
Analysing Mu-Calculus Properties of Pushdown

Systems

M. Hague and C.-H. L. Ong

Oxford University Computing Laboratory
Matthew.Hague@comlab.ox.ac.uk Luke.Ong@comlab.ox.ac.uk

Abstract. Pushdown systems provide a natural model of software with
recursive procedure calls. We provide a tool (PDSolver) implementing
an algorithm for computing the winning regions of a pushdown parity
game and its adaptation to the direct computation of modal µ-calculus
properties over pushdown systems. We also extend the algorithm to allow
backwards, as well as forwards, modalities and allow the user to restrict
the control flow graph to configurations reachable from a designated
initial state. These extensions are motivated by applications in dataflow
analysis. We provide two sets of experimental data. First, we obtain a
picture of the general behaviour by analysing random problem instances.
Secondly, we use the tool to perform dataflow analysis on real-world Java
programs, taken from the DaCapo benchmark suite.

1 Introduction

Pushdown systems — finite-state transition systems equipped with a stack —
have received a lot of interest in the software verification community. They ac-
curately model the control flow of recursive programs (such as C and Java),
and are ideal for algorithmic analysis. Pushdown systems have played a key
role in the automata-theoretic approach to software model checking [1, 10, 14].
Considerable progress has been made in the implementation of scalable model
checkers of pushdown systems. These tools (e.g. Bebop [11] and Moped [10]) are
an essential back-end component of such model checkers as SLAM [12].

The modal µ-calculus is a highly expressive specification language (subsum-
ing all standard temporal logics). Walukiewicz showed that modal µ-calculus
model checking of pushdown systems is EXPTIME-complete [5], although no
tools have been implemented. Previously, we gave the first algorithm that does
not always suffer from an exponential explosion [4]. We introduce a tool (PD-
Solver) providing the first implementation of this algorithm. We also extend the
technique to allow backwards modalities — which are needed for certain dataflow
properties — and allow the analysis to be restricted to reachable configurations.

We provide two sets of experimental data in support of the tool. First, we give
a picture of the behaviour of the tool on arbitrary inputs by analysing randomly
generated problem instances. Secondly, we consider a specific application to
dataflow analysis of pushdown systems extracted from real-world examples from
the DaCapo Benchmarks [9]. This second set of experiments is an application of
Steffen’s work on dataflow analysis and model checking [3]. The tool can be down-
loaded from http://web.comlab.ox.ac.uk/people/Matthew.Hague/pdsolver.html.

Related Work There are several pushdown reachability checkers available,
e.g., Bebop [11] and Moped [10]. Reps et al. have developed dataflow analysis
tools based on weighted pushdown systems [14]. To the best of our knowledge,
ours is the first tool for evaluating modal µ-calculus with backwards modalities.
Steffen et al. have implemented dataflow analysis as model checking in jABC [2],
although no work has been published extending jABC to pushdown systems.

2 Preliminaries

A pushdown system is a triple P = (P ,D, Σ⊥) where P is a set of control
states, Σ⊥ := Σ ∪ {⊥} is a finite stack alphabet (we assume ⊥ /∈ Σ) and D ⊆
P×Σ⊥×P×Σ∗

⊥
is a set of rules. As is standard, we assume the bottom-of-stack

symbol ⊥ is neither pushed onto, nor popped from, the stack. A configuration is
a pair 〈p, w〉 with p ∈ P and w ∈ Σ∗ ⊥. We have 〈p, aw〉 → 〈p′, w′w〉 whenever
(p, a, p′, w′) ∈ D. Let C be the set of all pushdown configurations.

For a set AP of atomic propositions and a disjoint set Z of variables, formulas
of the modal µ-calculus are (with x ∈ AP , Λ ⊆ AP and Z ∈ Z):

ϕ := x | ¬x | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | [Λ]ϕ | 〈Λ〉ϕ | [Λ]ϕ | 〈Λ〉ϕ | µZ.ϕ | νZ.ϕ .

Thus we assume formulas are in positive form. The semantics of a formula ϕ are
given with respect to a valuation of free variables V : Z → P(C) and atomic
propositions ρ : AP → P(C). The denotation JϕKPV,ρ of a formula is the set
of all satisfying configurations. A configuration c satisfies 〈Λ〉ϕ iff ∃x ∈ Λ.c ∈
ρ(x) ∧ ∃c′.c → c′ ∧ c′ ∈ JϕKPV,ρ and c satisfies [Λ]ϕ iff (∃x ∈ Λ.c ∈ ρ(x)) ⇒
(

∀c′.c → c′ ⇒ c′ ∈ JϕKPV,ρ
)

. The operators [Λ] and 〈Λ〉 are their backwards time
counterparts. The µ and ν operators specify greatest and least fixed points (for
details we refer the reader to Bradfield and Stirling [6]). We may also inter-
pret propositions as actions: a configuration satisfies a proposition if leaving the
configuration executes the action. Hence [Λ]ϕ holds if ϕ holds after all Λ actions.

3 Algorithm and Implementation

Algorithm We present the full algorithm separately [7] and provide a sum-
mary here. Sets of configurations are represented using a kind of automata over
words [1]. Broadly speaking, when representing JϕKPV,ρ, we have 〈p, w〉 ∈ JϕKPV,ρ
if the word w is accepted from the state (p, ϕ) of the automaton.

The algorithm recurses over subformulas. For propositions x or variables Z
the automaton representing its valuation is either given or already computed.
For ϕ = ϕ1 ∧ ϕ2, we introduce the state (p, ϕ) for each control state p and add
transitions combining the transitions from (p, ϕ1) and (p, ϕ2). Similarly for ∨.

We use, for [Λ] and 〈Λ〉, standard backwards reachability techniques [1]. E.g.,
for 〈Λ〉ϕ, we have all configurations a step in front of JϕKPV,ρ. The extension to
backwards modalities is similar, but uses an adaptation of forwards reachabil-
ity [10]. To restrict the analysis to the reachable configurations, we first use the

efficient algorithm of Schwoon [10] to obtain the set of reachable configurations,
then restrict our results by taking the conjunction with this set. The [Λ] modal-
ity is an exception: we compute [Λ](ϕ ∨ ¬reachable). This is not needed for [Λ]
since any successor of a reachable state is itself reachable.

For fixed points we use a trick called projection, introduced by Cachat [13].
This ingenious technique allows us to compute a fixed point of ϕ by repeatedly
computing ϕ. We refer to our previous work for details [4].

The algorithm is exponential in the number of control states and the sizes of
the formula and the (automaton) representations of V and ρ. With backwards
modalities, it is also exponential in the size of the alphabet.

Implementation We provide an explicit state implementation using OCaml
and apply two main optimisations. The first is to identify subformulas whose
denotation will not change when iterating the computation of a fixed point, and
then store the computed value to speed up subsequent iterations. Secondly, there
are cases where an automaton state should behave similarly for all characters
except a few. We introduce default transitions that can be taken on reading a
character a whenever there are no other a-transitions. This is important for back-
wards modalities as it greatly reduces the cost of an n2 loop. These transitions
need to be dealt with carefully by the other procedures.

4 Experimental Results1

Random Instances We generated 395 model checking instances. Each PDS

0 100 200 300 400 500

0
50

0
10

00
15

00

n

T
im

e
(s

)

of size n, ranging from 5 to 450,
has n states and n characters (giv-
ing between 25 and 250k pairs 〈p, a〉)
and between n2 and 2n2 transitions
((p, a, p′, w) where |w| is uniformly 0,
1 or 2). Each formula has a maxi-
mum connective depth of 5, a mini-
mum fixed point depth of 2, lengths
between 7 and 22 and up to 5 literals.
Each proposition has a 10% probabil-
ity of holding at a given pair of con-
trol state and top of stack character. Furthermore, each bound variable occurs
within at least one [Λ] or 〈Λ〉 operator. Note we only use forwards modalities
and Λ = AP . The figure above shows the terminating results, plotted using the
tool R. In 120 instances the algorithm timed out after 30 minutes, with a failure
rate of 23% at 0 ≤ n ≤ 50 rising to 50% at 400 ≤ n ≤ 450. Hence, difficult
instances can occur even on small pushdown systems. Never-the-less, in the next
section, we show that useful properties can be checked on large systems.

1All tests were run on a 2.4Ghz, quad core Intel Xeon with 12Gb of RAM.

Dataflow Analysis Steffen advocates using modal µ-calculus model checkers
for dataflow analysis [3]. This approach provides real-life test cases, taken from
the DaCapo Benchmarks [9] (Version 9.12). We consider the optimal placement of

computations problem. Intuitively, all modifications of a variable should happen
as early as possible, provided they are necessary. For example, take the program

main () { i = [value]; a(); b(); }

a() { [computation not including i] }

b() { print(i); }

where a() may cause the program to fail. The only optimal placement of the
computation of i is just before b(). An earlier computation is unnecessary if
a() fails. We tested this example with our tool, obtaining the expected result.

Recalling Steffen, define the “always globally” operators AGΛϕ = νX.(ϕ ∧
[Λ]X) and AGΛϕ = νX.(ϕ∧[Λ]X). Fix a variable i and letM be the set of actions
modifying i and U the set using i. For a set S, Sc denotes the complement. The
proposition end marks the end of the computation. A necessary computation is
one which will always be used and an optimal computation point is one at which
earlier computations are unnecessary. This property is bi-directional. Let

ϕnec = AGUc(¬end ∧ [M ∩ U c]false) and ϕocp = ϕnec ∧ [M c](AGMc¬ϕnec) .

We chose parts of the Avrora (A) and the FOP (F) benchmarks and extracted
pushdown control flow graphs with a supplementary tool based on Soot [8].
Polymorphic method calls may call any implementing procedure. We assume
that all calls may result in an exception (e.g. RuntimeExceptions), hence each
call is followed by an exception handling branch. Finally, data values are ignored.

For each benchmark, we chose a non-local variable with several use/define
statements. Table 1 shows the results. The final columns give the size of the
denotation representation. Each example had three control states. The number
of control points is |Σ|. Since ϕocp contains backwards modalities, the problem

is exponential in |Σ|. Because [Λ] is computationally intensive, we evaluated
¬ϕocp rather than ϕocp. In all tests, we only consider reachable configurations.
Since we only consider one variable per test, program slicing could considerably
increase performance. We do not perform this optimisation; instead we take the
opportunity to test our tool on large systems, and obtain encouraging results.

Example Control Points Pushdown Rules Time (s) States Transitions

RegisterTestAction (A) 3k 4k 14 509 19k

ELFDumpAction (A) 6k 7k 40 724 32k

ExampleFO2PDF (F) 17k 24k 95 1724 90k

ExampleDOM2PDF (F) 18k 25k 132 1753 95k

DisassembleAction (A) 54k 75k 1525 6215 296k

CFGAction (A) 90k 120k 3946 9429 500k
Table 1. Optimal computation point analysis of several Java examples.

5 Conclusion and Future Work

We introduced the first tool for evaluating modal µ-calculus formulas over push-
down systems. We support forwards and backwards modalities and a restriction
to reachable configurations. We tested random and real-life examples, demon-
strating the tool’s potential as a component of a pushdown analysis framework.

For forwards reachability, Schwoon’s optimisations lead to significant perfor-
mance gains. We may attempt to extend these techniques to operators like AG.
Applying the optimisations to the full algorithm, however, may prove difficult.
We may also use BDDs to represent the transition relation of the multi-automata.

Another avenue is to develop the dataflow analysis applications of our tool,
by providing an improved translation from Java and exploiting optimisations
such as program slicing or counter-example guided abstraction refinement.

Since ours is the first tool of its kind, we have no comparative data. For
certain specific applications, we may perform a comparison with suitable tools;
however, we are unaware of any such tools for the examples considered here.

Acknowledgments. We thank Vijay D’Silva for recommending Steffen [3], Oege
De Moor for suggesting DaCapo, and Georg Weissenbacher for his comments.

References

1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR 1997, pages 135–150.

2. A. Lamprecht, T. Margaria, and B. Steffen. Data-flow analysis as model checking
within the jabc. In CC 2006, pages 101–104.

3. B. Steffen. Data flow analysis as model checking. In TACS 1991, pages 346–365.
4. M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A satu-

ration method. In CONCUR 2009, pages 384–398.
5. I. Walukiewicz. Pushdown processes: Games and model checking. In CAV 1996,

pages 62–74.
6. J. C. Bradfield and C. P. Stirling. Modal logics and mu-calculi: An introduction.

In Handbook of Process Algebra, pages 293–330, 2001.
7. M. Hague and C.-H. L. Ong. A saturation method for the modal mu-calculus with

backwards modalities over pushdown systems. arXiv:1006.5906v1 [cs.FL], 2010
8. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -

a Java optimization framework. In CASCON 1999, pages 125–135.
9. S. M. Blackburn et al.. The DaCapo benchmarks: Java benchmarking development

and analysis. In OOPSLA 2006, pages 169–190.
10. S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University

of Munich, 2002.
11. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-

grams. In SPIN 2000, pages 113–130.
12. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via

static analysis. In POPL 2002, pages 1–3.
13. T. Cachat. Symbolic Strategy Synthesis for Games on Pushdown Graphs. In

ICALP 2002, pages 704–715.
14. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206–263, 2005.

