the uniform distribution over

the deterministic and complete automata with n states over a k-letter alphabet,
the average complexity of Moore’s state minimization algorithm is O(nloglogn).

Recall that the number of partition refinements made by Moore’s state mini-
mization algorithm is smaller or equal to n—2 and that A%, is the set of automata
of A,, for which i is the smallest integer such that ~; is equal to Myhill-Nerode
equivalence. The average number of partition refinements is given by:

1 n—2 ' ;

We define \,, = [log;, log, n® + 2], which will be used in the sequel. We gather
the sets A’ , in order to obtain the following upper bound:

5logy n n—2

Ap +1 i Slogy,n+1 i n—1 i
Nos SEL S ow BERIEDOST g T S 4
i<, n i=An—+1 "™ i=5logy n+1
(S1) (S2) (S3)

(S1) is less than A, and therefore equal to O(loglogn). In [3], it is proved that:
n—2
S <
. n
i=5log, n+1

Thus we know that (S3) is equal to O(1). Hence, in the following, we prove
that:

5log, n
5logyn +1 i
(s2) CREEED S 4] = Olloglogn) 1)
n i=An+1

For any ¢ > 0, we define the set .A>*(p, ¢) as the set of automata with n states,
where the states p and ¢ are separated during the /-th partition refinement:

An(p,q,0) ={(1,F) € Ay | 7 C Ty, FCH{l,..,n}, pri-1q, p*eqh

Remark 1. Note that if in the automaton (7, F), for all letter a € A, p-a =
q - a, then either p =g q or p ~ q. Therefore (1, F) ¢ An(p,q,f) with £ > 0.
Consequently, in the remainder of the proof, in all sets of transition structures
where p and q are fized, there exists a letter a such that p-a # q - a.

The following statement comes from the definition of the sets it involves:

UAa= U Awmar+1)

i>An p,q€{1,..,n}

Let 7 be a transition structure, and p, ¢ be two distinct states. If A is a k-
letter alphabet, and u a positive integer, we define two properties associated to
transition structures:

(1) nolntersection(t,p,q) is true if and only if sx, —2(p) N sx, —2(q) = 0.

(2) largeTree(r,p,) is true if and only if R(p) contains at most one leaf of
depth less or equal to u. Note that this implies that for all integer 7, with
i < p, |si(p)] > k* — 1. Indeed, if R(p) contains at most one leaf of depth
less or equal to u, then there exist k — 1 letters a € A such that R(p-a) does
not contain any leaf of depth less than ;. Therefore we have |S;(p)| > k*—1.
Figure 4 illustrates this proof.

Figure 4: For any dependency tree R(r), if there exists at most one leaf of depth less or equal

to u, since there are k transitions starting from r, then there are k — 1 subtrees that do not
kM —1

contain any leaf of depth less than p, that is to say each one contains % — nodes.

For fixed states p and ¢, we partition the set of transition structures 7, in
three subsets:

e X, is the set of all transition structures 7 such that:
— there exists a state r € @ such that largeTree(r,r, \,) is false.
Note that this set does not rely on the values of p and gq.
e V,(p,q) is the set of transition structures 7 such that:

— for all state r € @, the property largeTree(r,r, \,) is true,

— for all words w € A=2, the property nolntersection(r,p-w,q - w) is
false.

e a,(p,q) is the set of transition structures 7 such that:

— for all state r € @, the property largeTree(r,r, \,,) is true,
— there exists a word w € AS? such that nolntersection(r,p - w,q-w)
is true.

According to those three definitions, for all fixed states p and ¢, the following
equalities hold:

T = X, UYn(p,q) Uan(p,q)
X N Vn(py @) Nan(p,q) =0

In the following, we study each of those sets separately in order to obtain com-
binatorial properties or, more precisely, in order to obtain an upper bound on
the number of automata in a set A,,(p, ¢, A, + 1). We show that:

e if a transitions structure 7 is in a set ay,(p, ¢), there exist only a few sets
of final states F' such that (7, F) € A, (p,q, \n + 1),

e there exist a few automata whose transitions structures is in X}, or in a
set Vn(p, q).

3.2. Transition Structures with o Huge F-Dependency Graph

Figure 5: For all transition structures in o (p, ¢), there exists a word w of length 2 such that
the sets of states, reached following paths starting in p - w and ¢ - w and labelled by words
of length less or equal to A\, — 2, are disjoint and both have a cardinal greater or equal to
logn3 — 1.

Figure 5 illustrates the properties of transition structures in ., (p, q).

Lemma 4. For any fized transition structures T € a,(p,q), and a fized word
u of length \,, + 1, the following property holds: every F-dependency graph
G- (p,q,u) contains an acyclic subgraph with at least k*»~2 — 1 edges.

Proof. We recall that for all transitions structure 7 in the set a,(p,q), there
exists a word w € AS? such that the property nolntersection(r,p-w,q - w) is
true. If there exist several words of length at most 2 satisfying this property,
w denotes the smallest in the lexicographical order. Let G’ be the subgraph
G-(p,q,u) defined as follows: there exists an edge (s,t) in G’, if and only if

10

s =p-wv and t = ¢ - wv, where w is the word previously mentioned and
v € Sy, —2(p - w), i.e. v labels a node in the tree R(p - w). The subgraph G’
contains exactly |sx, —2(p - w)| edges, since for all v € Sy, _2(p - w), the states
p - wov are all pairwise distinct. Since largeTree(r,r, \,) is true for all state
r € Q, we have |sy, _o(p-w)| > k*»~2 — 1. As every edges in G’ has exactly one
tip in Sy, —2(p - w) and as the degree of each vertex in Sy, _2(p - w) is equal to
1, the subgraph G’ is acyclic. O

Corollary 1. For \, = [logy logs n +2], the number of automata belonging to

n3

Ay (p,q, A\ + 1) and whose transition structures are in oy (p, q) is O (|7;L| 2 1‘?g”) .

Proof. This follows directly from Lemmas 3 and 4: for any distinct states p and
q, any word u of length A, + 1, and any fixed transition structure 7 € ay,(p, q),
we have

Fr(p,q,w)| = O (270

For a fixed transition structure 7 € a,,(p, q), since the number of words of length
An + 1 is O(logn), the number of choices of sets of final states such that the
automata are in A, (p, ¢, A\, + 1) is bounded above by:

2" logn
> 1A =0 (2

wEAIn+1

This upper bound being valid for all transition structures in a,,(p, ¢), we obtain
the announced result. O
3.3. Negligible sets of transition structures

Lemma 5. The number of transition structures in X, is O (|%|%)
Proof. For a fixed state r and a fixed integer 1 € {1,.., A\, }, we define the sets

X (r,p) of all transition structures 7 for which p is the smallest integer such
that the property largeTree(r,r, u) is false. We have:

Xy = U U X, (r,p) | and ﬂ X (ryp) =10

re{l,..,n} \pe{l,..,A\n} pnef{l,.., A}

For all transition structures in X, (r, 1), the dependency tree R(r) contains at
least two leaves of depth less or equal to u and at least one leaf of depth less
than p. In order to obtain an upper bound on the cardinal of a set X, (r, i), we
partition the set of possible dependency trees R(r) in two subsets:

1. All leaves are at level u. Let k be the size of the alphabet and f the
number of leaves, the number of trees of this kind is equal to:

> (7)

F=2

11

2. There exist exactly one leaf of depth A (with h < p), and at least one leaf
of depth p. The number of trees of this kind is at most:

n—1 Kt m
2 (7)

Using the upper bound of Lemma 1 on the number of transition structures
associated to a dependency tree, we obtain:

o3[)m (520 |55 (w5 () (52)]

Since p < Ay, we have [S,(r)] < kA *1 and:

kA

n k;} k/\n-',-l f)\nk2z\n+1 kﬁ k% k/\n-',-l f
< (55| (5) (57)] 25 2 [() (5]

n f n f
Since we have (kfb) (kA 'H) < (kZA +1) :

n n

A2 2 /122 +1\ A kAAn 2 2 7 p2An 1 f
[(r)] < 1T n? Z < n > N n? < n)
f=0 f=0
Ak log* n3 x loglog n?
X)) = 0 (1T) = 0 (|7, <8 e

Since this upper bound holds for any p € {1,..,A\,} and any r € @, we
obtain:

log* n3 x log? logn3
w[¥ ¥ wewl)-o(m) -

re{l,..,n} pe{l,..,.\n}

O

Lemma 6. For any distinct states p and q, the number of transition structures

in Yn(p,q) 15(9(|’T|1°g ")

Proof. For any transition structure in Y, (p, q), for all words w € AS2, there
exist two words u,v € AS*~2 such that p - wu = ¢ - wv. We partition the set
Yn(p,q) according to the depth of the leaves the dependency trees R(p) and
R(q) contain. In all cases, we prove that the associated 7-dependency graph
contains an acyclic subgraph with at least 3 edges and use this property to
obtain the announced result.

12

Both trees do not contain a leaf of depth less or equal to A\,. Let E be the set
of letters, such that for all a € E, p-a = q-a. We define the integer e as
the cardinal of E. According to Remark 1, we have e < k. For all b € A\ FE
and all ¢ € A, nolntersection(r,p - bc,q - be) is false. For w and v of size
x =e+ k(k — e), such that:

o for all integer j with 1 < j <e, we have u; =v; = a; with a; € E,

e for all integer ¢ with e < ¢ < z, the words u; and v; have a common prefix
w; of length 2, whose first letter belongs to the set A\ E,

this subset of Y,,(p, q) is included in:

U U Zu(p,0,0,0,%, 7).

ECA
Ya€E, p-a=q-a
There are 2F — 1 possible subsets E and less than k2*(*=¢) possible choices for
uj,v; € AS* for e < i < z. For all integers j,1 < x, such that j # [, since u;
and u; (resp. v; and v;) label nodes in R(p) (resp. R(q)), setting u; = u’a;
and w; = uja;, we have (p - u,a;) # (p - uj,) and there is no path between
(p-uf, ;) and (p-uj, ;) since if would imply that p-u; = p-w; and that either
uj or u; labels a leaf. Thus, G,,(p, g, 0,0, 2, V) contains an acyclic graph with
€ edges ((p ! ’U,;-, aj)? (q ' v;vﬂj))

/ /
D-ug, 2 Q-U2762

=
S

/ /
p-uz, a3 (I-Ugyﬁ?)

R(q) Gn(pv q, 07 07777)

Figure 6: First case of the study of Vn(p, ¢): in this example, u1 = v1 = a, u2 and v have a
common prefix ba, uz and vs have a common prefix bb.

Figure 6 illustrates the dependency trees and the 7-dependency graph as-
sociated to this subset. Using Lemma 2, we obtain the following upper bound
for the cardinal of this subset of YV, (p, q):

T,
(2% — 1) x [7.] x f2An(z—e)
nI

As x> k+1 (for e=k —1). We obtain a new upper bound:

70|
(28 —1) x T E2RAn
T |42 2kA, \ K2
§(2k—1)x|"|k; x(k)
n n

13

4Ny,
o (12
n

Only one tree contains a leaf of depth less or equal to A\,,. Assume by symmetry
that we labels the leaf in R(p) and w'c’ is a word such that w'c’ <, we and
pwe = pw'd (¢, € A). For any letter b € A, the property nolntersection(r, p-
b,q-b) is false. We suppose that for all i < k, each v; (u; by symmetry) starts
with k distinct letters. The transition structures of Y, (p, q) that satisfy these
conditions are included in:

U U (yn(pa q) {(wc, wlcl)}) @’ 7) 7) U yn(pa q) @’ {(wc’ wlcl)}) 77 7))
wc,w/cleAS)‘" o,
w'a/<milwa

There are less than k2 (+1) possible choices for the words we, w'¢ € AS*»
and u;,v; € ASM such that i < k. We show that in the subgraph composed
of the k edges ((p - ul,a;),(q - v, Bi)), the degree of each vertex is equal to
1. This subgraph can be seen as a bipartite graph: the vertices (p - u}, a;)
on one side and the vertices (q - v, 3;) on the other side. If, on the depen-
dency trees, the unique leaf is in R(p), then for all integers j,I < k, there
exists no path between vertices (¢ - v}, 8;) and (q - vj, 3;). Indeed, if such a
path exists, then ¢ - v; = ¢ - v;, which is impossible since the words v; and v,
label nodes in the tree R(q). Therefore the degree of all vertices (p - u}, ;)
is equal to 1. Moreover, all words v; are pairwise distinct, which concludes
the proof. Thus, this subgraph composed of k edges is acyclic. By adding
the edge between the vertices associated to p - we and p - w'c/, it is impossi-
ble to create a cycle. Hence, the subgraphs G, (p, ¢, {(wa,w’a’)},0, w,) and
Gn(p,q,0, {(wa,w'a’)}, @, V) contain an acyclic subgraph with k-+1 edges (see

Figure 7).

q'vllyﬁl

>
=
kS
[S)

l
p.uy, o

No No No
Leaf Leaf Leaf Leaf , ,
DUy, 2 (I-UgyﬁQ

R(p) R(q) Gn(p7Q7 (wcvw/cl)vwv 77?)

Figure 7: Second case of the study of Yn(p,q): in this example, w labels the leaf in R(p), u1
and v; have a common prefix a, uz and v2 have a common prefix b.

Using Lemma 2, we obtain the upper bound stated in Lemma 6.

Both trees contain a leaf of depth less or equal to A,. Let wpa, (resp. wgay)
be the label of the leaf in R(p) (resp. R(q)) and wja; the word such that
w;,a; <mil Wpap and p - wpa, = p - w;a;. For all letters b; € A, such that b; is

not prefix of wpa,, the property nolntersection(r,p - b;,q - b;) is false. For o

14

and T of size k — 1, we consider that for all i < k — 1, the letter b; € A is prefix
of both words w; and v;. This set of Y, (p, ¢) is included in:

U U yn(paqa (wpaw;)a(wqaw;)aﬂ)a?)

S)\n — —>
Wpap,WqaqEA U, v

v ot <An
wpap,wqaqEA

There are less than k2*»(*+1) possible choices for the pairs (wp, wy,), (wq, wy)

and all pairs (u;,v;), for all i« < (k — 1). Using the same argument as in the
previous case, one can prove that in the subgraph composed with the k—1 edges
((p - uj, i), (g - vi, Bi)), the degree of each vertex is equal to 1. The word wy,
(resp. wy) and all words w; (resp. v;) label a total of k distinct nodes in R(p)
(resp. R(g)). If we add the edge between the vertices associated to p - w, and
p-w, (resp. q-wq and q - wy), there can not exist a path between the vertex
associated to p - w;, (resp. ¢ -wy) and a vertex (p - uj,a;) (vesp. (q-vj,3:)).
Hence, the subgraph Gy (p, g, {(wp, w;,)}, {(wg, wy)}, ', V) contains an acyclic
subgraph with k 4+ 1 edges (see Figure 8).

}K pwi,a1

p.w2, a2

p.uf, 01 qvy, B
No One One No
Leaf Leaf Leaf Leaf
q-ws3,as q- w4, a4
R(p) R(q) Gn(gﬂ, q, (wia1,waay), ,
w3asz,w4a4), U, U)

Figure 8: Third case of the study of Yn(p, q): w1 labels the leaf in R(p), w3 labels the leaf in
R(q).

Using the same calculus as before, we obtain the announced upper bound.
O

3.4. Concluding the proof

Recall that we want to prove that:

5log, n
5logyn+1 i
CRant) 'S 14 = Olloglozn)
" i=An+1

We define X, an(p,q) and ;)AJ,:(p, q) as the sets of automata whose transition
structures are respectively in X, an(p,q) and Y, (p, q). We have:

UAai= U Apexm+ncx.ul U a@@ouinpo

P>y, p,qe{l,..,n} p,q€{1,..,n}

15

Using Lemmas 4,5 and 6 we obtain:

- log® n logn log®n
IFAEE ALt DL AT C AP
}

. n3 n3 n3
i>An p,qe{1,..,n
loo®
—0 (|An| x 28 ”)
n
and therefore
5log, n 7
S5logyn+1 i log' n
(|./247|) Z |A =0 (T) = O (loglogn)
n i=An+1

Hence N,, = O(loglogn), this concludes the proof of the Theorem 1.

3.5. The Bernouilli Distribution

Theorem 2. Let k be a fixed integer such that k > 2. For the distribution
where the transition structure is chosen uniformly amongst the deterministic
and complete transitions structures with n states over a k-letter alphabet, and
where each state has a probability x €]0,1[to be final, the average complexity of
Moore’s state minimization algorithm is O(nloglogn).

Proof. Let x be a fixed real number with 0 < x < 1. Consider the distribution
on the sets of final states defined such that each state as a probability x of
being final. For any fixed transition structure, the probability of a given subset
Fof {1,---,n} is P(F) = 2!Fl(1 — 2)"~|Fl. For fixed parameters 7,p,q,u, let
P (p,q,u) be the probability for a set of final states to be in F,(p, ¢, u). Since
G- (p, g, u) only models a subset of constraints on the set F,(p, q,u), Pr(p, q,u)
is less than the probability for a set of final states to verify the constraints given
by the F-dependency graph.

Let r be the real number defined by r = max{z,1 —z} € [1/2,1]. In [3], the
authors prove that for this distribution, the contribution to the average number
of partition refinements given by automata minimized in more than 5log; ;. n
is O(1). We define the constant A, . = [logy, log; , n + 2]. The contribution of
automata minimized in less than A, , partition refinements is O(loglogn). We
slightly modify the definition of the sets ;)AJ;(p, q) and /'AY;: we replace A, by Ay, .
Using the same method, one can prove that their contribution does not change
from the previous case.

Hence, what we need to prove is:

(logn+1) 3 > Y Prp.gu)| | =O(oglogn)

7,
172 p,q€{1,....,n} \T€an(p,q) |ucA*n.r

Let m be the number of connected components in G’ containing at least
two nodes, and ¢, ..., ¢, the sizes of these components. Since G’ is acyclic and
contains exactly log; /. n? edges, the following equality holds:

Zci:m—i—logl/rn?’

i=1

16

The probability that a random set satisfy the conditions implied by the i-th
connected component is equal to z¢ 4 (1 — x)“ (either all states of the subset
are final, either none). Foralln > 1, 2" + (1 —2)" < r" "z +1—2) = "L
Hence

1 —logl/T n?
P.,—(p, q, u) < H;lchi_l = Tzizl(ci_l) — (_)
r

Therefore we obtain:

5logn + 1 logn
Coentl s (X | S pan|]-o(222),

p,q€{1,....,n} \T€an(p,q) [ucA>rn."

concluding the proof.

3.6. Generic complexity

In this section, we study the generic complexity of Moore’s algorithm. We
recall that the notion of generic complexity has been defined in [19]. Let E be
the set of input of an algorithm. A size parameter is to be determined on E: let
E,, be the set on inputs of size n and B, = |J,.,, Fi be the set of inputs of size
at most n. Let X be a set of inputs. For a fixed probability distribution, X is
negligible if and only if, for all instances e of B,,, the probability that e belongs
X tends to 0 when n tends to infinity which, for the uniform distribution, is

equivalent to:

XN B,|

lim =0

n—-+o0o |Bn|
and X is generic if and only if for all instances e of B,,, the probability that e
belongs X tends to 1 which, for the uniform distribution, is equivalent to:

The generic complexity of an algorithm is the worst-case complexity of a generic
set of inputs of the algorithm.

Remark 2. In the particular case where

. |Bn71 mBn|
lim —— =

0
n—-+o0o |Bn|

in order to show that X is generic for the uniform distribution on B,, it is
sufficient to prove that

IXNE,|

n—-4o0o |En| -

and in order to show that X is negligible for the uniform distribution on B, it
is sufficient to prove that

IXNE,|

lim =0.

n—-+o0o |En|

In order to study the generic complexity of Moore’s algorithm, we start by
identifying the negligible sets. We recall that \,, = [log,, logy, n® + 2.

17

Lemma 7. For the uniform distribution on the set of complete deterministic
with n states over a finite k-letter alphabet, the set of automata minimized in
more than A, partition refinements is negligible.

Proof. According to the proof of Theorem 1, we have:

. log®
> 1l =0 (14,5)

i> A

Hence we have:

Disa, AR
1. 7 n n — 0
notoo Ay

Moreover, for a fixed k-letter alphabet,

i= Az 1

i = A < lim —— =0
n—-+4oo Zj:)\n, |A]| n—-+4+oo nkil

We conclude the proof using remark 2. |

Theorem 3. For the uniform distribution on the set of complete deterministic
with n states over a finite k-letter alphabet, the generic complexity of Moore’s
state minimaization algorithm.

Proof. According to Lemma 7, the set of minimized in less than A, partition
refinements is generic, which concludes the proof. (|

In the following section, we use the results on Moore’s algorithm to obtain
similar results on Hopcroft’s algorithm average and generic complexities.

4. Hopcroft’s state minimization Algorithm

The reader is invited to consult [21] for a detailed description the implemen-
tation of Hopcroft’s algorithm. Before explaining the algorithm, note that a pair
(C, a) represents the set of all the transitions labelled by a ending in a state of
the equivalence class C' and is called a block. Also, a class B in the partition is
splitted by a block (C, a), extracted from a waiting set, into two classes B’
and B", if BB ={q|q€e B,qg-a€C}and B" ={q|q€ B,q-a ¢ C} with B
and B” both non-empty. In the usual description of the algorithm, the order of
insertions and extractions of blocks (C, a) in the waiting set is not defined, since
the algorithm is correct for any order. We introduce a description of Hopcroft’s
algorithm, in which a partial order is determined, that makes the algorithm easy
to compare with Moore’s algorithm. All possible implementations of this new
description were already feasible with the classical algorithm, since we will only
guarantee a partial order, for the extraction and the insertion, between certain
blocks. Therefore we will provide neither proof of its correctness nor proof of
its worst case complexity.

18

4.1. Redescription of Hopcroft’s Algorithm

Though Hopcroft’s algorithm computes the Myhill-Nerode equivalence, it
is not easy to know, at a given step of the algorithm, if two states inside the
same class are i-equivalent, for any integer i € {1,..,n — 2}. In the following
description (see Figure 9), we solve this problem by dividing the waiting set into
a Current waiting set, and a Next waiting set. The algorithm is initialized with
the partition {F,Q \ F'}, just like Moore’s algorithm. The initial waiting set
contains all blocks (min{F, Q\ F'},a) (Algorithm 3, Lines 1—2). This algorithm
contains two loops:

e Lines 6 —11: A block (P, a) is taken from Current (Line 7). If a class B is
splitted by (P, a), we replace it by B’ and B” in the partition and for all
letters a in the alphabet, we Update the waiting sets as follows (Algorithm
4): if the block (B, a) was already Current, we replace it by (B’,a) and
(B"”,a). If the block was in Next, we replace it by (B’,a) and (B”,a).
Otherwise, we simply add (min{B’, B"},a) in the set Next. Note that
these are the only ways to add a block in a waiting set. In the remainder
of this section, we call this block of instructions an iteration of Hopcroft’s
algorithm, by analogy with Moore’s algorithm.

e Lines 3—11: as long as the waiting set Next is not empty, meaning that at
least one class has been splitted during the previous iteration, the waiting
sets are swapped, and a new iteration starts.

The algorithm ends when both waiting sets are empty. Like in the classical
description, this implies that the partition corresponds to the Myhill-Nerode
equivalence.

Since a block (C,a) is the set of all transitions ending in a state of class C,
a waiting set can be seen as a set of transitions: the union of all the blocks it
contains.

Lemma 8. For any deterministic automaton, at the beginning of any iteration
of Hopcroft’s algorithm, the following properties hold:

i) The waiting set Current contains at most kn transitions.

ii) For each block (B,a) in Current, the class B is the result of a split made
at the previous iteration.

ii1) The set of transitions contained in Current is exactly the set of transitions
that will be used to split the partition, during the current iteration.

Proof. The property i) is obvious since the automaton is deterministic: there is
at most kn transitions in an automaton and each of them belongs to at most
one block otherwise it would imply that the transition ends in two states of two
different classes.

The property i) follows directly from the description of the algorithm: a tran-
sition is in a block (C, a) of Current at the beginning of an iteration if and only
if it was added in Next during the previous iteration, which happens only in the
function Update, when a class has been splitted.

The property iii) also follows from the algorithm: a block is extracted from
Current only to be treated. In the function Update, Current is only modified

19

Algorithm 3: Hopcroft
Data: Partition = {F,F}, C = min{F,F}, Current = 0, Next = (§
1 foreach a € A do

2 L Add (Cya) in Next
3 while Next # () do
4 Current = Next
5 Next =
6 while Current # () do
7 (P,a) = First(Current)
8 foreach B € Partition such that B is refined by (P,a) do
9 B',B" «— Refine(B, P,a)
10 Breakblock(B, B', B”, Partition)
11 Update(Current, Next, B, B', B")

Algorithm 4: Update(Current, Next, B, B', B”)
Data: C = min{B’, B"}

1 foreach b € A do

2 if (B,b) € Current then

3 | Replace (B,b) by (B’,b) and (B”,b) in Current

4 else

5 if (B,b) € Next then

6

7

8

| Replace (B,b) by (B’,b) and (B”,b) in Next
else
L Add (C,b) in Next

Figure 9: Re-Description of Hopcroft’s Algorithm

to replace a given set of transition (C,a) by sets (C’,a) and (C”,a), such that
(Cya) = (C’",a) U (C”,a). Hence, this operation does not change the global set
of transitions contained in Current. g

Remark 3. From Lemma 8, we know that the time complexity of an iteration
of Hoperoft’s algorithm is bounded by O(kn): indeed the functions Update and
BreakBlock can be performed in O(1), by choosing properly the data structures.
Since, the loop Foreach (Line 8) depends on the number of transitions contained
in a block, the complexity of an iteration is bounded by the number of transitions
i Current.

4.2. Analogy between Moore’s and Hopcroft’s complexities

Lemma 9. For any deterministic automaton, any integer i € {0,..,n— 2}, any
states p and q, if p »; q, then p and q are not in the same class of the partition
at the end of iteration i of Hopcroft’s algorithm.

Proof. By induction: we call iteration 0 the initialization of the algorithm, which
is exactly the same for both algorithms. Suppose now that the property is true
for a given iteration ¢. Let p and ¢ be two states such that p ~; g and p =;41 ¢.
According to the definition of the Myhill-Nerode equivalence, there exists a
letter a such that p-a ~; ¢-a. Then, p-a and ¢ - a are not in the same class

20

at the end of iteration ¢ of Hopcroft’s algorithm, meaning that the transitions
labelled by a and starting from p and ¢ have been added in two different blocks,
either in Current or in Next during an iteration j, with 7 < 4. This implies that
p and q are separated at the iteration j or 7+ 1. In any case, they are not in the
same equivalence class at the end of iteration ¢ + 1 of Hopcroft’s algorithm. O

Corollary 2. For any deterministic automaton, Hopcroft’s algorithm stops ei-
ther at the same iteration as Moore’s algorithm, or at a previous one.

Note that this lemma does not prove that a Moore’s algorithm implemen-
tation is never faster than a Hopcroft’s algorithm implementation. Indeed,
Hopcroft’s algorithm uses several data structures to guarantee its worst-case
complexity. For a single operation on a transition, Hopcroft’s algorithm re-
quires more computation than Moore’s algorithm. Therefore it is still possible
to obtain an execution of Moore’s algorithm which is slightly faster than all
executions of Hopcroft’s algorithm.

We use the Theorems ?7? associated to Moore’s algorithm are used to obtain
similar results on Hopcroft’s algorithm.

Theorem 4. For the uniform distribution on the set of complete deterministic
automata with n states over a k-letter alphabet, there exists a family of im-
plementations of Hopcroft’s algorithm whose average complexity is bounded by
O(nloglogn).

Proof. The proof follows directly from the Theorem 1, Corollary 2 and Proper-
ties 1 and 3 given in Lemma 8. O

Theorem 5. For any fixed integer k > 2, the uniform distribution over the
deterministic and complete transitions structures with n states over a k-letter
alphabet, and the distribution over the set of final states where each state has
a probability x €]0,1[to be final, there exists a family of implementations of
Hopcroft’s algorithm whose average complexity is bounded by O(nloglogn).

Proof. We use Theorem 2, Corollary 2 and Properties 1 and 3 given in Lemma
8. O

Theorem 6. For the uniform distribution on the set of complete deterministic
automata with n states over a k-letter alphabet, there exists a family of im-
plementations of Hopcroft’s algorithm whose generic complexity is bounded by
O(nloglogn).

Proof. We use Theorem 3, Corollary 2 and Properties 1 and 3 given in Lemma
8. O

4.3. On the usual implementations of Hopcroft’s algorithm

In [1], the authors compare two types of implementations of Hopcroft’s al-
gorithm when the waiting set is implemented with a stack and when it is imple-
mented with a queue. The benchmarks they made seemed to indicate that the
stack implementation is slightly faster than the queue, but the tests were made
on restricted families of automata. Using the library REGAL [2], that allows to
generate large random complete deterministic accessible automata, and we ob-
tained the same conclusions. In fact, experimentally, all the implementations of

21

Hopcroft’s algorithm we tested only differed from a small constant in average
time complexity, including the ones using two waiting sets.

A natural extension of Theorem 4 would be to find out if the average com-
plexity of Hopcroft’s algorithm is still O(nloglogn) with those implementa-
tions. For distributions where the transitions structures are chosen uniformly,
and where either each state has a fixed probability p € {%, %, %, 1—16} to be final,
or a fixed number of final states is randomly chosen amongst @), we made some
tests on what we consider to be the best indicator of the average number of op-
erations made by Hopcroft’s algorithm: the sum of the numbers of transitions
associated to all the sets extracted from the waiting set.

Hopcroft - Queue Hopcroft - Stack
T T T 35000

"p=112
30000

p=1/16 &
One Final —-#-—
25000 [~ Ten Final ---0--

p=1/8 %
40000 [p=1/16 B
One Final —-a-
35000 |- TenFinal ---o--

30000 20000 |
25000 [

15000

10000

Number of Operations
Number of Operations

5000 P

0 L L L L L L L L L 0 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of Automata Size of Automata

Hopcroft - Queue Hopcroft - Stack

1F p=1/2 —— -

p=1/4 -~
=1/8 ---*:
05 =1/16 & —
05 | One Final —-=- - One Final ——#-—
Ten Final ---6-- Ten Final ---6--
0 1 1 1 h 0 1 1 1 h
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Number of Operations Divided by n
Number of Operations Divided by n

Size of Automata Size of Automata

Figure 10: The pictures at the top illustrates the evolution of the average number of operations
made by Hopcroft’s algorithm. On the left is the queue implementation: it seems that the
less final states there is in the input automaton, the faster the algorithm is. On the right is
the stack implementation, for which there seems to be less operations than in the other case,
especially when there is a Bernoulli distribution on the set of final states. The pictures at the
bottom are the same values divided by n, which is the size of the automaton.

Given the results illustrated in Figure 10, we conjecture that these usual
implementations of Hopcroft’s algorithm also have an O(nloglogn) average
complexity.

5. Conclusion and open discussions

In this paper, we established that the average complexity of both Moore’s al-
gorithm and Hopcroft’s algorithm is O(n loglogn), for the uniform distribution
on complete deterministic automata. It is a first step to prove the conjecture
made in the conclusion of [3]: for the uniform distribution on complete de-
terministic accessible automata, the average complexity of Moore algorithm is
O(nloglogn). To show this conjecture is not an easy task, since it requires a

22

better knowledge of the average size of the accessible part in a complete de-
terministic automaton, but also of the average number of minimal automata
amongst the complete deterministic and accessible. Also, the actual results on
the average complexity of both algorithms do not include probability distribu-
tions where the number of final states is fixed. We conjecture that for those
distributions, the average complexity of Moore’s algorithm is O(nlogn) and
the average complexity of Hopcroft’s algorithm is still O(nloglogn).

References

[1]

Manuel Baclet and Claire Pagetti. Around Hopcroft’s algorithm. In Im-
plementation and Application of Automata, 11th International Conference,
CIAA 2006, Taipei, Taiwan, August 21-23, 2006. Proceedings, volume Lec-
ture Notes in Computer Science 4094, pages 114-125, 2006.

Frederique Bassino, Julien David, and Cyril Nicaud. REGAL: a library
to randomly and exhaustively generate automata. In Jan Holub and Jan
Zdérek, editors, Implementation and Application of Automata, 12th Inter-
national Conference, CIAA’07, volume 4783 of Lecture Notes in Computer
Science, pages 303-305. Springer, 2007.

Frederique Bassino, Julien David, and Cyril Nicaud. On the average com-
plexity of Moore’s state minimization algorithm. In Susanne Albers and
Jean-Yves Marion, editors, 26th International Symposium on Theoretical
Aspects of Computer Science (STACS 2009), Freiburg, Germany., volume 3
of LIPIcs, pages 123—134. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany, 2009.

Frederique Bassino and Cyril Nicaud. Enumeration and random generation
of accessible automata. Theor. Comput. Sci., 381:86—104, 2007.

Marie-Pierre Beal and Maxime Crochemore. Minimizing local automata.
In IEEF International Symposium on Information Theory (ISIT’07), pages
1376-1380, 2007.

Marie-Pierre Beal and Maxime Crochemore. Minimizing incomplete
automata. In Finite-State Methods and Natural Language Processing
(FSMNLP’08), pages 9-16, 2008.

Jean Berstel, Luc Boasson, and Olivier Carton. Continuant polynomi-
als and worst-case behavior of Hopcroft’s minimization algorithm. Theor.
Comput. Sci., 410(30-32):2811-2822, 2009.

Jean Berstel and Olivier Carton. On the complexity of Hopcroft’s state
minimization algorithm. In M. Domaratzki, A. Okhotin, K. Salomaa, and
S. Yu, editors, CIAA’04, volume 3317 of Lecture Notes in Computer Sci-
ence, pages 35—44. Springer, 2004.

Janusz A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. In Symposium on the Mathematical Theory of
Automata, volume 12, pages 529-561, Polytechnic Institute of Brooklyn,
New York, 1962. Polytechnic Press.

23

[10]

[11]

[18]

[19]

Giusi Castiglione, Antonio Restivo, and Marinella Sciortino. Hopcroft’s
algorithm and cyclic automata. In Language and Automata Theory and
Applications: Second International Conference, LATA 2008, Tarragona,
Spain, March 13-19, 2008. Revised Papers, pages 172—183, Berlin, Heidel-
berg, 2008. Springer.

Giusi Castiglione, Antonio Restivo, and Marinella Sciortino. On extremal
cases of Hopcroft’s algorithm. In S. Maneth, editor, Implementation and
Application of Automata, 14th International Conference, CIAA’09, volume
5642 of Lecture Notes in Computer Science, pages 14—23. Springer, 2009.

Jean-Marc Champarnaud and Gérard Duchamp. Brzozowski’s derivatives
extended to multiplicities. In Bruce W. Watson and Derick Wood, editors,
CIAA’01, volume 2494 of Lecture Notes in Computer Science, pages 52—64.
Springer, 2001.

Jean-Marc Champarnaud, Ahmed Khorsi, and Thomas Paranthoén. Split
and join for minimizing: Brzozowski’s algorithm. In PSC’02 Proceedings,
pages 96-104, 2002.

Philippe Flajolet and Robert Sedgewick. An Introduction to the Analysis
of Algorithms. Addison Wesley, 1996.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, 2008.

David Gries. Describing an algorithm by Hopcroft. Acta Inf., 2:97-109,
1973.

John E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, Stanford University, Stanford, CA, USA,
1971.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

Ilya Kapovich, Alexei Myasnikov, Paul Schupp, and Vladimir Shpilrain.
Generic-case complexity, decision problems in group theory and random
walks. J. Algebra, 264:665-694, 2003.

Timo Knuutila. Re-describing an algorithm by Hopcroft. Theor. Comput.
Sei., 250(1-2):333-363, 2001.

Lothaire. Applied Combinatorics on Words, volume 105 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2005.

Edward F. Moore. Gedanken experiments on sequential machines. In Au-
tomata Studies, pages 129-153. Princeton U., 1956.

Anil Nerode. Linear automaton transformation. In Proc. American Math-
ematical Society, pages 541-544, 1958.

Cyril Nicaud. Average state complexity of operations on unary automata.
In Kutylowski, M., Pacholski, L., Wierzbicki, T., eds.: MFCS, volume 1672
of Lecture Notes in Computer Science, pages 231-240. Springer, 1999.

24

[25]

[26]

[27]

Dominique Revuz. Minimisation of acyclic deterministic automata in linear

time. Theor. Comput. Sci., 92(1):181-189, 1992.

Wojciech Szpankowski. Average Case Analysis of Algorithms on Sequences.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

Antti Valmari and Petri Lehtinen. Efficient minimization of DFAs with
partial transition. In Susanne Albers and Pascal Weil, editors, 25th
International Symposium on Theoretical Aspects of Computer Science
(STACS 2008), volume 1 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 645-656, Dagstuhl, Germany, 2008. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik.

25

