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Abstract

Spatial Logics are used to reason about data structures and hierarchical net-
work structures. Automated decision procedures for these logics allow us to
formally verify the properties of a system, highlighting errors in the system be-
fore it is released. A specific instance of Spatial Logics is the Tree Logic, which
describes the structural properties of semi-structured data, such as XML. Previ-
ous decision procedures for this logic suffered a complexity bound by a tower of
exponentials, meaning that an implementation of the procedure did not run in
viable times. Recently, Dal Zilio et al have proposed a new decision procedure
for the Tree Logic, with a complexity that is doubly exponential. We provide the
first implementation of this approach, and discover, through the use of several
optimisations, that the decision procedure is viable. Furthermore, we take this
decision procedure as an inspiration and produce two new decision procedures
for the Separation Logic — a logic for reasoning about memory heap structures
with a stack and pointers. The first decision procedure involves a translation
from the Separation Logic to the Tree Logic, whilst the second procedure shows
that the Separation Logic can be expressed in First-Order Logic with Equality.
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Chapter 1

Introduction

The ability to reason formally about computer systems is important in the
production of both hardware and software. Formal reasoning allows us to prove
desirable properties of the system, ensuring that a specification is met and that
no unexpected errors will occur due to a bad design. Such formal methods have
been embraced by industry because the cost of formal verification can be lower
than the cost of repairing an unforeseen error. For example, Intel r© now uses
formal verification after a floating point error in their Pentium r© Processor cost
the company a reported $500 million [1, 2].

To be able to automatically verify software, we need to be able to describe
the required properties of the software and the data that it manipulates. In
this project, we concentrate on logics that can be used to reason about data
structures, specifically, we focus on the area of Spatial Logics.

Spatial Logics are concerned with the properties of structured data and
resources such as hierarchical network topologies, memory heaps and semi-
structured data. Spatial Logics enrich Classical Logic with spatial connectives
that describe the construction (and destruction) of data structures. The two
most common paths of Spatial Logics are the Separation Logic and the Ambi-
ent Logic. Separation Logic [3] is used to reason about low-level data structures
and processes that manipulate them; Ambient Logic analyzes the properties
of hierarchical structures such as distributed systems. To reason about semi-
structured data, such as XML, we use the Tree Logic [4] — the static fragment
of the Ambient Logic [5].

Model checkers for these logics have many practical uses. For example, a
verification tool that uses a logic for imperative programs based on the Sep-
aration Logic can detect memory leaks in imperative programs [6], whilst the
Tree Logic has applications in verifying the security properties of firewalls, or
in pattern-matching languages for manipulating tree-like data. However, model
checking for these logics is a non-trivial task: there are many ways of decom-
posing a data structure, and some connectives are implicitly quantified over an
infinite set of structures.

The first decision procedure for the Tree Logic was introduced by Calcagno et
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al [4]. However, this decision procedure required the enumeration of potentially
large sets of trees, and its complexity was very high. An implementation of this
procedure was attempted as part of an MEng project by Zeeshan Alam [7] and
it was found that the complexity was such that the approach could only run in
reasonable times for very small examples.

The primary objective of this project is to produce the first implementation
of a new method put forward by Dal Zilio et al in [8] for model checking using
Tree Logic formulae. This approach has a much lower complexity than the pre-
vious method. We were able to further improve the approach through several
optimisations and produce a tool that can evaluate moderately complex formu-
lae in reasonable times. We provide an evaluation of the implementation and
the viability of the approach in chapter 7. Further to the implementation, in
chapter 8 we investigate whether the ideas in Dal Zilio et al’s work can provide
new decision procedures for the Separation Logic. Firstly we give a translation
from the Separation Logic to the Tree Logic, which allows us to extend the tool
that was implemented during this project to evaluate Separation Logic asser-
tions. Then we apply some of the ideas behind Dal Zilio et al’s procedure to
the Separation Logic directly. A result of this work is a new decision procedure
that translates the Separation Logic into First-Order Logic with Equality. Re-
cent independent work by Etienne Lozes shows that the Separation Logic can
be expressed by a classical fragment of the Separation Logic [9]. This, however,
does not provide a decision procedure for the logic. We give a full comparison
of these two results in section 8.5.

For the remainder of this chapter we discuss the Separation Logic and the
Tree Logic in more depth. A further section details the contributions of this
project.

1.1 Heap-Like Structures

Separation Logic is used to describe formally low-level data structures such as a
heap model. The heap model describes program states using a heap and a stack.
A heap is a flat memory structure that maps locations to values, and similarly,
the stack maps variables to values. These values may be other memory locations
or nil.

Calcagno, Yang and O’Hearn have shown that, in general, this logic is un-
decidable [10]. That is, it is not possible to decide in finite time whether a
heap satisfies a given formula, or whether a formula is valid. However, they
have shown decidability for a fragment of the logic, which includes the notion
of pointers and equality, but not universal quantification or other operations on
data, such as ≤ or +. This fragment can be used to reason about the structure
of the heap but not about the contents of the data itself.
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1.2 Tree-Like Structures

We use a tree model when reasoning about semi-structured data such as XML.
Tree structures are constructed from labelled branches that are composed hori-
zontally, or stacked vertically, much like an XML document, to form a tree. To
analyze the properties of these tree structures we use the Tree Logic, the static
fragment of the Ambient Logic.

A initial goal of this project was an implementation of a model-checking tool
for the Tree Logic. This tool has several applications. For example, we may
use logical formulae to represent a type system for tree structures. A pattern
matching language that manipulates tree structures will need to decide which
particular pattern a given tree conforms to. Also, at compile time it will be
necessary to check whether two patterns overlap. Another application occurs
when verifying security properties of network structures: networks are often
constructed as a hierarchy, where entry into a sub-network is governed by a
firewall. This structure can be represented in the Tree Logic, and so we can use
it to specify properties of the network. For example, we may wish to enforce
that a set of network nodes are behind a given firewall, that is, the nodes are
branches on the firewall node.

In [4], Cristiano Calcagno et al prove the decidability of the Tree Logic
and provide a decision procedure. However, their approach has a very high
complexity — one that is bounded by a tower of exponentials. This procedure
was implemented as part of an MEng project last year, and it was found that the
approach can only decide the logic in reasonable time for very small examples.

A different approach was recently put forward by Silvano Dal Zilio et al
in [8]. This new method involves translating a formula given in the Tree Logic
into a new logic called the Sheaves Logic. Part of a Sheaves Logic formula is a
numerical constraint that is a Presburger formula. A large amount of research
has been conducted to provide efficient decision procedures for these constraints
and an implementation of this approach can take advantage of this work. In
chapter 3 we discuss several such constraint solvers. We use Tree Automata to
decide the satisfiability of the Sheaves Logic formulae.

Abstracting over the cost of solving the Presburger constraints, the complex-
ity of this approach is doubly exponential in the size of the Tree Logic formula
— a significant improvement over a tower of exponentials, which bounded the
first decision procedure. On the practical level, our implementation of an opti-
mised version of Dal Zilio et al’s approach ran in satisfactory times for formulae
of a moderate size.

The Tree Model and its decision procedures are discussed in detail in chap-
ter 2.

1.3 Contribution

The original goal of this project was a prototypical implementation of Dal Zilio
et al’s decision procedure. The design of the program and the algorithms it uses
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are detailed in chapter 5.
This prototype revealed that a naive implementation of Dal Zilio et al’s work

was not a viable approach: its complexity meant that the size of the formulae
that could be evaluated in reasonable times was quite small. Consequently,
several optimisations that remove some of the redundancy from Dal Zilio et
al’s theoretical work were implemented, and significant increases in efficiency
were observed. For example, for one set of test data the unoptimised algorithm
was abandoned after 30 minutes; when optimisations were activated, the run-
time was reduced to under four seconds. The tool produced performs model-
checking for the Tree Logic and runs in satisfactory times for reasonably complex
formulae. A discussion of the optimisations used by the tool is given in chapter
6. An evaluation of the tool and the optimisations it uses is given in chapter 7.

Further to this implementation, in chapter 8 we broaden the scope of the
project to include the Separation Logic. This concerns the potential for Dal
Zilio et al’s decision procedure for the Tree Logic to provide decision procedures
for the Separation Logic.

In section 8.2 we provide a translation of the Separation Logic into the Tree
Logic. This means that the tool produced during this project may be extended
to provide a tool for deciding whether a heap models an assertion, or whether
an assertion is valid.

In section 8.3 we take inspiration from the approach put forward by Dal
Zilio et al to produce a new decision procedure for the Separation Logic. The
main result of this work is that the decidable fragment of the Separation Logic
can be expressed using First-Order Logic with Equality1. Recent, independent
work by Etienne Lozes shows a related result: that the Separation Logic can
be expressed by a classical fragment of the logic that is still a Spatial Logic [9].
The atoms of this fragment are the size of a heap, the contents of an address
and the equality of stack variables. In section 8.4 an overview of Lozes’ work
is provided, and in section 8.5 we give a comparison of the two results. The
main points of difference are that our translation into First-Order Logic with
Equality provides a decision procedure for the Separation Logic, whereas Lozes’
work does not, and that the translation into FOL= removes the notion of a
heap entirely. Finally, in section 8.6 we evaluate the work in chapter 8.

1.4 Report Structure

In chapter 2 we describe the decision procedure proposed by Dal Zilio et al. We
discuss three available tools for evaluating Presburger Constraints in chapter 3.
In chapters 4, 5 and 6 we describe the implementation and optimisation of the
approach, concluding in chapter 7 with an evaluation of the tool produced.

The work on the Separation Logic is given chapter 8. The translation into
the Tree Logic is presented in section 8.2 and the translation to FOL= is given
in section 8.3. The work by Etienne Lozes in described in section 8.4. We finish

1FOL= is First Order Logic without relations and with equality. This is essentially the
PSPACE-Complete problem, Quantified Boolean Formulae (QBF) [11].
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the chapter by comparing our work with Lozes’ (section 8.5) and evaluating our
work into the Separation Logic (section 8.6).

The conclusions of this project are summarised in chapter 9, along with some
suggestions for future extensions to the project.
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Chapter 2

Background: Tree Logics

In this chapter we give the notion of a tree and define the Tree Logic for reasoning
about tree structures. We present some important properties of the Tree Logic
and give a brief overview of the previous decision procedure for the logic. Finally
we cover in detail the approach to deciding satisfaction and validity for the logic
that was introduced recently by Dal Zilio et al [8]. There are several different
methods available in Dal Zilio et al’s work, we summarise and compare these
methods in chapter 4.

2.1 Trees

In [4], Calcagno, Cardelli and Gordon propose a simple syntax for representing
edge-labelled finite trees that can be used to represent semi-structured data.
Trees are characterised by their edges, rather than their nodes, and each edge
is given a name. The syntax for this representation is shown in table 2.1.
Structural equivalence is shown in table 2.2. Some simple examples of trees are
shown in figure 2.1.

d, d′ ::= Tree
0 Empty tree
d|d′ Composition
m[d] Edge labelled by name m ∈ N atop tree d

where N is an infinite set of names.

Table 2.1: The grammar for representing trees
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d ≡ d (Strut Refl)
d ≡ d′ ⇒ d′ ≡ d (Struct Symm)
d ≡ d′, d′ ≡ d′′ ⇒ d ≡ d′′ (Struct Trans)

d ≡ d′ ⇒ d|d′′ ≡ d′|d′′ (Struct Par)
d ≡ d′ ⇒ m[d] ≡ m[d′] (Struct Amb)

d|d′ ≡ d′|d (Struct Par Comm)
(d|d′)|d′′ ≡ d|(d′|d′′) (Struct Par Assoc)
d|0 ≡ d (Struct Zero Par)

Table 2.2: Structural equivalence for trees

a b

a[0]|b[0]

a

bb

a[b[0]|b[0]]

Figure 2.1: Simple example trees
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A,B ::= Formula
F False
A ∧ B Conjunction
A ⇒ B Implication
0 Void
A|B Composition
A . B Guarantee
n[A] Location
A@n Placement

Table 2.3: The Tree Logic syntax

2.2 Tree Logic

To describe the properties of the trees described in section 2.1, we use the Tree
Logic. This logic was introduced by Cardelli and Gordon in [5]. There are
several applications of the Tree Logic, for example:

• Tree Logic formulae can be used in a pattern-matching language for ma-
nipulating tree-like structures. A formula can be used to represent the
type of a tree. In this case, the validity of a formula can be seen as a com-
pile time check — we may, for example, wish to check that one formula
represents a sub-type of another, or that no two patterns can be satisfied
by a single tree (leading to ambiguity in the program) — and a test for
satisfaction can be seen as a run-time check, testing which pattern a tree
adheres to, or whether it is of the correct type.

• The Tree Logic can be used to specify the security properties of a network.
Networks are often protected by firewalls, where all traffic to and from a
group of nodes must pass through (and be allowed by) the firewall. This
forms a hierarchical structure than can be represented by the Tree Logic:
sub-networks whose access is controlled by a firewall will appear as sub-
trees of the firewall branch. We can specify properties such as which nodes
are behind which firewalls, and which nodes should not be in a given place
in the tree.

The syntax of this logic is given in table 2.2; one can derive connectives such
as T, ¬A and A ∨B in the usual way.

We write, d |= A to denote that the tree d satisfies the formula A, this is
akin to saying that tree d is of type A. The complete definition of satisfaction
is given in table 2.4

Most of the satisfaction rules given in table 2.4 are straightforward, but some
may benefit from an explanation.
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d |= F Never

d |= A∧ B , d |= A ∧ d |= B
d |= A ⇒ B , d |= A ⇒ d |= B
d |= 0 , d ≡ 0

d |= A|B , ∃d′, d′′.d ≡ d′|d′′ ∧ d′ |= A∧ d′′ |= B
d |= A . B , ∀d′.d′ |= A ⇒ d′|d |= B
d |= n[A] , ∃d′.d ≡ n[d′] ∧ d′ |= A
d |= A@n , n[d] |= A

Table 2.4: Satisfaction of Tree Logic formulae

A composite formula (A|B) is satisfied if the tree can be split into any two
parts, such that one part satisfies the formula A and the other satisfies the
formula B. The tree can be split in any way, for example A|B|C|D may be split
into the two trees, A|C and D|B; it can also be split into the trees A|B|C|D
and 0.

A tree satisfies a formula of the form A.B iff, when it is composed with any
tree which satisfies the formula A, the resulting tree will satisfy the formula B.

Some simple example formulae and the kinds of tree that satisfy them are
given in figure 2.2.

Validity

We say that a formula, A, is valid iff it is true of all trees, that is ∀d.d |= A.
Validity can be thought of as a compile-time check. For example, we may want
to check that type A is a subtype of type B. Conversely, we can think of
satisfaction as a run-time check that a tree is of a required type.

In the Tree Logic, the validity and satisfaction problems are mutually ex-
pressible; that is, satisfaction can be reduced to a validity problem and vice
versa. The two problems can be reduced to each other as follows:

• Validity to satisfaction — A formula, A, is valid iff 0 |=T.A. This
says that, any tree which satisfies truth (all trees), when composed with
the empty tree, will satisfy A. We know that any tree composed with the
empty tree is structurally congruent to the tree on its own, therefore we
are checking that every tree satisfies A.

• Satisfaction to validity — Each tree can be directly translated into an
equivalent formula. This can be seen by comparing the syntax of trees with
the syntax of formulae; for example, the tree a[0]|b[0] translates directly
to the formula a[0]|b[0]. We denote the translation of tree d as d, and we
can check the whether tree d satisfies a formula A by testing the validity
of the formula d⇒ A.
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a b

T
a[0]|b[T] — That is, any tree with two top branches, labelled a and b. The a
branch must be atop the empty tree, whereas the b branch may be atop any

tree. (All trees satisfy truth.)

a b

T

(a[0]|T) ∧ (b[0]|T) — That is, any tree with an a branch, atop the empty tree,
composed with any tree, and a b branch, atop the empty tree, composed with
any tree. The tree has an a branch and a b branch, both atop the empty tree,

composed with any tree.

Figure 2.2: Simple example Tree Logic formulae and the trees that satisfy them

20



Decidability

To test whether a tree satisfies a given formula, we can use a model checking
approach. This approach, as we have shown, is also effective in deciding validity.
However, to test satisfaction for the guarantee connective we need to evaluate an
implicit “for all trees” quantifier, which ranges over the set of all trees, which is
an infinite set1. Alternatively, we can reduce satisfaction to a validity problem.
However, this approach will always require universal quantification (as we must
check the property for all trees). The quantification problem occurs in both
cases.

2.3 A First Attempt

In [4], Calcagno et al show that the Tree Logic2 is decidable. This was shown
using two observations: the number of label names to consider can be reduced
to a finite set, and the number of trees to check when evaluating the guarantee
connective or determining validity can be restricted to a finite set.

To restrict the set of names to a finite set Calcagno et al observed that Tree
Logic formulae can express two things about branches: either a branch should
have a given name, or it should not.

For example, the formula a[0] expresses a tree constructed from a single
branch, named a. Branches can be divided into two sets: those labelled a,
and those not labelled a. The name of the branches that are not labelled a
are irrelevant in that we can change their name to another name that is not a
without changing the satisfaction of the formula. This argument can be similarly
applied to the formula, ¬a[0].

It is possible to extend this argument to formulae that mention any number
of names. The result is that we can limit the set of names to all the identified
names in a formula, plus one that is not mentioned. We can transform an
arbitrary tree to use this restricted set of names by renaming any branches that
use labels that are not mentioned in the formula to the additional unmentioned
name, without changing the satisfaction result.

We still need to consider an infinite number of trees, even if we have a limited
set of branch names. To address this problem, Calcagno et al proposed a notion
of size; each tree can be given a depth and a multiplicity (the maximum number
of times any branch label appears at any node) that constitute the size of the
tree. Similarly, we can give formulae a size — to test the validity of a formula
we need only check the trees whose size is less than or equal to the size of the
formula.

For example, the formula, a[0] cannot distinguish between the tree, a[b[0]]
and the tree, a[b[b[0]]]. Similarly, the formula, a[0] cannot differentiate between
the tree, a[0]|a[0] and the tree, a[0]|a[0]|a[0]. We can say that this formula has

1The quantification present in the semantics of the guarantee connective is separate from
the quantification present in the Tree Logic with quantifiers (of names). The Tree Logic with
quantifiers has been shown to be undecidable [12] and so it is not considered in this report.

2Without the quantification of names.
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a depth of two and a multiplicity of two, where the depth refers to the maximum
number of branches stacked on top of each other anywhere in the tree, and the
multiplicity is the maximum number of occurrences of a particular branch label
at any node in the tree.

We can use these observations to construct a finite set of trees that we need to
check when testing whether a guarantee formula is satisfied. This approach uses
similar sets to test the existential quantifiers in the semantics of composition
and location, except that these sets are simpler to construct as they are built
from decompositions of the tree being tested.

2.3.1 Complexity

Unfortunately, the approach detailed above has a complexity that is worse than
a tower of exponentials. This is because the set of trees used to evaluate the
guarantee operator is very large: for each node of a tree, we need to consider
all combinations of the available names, up to the required multiplicity and the
number of nodes depends on the number of names, the multiplicity, and the
depth.

An implementation of this approach was attempted as part of a final year
MEng project [7]. Unfortunately, because of the high complexity, the imple-
mentation could only reason about trees up to a depth of one in reasonable
time.

2.4 A Second Attempt Using Sheaves

In [8], Dal Zilio, Lugiez, and Meyssonnier introduced a new approach to the tree
logic problem. The fundamental difference in their approach is one of notation;
this change in notation allows a new way of tackling the problem, which is only
doubly exponential, rather than bounded by a tower of exponentials.

Dal Zilio et al introduce the Sheaves Logic, which is based on this new
notation and provide a translation from the Tree Logic to the new logic. An
automaton method for deciding whether a tree satisfies a formula specified in
this sheaves logic is given as well as an algorithm for determining the emptiness
of the automaton (satisfiability of the Tree logic formula); finally, a recursive
version of the sheaves logic is introduced.

2.4.1 Sheaves

If, for example, we have a tree of the form A|A|B|C|A|B, the sheaf notation of
this tree is the dot product of two vectors; the first denotes the multiplicity, and
the second denotes the sub-trees. In this particular case, the sheaf is as follows:
(3, 2, 1) · (A,B,C). That is, three As, two Bs and one C.
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α ::= Label expression
a1, . . . , an Finite subset of N
α⊥ Complement of α

E ::= Element formula
α[A] Element with label in α

A ::= Counting formulae
> True
∃N.φ(N) ·E Sheaves composition (with |N| = |E|)

Table 2.5: The Sheaves Logic syntax

2.4.2 Sheaves Logic

The syntax for the sheaves logic is given in table 2.5. This logic assumes a set
of branch labels, denoted N , and the set, E , of elements (an element is of the
form a[d], where a is a label and d is a tree).

There are several differences between this and the tree logic presented in
section 2.2. The first difference is the use of label expressions on elements,
rather than single labels. A label expression is either a finite set α ⊆ N or a
co-finite set α⊥, we often write α to denote a label expression of either form.
The notation α⊥ describes any element that is not in the finite set α. A label
expression α denotes any label a such that a ∈ α. For example, the semi-formula
{a, b}[0] matches either one of the two trees, a[0] or b[0]. (Note: 0 is not valid
sheaves logic syntax, rather an abbreviation of a more complex formula that is
given in section 2.4.5.)

The set α ⊆ N must be finite to allow us to test, in finite time, whether a
name, a is in the set α. In case α⊥, if α is finite, we can determine if a label, a,
is not in α in finite time.

The second and main difference is the ∃N.φ(N) ·E construct. This formula
describes a sheaf of the form N ·E, where N is a vector, (n1, . . . , np), satisfying
the numerical constraint φ and E is a vector, (α1[A1], . . . , αp[Ap]), of element
formulae. E is called the support vector. The sheaf then denotes a tree that, for
each i ∈ 1..p, has ni branches (at the top level) whose label is in the set αi and
whose sub-tree satisfies the formula Ai. A tree satisfies the formula ∃N.φ(N) ·E
if it can be described over the support vector E by any vector N such that N
satisfies the constraint, φ.

2.4.3 Presburger Constraints

The formula ∃N.φ(N) · E contains a numerical constraint, φ, on the vector N.
This constraint is expressed as a Presburger formula. Presburger formulae act
on the set of natural numbers (non-negative integers) and denote constraints
upon them. They are a decidable subset of First-Order Logic, and a significant
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Exp ::= Integer expression
n Non-negative integer constant
N Non-negative integer variable
Exp1 + Exp2 Addition

φ, ψ, . . . ::= Presburger arithmetic formulae
(Exp1 = Exp2) Test for equality
¬φ Negation
φ ∨ ψ Disjunction
∃N.φ Existential quantification

Table 2.6: The syntax of Presburger Arithmetic

amount of research has been conducted into producing efficient tools for solving
them. The syntax is given in table 2.6.

We can define a large number of integer properties using these formulae,
and we will often use abbreviations. For example, ∧ may be defined using De
Morgan and “M strictly greater than N” can be described using the formula,
∃X.(M = N +X + 1).

We write φ(N) to denote a Presburger formula with its free variables in
N = (n1, . . . , np). Often, when writing sheaves logic formulae, we omit the
argument, N, to the Presburger constraint and simply write ∃N.φ · E. The
vector is implicitly passed as an argument.

When testing whether a tree satisfies ∃N.φ(N) ·E, we need to check that it
can be expressed in the form N · E, where N is a vector of integers, and φ(N)
holds.

For example, if we want to express the tree logic formula, a[0]|b[0]|b[0] in
sheaves logic, we could write, ∃(n,m)(n = 1∧m = 2) ·({a}[0], {b}[0]). However,
if we wanted to express the tree logic formula a[0]|b[0]|b[¬0], we would require
three element formulae in the support vector, E: {a}[0], {b}[0] and {b}[¬0].

It is also worth noting that support vectors can be more specific than the
formulae that they are representing. For example, the formula a[T] can be
expressed as ∃(n,m)(n + m = 1) · ({a}[A], {a}[¬A]), where A is any formula.
This formula represents a[T] because it describes a tree of the form a[A] or
a[¬A], which is equivalent to a tree of the form a[T].

2.4.4 Bases

We now give a definition of a basis, which is a useful property of a support vector
E. Intuitively, if a support vector is a basis, then it can be used to describe any
tree. For example, the support vector (a[0]) can only describe a tree formed
from any number of a[0] elements. It is not possible, using this support, to
denote a tree that has a branch that is not labelled a. We could address this
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AnyE =def ∅⊥[>]

0 =def ∃(n).(n = 0) ·AnyE
T =def ∃(n).(n ≥ 0) ·AnyE

α[A] =def ∃(n1, n2, n3).(n1 = 1 ∧ n2 = 0 ∧ n3 = 0) · (α[A], α[¬A], α⊥[>])

Table 2.7: Translation from Tree Logic to Sheaves Logic: base cases

problem by adding the element formula {a}⊥[T] to the support. However, using
this new support it is not possible to denote a branch a atop any tree except the
empty tree. To complete the basis we need to add the element formula a[¬0].

The basis property is required when constructing a Sheaves Logic formulae
that is equivalent to a given Tree Logic formula. The translation, given in section
2.4.5, is defined inductively, so, for example, if we had the formula ¬A we would
first construct a Sheaves Logic formula that represents A. If the support vector
generated by this translation only allowed us to denote trees that matched A, we
would not be able to denote those trees that satisfy ¬A using the same support
vector, E.

We write JEK to denote the set of all trees that satisfy the element formula,
E. Element formulae have the form α[A], therefore, the trees in JEK will have
a single branch (in α) from the root node, atop a tree that satisfies the formula
A.

A vector (E1, . . . , En) is a basis iff i 6= j implies JEiK ∩ JEjK = ∅ for all
i, j ∈ 1..n and

⋃n
i=1JEiK = E , where E is the set of all elements. That is, the

element formulae of the support vector define disjoint trees, and together, they
cover all possible trees of the form a[d], where d is a tree and a is a branch. A
basis, E, is proper iff every support vector appearing in a sub-formula of E is
also a basis.

2.4.5 Encoding Tree Logic Using Sheaves Logic

Dal Zilio et al’s translation from tree logic to sheaves logic is as follows. AnyE
is the element formula ∅⊥[>] — that is, a branch with any label, atop any tree.
The translation is inductive and the base cases are shown in table 2.7.

It is worth noting that a simpler translation of α[A] is ∃(n).(n = 1) · α[A],
however, α[A] does not define a basis. The basis property is desirable when
translating a formula because it allows us to construct formulae such as ¬A
inductively, as described in the previous section.

When translating formulae, such as composition, with two sub-formulae, we
require that the sub-formulae are defined over a common support vector. This
is because the larger formulae will define trees that have some combination of
the properties expressed by each of the sub-formulae. If the sub-formulae are
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Assume A = ∃N.φA.E and B = ∃N.φB .E

A ∨B =def ∃N.(φA ∨ φB)(N) ·E
A|B =def ∃N.(φA + φB)(N) ·E

The connectives ∨ and + for Presburger constraints are
defined in table 2.10

Table 2.8: Translation from Tree Logic to Sheaves Logic: positive operators

Assume A = ∃N.φA.E and B = ∃N.φB .E

¬A =def ∃N.(¬φA)(N) ·E
A ∧B =def ∃N.(φA ∧ φB)(N) ·E
A . B =def ∃N.(φA . φB)(N) ·E

The connectives ∧ and . for Presburger constraints are
defined in table 2.10

Table 2.9: Translation from Tree Logic to Sheaves Logic: negative operators
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(φ ∧ ψ)(N) =def φ(N) ∧ ψ(N)
(φ ∨ ψ)(N) =def φ(N) ∨ ψ(N)
(φ+ ψ)(N) =def ∃N1,N2.((N = N1 + N2) ∧ φ(N1) ∧ ψ(N2))
(φ . ψ)(N) =def ∀M.(φ(M)⇒ ψ(N + M))

Table 2.10: The composition of Presburger formulae

defined over the same support vector then that support vector will be adequate
to express the combination of the two formulae. If these two sub-formulae are
not defined over a common basis, but are each defined over a basis, we are able
to redefine the formulae so that they share the same basis. This procedure is
explained in section 2.4.6.

Additionally, negative operators, such as ¬ and . require that the common
support vector is also a basis. This is because both of these operators implicitly
refer to the set of all trees. The semantics of . contain universal quantification
— for all trees — and so we must be able to express all trees using the support
vector. Similarly, ¬A is satisfied by any tree that does not satisfy A.

The positive composition operators are given in table 2.8, the translations for
negation and composition adjunct (.) are given in table 2.9 and the composition
of Presburger formulae is given in table 2.10. The methods for constructing a
common basis and redefining a formula over a different basis are given in section
2.4.6.

To give an idea of the benefits of this approach, we run through the validity
test 0 |= T .A. This formula translates to a formula of the form (> . φA)(0),
which expands to ∀M.(>(M) ⇒ φA(0 + M)), or ∀M.φA(M). This approach
has pushed the infinite quantification into the Presburger constraint. Constraint
solvers, such as those discussed in chapter 3 are able to solve constraints with
such quantification.

2.4.6 A Method for Building a Common Basis from Het-
erogeneous Supports

In this section we describe the method for ensuring that two formulae are de-
fined over a common basis. The translation from Tree Logic to Sheaves Logic
is inductive, and binary operators require that the translations of their sub-
formulae are defined over a common basis. We begin by introducing the notion
of refinement of bases. We then explain how a formula can be re-expressed over
a refining basis. Finally, we detail the method for constructing a (common)
basis that refines two bases.
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Refinements

We say that a support vector F refines the support vector E if F represents
a more precise decomposition of the trees expressible over E. For example,
the support (a[A], a[¬A]) is a refinement of the support (a[>]) since they both
express all trees that are a branch a atop any sub-tree, but the first support
allows us to distinguish between those sub-trees that satisfy a given formula and
those that don’t.

Formally, a support F = (F1, . . . , Fq) is a refinement of the support E =
(E1, . . . , Ep) if there is a relation R of 1..p × 1..q such that for all i ∈ 1..p we
have JEiK =

⋃
(i,j)∈RJFjK.

Redefining a Formula Over a Refining Support

If we have a Presburger constraint, φ(N), defined over the support vector
E = (E1, . . . , Ep), we construct the constraint φR(M) defined over the refining
support vector F = (F1, . . . , Fq) such that J∃N.φ · EK = J∃M.φR · FK where
N = (N1, . . . , Np), M = (M1, . . . ,Mq), and φR(M) is the constraint:

∃(Ni)i∈1..p, (X
i
j)(i,j)∈R.



∧
j∈1..q(Mj =

∑
(i,j)∈RX

i
j)

∧∧i∈1..p(Ni =
∑

(i,j)∈RX
i
j)

∧ φ(N)




To understand why this formula, expressed over F, is equivalent to φ expressed
over E we can think of the variables X i

j as mappings from the element formulae
of F to the element formulae of E. The element formula, Fj , may describe
elements from several element formulae, Ei, and vice versa. The variables, X i

j ,
denote the decomposition (and recomposition) of the elements described by the
basis F into the basis E. If there is a decomposition such that φ holds, then the
formula is satisfied.

Building a Common Basis

Given the proper bases E = (E1, . . . , Ep) and F = (F1, . . . , Fq), we can con-
struct a common proper basis, denoted E×F by building the support vector G
containing the element formulae (Gij) for all (i, j) ∈ 1..p× 1..q where the set of
trees accepted by Gij is the intersection of the set of trees accepted by Ei and
Fj .

It can be seen that such a basis will refine both E and F. This is because
both E and F are proper bases, and so define the complete set of elements, E .
For example, JEiK =

⋃
j∈1..qJGijK =

⋃
j∈1..qJEiK∩ JFjK because F is a basis, and

so
⋃
j∈1..qJFjK = E .

When constructing the common basis we need to construct the element
formula Gij that accepts the same set of trees as the intersection of the element
formulae Ei and Fj . Let Ei = αi[Ai] and Fj = βj [Bj ]. There are two cases to
consider:
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• Case Ai = >. In this case Gij = (αi ∩ βj)[Bj ].
• Otherwise Gij = (αi ∩ βj)[Ai ∧Bj ]. To be able to construct this element

formula we have to build the formula Ai∧Bj . This requires that Ai and Bi
are defined over a common basis. We ensure this property by recursively
redefining Ai and Bj so that they are defined over a common basis. It
is because of the recursive nature of the algorithm that the original bases
must be proper — that is, every support vector appearing in a sub-formula
of the basis is also a basis.

2.4.7 Tree Automata

To evaluate a Sheaves Logic formula we translate the formula into an equivalent
automaton. We can determine satisfiability and satisfaction using the resulting
automaton.

A tree automaton has a set of states, a set of final states and a set of rules.
We denote an automaton, A = 〈Q,Qfin,R〉, where Q is the set of states, Qfin
is the set of final states included in Q, and R is the set of rules. The automaton
takes a tree as input reduces its sub-trees to states, starting from the leaf nodes.
If the automaton can use its rules to reduce the tree to a single state that is a
final state, then the automaton is said to accept the tree.

The transition relation of an automaton is the transitive closure of the rela-
tion defined by the rules in table 2.11. There are two types of rule:

• Type 1 rules operate vertically on the tree and are analogous to an element
formula (of the form α[A]). They are written α[q′] → q. The state q′ is
the state that a sub-tree that satisfies the sub-formula A can be reduced
to, and α is the same α in the element formula. When this rule is applied,
we reduce a branch atop a state to a single state, which indicates that an
element formula has been matched.

• Type 2 rules operate horizontally on the tree and are written φ → q,
where φ is a Presburger constraint that takes as its arguments the number
of occurrences of each state at the current level of the tree. They are
analogous to the Presburger constraints in the Sheaves Logic since they
count the number of states at a node of the tree, which represent the
element formula that have been matched (by type 1 rules). Type 2 rules
count, using a Presburger constraint, the element formulae that have been
matched, and reduce them to a single state if the conditions of the formula
have been met.

There a several notations used in table 2.11 and in general when referring to
these automaton. e1| . . . |en is a tree built from the composition of several ele-
ment formulae. q1| . . . |qn is the result of reducing each of the element formulae
to a state. #q is the number of occurrences of state q in a term q1| . . . |qn, and
#Q(qj1 | . . . |qjn) denotes the multiplicities of each of the states in qj1 | . . . |qjn .
We write #Q(qj1 | . . . |qjn) ∈ JφK to denote that φ holds when the multiplicities
of the states in the term qj1 | . . . |qjn are passed as arguments.
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(type 1) (type 2)

d→ q′ α[q′]→ q ∈ R a ∈ α
a[d]→ q

e1 → qj1 . . . en → qjn (n 6= 1)
φ→ q ∈ R #Q(qj1 | . . . |qjn) ∈ JφK

e1| . . . |en → q

Table 2.11: The transition relation →

An example automaton which accepts all trees with no more as than bs in
parallel at any sub-tree, is as follows: Q = {qa, qb, qs}, Qfin = {qs} and R
contains three rules: a[qs]→ qa, b[qs]→ qb and (#qa ≤ #qb) ∧ (#qs ≥ 0)→ qs.

Since the constraint (#qa ≤ #qb) ∧ (#qs ≥ 0) → qs is satisfied by (0, 0, 0),
we have that 0→ qs. A possible accepting run of the automaton is as follows:

a[0]|b[a[0]|b[0]|b[0]]→ a[qs]|b[a[0]|b[0]|b[0]]→ a[qs]|b[a[qs]|b[0]|b[0]]→
a[qs]|b[a[qs]|b[qs]|b[0]]→ a[qs]|b[a[qs]|b[qs]|b[qs]]→ a[qs]|b[a[qs]|b[qs]|qb]→
a[qs]|b[a[qs]|qb|qb]→ a[qs]|b[qa|qb|qb]→ qa|b[qa|qb|qb] ;

qa|b[qs]→ qa|qb ; qs

For the transitions marked ;, we use the type 2 rule of the example. In the
first case the multiset, qa|qb|qb, is accepted (φ(1, 2, 0) holds) and in the second
case, the multiset, qa|qb, satisfies φ. That is, φ(1, 1, 0) holds.

An automaton is deterministic iff for every pair of distinct type 1 rules,
α[q]→ q1 and β[q]→ q2, we have JαK ∩ JβK = ∅; and, for every distinct pair of
type 2 rules φ→ q1 and ψ → q2, we have JφK∩ JψK = ∅. An automaton accepts
a tree, d, if there is a final state q ∈ Qfin such that d→ q. The language L(A)
is the set of trees accepted by A.

When checking whether a particular tree is accepted by an automaton, deter-
minism is a desirable property. This is because a non-deterministic automaton
will require arbitrary decisions to be made throughout the algorithm. To be
able to conclude that a tree is not accepted by the automaton we must evaluate
every possible run — increasing the complexity exponentially.

For an automaton, A = 〈Q,Qfin,R〉, it is possible to check whether a tree,
d, is in the language accepted by A in time O(|d|.|R|.Cost(|Q|, |d|)), where
Cost(|Q|, |d|) is a function that returns the time in which all constraints, φ, can
be evaluated, |d| is the size of the tree, and |R| is the number of rules in A.
Intuitively, we can derive this result by considering the worst case execution
where, at every stage in the evaluation of the tree we test each rule in R. In
the worst case, testing the rule R takes Cost(|Q|, |d|) time.

However, this result requires that the automaton, A, is deterministic. For
every non-deterministic automaton, A, we can construct a deterministic au-
tomaton, det(A), such that L(A) = L(det(A)). However, the states of det(A)
is the power-set of the states of A and the number of rules in det(A) is expo-
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nential in the size of A.

Product Automata

Given two automata, we can construct the product automaton. We can define
the final states of this automaton to test several properties. For example, we can
construct the automaton that accepts the intersection of the original automata.
The ability to build such automata is important when translating Sheaves Logic
formulae to automata (described in section 2.4.8).

The product of two automata A = 〈Q,Qfin,R〉 and A′ = 〈Q′,Q′fin,R′〉
is defined as follows: A × A′ = A× = 〈Q×, ∅,R×〉, where Q× = Q × Q′ =
{(q1, q

′
1), . . . , (qp, q

′
r)}, and:

• For every type 1 rule, α[q]→ s ∈ R and α[q′]→ s′ ∈ R′, if α∩β 6= ∅ then
the rule (α ∩ β)[(q, q′)]→ (s, s′) is in R×.

• For every type 2 rule φ→ q ∈ R and φ′ → q′ ∈ R′, the rule φ× → (q, q′)
is in R×, where φ× is the product of the formulae φ and φ′, obtained
as follows: let #(q, q′) be the variable associated with the numbers of
occurrences of the state (q, q′), then φ× is the formula:

φ


∑

q′∈Q′
#(q1, q

′), . . . ,
∑

q′∈Q′
#(qp, q

′)


∧φ′


∑

q∈Q
#(q, q′1), . . . ,

∑

q∈Q
#(qp, q

′
r)




Intuitively, the product automaton combines the automata, A and A′, pro-
ducing an automaton that is equivalent to running A and A′ ‘in parallel’. The
states of A× represent all possible combinations of the states of A and A′ and
the rules, derived from the rules of A and A′, are adjusted to account for the
existence of the second automaton.

Given two automata, A and A′, to produce an automaton that accepts the
union or the intersection of the two automata we take the set of final states
of the automaton A × A′ to be {(q, q′)|q ∈ Qfin ∨ q′ ∈ Q′fin} and {(q, q′)|q ∈
Qfin ∧ q′ ∈ Q′fin} respectively. That is, either both automata accept the tree,
or either of the automata accept the tree.

Dal Zilio et al state that the test L(A) ⊆ L(A′) (a sub-typing test) can be
evaluated using the automaton A×A′ with the final states Qfin × (Q′\Q′fin),
provided that A′ is deterministic. One can show, using a simple counter exam-
ple, that this is not the case. For the property to hold, we must also enforce
that the automata are complete.

Test for Emptiness

The algorithm that computes whether L(A) = ∅ in time O(|Q|.|R|.CostA) is
given in table 2.12. CostA is the maximal time required to decide the satisfi-
ability of the type 2 constraints, |Q| is the number of states of A and |R| is
the number of rules in A. This result can be seen by observing that the main
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Q[] = ∅
QM = {q|φ→ q ∈ R∧ |= φ(0)}

repeat
if α[q′]→ q ∈ R and q′ ∈ QM and α 6= ∅
then QM ::= QM ∪ {q} and Q[] ::= Q[] ∪ {q}
if φ→ q ∈ R and φ\Q[] is satisfiable
then QM ::= QM ∪ {q}

until no new state can be added to QM

if QM contains a final state
then return not empty else return empty

Table 2.12: Testing an automaton for emptiness

loop of the algorithm has to add at least one state to QM during each iteration,
and therefore the maximum number of iterations is the number of states in Q.
During each iteration we check each rule for satisfiability — hence we check |R|
rules per iterations. In the worst case, checking a rule requires the evaluation
of a Presburger constraint, therefore, in the worst case, it takes CostA time to
check a rule.

The algorithm works by assessing which states of the automaton are reach-
able. We maintain two sets of states: QM contains all states that are reachable,
and Q[] contains all sets that are reachable by the application of a type 1 rule;
that is, the reachable states that correspond to an element formula. We write
φ\Q[] is satisfiable iff the formula φ(#q1, . . . ,#qp)∧

∧
q/∈Q[]

#q = 0 holds. This

construct is used to ensure that we take account of which states are reachable
before we utilize a type 2 rule.

Initially, all the states that are immediately reachable are added to the set
of reachable states. These states are those type 2 rules that accept the empty
tree. The empty tree represents the leaf nodes of any tree. The algorithm then
iteratively calculates which type 1 rules can be applied — determining the set of
all possible tree elements at the current stage of execution — and then calculates
all possible states reachable by the application of a type 2 rule, given the set of
element formulae that are available. The algorithm terminates when no more
states will be added to the set of reachable states.

2.4.8 Constructing Automata for the Sheaves Logic

Given any Sheaves Logic formula A, we can build an automaton that accepts
the same trees as A. The procedure is recursive, there are two cases to consider:

• Case A = >
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We can simply choose an automaton that accepts all trees. For example,
the automaton with unique final state, q, and with rules ∅⊥[q] → q, and
(#q ≥ 0)→ q.

• Case is A = ∃N.φ(N) · (α1[A1], . . . , αp[Ap])

In this case we can create, recursively, automata Ai for each formula Ai
defined in A. From each automaton Ai we can construct the automaton
Aαii from Ai that accepts all trees that are formed by a branch whose label
is in αi atop a subtree accepted by Ai. We can achieve this by adding a
new state, qs, that is the only final state of Aαii and then adding the type
1 rule α[q] → qs for each final state q of Ai. For a tree to be accepted
by Aαii the new type 1 rule must be applied, leaving the single state qs.
For this to be the case the root of the tree must have only one branch,
whose label is in αi and whose sub-tree is accepted by Ai — that is, whose
sub-tree is a model of Ai.

After constructing Aαii for all i ∈ 1..p, we construct A by calculating the
product automaton of the Aαii s constructed in the previous step. Let the
set of states of A be {Q1, . . . ,Qm}. Each state, Q, of A will be of the form
(q1, . . . , qp) where each qi is a state of Aαii . We write Q ∈ fin(i) to denote
that qi is a final state of Aαii and Mi to denote the number of occurrences
of the state Qi in a term Qj1 |...|Qjn .

We complete the automaton by adding a new state qF that will be the only
final state of A. We then add the type 2 rule φ∃(M1, . . . ,Mm)→ qs. We
define φ∃ such that it accepts only those configurations Qj1 |...|Qjn where
each Qjk contains a final state for any Aαii . That is, the configuration is
built from sub-trees that are accepted by any of the element formulae of
A. φ∃ is defined as follows:

∃(Xj
i )i∈1..m
j∈1..p

.




∧
i∈1..m

(
Mi =

∑
j∈1..p
Qi∈fin(j)

Xj
i

)

∧φ
(∑

i∈1..m
Qi∈fin(1)

Xi
1, . . . ,

∑
i∈1..m
Qi∈fin(p)

Xi
p

)




Because each state Qi may represent an accepting run of several element
formulae, we use the variables X i

j to break Mi down into the different
element formulae it may represent. We then test φ to see if it holds for
that particular distribution of the possible element formulae. The rule is
applied if such a decomposition exists.

2.4.9 Complexity

A Sheaves Logic formula, A, has a tree-like structure, therefore we can define
the height, h(A), of A, and the degree, d(A), of A. Building the automaton that
accepts A requires the construction of the product of at most d(A) automata
for each sub-formula in A. It is easy to see that the size of the automaton,
B × B′, is the size of B multiplied by the size of B′, therefore, the size of the
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X,Y, . . . Recursive variables
E ::= Element formula
α[X] Element with label in α

D ::= Recursive definition
X ← ∃N.φ(N) ·E Sheaves composition

A ::= RSL formula
〈D1, . . . , Dn;X〉

Table 2.13: The Recursive Sheaves Logic syntax

automaton A is at most the size of A′ to the power d(A), where A′ is the largest
sub-automaton of A. At each level in the tree, a maximum of d(A) automata
must be combined. The base case is at the leaves of the tree, where A′ = >.
Consequently, defining T as the size of the automaton accepting >, the size of

the automaton accepting A is of size O(T d(A)h(A)

).
When translating a Tree Logic formula, A, to a Sheaves Logic formula, As,

we find that h(As) is bounded by |A| and that d(As) is at most 3|A|. 3|A| is
derived from the size of the smallest basis (the branch operator) and the size
of a common basis, which is equal to the sizes of the original bases multiplied
together. Hence, the size of the largest basis in As is 3|A|. Therefore, the

size of the automaton accepting the Tree Logic formula, A, is O(T (3|A|)|A|), or

O(T 3|A|
2

).
We can test the satisfiability of an automaton, A = 〈Q,Qfin,R〉 in

O(|Q|.|R|.CostA) time. For a formula A, |Q| and |R| are bounded by T 3|A|
2

,

and hence, the satisfiability of A can be determined in O(T 3|A|
2

.T 3|A|
2

.CostA)

time. That is, O(T 2.(3|A|
2
)) when abstracting over the cost of the Presburger

constraints. Therefore, the satisfiability of A is doubly exponential. Similarly,

we can test d |= A in O(|d|.T 3|A|
2

) time.

2.4.10 Recursive Sheaves Logic

Table 2.13 gives the syntax for a recursive variant of sheaves logic. The main
advantages of this logic are increased expressivity and a much neater automaton
construction algorithm. The Recursive Sheaves Logic is more expressive than
the Sheaves Logic because of the use of recursive variables: formulae can refer
to themselves, or a set of formulae may be mutually recursive. This allows us
to reason about paths of an infinite length that match a repeating pattern.

We write D ` d : X to denote that tree d matches a formula 〈D;X〉. A tree
d matches a formula iff there is a definition in D of the form X ← ∃N.φ(N) ·E
and d satisfies ∃N.φ(N) · E. The semantics of ∃N.φ(N) · E are similar to the
Sheaves Logic, except that an element formula, α[Y ], is satisfied by a tree of
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the form, a[d], where a ∈ α and A ` d : Y .
The following example is not strictly an RSL formula, as the right hand side

of the recursive definitions are not in the correct format, but it should show how
a recursive formula is evaluated:
〈X ← (a[Y ]|>) ∨ 0, Y ← (b[X]|>);X〉 is a formula that matches any tree

with a path (a.b)∗ — that is, a tree with a path of alternating as and bs. Firstly,
X must be satisfied, requiring a branch labeled a, atop a tree satisfying Y , which
requires a branch labeled b atop a tree satisfying X, etc.

Constructing Automaton

The construction of an automaton that accepts the same trees as a recursive
formula, A, is simpler than the method for a non-recursive formula. We set up
the state Qα[Y ] for every element formula α[Y ] of A, and the state qZ for every
recursive variable, Z in A. If we let A = 〈D;X〉, the automaton has the single
final state qX .

We add a type 1 rule, α[qY ] → qα[Y ], to the automaton for every element
formula, α[Y ]. This rule is fired whenever we have a single tree that satisfies Y
below a branch whose label is in α — that is, it is fired whenever we have a tree
that satisfies the element formula α[Y ].

Finally, we add a type 2 rule, φ(#qα1[Y1], . . . ,#qαp[Yp]) → qY , for each def-
inition, Y ← ∃N.φ(N) · E in D, with E = (α1[Y1], . . . , αp[Yp]). Intuitively,
this formula accepts all trees composed from sub-trees that satisfy the element
formulae in E whose multiplicities meet the restrictions specified in φ.

2.4.11 The Kleene Star

The Kleene Star is a Tree Logic operator, written A∗, that means that sub-trees
satisfying A may appear zero or more times in parallel. For example, a[0]∗ can
mean 0, or a[0], or a[0]|a[0], or a[0]|a[0]|a[0], etc.

An advantage of Dal Zilio et al’s approach is that it is possible to decide
formulae that use the Kleene Star — this was not possible using Calcagno et
al’s method, described in section 2.3. Intuitively, Calcagno et al’s approach was
unable to prove decidability for the Kleene Star because it specified a potentially
infinite number of sub-trees that could not be restricted using the notion of size
used by Calcagno et al. Dal Zilio et al’s approach uses Presburger formulae to
count the multiplicity of element formulae, this count is not restricted (in the
positive direction). In the simplest case the Tree Logic formula, a[0]∗ can be
represented using the Sheaves Logic formula, ∃(n).n ≥ 0 · (a[0]).

In the general case, the translation of this operator is a complex and poten-
tially expensive operation. For example, it is not obvious how a Sheave Logic
formula that describes (a[0]|b[0]∗)∗ can be constructed. Due to time restric-
tions, the Kleene Star is beyond the scope of this project. Instead it is left as a
possible avenue of future work.
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2.4.12 Summary

The primary advantage of the approach put forward by Dal Zilio et al is the
significant improvement in complexity over the previous approach. However,
this complexity is still quite high: doubly exponential when abstracting over
the cost of the Presburger constraints, which, in the worst case, are at least
doubly exponential themselves. Fortunately current tools for evaluating Pres-
burger formulae are quite efficient in many cases (three such tools are discussed
in chapter 3). Furthermore, we are able to apply several optimisations when
implementing Dal Zilio et al’s method to help improve the run time.

Another benefit of the approach is that the Kleene Star has been proved
decidable. Although this operator has not been included in this project, it
represents a possible extension to it.

A drawback of this method is that the element formulae are defined down
the whole depth of the tree. This means that the reasoning methods are bottom-
up, and so the whole tree must be loaded when testing whether it satisfies a
given formula. In the case of large trees, a top down approach would allow the
relevant sections of the tree to be loaded as they are required, reducing memory
requirements and the cost of loading the tree. Also, it means that we require
separate element formulae to describe sub-trees that differ by a small amount
at any point in the tree.
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Chapter 3

Background: Presburger
Constraint Solvers

The methods described in chapter 2 involve the evaluation of Presburger Con-
straints. This is not a trivial task and a lot of research has been conducted into
the problem. An advantage of the approach described is that this body of work
can be utilised in solving the problem of satisfaction and validity for the Tree
Logic.

In this chapter an overview will be given of three software tools for the
evaluation of Presburger Constraints. These three tools are LASH, The Omega
Library and CVC.

The tool chosen for the implementation of this project was The Omega
Library. We chose this tool because it allows a large amount of quantified
variables to occur in the Presburger Formula and because its interface is the
most suitable for this project. We discuss the reasoning behind the decision in
more detail in chapter 4.

3.1 LASH

LASH [13] is an acronym for The Liège Automata-based Symbolic Handler. It
is currently being maintained at Institut Montefiore, Université de Liège and
it is described as “a tool-set for representing infinite sets and exploring infinite
state spaces.”

The LASH tool-set is primarily a set of C libraries that provides functions
and datatypes for finite state automata and both finite and infinite sets of
values. One of the features provided by LASH is the ability to represent NDDs,
or Number Decision Diagrams. NDDs are more expressive than Presburger
Arithmetic and can be used to solve Presburger constraints.

LASH also provides a front end for solving Presburger problems. This front
end is a stand alone program which reads its input from a file specified on the
command line and outputs the results to the standard output. For example,
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EXISTS(x: x>3 AND x<4)

Table 3.1: An example input file for LASH

Number of solutions : 0.

Number of NDD states : 0.

Runtime statistics:

residual memory : 0 byte(s).

max memory : 9426 byte(s).

Table 3.2: The output produced by LASH when passed the file shown in table
3.1

when passed the file shown in table 3.1, LASH produces the output shown in
table 3.2.

Empirical tests have shown that LASH is capable of processing roughly 10
to 15 existentially quantified variables.

3.2 The Omega Library

The Omega Library [14] is part of the High Performance Software Systems
Laboratory at the Computer Science Department of the University of Mary-
land, College Park. It is described as, “a system for manipulating sets of affine
constraints over integer variables,” and has been extended to solve Presburger
problems.

The Omega Library has a front end called the Omega Calculator. This is
an interactive command line program that reads its input from the standard
input and produces output on the standard output. An example session with
the Omega Calculator is given in table 3.3 (commands are delimited by a semi
colon, and the answer is output on the next line).

The Omega Calculator has a compile time constant, maxVars, which can be
set to any number. This number restricts the maximum number of existentially
quantified variables allowed in a single formula. Increasing the number allows
larger expressions to be evaluated at the expense of run time. A graph plotting
the run times of the Omega Calculator for different values of maxVars is given
in figure 3.1. The data used were the complete set of test cases discussed in
chapter 7.

38



# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000):

{[i]: forall(x: x > 3)};
{[i] : FALSE }
{[i]: forall(x, y: exists(z: x <= z and y >= z))};
{[i] : FALSE }
{[i]: forall(x: exists(z: x <= z))};
{[i]}

Table 3.3: An example session with the Omega Calculator
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Figure 3.1: The value of maxVars against run-time
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x: REAL; QUERY NOT(x > 3);

Invalid.

x, y: REAL; QUERY (x >= y) AND (y >= x) => x = y;

Valid.

a, b: REAL; QUERY (a > 0 AND b > 0 AND a + b = 2) => (a = 1 AND b = 1);

Invalid.

Table 3.4: A sample run of CVC

3.3 CVC

CVC [15] is a “Co-operating Validity Checker” that tests the validity of mathe-
matical formulae with logical connectives. CVC does not allow quantified vari-
ables, but it does allow free variables, which are universally quantified implicitly.

CVC is a command line program that reads its input from the standard
input and writes to the standard output. From the command line it is possible
to specify whether CVC produces full proofs and whether it should check for
validity or satisfaction.

However, CVC only allows free variables to be reals and not integers. Since
Presburger formulae range over integer values, CVC will not be suitable for this
project. For example, we may want to consider the constraint 3 < x < 4; this
constraint specifies no integer values, but it does specify infinitely many reals.

A sample run of CVC is given in table 3.4. The third query demonstrates a
situation where variables of type integer are required.
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Chapter 4

Implementation: Choosing
the Approach

In this chapter a summary of the different methods for calculating the validity or
satisfaction for formulae written in the Tree Logic is given. A choice is made as
to which of the approaches will provide the best implementation. Additionally,
an evaluation of the constraint solvers introduced in chapter 3 is presented.
Finally, the language for the implementation is chosen.

4.1 Validation and Satisfaction of Tree Logic For-
mulae

In chapter 2 there are several different methods for deciding the validity of a
Tree Logic formula. There are two main choices that have to be made: whether
a model-checking (satisfaction) approach or a validity test is used, and whether
the Sheaves Logic or the Recursive Sheaves Logic is used.

4.1.1 Satisfaction/Validity

In section 2.2 it is shown that satisfaction and validity of a Tree Logic formula
are mutually expressible. This means that we can use either the model checking
approach described in section 2.4.7 or the test for emptiness described in section
2.4.7.

Given a Sheaves Logic formula or a Recursive Sheaves Logic formula, A,
we can construct an automaton using an algorithm derived from the proofs in
section 2.4.8 or section 2.4.10 respectively. In general, the automata produced
by these methods are non-deterministic. For example, the tree logic formula
a[T]|b[T] has two occurrences of truth. The automata constructed for both
logics will have multiple representations of truth, and so each automaton will

41



have type 2 rules, φ → q and ψ → q′ such that JφK ∩ JψK 6= ∅, violating the
conditions for determinism presented in section 2.4.7.

Given a non-deterministic automaton, A, we can construct a determinis-
tic automaton, A′ such that L(A) = L(A′). However, the size of det(A) is
exponentially related to the size of A.

For an automaton A = 〈Q,Qfin,R〉, we can check if a tree d is in the
language accepted by A in time O(|d|.|R|.Cost(|Q|, |d|)), where Cost(p, n) is a
function that returns the time in which all constraints, φ can be evaluated. This
result requires that the automaton, A is deterministic.

Alternatively, the test for emptiness is decidable in time O(|Q|.|R|.CostA),
where CostA is the maximum time required to decide the satisfiability of the
type 2 constraints in A. The test for emptiness does not require that the au-
tomaton is deterministic.

Because model checking (satisfaction) requires that the automaton is deter-
ministic, its complexity will be greater than the test for emptiness (validation).
Consequently the validation approach was chosen.

However, when testing whether d |= A for some tree d and some formula
A, the validation approach requires that we check the validity of the formula
d ⇒ A. This increases the size of the formula and consequently the size of the
automaton. It does not, however, increase the complexity of the method. A
possible solution to this problem is discussed in chapter 7.

4.1.2 Sheaves Logic/Recursive Sheaves Logic

The two types of Sheaves Logic are presented in section 2.4.2 and section 2.4.10.
The main difference between the two logics is the introduction of recursive
variables in the recursive variant. These recursive variable flatten the structure
of the formulae, which has several benefits.

Firstly, to construct an automaton from the Recursive Sheaves Logic is more
straight-forward than the construction of automata for Sheaves Logic. The
methods for automata construction for the Sheaves Logic and the Recursive
Sheaves Logic are given in section 2.4.8 and section 2.4.10 respectively. The
generation of Sheaves Logic automaton requires the recursive generation of sub-
automata that must be manipulated for the construction of the larger automa-
ton. Then a complex type 2 rule must be added to “bind” the sub-automata
together. Comparatively, the automata for the Recursive Sheaves Logic can be
constructed directly from given formula.

Additionally, the introduction of recursive variables increases the scope for
optimisation. For example, if a formula contains repeated sub-formulae, then
each instance of the repeated sub-formulae can be replaced by a single formula,
and the recursive variables can be replaced with the recursive variable for the
new formula.

Because of the advantages described above, the recursive variant of the
Sheaves Logic was used for the implementation of this project.
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4.2 The Constraint Solver

Three alternative constraint solvers were described in chapter 3. These were,
LASH, The Omega Library and CVC.

Because CVC does not support integer variables and has limited support for
universal quantification, it is not ideal for the implementation of this project.

The main advantage of LASH is that, unlike the Omega Library, it provides
a stand-alone executable that solves Presburger constraints specifically. This
means that the resulting implementation will be smaller in size, as it does not
include facilities for solving a wider class of numerical constraints.

However, LASH has two primary drawbacks:

• LASH is restricted to only a few quantified variables: about 15 or so. Dur-
ing the implementation of this project it quickly became clear that more
variables were required — even when the use of variables is optimised.

• LASH’s Presburger solver reads its input from a file that is specified on
the command line. For the purposes of this project, this is less efficient
than reading from the standard input. This is because, to communicate
with the solver, a file containing the constraint must be created. As a
result, communication suffers from a greater overhead than when input
can be sent directly to the solver via a Unix pipe.

The Omega Library overcomes both of these problems: constraints can be
written to the Omega Calculator’s standard input, and the result is returned
via its standard output. Further to reducing the cost of creating a constraint
file, this system also allows us to keep a single instance of the Omega Calculator
running throughout the evaluation of a formula. This removes the overhead
present when using LASH’s Presburger solver, which is caused by the need to
start a new instance of LASH for each constraint that needs to be evaluated. 1

4.3 The Implementation Language

The language chosen for the implementation is OCaml [16, 17]. OCaml is a
variant of the functional language ML.

A functional language is suited to this project because of the recursive nature
of the formulae that the implementation will evaluate. The use of pattern
matching means that functional languages have an advantage over imperative
languages when the data is defined recursively. This feature means that the
resultant code is more succinct and more natural than the code that would be
required if an imperative language were used.

The functional language OCaml also allows the use of “imperative features”
and provides a good Unix library. This allows the use of system calls — which
are required for communicating with the constraint solver — in a more com-
fortable imperative manner.

1A buffering strategy will reduce this overhead, but a similar buffering strategy could also
be used when interacting with the Omega Calculator.
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Chapter 5

Implementation: Design
and Algorithms

In this chapter a high-level overview of the program structure is given, followed
by a discussion of the algorithms required for a naive implementation without
optimisations. Optimisations to these algorithms are discussed in chapter 6.

5.1 Design Overview

Figure 5.1 gives an overview of the structure of the implementation. The struc-
ture is:

• The input (a string) is translated into a problem record — which holds
the kind of problem to be solved and the trees and/or Tree Logic formulae
that are parameters to the problem.

• A single formula representing the problem is constructed.

• The formula is translated into a Sheaves Logic formula.

• The Sheaves Logic formula is translated into a Recursive Sheaves Logic
formula.

• An automaton is constructed from the resultant formula.

• The automaton is tested for emptiness. The test for emptiness may involve
the evaluation of several Presburger formulae, therefore, we interact with
the Presburger Constraint solver during this stage

• The result is processed to form the output of the program.
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Figure 5.1: An overview of the program structure
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5.2 User Interface

5.2.1 Type of Interface

The implementation provides a simple command line interface that reads from
the standard input and writes to the standard output. This type of interface
has an advantage over the alternatives because the standard input and output
channels are very flexible. By using these channels the program is able to accept
input from a file, a terminal or from another process via a pipe. Similarly, the
output can be sent to a file, a terminal or to another process.

Alternatively, a graphical user interface could have been provided. A GUI
would not have been as flexible as the command line approach, but it would have
been more usable for a human. For example, the GUI could have provided tools
for visually constructing trees, or it could have displayed graphically a schema
of the kinds of trees a given formula accepts. These features, however, are not
trivial to implement and are beyond the scope of this project. A cut down
interface, however, would provide very little over the command line approach.

Another alternative is to read and write to files, rather than the standard I/O
channels. However, this feature can be provided by the standard I/O channels,
but features such as direct user interaction cannot be provided if the program
handles files directly.

5.2.2 Grammar

The grammar accepted by the implementation is given in table 5.1. The lexer
and parser generators provided by OCaml [17] were used to construct the inter-
face as automatically as possible. The parser accepts the standard input and
returns “problem” records to the main program, which interprets and solves
them — sending the result to the standard output.

The grammar for trees and tree logic formulae was derived directly from the
syntax in tables 2.1 and 2.2. The additional constructs are:

• Commands — commands describe a problem and are terminated by a
semi-colon. If the command begins with the keyword EXPTRUE or EXPFALSE
then the program will expect the result of the problem to be true or false
respectively. These keywords are especially useful in cases such as testing,
where we are interested in whether the result is as expected, rather than
in the specific result.

• VALID — a validity problem takes a tree logic formula as its input and
outputs ‘true’ if the formula is valid, ‘false’ otherwise.

• SATISFIABLE — a satisfaction problem takes a tree logic formula as its
input and outputs ‘true’ if the formula is satisfiable, ‘false’ otherwise.

• SUBTYPE — a sub-typing problem takes two tree logic formulae, A and B
as its input and returns ‘true’ if the formula A represents a sub-type of B.
This is equivalent to testing the validity of A ⇒ B.
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commands:
problem; A command terminated with a semi-colon.
EXPTRUE problem; A command whose result is expected to be ‘True’.
EXPFALSE problem; A command whose result is expected to be ‘False’.

problem:
VALID tl A validity problem.
SATISFIABLE tl A satisfiability problem.
tl SUBTYPE tl A sub-typing problem
tree OFTYPE tl A satisfaction problem
EXIT Quit the program.

tree:
0 Void
a[tree] Branch
tree|tree Composition
(tree) Parenthesis

tl:
0 Void
T Truth
F Falsity
a[tl] Branch
tl@a Placement
tl|tl Composition
tl -> tl Implication
tl AND tl Conjunction
tl OR tl Disjunction
tl |> tl Guarantee
NOT tl Negation
(tl) Parenthesis

Table 5.1: The input grammar
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Let A = ∃(n1, . . . , np).φA · (α1[B1], . . . , αp[Bp])

Assume that Bi = ∃NB.φBi ·E for all i ∈ 1..p
where NB and E are common to all Bi.

Then A@a =def

∃NB.

[
(∃(n1, . . . , np).

(
φA ∧

∨
i∈1..p
a∈αi

(
ni = 1 ∧∧j∈1..p

i6=j
(nj = 0) ∧ φBi

))]
·E

Table 5.2: Encoding placement in Sheaves Logic

• OFTYPE — a typing problem takes a tree, d, and a formula, A as its input,
and returns ‘true’ if d |= A, and ‘false’ otherwise.

5.3 Translating Tree Logic to Sheaves Logic

Because satisfaction, satisfiability and validity are mutually expressible in Tree
Logic, each of the input problems can be described as a Tree Logic formula.
The next step is to translate the formula into a Sheaves Logic formula.

In section 2.4.5 Dal Zilio et al’s translations from Tree Logic to Sheaves Logic
are given. These translations are inductive and for operators whose arguments
contain zero or one tree logic formulae, the translation algorithm is simply a
direct encoding. The algorithm for more complex operators is given in section
5.3.2.

5.3.1 The Placement Modality

A notable omission from Dal Zilio et al’s translations is that of the placement
modality (@). An encoding of this modality is given in table 5.2 and the proof
of the translation is given in appendix A.1.1. The algorithm for translating
placement is given in table 5.3.

5.3.2 Binary Connectives

For operators that take two tree logic formulae (such as conjunction and guaran-
tee) the translations in section 2.4.5 cannot be applied directly. This is because
a pre-condition of the translations is that both formulae are defined over a com-
mon basis. Therefore, before we can apply the conversion, we must ensure that
both formulae are defined over the same basis. The algorithm is given in table
5.4.
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translate (A@a)
Case A = >: Return >
Case A = ∃N.φA · (α1[B1], . . . , αp[Bp]):
Construct a common basis, E, from EBi where i ∈ 1..p
Translate φBi to use the basis E for all i ∈ 1..p
Construct and return the formula in table 5.2

Table 5.3: Algorithm for translating the placement operator

translate (A op B), op ∈ {∧,∨, |, .}
Case A = > and B = >: Return >
Case A = > xor B = >:
Replace > with the formula ∃N.(N ≥ 0) ·E,

where E is the required basis.

Complete the translation as defined in section 2.4.5

Case A = ∃NA.φA ·EA and B = ∃NB.φB ·EB:

Construct a common basis, E, from EA and EB
Translate φA and φB to use the basis E
Complete the translation as defined in section 2.4.5

Table 5.4: Algorithm for translating binary connectives
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common basis ((α1[A1], . . . , αp[Ap]), (β1[B1], . . . , βq[Bq]))
Start with an empty basis, E and

empty relations, RA and RB

For all (i, j) ∈ 1..p× 1..q
Convert Ai and Bj so that they share a common basis

For some new k such that Ek is not already defined

add the element Ek = (αi ∩ βj)[Ai ∧Bi] to E
Add (i, k) to RA

Add (j, k) to RB

Return (E,RA,RB)

Table 5.5: Algorithm for constructing a common basis

5.3.3 Finding a Common Basis

When combining two sub-formulae, the translations require that the two for-
mulae are defined over the same basis. Therefore we must be able to find a
common basis given two heterogeneous bases. The algorithm (given in table
5.5) has been lifted from Dal Zilio et al’s proof (given in section 2.4.6) that,
given any two bases, it is always possible to define a basis that refines each of
the two original bases. It is worth noting that the construction of a common
basis requires the construction of further common bases recursively. The base
case occurs when either Ai = > or Bi = > — in this case a common basis can
be defined trivially.

5.3.4 Redefining Formulae Over a Basis

Once a common basis for two formulae, A = ∃NA.φA ·EA and B = ∃NB.φB ·EB

has been constructed, we need to construct formulae φ′A and φ′B such that
A ⇐⇒ ∃N.φ′A ·E and B ⇐⇒ ∃N.φ′B ·E, where E is the common basis. The
φ′A and φ′B required are φRA

and φRB
respectively — this formula is defined in

section 2.4.6.

5.4 Translating Sheaves Logic to Recursive Sheaves
Logic

Dal Zilio et al did not provide a translation from Sheaves Logic to Recursive
Sheaves Logic. A translation is given in table 5.6, the proof of the translation is
given in appendix A.1.2. These translations can be applied directly to a Sheaves
Logic formula.

The translation flattens the tree structure of the Sheaves Logic formulae by
creating a definition of the form, Y ← ∃N.φ(N).E, for each sub-formula in the
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> =def < X ← ∃N.(N ≥ 0).∅⊥[X];X >
∃N.φ(N) ·E =def < Y ← ∃N.φ(N).(α1[X1], . . . , α[Xn]), D1, . . . , Dn;Y >

where E = (α1[A1], . . . , α[An])
inductively we enforce Ai =< Di;Xi > for all i ∈ 1..n
i 6= j ⇒ rvn(Ai) ∩ rvn(Aj) = ∅ for all i, j ∈ 1..n
and Y /∈ ⋃i∈1..n rvn(Ai)

We write rvn(A) to denote the set of all recursive variable
names used in the formula A.

Table 5.6: A translation from Sheaves Logic to Recursive Sheaves Logic

Sheaves Logic formula.

5.4.1 Complexity

Let Ar be a recursive formula, it is easy to see that the method for building an
automaton for Ar (described in section 2.4.10) produces an automaton, A, that
is linear in the size of Ar. This is because we add a state and a type 2 rule for
each recursive definition in Ar, and a state and a type 1 rule for each element
formula in Ar. Therefore the size of the automaton is O(|Ar|). Since the size of

the automaton corresponding to a Sheaves Logic formula, As is O(T d(A)h(A)

),
the recursive approach appears to be an improvement over the Sheaves Logic.

However, when translating from the Sheaves Logic to the Recursive Sheaves
Logic, we add a recursive definition for each Sheaves Logic sub-formula of the
Sheaves Logic formula. Sheaves Logic formulae can be thought of as a tree
structure, where each sub-formula is a node, and the element formulae of the
sub-formulae can be thought of as branches in the tree. Given that, for the
Sheaves Logic formula, As, and the Tree Logic formula, A, the height, h(As),
of As is O(|A|) and the degree, d(As), is O(3|A|), the number of branches in As

is O((3|A|)|A|), or, O(3|A|
2

). And hence, the automaton, A is of size O(T 3|A|
2

)
— the same as for the Sheaves Logic.

5.5 Constructing the Automaton

The next stage of the program — after constructing the Recursive Sheaves Logic
formula — is to build the corresponding automaton. The algorithm can be lifted
directly from Dal Zilio el al’s proof, given in section 2.4.10, that an automaton
can be built for every formula. The algorithm itself is presented in table 5.7.
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build automaton (A = 〈D;X〉)
Construct the set of states, Q (initially empty)

For each element formula α[Y ] in A, add qα[Y ] to Q
For each recursive variable Z in A, add qZ to Q

Construct the set of rules, R (initially empty)

For each element formula α[Y ] in A,
add the rule α[qY ]→ qα[Y ] to R

For each definition Y ← ∃N.φ · (α1[Y1], . . . , αp[Yp]) in D
add the rule φ(#qα1[Y1], . . . ,#qαp[Yp])→ qY to R

Qfin ::= {qX}
Return 〈Q,Qfin,R〉

Table 5.7: Algorithm for constructing an automaton from an RSL formula

5.6 Testing an Automaton for Emptiness

The algorithm defined by Dal Zilio et al in [8] tests whether the language ac-
cepted by an automaton is empty. This algorithm is described in table 2.12.

5.7 Translating Tree Logic to Recursive Sheaves
Logic

An alternative approach to translating from Tree Logic to Recursive Sheaves
Logic is to translate directly, rather than by translating the Tree Logic to
Sheaves Logic and then the Sheaves Logic to Recursive Sheaves Logic. Po-
tentially, this approach could be more efficient that the method presented here
— for example, we may take advantage of recursive variables to reduce repeated
Tree Logic sub-formulae to a single definition in D.

Translating from Sheaves Logic to its recursive variant is a fairly small step.
Translating directly from Tree Logic to Recursive Sheaves Logic is more in-
volved, and consequently, a direct translation is offered in section 7.4.6 as a
possible extension to this project.
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Chapter 6

Implementation:
Optimisations

In chapter 5 the algorithms for a naive implementation of Dal Zilio et al’s de-
cision procedure were discussed. Because the complexity of the approach is
doubly exponential, we need to optimise the implementation so that satisfac-
tory tun-times may be achieved. We discuss several redundancies in the naive
approach and discuss how these redundancies may be reduced. Each of the
optimisations presented in this chapter has been implemented, and is evaluated
in chapter 7.

6.1 Extending the Sheaves Logic Syntax

During the translation from Sheaves Logic to Recursive Sheaves Logic we create
a new recursive variable definition, X ← ∃(n).(n ≥ 0).∅⊥[X] for each occur-
rence of > in the Sheaves Logic formula. This leads to redundancy as only one
definition for truth is required. This redundancy means that the automaton
constructed from the recursive formula has more rules than is strictly necessary,
which causes inefficiency during the test for emptiness.

For example, consider the case where we are translating the Tree Logic for-
mula a[T]. The Sheaves Logic translation has the basis ({a}[>], {a}[¬>], {a}⊥[>]).
The recursive translation of this formula will then have two translations of >
amongst its rules and as a result the constructed automaton will also have two
rules representing truth. Both of these rules will be satisfied immediately dur-
ing the test for emptiness, and so the states associated with the rules will be
available throughout. If we were to replace these two rules with a single rule
for truth that mapped to a state q, and replaced all occurrences of the previous
“truth” states with this new state, then the automaton would accept exactly
the same trees as the previous automaton, but it would also have fewer rules.

Therefore, we can reduce the size of the constructed automaton by producing
a single rule for truth, instead of several rules that are applied in the same
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> =def 〈∅;X>〉
⊥ =def 〈∅;X⊥〉
0 =def 〈∅;X0〉

∃N.φ(N) ·E =def 〈Y ← ∃N.φ(N) ·E, D1, . . . , Dn;Y 〉
where E = (α1[A1], . . . , α[An])
inductively we enforce Ai = 〈Di;Xi〉 for all i ∈ 1..n
i 6= j ⇒ rvn(Ai) ∩ rvn(Aj) ⊆ {X>, X⊥, X0}

for all i, j ∈ 1..n
and Y /∈ ⋃i∈1..n rvn(Ai) ∪ {X>, X⊥, X0}

After the formula has been translated, we add the following definitions:

X> ← ∃N.(N ≥ 0).∅⊥[X>]
X⊥ ← ∃N.(F).∅⊥[X⊥]
X0 ← ∃N.(N = 0).∅⊥[X0]

Table 6.1: A translation from the Extended Sheaves Logic to Recursive Sheaves
Logic

situation. If we consider a Sheaves Logic formula to be a tree structure, >
represents a leaf in the tree. In section 2.4.9 we state that the size of the
Sheaves Logic translation, As, of the Tree Logic formula A, has h(As) bounded
by |A|, and d(As) bounded by 3|A|. Therefore, the number of leaves in the tree

is bounded by 3|A|
2

. Therefore, there are a potentially exponential number of
occurrences of >, and so we can reduce the number of rules significantly.

We can extend this argument to the other singleton formulae in the Tree
Logic, F and 0. However, the Sheaves Logic does not have a simple representa-
tion for these two formulae, which means that it is not a trivial task to detect
when we are creating a rule that represents F or 0.

We can solve this problem by extending the sheaves logic to include simple
representations for F and 0 — ⊥ and 0 respectively. A further benefit of this
approach is that we can optimise the construction of the sheaves logic formulae.
For example, the the formula F∧0 can be translated directly to ⊥, rather than
by calculating the conjunction of the two Sheaves Logic formulae, ∃(n).(n =
0) · AnyE and ∃(n).(F) · AnyE. A full listing of these optimised translations
are given with proofs in appendix A.2.1.

Changing the Sheaves Logic syntax requires a change in the translation to
Recursive Sheaves Logic. This translation is given in table 6.1. The proof of
the translation is giving in appendix A.2.2.
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6.2 Optimising Basis Construction

Throughout the translation from Tree Logic to Sheaves Logic a common basis
between two bases is constructed. The size of the common basis is equal to the
sizes of the two original bases multiplied together. This has a cumulative effect
over large formulae. Reducing the size of the common basis means that there will
be fewer quantified variables in the associated Presburger formula, the formula
itself will be smaller, and that there will be fewer rules in the automaton. In
the worst case, Presburger arithmetic is at least doubly exponential in the size
of the formula [18], therefore, it is beneficial for the generated formulae to be
as small as possible. Furthermore, the size of the automaton constructed from
a Sheaves Logic formula, A, is d(A)h(A); reducing d(A) by optimising the size
of the bases in A can have a significant effect on the efficiency.

The first and most obvious method of reducing the size of a common basis
is to check whether the two bases are the same; in this case we do not need to
explicitly construct a common basis because the basis is already common. For
example, consider the basis (∅⊥[A], ∅⊥[B]). The naive algorithm for constructing
a common basis produces (∅⊥[A∧A], ∅⊥[A∧B], ∅⊥[B ∧A], ∅⊥[B ∧B]). For the
purposes of evaluation, we do not consider checking for a common basis before
generating one to be an optimisation.

A more sophisticated method of optimising the size of the basis generated is
to only add a new element, α[A], to the basis that is being constructed if α 6= ∅
and A is satisfiable. A proof that this is sound is provided in appendix A.2.3.
For example, the naive common basis of the bases ({a}[>], {a}[¬>], {a}⊥[>])
and ({a}[A], {a}[¬A], {a}⊥[>]) is ({a}[> ∧ A], {a}[¬> ∧ A], ∅[> ∧ >], {a}[> ∧
¬A], {a}[¬> ∧ ¬A], ∅[> ∧ >], ∅[> ∧ A], ∅[> ∧ ¬A], {a}⊥[> ∧ >]). By removing
those elements where the set of branch labels is empty, or the sub-formula of the
branch is not satisfiable, we construct the following basis: ({a}[>∧A], {a}[>∧
¬A], {a}⊥[> ∧ >]). Using the optimisations presented in section 6.1, the basis
can be simplified to ({a}[A], {a}[¬A], {a}⊥[>])

The two bases used in the example are the two bases that would need to be
combined if we were translating the tree logic formula a[T]|a[A].

However, to test whether a formula is unsatisfiable, we must evaluate its
Presburger constraint. This is a potentially expensive operation and so we
must ensure that the cost of testing whether each constraint is satisfiable does
not outweigh the benefits of the reduced bases. Generally, in practice, this
optimisation has improved performance.

6.3 Reducing the Number of Quantified Vari-
ables

After a common basis between two formulae has been found it is often the case
that each of the formulae needs to be adjusted to this new basis. Dal Zilio et al
show in [8] that given a formula φ defined over the basis E, and the (common)
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basis F and relation R that refines E, we have J∃N.φ ·EK = J∃M.φR ·FK, where
M = (M1, . . . ,Mq), and φR(M) is the constraint:

∃(Ni)i∈1..p, (X
i
j)(i,j)∈R.



∧
j∈1..q(Mj =

∑
(i,j)∈RX

i
j)

∧∧i∈1..p(Ni =
∑

(i,j)∈RX
i
j)

∧φ




There are three cases where this formula can be optimised:

• If there is some (i, j) ∈ 1..q × 1..p such that (i, j) /∈ R, the existentially
quantified variable X i

j will not be used in φR(M). Therefore, we can re-
move the variable, reducing the number of quantified variables in φR(M).

• If, for some i ∈ 1..p there exists only one j ∈ 1..q such that (i, j) ∈ R, then
it is easy to see that φR(M) will contain the clause Mj = Xi

j . Because

Mj = Xi
j it is safe to substitute the variable Mj for each occurrence of

the variable X i
j . Because X i

j will be unused in this new formula, we can
remove it from the formula entirely, reducing the number of existentially
quantified variables.

• Similarly, if, for some j ∈ 1..q there exists only one i ∈ 1..p such that
(i, j) ∈ R, then it is easy to see that φR(M) will contain the clause
Ni = Xi

j . Because Ni = Xi
j it is safe to substitute the variable Ni for

each occurrence of the variable X i
j . Because X i

j will be unused in this new
formula, we can remove it from the formula entirely, reducing the number
of existentially quantified variables.

6.4 Unsatisfiable Presburger Formulae

During the construction of Sheaves Logic formulae it is often the case that
two Presburger constraints are combined in some way. For example, when
translating the Tree Logic formula A ∧ B the constraint φA ∧ φB is created.
Because the translation to Sheaves Logic is inductive this constraint may be
combined with other constraints in a cumulative process. However, if φA ∧
φB is unsatisfiable it is possible to safely replace the generated Sheaves Logic
formula with ⊥. In addition to preventing the construction of large, unsatisfiable
constraints, this substitution will also allow the optimisations introduced in
section 6.1 to be used, further reducing the size of the generated formulae.

To implement this optimisation a check has to be made each time two con-
straints are combined in a way which may result in an unsatisfiable formula. For
example, the conjunction of two satisfiable formulae may be unsatisfiable, but
the disjunction will always be satisfiable. Therefore, a trade-off exists between
the cost of checking the satisfiability of formulae during construction, and the
additional cost of evaluating larger constraints with unsatisfiable sub-formulae.

Because, in the worst case, the complexity of Presburger constraints is dou-
bly exponential in the size of the formula, the cost of evaluating two constraints
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is significantly lower than the cost of evaluating a single large constraint con-
structed from the two smaller constraints. Of course, not every formula can
be simplified using this technique, so we require that the decrease in run time
caused by simplifying the constraints outweighs the increase in time caused by
checking each sub-formula for satisfiability.

6.5 Testing Automata for Emptiness

There are two simple optimisations that can be applied to the algorithm for test-
ing whether the language accepted by an automaton is empty. This algorithm
is given in section 2.4.7.

• The algorithm can terminate immediately whenever a final state is added
to QM. This is because the algorithm never removes any elements from
the set of reachable states (QM). Therefore, if at some point during
execution, a final state is added, it will remain in the set until the algorithm
terminates. A result of “true” is returned if a final state is reachable, so, as
soon as we find a final state that is reachable, there is no need to continue
execution.

• When a state is added to either of the sets of reachable states, they remain
in that set until the algorithm has terminated. As a result, once a rule
has been applied and its result state has been added to the relevant sets,
applying the rule a second time will not change the contents of the sets,
since its result state will already be contained in them. Therefore, we do
not need to re-evaluate the rule, and so we may remove it from the set
of rules. This optimisation reduces the number of rules that need to be
evaluated during each iteration of the algorithm’s main loop. Additionally,
we could also remove any rules whose result state is already in the relevant
sets, further reducing the number of potentially applicable rules. However,
due to the method of automaton construction, this additional case is rare,
and consequently it has not been implemented.
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Chapter 7

Implementation: Evaluation

In this chapter both a quantitative and qualitative evaluation of the implemen-
tation is presented. We begin by evaluating the run-times (and correctness) of
several sets of test cases using various degrees of optimisation, followed by an
investigation into the effect of the width and depth of a Tree Logic formula on
the run-times of the tool. We then evaluate the success of the optimisations
and the viability of the approach as a whole. A further section discusses the
interface.

To collect the run-times of the tool we used the Linux command, ‘time’. The
tool was compiled using the optimising compiler, ‘ocamlopt’. In section 7.1 the
machine used was a 2.6Ghz Intel r© Pentium r© IV, with 1Gb RAM. In section
7.2 the machine used was a 666Mhz Intel r© Pentium r© III, with 256Mb RAM.

7.1 Testing

The implementation was tested using three sets of test data, and several levels
of optimisation. The first set of test data are simple cases designed to test
the different operators of the logic, ensuring that they behave as the semantics
prescribe. The second set of test data represent “moderate” cases, that are
slightly more complex than the simple cases. The final set of test data are
difficult cases where formulae typically have a depth or width of four or more.
The moderate and difficult test cases allow us to assess the tool under different
situations: a pattern matching tool is likely to use more moderate formulae,
whereas a security verifier is likely to use more complicated formulae. The test
data are given in full in appendix A.3.

There are two sets of optimisation levels, in addition to no optimisation and
all optimisations. The first set — the additive set — measures the performance
of each optimisation by disabling all others. For this round of testing optimisa-
tion of bases was enabled because, without it, runs either failed due to memory
errors, or ran for untenable periods of time. The second set — the subtractive
set — of optimisation levels measures the performance of the system with each
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Enabled Optimisation Simple Moderate Hard

All optimisations disabled 3.28s Error a > 30mins b

Basis optimisation 0.84s 1.87s 41.74
Quantified variables 0.43s 0.94s 24.29
Extended Sheaves Logic 0.38s 0.90s 17.36s
Unsatisfiable constraints 0.71s 1.46s 29.23
Test for emptiness 0.52s 1.20s 20.48s

aThe Omega Calculator suffers a stack overflow error when parsing a constraint generated
during execution.

bAfter 30 minutes, the test was abandoned

Table 7.1: Run times, additive

Disabled Optimisation Simple Moderate Hard

All optimisations enabled 0.15s 0.33s 3.84s
Quantified variables 0.29s 0.59s 8.05s
Extended Sheaves Logic 0.24s 0.54s 8.82s
Unsatisfiable constraints 0.13s 0.32s 4.00s
Test for emptiness 0.21s 0.44s 6.5s

Table 7.2: Run times, subtractive

optimisation (except basis optimisation) individually disabled. The first set is
designed to test how effectively the optimisation reduces run-times, whereas the
second set aims to test the optimisation’s performance when interacting with
the others. The results for each set are given in tables 7.1 and 7.2 respectively.
The mean speed-ups observed in each case are given in table 7.3.

Except in those cases where execution terminated abnormally, for each test
case and level of optimisation, the results returned by the program were as
expected: all tests were passed.

7.2 Width and Depth

In this section we investigate the run-times of the tool when either the width or
the depth of the Tree Logic formula is increased. Using this data we can judge
where the complexity in the approach lies.

59



Optimisation Additive Subtractive

Quantified variables 1.89 1.93
Extended Sheaves Logic 2.23 1.84
Unsatisfiable constraints 1.30 0.96
Test for emptiness 1.73 1.48

Table 7.3: The average speed up observed for each optimisation
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Figure 7.1: The width of a formula against the run-times of the tool

7.2.1 Width

We measure the width of a Tree Logic formula by the number of occurrences of
a branch label at a single node in the tree. We tested the effect of the width on
the run-time of the tool by checking the validity of the formula (a[0])n, where
n = 1, 3, 5 . . .. When the width of the formula reached 21, the Omega Calculator
suffered a segmentation fault. The results of the tests are shown in figure 7.1.

As the graph shows, there is an exponential increase in run-time as the
width of the formula increases. This growth, however, is quite gentle, especially
when compared with the growth associated with the depth of the formula. This
reduced growth rate may occur due to the optimisations that the implementation
uses: optimisations such as the basis optimisation occur when two bases are
being combined — this is an action that is performed when the composition
operator is translated. Consequently, the width of the formula benefits from
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Figure 7.2: The depth of a formula against the run-times of the tool

these optimisations, and so the run-time does not increase rapidly.

7.2.2 Depth

Figure 7.2 plots the run-time of the tool against the depth of a test formula.
The formula used was of the form a[a[. . . a[a[0]]]], that is, a stack of n branches
labeled a, where n = 1, 3, 5 . . .. The tests finish at n = 13: at n = 15 the
run-time became untenable.

The growth rate of the runs-times increases rapidly as n becomes large.
The reason for this exponential growth rate is that, at each level in the tree, the
element formula {a}[A] uses the basis ({a}[A], {a}[¬A], {a}⊥[>]). This basis has
two copies of the sub-formula, A. This occurs at each level in the tree, and so
the size of the Sheaves Logic formula increases exponentially. No optimisations
that address this problem have been implemented. A possible solution to this
problem is discussed in section 7.4.6.

7.3 Viability

Before we can evaluate the viability of the implementation, and the approach
in general, we must consider where this tool may be used, and what criteria we
require in these situations.

In section 2.2 we identified two applications of a model checking tool similar
to the tool implemented for this project. These are, for pattern matching in
tree manipulation languages, and for verifying security properties of a network.
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Pattern matching will occur during execution of a program, and hence a
desirable feature is speed. As testing has shown, with optimisations, simple cases
can be evaluated fairly quickly, whereas larger cases have shown an (expected)
exponential slow down. However, it is unlikely that the formulae used for pattern
matching will be significantly more complex than the moderate test cases. This
is because pattern matching usually occurs on a local level with only a few cases.
This will mean that validity or satisfaction of these patterns can be checked quite
quickly; but, when testing whether a tree, d, matches a type, A, we evaluate
the formula, d ⇒ A. It is highly likely that the size of the tree data is quite
large, and so the resulting formula will be large and the performance of the
tool will not be satisfactory. The performance may be improved significantly
if we introduce a further optimisation: using the observation — exploited by
Calcagno et al when proving decidability of the Tree Logic [4] — that formulae
can only differentiate a limited number of trees, we should be able to use a
reduced representation of the original tree as the antecedent in the implication.
This may reduce the size of the formulae, in the average case, to an acceptable
level.

Also, the Tree Logic as a pattern matching language is inherently non-
deterministic. For example, the tree a[0]|b[0]|b[c[0]] can be divided by the for-
mula a[T]|b[T]|b[T] in two different ways. This may or may not be a desirable
feature, and a deterministic variant of the Tree Logic may be preferred by the
programmer. The deterministic variant may additionally benefit from a lower
complexity.

A factor that must also be considered is the availability of alternatives. The
Tree Logic is very expressive and may be more expressive than is required for
most cases. In this cases a less expressive pattern language — such as the
pattern matching available in functional languages like Haskell and ML — may
be preferable due to a lower complexity. It is possible that the two alternatives
may be combined such that the Tree Logic is only used when its increased power
is required.

When verifying security properties, speed remains an important factor, but
the conditions under which the tool is used will differ. Unlike pattern match-
ing, verification is a once-only task, and whilst pattern matching requires an
immediate response to ensure the efficiency of the programs that use it, veri-
fication does not require such expediency. However, the formulae that will be
evaluated during verification are likely to be significantly more complex than
those evaluated during pattern matching, and the verification of an entire sys-
tem will involve possibly thousands of formulae or more. Therefore, efficiency
is required.

As the test cases have shown, more complex formulae run in significantly
longer times. Depending on the size and number of the formulae that need to
be checked, these times could quite easily become unacceptable. However, the
relatively simple optimisations used for this implementation have shown very en-
couraging results. It is possible that more serious optimisations that address the
underlying approach could produce the increased performance required. Several
ideas for further optimisation are discussed in section 7.4.6.
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7.4 Optimisations

The optimisations used in the implementation of this project are fairly simple,
and yet the performance of the system has benefitted greatly from them. Per-
haps most convincingly, the difficult cases that ran for more than 30 minutes
when unoptimised, were solved in under four seconds when the optimisations
were enabled.

In the following sections we discuss each of the optimisations individually.

7.4.1 Extended Sheaves Logic

The extended Sheaves Logic showed reasonable improvements in run time for
both the additive and subtractive tests. In the additive case, the contribution
was greater than the subtractive case, which shows that its performance is
affected by the other optimisations. Because it is one of the first optimisations
to be applied in the flow of the program, it is likely that its absence means a
greater scope for efficiency for other optimisations. In the additive tests, this
optimisation performed the best (modulo basis optimisation), whereas in the
subtractive tests, its performance was one of the best. Therefore, we conclude
that this optimisation is beneficial to the implementation.

7.4.2 Basis Optimisation

The results of testing demonstrate than the optimisation of basis construction
produces significant gains in performance, and is often essential. For the difficult
test cases, the tool without optimisation ran for 30 minutes before the test was
abandoned. With the basis optimisation enabled, the difficult test cases were
solved within 42 seconds.

The naive algorithm for the construction of a common basis always produces
a basis whose number of elements is equal to the number of elements in the
original bases multiplied together. As a result, bases can grow very large very
quickly.

However, many of the elements in the common bases are unsatisfiable: they
represent no trees and are therefore redundant in the basis. These redundant el-
ements can occur for two reasons: an empty label expressions or an unsatisfiable
sub-formula. Empty label expressions occur commonly because the translation
of Tree Logic formulae predominantly produces label expressions describing a
single label. This is easy to see by inspecting the translation of a branch ex-
pression, a[A]. For this formula the basis contains three elements, two of which
have the label expression, {a}. When there are several different labels and
predominantly singleton label expressions, there is a high probability that the
intersection of two label expressions is empty. Similarly, in the test cases the
majority of the sub-formulae describe disjoint sets of trees; because of this, the
conduction of two sub-formulae is likely to be unsatisfiable.

Hence, the size of the common basis produced can often be reduced consid-
erably. This has a cumulative effect as common bases are produced inductively.
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Smaller bases mean that their associated Presburger constraint has fewer quan-
tified variables and is smaller in size. This means that they can be evaluated
more quickly.

To test whether a the sub-formula of an element formula is satisfiable we
must make a call to the Omega Calculator. However, since occurrences of
unsatisfiable sub-formulae are quite common, and the performance gains caused
by their removal is quite high, the cost of these extra tests is justified.

7.4.3 Quantified Variable Reduction

Although, in the additive cases, quantified variable reduction was did not give
the best performance, its contribution remains significant — an average speed
up of ≈1.9. This optimisation appears to work independently of the other
optimisations and the difficulty of the test cases.

7.4.4 Unsatisfiable Presburger Constraints

Although speed ups were observed in the additive cases, in the subtractive cases
the program performed better when the unsatisfiable Presburger constraints
optimisation was disabled, except when difficult test cases were used. The
program’s run time was slightly increased when this optimisation was disabled.

The benefits of this optimisation are small, and are likely to be smaller in
practical cases. This is because the optimisation relies on unsatisfiable sub-
formulae. When the formulae that are being checked are written for a specific
purpose, other than testing, the frequency of unsatisfiable sub-formulae is likely
to be small. During the construction of common bases, it is quite probable that
sub-formulae will be unsatisfiable. However, this case is already checked when
optimising the construction of bases.

To fully determine whether this optimisation is justifiable, tests on practical
examples must be undertaken.

7.4.5 The Test for Emptiness

In the additive cases, this ‘test for emptiness’ optimisations did not perform
as well as other optimisations in the easy cases, but outperformed many in
the difficult cases. This may be due to the exponential growth in the size
of the automaton: the improved efficiency caused by the optimisation will be
more apparent with larger automata. In the subtractive cases, the increase in
efficiency for the harder cases does not appear to occur. This may be because
the test for emptiness is the last algorithm in the flow of the program, and
hence the optimisations that have already been applied reduce the benefits of
this optimisation.

Optimising the test for emptiness, however, is a relatively low cost operation,
and provides more than satisfactory results: good speed ups were observed in all
cases. There is a small amount of cost associated with the algorithm, and that
occurs when checking if a newly reachable state is in the set of finals states.
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Because of the method of automaton construction, the set of final states is
always a singleton set, and so the cost of this test will be negligible.

7.4.6 Further Optimisations

Whilst effective, the optimisations presented here are quite simple. In this
section we discuss several ideas for additional optimisations that have not been
implemented as part of this project.

• Rather than translating the Tree Logic to the Sheaves Logic and then to
the Recursive Sheaves Logic, a more efficient method may be to translate
the Tree Logic directly to the Recursive Sheaves Logic. A direct trans-
lation may allow repeated sub-formulae to be represented by a single set
of rules, rather than several sets of equivalent rules. Because the set of
recursive definitions for a given formula is exponential in size, a single set
of rules rather than several may reduce the size of the resulting recursive
formula significantly. Another benefit is that a direct translation is likely
to reduce the time taken to translate the Tree Logic formula, although
this is unlikely to constitute a significant reduction in overall run-time.

• There is an exponential increase in the size the Sheaves Logic formula
generated from a Tree Logic formula. Part of the reason for this expansion
is that, at each branch of an element formula, α[A], its sub-formula is
translated twice in the basis constructed for it. For example, the basis
constructed for the element formula, α[A] is (α[A], α[¬A], α⊥[>]). The
basis contains a translation for both A and ¬A. Similarly, during the
creation of a common basis, we need to construct several different formulae
to represent formulae such as A∧B, A∧¬B. The number of these formulae
is equal to the product of the number of element formulae in each basis.

Element formulae in the Recursive Sheaves Logic are of the form α[X],
where X is a recursive variable. X is then defined in the set of recur-
sive definitions. If we were translating a Tree Logic formula directly to
Recursive Sheaves Logic we may be able to reduce the number of gener-
ated definitions significantly by allowing element formula to be of the form
α[A], where A is a simple logical formula constructed from the recursive
variables and the connectives ∧ and ¬.

With this richer syntax, the basis for the element formula, α[A], will only
require one definition of the formula A, whereas, with the original logic,
we needed a definition for both A and ¬A. Similarly, when constructing a
common basis, we only need definitions for A and B, not A∧B, A∧¬B,
etc.

This, however, is a fairly significant change to the theory, and will require
the methodology to be updated. Also, the Recursive Sheaves Logic will
become more complicated, and the increase in efficiency gained by the
optimisation may suffer from a more difficult decision procedure.
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• When evaluating an typing problem, that is, is tree P of type A, we test
the validity of the formula, P ⇒ A. It is likely that the tree P is larger
than the size of the formula A. In this case, it should be possible to reduce
P to a smaller tree, such that the validity of P ⇒ A is preserved. This may
reduce the size of the Tree Logic formula that needs to be evaluated. Since
the complexity of Dal Zilio et al’s decision procedure is doubly exponential
in the size of the Tree Logic formula, reducing the size of the formula could
yield large gains in efficiency.

Additionally, the method used for communication with the Omega Calcu-
lator is a very basic one. A more sophisticated approach involves the use of
OCaml’s ability to interface with C programs to utilise the Omega Library —
a set of library functions for the manipulation of numerical constraints. It is
likely that this approach would provide a more efficient method of solving Pres-
burger constraints since they could be stored in the format required by the
Omega Library, rather than being stored as a string that must be parsed by the
Omega Calculator. This may have prevented the parse errors that occur when
the moderate test cases were attempted with no optimisation. However, be-
cause our implementation is an experimental tool, the less efficient, but simpler
method of communication was favoured.

7.5 Interface

The interface provided by the tool is a very basic, although adequate for ex-
perimental purposes. This tool may also be utilised by other programs using
a similar method to the one used by the implementation to communicate with
the Omega Calculator. Alternatively, an OCaml program may use the solver
module to solve Tree Logic formulae directly.

However, complex formulae can quickly become difficult to read. A Graph-
ical User Interface would provide the potential for several features that could
make the tool easy to use for a human. For example, the tree structure of the
formulae could be represented to aid in the reading of formulae.

7.6 Summary

The aim of implementing this tool was to test the viability of the approach
put forward by Dal Zilio et al. We have shown that this approach can reason
about trees much more efficiently than previous approaches, and often runs in
satisfactory times. The approach is also very receptive to optimisation, and so
there is potential for the method to be applied in many situations.

However, the exponential complexity means that the size of the formulae
that can be evaluated in reasonable time is restricted. However, we are still able
to reason about formulae of a moderate size in satisfactory time and the large
potential for further optimisation indicates that the results can be significantly
improved.
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Due to time constraints many avenues of further work remained unexplored.
These are detailed in chapter 9. Despite this, the results of this work are en-
couraging and set the stage for further investigation.
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Chapter 8

Theory: Two New Decision
Procedures for the
Separation Logic

We have seen that the decision procedure for the Tree Logic presented by Dal
Zilio et al in [8] has shown a significant improvement in run-times over the
previous decision procedure for the Tree Logic. In this chapter we investigate
whether this work can be used to provide similar improvements for heap-like
structures.

We begin by introducing the Separation Logic. In section 8.2 we provide a
translation of the Separation Logic into the Tree Logic. This means that the tool
implemented during this project can be used to provide a decision procedure
for the Separation Logic.

In section 8.3 we apply the ideas in Dal Zilio et al’s work to the Separa-
tion Logic. This leads to a translation from the Separation Logic to First-Order
Logic with Equality. Recent independent work by Etienne Lozes has shown that
the Separation Logic can be expressed using a fragment of the Separation Logic
without multiplicative connectives, that still relies on the notion of a heap. Fur-
thermore, their result does not provide a decision procedure for the Separation
Logic, because the construction of the fragment’s equivalent formula for a Sepa-
ration Logic formula assumes an external decision procedure for the Separation
Logic. By contrast, the translations into First-Order Logic with Equality pre-
sented here removes the notion of a heap from the logic, and provides a decision
procedure. These two translation into Classical Logic are compared in more
detail in section 8.5. An evaluation of this chapter is given in section 8.6.
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8.1 Separation Logic

The Separation Logic [3] allows us to reason about a data structure defined by
a stack and a heap. Decidability results have been shown for a sub-language of
this logic, which includes the notion of pointers and equality, but not expressions
for describing data or universal quantification [10]. It has been shown that the
inclusion of universal quantification causes the logic to become undecidable.

The sub-language of [10] is given in table 8.1 and its semantics are given in
table 8.2. Separation Logic formulae are interpreted in the following model:

V al , Loc ∪ {nil}
Stack , V ar → V al

Heap , Loc ⇀fin V al × V al
State , Stack ×Heap

where Loc is a memory location and X ⇀fin Y denotes a finite map from X
to Y . Additionally, we write dom(f) for the domain of f and f#g to indicate
that f and g have disjoint domains.

Informally, the heap maps expressions (E) to expressions. The value of each
expression is ascertained by evaluating the expression with respect to the given
stack. Note that, for an assertion, E 7→ E1, E2, the semantics require that
dom(h) = {JEKs}. A heap maps locations to values and therefore, E cannot
evaluate to nil.

For example, if we have a heap, h, of the form, (2 7→ 1, 3) ∗ (3 7→ 1, nil), and
a stack, s, such that s(x) = 1, s(y) = 2, s(z) = 3 and s(n) = nil, then (s, h)
would satisfy the following formulae, (z 7→ x, n) ∗ (y 7→ x, z), (z 7→ x, n) ∗ >,
(y 7→ x, z) ∗ (z 7→ x, n), etc. However, if s(y) = nil then (y 7→ x, z) ∗ > would
not be satisfied since the heap would have to be of the form . . .∗nil 7→ 1, 3∗ . . ..
This is not a valid heap as nil is not a location.

The composition adjunct connective, −∗, is analogous to the guarantee con-
nective, ., in the Tree Logic. Intuitively, the formula φ −∗ ψ is satisfied by a
state (s, h) if all heaps h′ that satisfy φ (given the stack s) and whose domain
is disjoint from the domain of h, can be composed with h such that (s, h ∗ h′)
satisfies ψ.

8.1.1 Size

We denote the size of a Separation Logic formula, φ, as |φ|. The complete
definition is given in table 8.3. The size of a formula gives a limit on the
number of cells that can be in a heap before the formula cannot differentiate
between a larger heap and a heap that has a number of cells less than the size of
the formula. This property is useful when limiting the number of heaps that we
need to consider when determining properties for all heaps — a property that
is important for the results in the section 8.1.2.
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E ::= Expressions
x, y, . . . Variables
nil Nil

φ, ψ ::= Assertions
E 7→ E1, E2 A cell, E, that points to binary heap cell, E1, E2

E = E Equality
false Falsity
φ⇒ ψ Implication
emp The empty heap
ψ ∗ ψ Composition
ψ −∗ ψ Composition adjunct

Table 8.1: The syntax of a sub-language of the Separation Logic

JxKs , s(x)

JnilKs , nil

s, h |= (E 7→ E1, E2) iff dom(h) = {JEKs} and h(JEKs) = (JE1Ks, JE2Ks)
s, h |= E1 = E2 iff JE1Ks = JE2Ks
s, h |= false never
s, h |= φ1 ⇒ φ2 iff s, h |= φ1 then s, h |= φ2

s, h |= emp iff dom(h) = ∅
s, h |= φ1 ∗ φ2 iff there exists h1 and h2 such that

h1#h2; h1 ∗ h2 = h; s, h1 |= φ1 and s, h2 |= φ2

s, h |= φ1 −∗ φ2 iff for all h1 such that h#h1 and (s, h1 |= φ1, (s, h ∗ h1) |= φ2

Table 8.2: The semantics of a sub-language of the Separation Logic, given stack,
s and heap, h

|(E 7→ E1, E2| = 1 |E1 = E2| = 0
|false| = 0 φ⇒ ψ = max(|φ|, |ψ|)
|φ ∗ ψ| = |φ|+ |ψ| |φ −∗ ψ| = |ψ|
|emp| = 1

Table 8.3: The size of a Separation Logic formula
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Sφ,s The set of values, s(FV (φ)).
v A value from the set Loc− Sφ,s.
L|φ| A set of |φ| locations from the set Loc− Sφ,s − {v}.
Hφ,s The finite set of heaps that need to be enumerated when

evaluating an assertion, φ, for all heaps.
Hφ,s,L The finite set of heaps whose domain is a subset of L ∪ Sφ,s and

whose values are restricted set, determined by φ and s.
Rφ,s(h) The reduction of a heap to an equivalent heap in the set Hφ,s.

S|φ| A set of |FV (φ)| locations.
Sφ The set of stacks that must be evaluated when

determining the validity of an assertion, φ.
H ′φ,n The set of heaps where |dom(h)| ≤ n+ |S|φ||.
Rφ(s, h) The reduction of the state, (s, h), to an

equivalent state in the set Sφ ×H ′φ,|φ|.
v A value from the set Loc− Sφ,s − L|φ|

Table 8.4: A summary of the notations introduced in section 8.1.2

8.1.2 Finite States

The properties discussed in this section are used in both the translation from
Separation Logic to Tree Logic, and the translation from Separation Logic to
Classical Logic. In both of these translations we define formulae that “enumer-
ate” the states that we need to consider. These formulae are required to ensure
that the trees that we are using are representations of valid heaps.

The results discussed in the section are corollaries of the results presented by
Calcagno, Yang and O’Hearn in [10]. The results are derived in full in appendix
B.1.

In this section we introduce several notations. These notations are sum-
marised in table 8.4. A detailed discussion of these definitions follows.

Satisfaction

When determining if (s, h) |= φ, we can define a finite set of heaps, denoted Hφ,s.
Any given heap, h, can be reduced to a heap, h′ ∈ Hφ,s, such that (s, h) |= φ iff
(s, h′) |= φ. We write Rφ,s(h) to denote the translation of the heap, h, to the
equivalent heap, h′ ∈ Hφ,s.

We write Sφ,s to denote the set s(FV (φ)), define L|φ| to be a set of |φ|
locations in Loc − Sφ,s, and choose a value, v from the set Loc − Sφ,s − L|φ|.
The heaps in the set Hφ,s all have a domain that is a subset of L|φ| ∪ Sφ,s and
whose values are in the set Sφ,s ∪ {nil, v}.

For any set of locations, L, we write Hφ,s,L to denote the set of heaps whose
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domain is a subset of L ∪ Sφ,s, and whose values are in the set Sφ,s ∪ {nil, v}.
We notice that Hφ,s = Hφ,s,L|φ| .

A consequence of these properties is that, given a stack, s, and assertion, φ,
we can determine if s, h |= φ for all heaps by checking that the assertion holds
for all heaps in the set Hφ,s,L|φ| .

Additionally, when evaluating an assertion of the form s, h |= φ1 −∗ φ2,
where h ∈ Hφ,s,L, the universal quantification can be checked by enumerating
another finite set of heaps, h1 ∈ Hφ,s,L′ , where L′ is a set of max(|φ1|, |φ2|)
locations from the set Loc−L−Sφ,s−{v}. The heap, h∗h′, is then an element
of the set Hφ,s,L∪L′ .

Validity

We saw in section 8.1.2 that we can determine whether a property holds for all
heaps, given a stack, by checking the property for each of a finite set of heaps.
Additionally, any given heap could be translated into a heap in this finite set.
We now introduce a similar property for stacks.

Given an assertion, φ, the sets of stacks that we need to consider to determine
the validity of φ are those that map all free variables of φ to an element of a
set S|φ| ∪ {nil} and all other variables to nil. The set S|φ| contains |FV (φ)|
locations from Loc. Only a finite number of stacks, S have these properties. We
can reduce any stack, s, into a stack satisfying these properties.

To determine the validity of an assertion, φ, (that is, does φ hold for all
heaps and stacks), it is enough to check that, for all stacks, s ∈ S, s, h |= φ for
all h ∈ Hφ,s.

The encoding of Separation Logic as Classical Logic presented in section 8.3
does not require us to restrict the values used in the heaps or stacks, it simply
requires that the domain of the heap is of a limited size, and that the stack
maps all variables not in the set FV (φ) to nil. We introduce the notation Sφ
for the set of stacks that map all variables not in FV (φ) to nil, and H ′φ,n to
denote those heaps, h, where |dom(h)| ≤ n+ |S|φ||.

We show in appendix B.1.5 that an assertion, φ, will holds for all heaps and
stacks iff φ holds for all states in the set Sφ ×H ′φ,|φ|.

For an assertion, φ, we can reduce any state, (s, h) into, (s′, h′) that preserves
the truth of φ, such that s′ ∈ S (and therefore s ∈ Sφ), and h ∈ Hφ,s,L|φ| (and
therefore h ∈ H ′φ,|φ|). We write (s′, h′) = Rφ(s, h) to denote this reduction.

8.2 Translating Separation Logic to Tree Logic

In this section we provide a method of encoding the Separation Logic using
the Tree Logic. This means that the tool implemented during this project
can be used to provide a new decision procedure for the Separation Logic. It
also highlights some of the important differences between the two logics. For
example, a location may only appear once in a heap, whereas there is no such
uniqueness constraints for trees.
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We begin by defining a translation from heaps to trees, and then we define
the translation from the Separation Logic to the Tree Logic. It is worth noting at
this point that our translation requires a fixed stack. This is because there is no
apparent method for representing stacks succinctly in the Tree Logic. Validity
can be determined by enumerating all stacks as described in section 8.1.2.

Our translation has the following properties:

• given a formula, φ, and a stack, s,

∀h ∈ Hφ,s [(s, h |= φ ⇐⇒ heaptran(h) |= tran(φ, s))]

• given a stack, s, and an assertion, φ,

[∀h(s, h |= φ)] ⇐⇒ [∀d(d |= tran(φ, s))]

These properties mean that we are able to reduce both satisfaction and
validity for the Separation Logic to satisfaction and validity for the Tree Logic.
These problems can be solved using the tool that was implemented as part of
this project.

It can be noted that the first property only holds for a finite set of heaps.
This finite set of heaps is the set of heaps that need to be considered to determine
the validity of an assertion. An arbitrary heap can be transformed (using Rφ,s)
into an equivalent heap that is within the finite set, and so we can transform
any satisfaction problem in the Separation Logic to an equivalent problem in
the Tree Logic.

8.2.1 Translating a Heap into a Tree

The translation given in table 8.5 defines the function heaptran(h) that defines
a tree representation of a given heap. The function that translates a tree into
a heap follows naturally from this definition. If the tree does not represent a
valid heap, no translation is defined.

This translation exploits the similarities between the horizontal spatial op-
erators ∗ and |, and uses tree branches to model the heap’s 7→ relation. Quite
simply, h1 ∗ h2 is the composition (|) of two trees, and a heap of the form,
` 7→ v1, v2 is encoded as a tree, `[v1[v2[0]]], of depth three.

heaptran(h) ,





0 if h = []
`[v1[v2[0]]] if h = (` 7→ v1, v2)
heaptran(h1)|heaptran(h2) if h = h1 ∗ h2

Table 8.5: The function heaptran
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s is the given stack.
Sφ,s is the set s(FV (φ)).
v is a value not in Sφ,s ∪ {nil}.
L|φ| denotes a set of |φ| locations in Loc− Sφ,s − {v}.
{v1, . . . , vp}[D] is the Tree Logic formula, v1[D] ∨ . . . ∨ vp[D]

tran(φ, s) , heap(L, s, φ)⇒ tran′(φ, s, φ, L)
where L = L|φ|

tran′((E 7→ E1, E2), s, φ, L) , JEKs
[
JE1Ks

[
JE2Ks

[
0
]]]

tran′((E1 = E2), s, φ, L) ,
{

T if JE1Ks = JE2Ks
F otherwise

tran′(false, s, φ, L) , F

tran′((φ1 ⇒ φ2), s, φ, L) , tran′(φ1, s, φ, L)⇒ tran′(φ2, s, φ, L)

tran′((φ1 ∗ φ2), s, φ, L) , (tran′(φ1, s, φ, L)|tran′(φ2, s, φ, L))

tran′((φ1 −∗ φ2), s, φ, L) , (tran′(φ1, s, φ, L
′) ∧ heap(L′, s, φ))

. (heap(L ∪ L′, s, φ)⇒ tran′(φ2, s, φ, L ∪ L′))
where L′ denotes max(|φ1|, |φ2|) locations
from the set Loc− L− Sφ,s − {v}

heap(L, s, φ) , (A1 ∨ 0)| . . . |(Ap ∨ 0)
where, for all i ∈ 1..p, Ai = li[vs[vs[0]]]
L ∪ Sφ,s = {l1, . . . , lp}
vs = Sφ,s ∪ {nil, v}

Table 8.6: Encoding a Separation Logic formula, φ, in Tree Logic

For example, the heap, (1 7→ 2, 3) ∗ (2 7→ nil, nil), is represented by the tree,
1[2[3[0]]]|2[nil[nil[0]]].

8.2.2 Translating Separation Logic to Tree Logic

In table 8.6 we define an encoding of the Separation Logic in the Tree Logic.
The translation begins by restricting the set of trees with the formula

heap(L, s, φ). heap(L, s, φ) is designed to accept only those trees that corre-
spond to a heap in the set Hφ,s,L. heap(L, s, φ) is required to ensure that the
tree represents a valid heap, preventing duplicate locations and branch struc-
tures that do not represent the relation, 7→.

heap(L, s, φ) models all trees in Hφ,s,L by composing formulae of the form
(Ai∨0), where the sub-tree, Ai represents a mapping of a unique domain element
to the set of all possible values, (vs, vs). All possible subsets of L ∪ Sφ,s, and
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therefore all possible domains, are represented by this formula since each domain
element may be in the heap (satisfying Ai), or not (satisfying ∨0). We write
vs[D], where vs = {l1, . . . , ln} to denote the Tree logic formula, l1[D]∨. . .∨ln[D].
This notation has parallels with the element formulae used by the Sheaves Logic
in section 2.4.2, where element formula are of the form α[A], where α is a set of
labels. If we were to translate the Tree Logic formula into Sheaves Logic, we may
wish to exploit these similarities to remove the large disjunction represented by
vs[D] from the translation.

When testing whether a formula holds for all heaps, we want to ensure that
trees that are not heaps do not affect the test, hence the implication in the
definition of tran(φ, s) whose antecedent is heap(L|φ|, s, φ). When testing for
satisfaction, it is important that the heap satisfies the properties required by
heap(L, s, φ), since failure may result in false positives. Any heap, h, can be
reduced to h′ = Rφ,s(h), where h′ ∈ Hφ,s,L. h′ will satisfy heap(L, s, φ). It is
worth noting that the implication will mean that the formula will be satisfied
by any tree that does not represent a valid heap. Consequently, it is not the
case that the translation is satisfiable iff the original formula is satisfiable. We
may solve this problem by reducing satisfiability to validity, or by replacing the
implication with a conjunction.

The translation then passes the set, L, as a parameter. The set of locations
that may appear in the domain of the current heap is constructed using this
set. Initially this set is L|φ| because we are initially only interesting in heaps
that are in the set Hφ,s,L|φ| . For most operators this set will remain unchanged.
However, composition adjunct, −∗, requires the enumeration of new heaps whose
domain may differ. The right-hand side of this operator requires that the result
of composing the current heap and the new heap satisfy the given formula. This
means that the domain of the current heap when evaluating this formula may be
expanded, and hence, the argument, L, needs to change to reflect this expansion.
Composition adjunct will be discussed in detail after we have discussed each
operator individually.

The translation provided is inductive, the base cases occur when φ = E 7→
E1, E2, φ = (E1 = E2) and φ = false. In the case when φ = false we simply
translate the formula to F — false in the Tree Logic. Because the Tree Logic
does not have a notion of equality, and because the value of the formula E1 = E2

is determined by the stack, regardless of the heap, we evaluate E1 = E2 during
translation, resulting in either T or F. In case φ = E 7→ E1, E2 we evaluate
E, E1 and E2 using the given stack, and produce the tree representation of the
heap that would satisfy the formula.

There are three inductive cases: φ = φ1 ⇒ φ2, φ = φ1 ∗ φ2 and φ1 −∗ φ2.
The translation of φ = φ1 ⇒ φ2 is quite straight forward, but the translations
for the remaining cases require some explanation.

The translation of the Separation Logic formula, φ = φ1 ∗ φ2, is a straight-
forward translation using the | connective. Although | does not enforce the
uniqueness constraints required by ∗, we know that the two heaps and their
composition will represent valid heaps because tran(φ, s) checks that the given
heap is valid (and hence its decomposition will be valid), and tran′(ψ, s, φ, L)
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ensures that any heaps constructed when translating composition adjunct are
valid heaps.

The translation of the formula, φ = φ1 −∗ φ2 exploits the similarities between
the guarantee operator and the magic wand. The formula, heap(L′, s, φ) ensures
that the trees that satisfy φ1 are also valid heaps from the set of heaps, Hφ,s,L′ ,
that we need to evaluate. The right-hand side of the translation enforces the
requirement that the two heaps being composed have disjoint domains by using
an implication whose antecedent is heap(L ∪ L′, s, φ). If the two heaps do
not have disjoint domains, then their composition does not have to satisfy φ2,
consequently, we accept the composition trivially (as heap(L∪L′, s, φ) fails). If
the two heaps do have disjoint domains, then heap(L ∪ L′, s, φ) will hold and
so we must check that the translation of φ2 is satisfied to check whether the
assertion holds.

This translation has the following properties:

• given a formula, φ, and a stack, s,

∀h ∈ Hφ,s [(s, h |= φ ⇐⇒ heaptran(h) |= tran(φ, s))]

• given a stack, s, and an assertion, φ,

[∀h(s, h |= φ)] ⇐⇒ [∀d(d |= tran(φ, s))]

The proof of these properties is given in appendix B.2. Notice that the first
property only ranges over those heaps in the set Hφ,s. It is always possible
to reduce a heap to a heap in the set Hφ,s, using Rφ,s, and so we can check
satisfaction for all trees.

These properties mean that, for any heap problem, we can construct an
equivalent tree problem that can be solved using the tool implemented during
this project.

8.2.3 Complexity of the Translation

The translations given by tran′(ψ, s, φ, L) are all linear, except for the case when
ψ = φ1 −∗ φ2. In this case we require the formula given by heap(L, s, ψ). For
each −∗ connective, the size of the set L is increased by O(n) elements (where
n is the length of the formula φ). In the worst case, there are n occurrences
of composition adjunct, and so the size of L is O(n2). heap(L, s, ψ) contains
O(|L|) elements, each of length O(n), if we allow the Sheaves Logic label sets,
rather than singular branch labels. Therefore, the length of heap(L, s, ψ) is
O(n3). In the worst case, when there are n occurrences of composition adjunct,
the size of the translation will be O(n4). tran(φ, s) also requires heap(L, s, φ),
but this does not dominate the complexity.
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8.3 Translating Separation Logic to FOL=

The translation from the Separation Logic to the Tree Logic provided a new
decision procedure for the Separation Logic. However, this procedure requires
the stack to be fixed, and inherits the complexity of the Tree Logic. Unlike
trees, heaps are flat structures and so it is reasonable to expect a lower com-
plexity. In this section we take inspiration from Dal Zilio et al’s work to provide
another decision procedure for the Separation Logic that translates the logic
into First-Order Logic with equality1. FOL= is less expressive than Presburger
Constraints, and so the complexity of the procedure is inherently lower than the
complexity of the translation into the Tree Logic, whose complexity abstracts
over the complexity of the Presburger constraints. Additionally, because FOL=

contains quantifiers, we do not need to fix the stack. The resulting FOL= for-
mula can be evaluated using existing tool for reasoning about FOL=.

In section 8.3.1 we present a new notion of Sheaves that represent states. In
section 8.3.2 we use these Sheaves to translate a given assertion into a Presburger
constraint, that can be translated into FOL= using the method described in
section 8.3.3.

The translation given in this section has analogous satisfaction and validity
properties to to the translation from Separation Logic to Sheaves Logic. These
properties are given in full at the end of section 8.3.2.

8.3.1 Translating States to Sheaves

The notion of a Sheaf, N · E is described in section 2.4.1. For the Tree Logic,
the vector, N, represented the counts of the element formulae in the support
vector, E. To represent states, we adapt the notion of a Sheaf to contain three
components: (N,B,S). The vectors N and B are similar to the vectors in
an ordinary Sheaf: N = (n1, . . . , nn) denotes the counts of the cells in B,
and B = (b1, b

′
1, b
′′
1 , . . . , bn, b

′
n, b
′′
n) denotes the cells, (bi 7→ b′i, b

′′
i ). The vector,

S = (vx, vy, vz, . . .), is used to describe the stack. Will represent the locations,
l, using the natural numbers, with nil = 0. This is a safe assumption since, if
the location, 0, is allocated, we can always relocate the cell to an unallocated
location, changing any references as required.

For example, the state, (s, h) — where h = (1 7→ 2, 3) ∗ (3 7→ nil, 2), and
s(x) = 1, s(y) = 3, s(z) = 2 — may be described using the vectors, N = (1, 1),
B = (1, 2, 3, 3, 0, 2) and S = (1, 3, 2). Notice that all counts in N are one. Be-
cause h is a heap, these counts can never be greater than one — else h would not
be a function. The counts, however, can be zero. An alternative representation
of our example is, N = (1, 0, 1), B = (1, 2, 3, 3, 2, 1, 3, 0, 2) and S = (1, 3, 2). In
this case, the value of the center three numbers in B = (. . . , 3, 2, 1, . . .), does
not matter, since they do not form a part of the relevant state.

In section 8.1.2, we conclude that, for a given assertion, φ, we can transform
any state, (s, h) to (s′, h′) where |dom(h′)| ≤ |φ|+ |FV (φ)| and that s′ maps the

1FOL= is First Order Logic without relations and with equality. This is essentially the
PSPACE-Complete problem, Quantified Boolean Formulae (QBF) [11].
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free variables of φ to a set of at most |FV (φ)| values. The following property
will also hold: (s, h) |= φ iff (s′, h′) |= φ. This means that we can represent
such states with the vector (N,B,S), where |N| = |φ|+ |FV (φ)|, |B| = 3(|φ|+
|FV (φ)|), and |S| = |FV (φ)|.

However, the vectors, N, B, are not specific enough to provide the basis of
a translation of the Separation Logic to Presburger formulae. In the case of
composition adjunct, we can evaluate s, h |= φ1 −∗ φ2 by enumerating all heaps
in the set H ′φ,|L′|, for some L′. The domain of these heaps is less than |L′∪S|φ||
in size. Similarly, because we can use the translation, Rφ, the domain of h is
less than |L ∪ S|φ|| in size, for some L. Recall that the vectors, L, L′ and S|φ|
are disjoint. The domain of the heap constructed by the composition of the
two heaps yields a heap whose domain is less than |L ∪ L′ ∪ Sφ,s| in size. This
requires that the vectors, N and B are extended to incorporate the whole of
this domain. It is for this reason that we split the sets into two parts: NL⊕NS

(where ⊕ denotes the concatenation of two vectors) and BL ⊕BS respectively,
where |NL| = |L|, |NS| = |S|φ||, |BL| = 3(|L|) and |BS| = 3(|S|φ||).

Using this notation, heaps in the set H ′φ,|L| will require B = BL⊕BS, heaps

in the set H ′φ,|L′| will require B = BL′ ⊕BS and the composition of heaps from
these sets will require B = BL ⊕ BL′ ⊕ BS. The vector N requires similar
construction, except that the two vectors, NS, must be added together, since
they refer to the same set of heap cells.

Table 8.7 gives the definition of vectorφ,p(s, h), that relates states to Sheaves
representing that state, for a given assertion, φ. A relation is used because, as
we have seen, there are often several different ways to represent a particular
state as a vector. The subscript, p, denotes the size of the vector, L, and is
analogous to the notation H ′φ,|L|.

The relation, vectorφ,p(s, h) says that a vector represents a heap if all of
the cells included in the vector (that is, nj = 1) are cells that correspond
to a particular cell of the heap, and that all cells in the heap have a unique
corresponding cell in the vector. Additionally, the relation makes the distinction
between cells that will be unique to that heap, and cells that may overlap with
cells in one of the heaps considered during the evaluation of a composition
adjunct.

8.3.2 Translating Separation Logic to a Sheaves Logic

In table 8.8 we provide a translation from the Separation Logic to a formula of
Presburger Arithmetic.

The translation begins by with an implication that ignores all vectors that
do not represent a valid state. This is analogous to the translation into the Tree
Logic where we used an implication to ignore all trees that do not represent
a valid heap. The antecedent of the implication is the formula bounded(N) ∧
heap(N,B). heap(N,B) ensures that locations (bi) are unique and non-nil (not
zero) if they are present in the heap. However, this is not enough to ensure a
valid heap since the counts in N may specify the repeated use of a location. The
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(NL ⊕NS,BL ⊕BS,S) ∈ vectorφ,p(s, h)
where:

NL = (nL1
, . . . , nLp)

BL = (bL1
, b′L1

, b′′L1
, . . . , bLp , b

′
Lp
, b′′Lp)

NS = (nS1
, . . . , nS|FV (φ|))

BS = (bS1
, b′S1

, b′′S1
, . . . , bS|FV (φ)| , b

′
S|FV (φ)|

, b′′S|FV (φ)|
)

S = (vx, vy, vz, . . .) and FV (φ) = {x, y, z, . . .}

iff

There is a subset, JL of 1..p, such that:
There is a bijection, RL : (dom(h)− s(FV (φ)))× JL
where (l, j) ∈ RL iff:
nLj = 1
bLj = l
(b′Lj , b

′′
Lj

) = h(l)

and, for all j ∈ (1..|φ| − JL)
nLj = 0

There is a subset, JS of 1..|FV (φ)|, such that:
There is a bijection, RS : (dom(h) ∩ s(FV (φ)))× JS
where (l, j) ∈ RS iff:
nLj = 1
bLj = l
(b′Lj , b

′′
Lj

) = h(l)

and, for all j ∈ (1..|FV (φ)| − JS)
nLj = 0

For each x ∈ FV (φ):
vx = s(x)

Table 8.7: Definition of vectorφ,p(s, h)
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tran(φ)(N,B,S) ,
(
bounded(N) ∧ heap(N,B)

⇒ tran′(φ)(N,B,S)

)

where
N = NL ⊕NS = (n1, . . . , np)
|NL| = |φ|, |NS| = |FV (φ)|
B = BL ⊕BS = (b1, b

′
1, b
′′
1 , . . . , bp, b

′
p, b
′′
p)

|BL| = 3|φ|, |BS| = 3|FV (φ)|
S = (vx, vy, vz, . . .) and {x, y, z, . . .} = FV (φ)
p = |φ|+ |FV (φ)|

tran′(E 7→ E1, E2)(N,B,S) ,
∨
i∈1..|N|



ni = 1 ∧∧j∈1..|N|

i6=j

[
nj = 0

]

∧ bi = var(E)
∧ b′i = var(E1) ∧ b′′i = var(E2)




tran′(E1 = E2)(N,B,S) , var(E1) = var(E2)

tran′(φ1 ⇒ φ2)(N,B,S) , tran′(φ1)(N,B,S)⇒ tran′(φ2)(N,B,S)

tran′(emp)(N,B,S) ,
∧
i∈1..|N| ni = 0

tran′(false)(N,B,S) , F

tran′(φ1 ∗ φ2)(N,B,S) , ∃N1,N2.




N = N1 + N2 ∧
tran′(φ1)(N1,B,S)
∧tran′(φ2)(N2,B,S)




tran′(φ1 −∗ φ2)(N,B,S) , ∀M,BL′ .




tran′(φ1)(M,BL′ ⊕BS,S)
∧ bounded(MS + NS) ∧ bounded(M)

∧ heap
(

NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS

)

⇒ tran′(φ2)




NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS,
S







where
M = ML′ ⊕MS

|ML′ | = max(|φ1|, |φ2|), |MS| = |FV (φ)|
|BL′ | = 3(max(|φ1|, |φ2|))

bounded(n1, . . . , nq) ,
∧
i∈1..q

[
0 ≤ ni ≤ 1

]

heap(N,B) ,




∧
i∈1..|N|
j∈1..|N|
i6=j

[
(ni = 1 ∧ nj = 1)⇒ (bi 6= bj)

]

∧∧i∈1..|N|
[
(ni = 1)⇒ (bi 6= 0)

]




var(E) ,
{
vE ifE ∈ FV (φ)
0 ifE = nil

Table 8.8: Encoding a Separation Logic formula, φ, as a Presburger formula
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formula, bounded(N) is used to ensure that each location only occurs once in
the heap, if it occurs at all. When testing for satisfaction, vectorφ,|φ|(s, h) will
always satisfy these constraints because we restrict the states to the required set
— the reduction Rφ(s, h) can be used if the state does not satisfy the required
properties; consequently tran′(φ) must be satisfied for the state to satisfy φ.
When checking validity, the antecedent ensures that we ignore all those vectors
that are not heaps.

The simplest cases in this translation are φ = emp, φ = (E1 = E2) and
φ = false. The translations of φ = (E1 = E2) and φ = false are direct: false
translates to F and E1 = E2 translates to var(E1) = var(E2), where var(E)
is the variable in the vector corresponding to the stack variable denoted by
expression, E, or 0 if E = nil. In case φ = emp we assert that all multiplicities
in the vector N are zero. That is, the heap contains no cells.

The final base case, where φ = (E 7→ E1, E2) is a little more complicated.
The translation of this case requires that one, and only one member of the
vector N is one, and that the others are zero. This means that the heap will
have exactly one cell. Furthermore, the cell that is present in the heap must
map the value of E (var(E)) to the values of E1 and E2 (var(E1) and var(E2)
respectively). Therefore, the vectors accepted will represent a heap that satisfies
(E 7→ E1, E2).

There are three recursive cases. The simplest is φ = φ1 ⇒ φ2. In this case
the translation is a simple implication using the translations of φ1 and φ2.

In case φ = φ1 ∗ φ2 we specify the requirement that h = h1 ∗ h2 for some
h1, h2, using the clause, N = N1 + N2 for some N1, N2. This clause splits the
heap into two since, for the clause to hold, if an element of N is one, then the
corresponding element in N1 or N2 must be one, but not both. Similarly, if the
element is zero, it must also be zero in N1 and N2. Each cell in B is only in the
heap if its associated element in the multiplicities vector is one. To determine
whether hi |= φi (for i ∈ {1, 2}) we use the clause, tran′(φi)(Ni,B,S).

The final and most involved case is φ = φ1 −∗ φ2. In this case we enumerate
all h1 ∈ H ′φ,|L′|, check whether they satisfy φ1 and that h#h1 holds, where h is

the heap represented by the arguments to tran′. If h1 satisfies these properties,
we must then check whether h ∗ h1 satisfies φ2.

So, we begin by enumerating the required h1s. The size of the domain of h1

will be less than |L′ ∪S|φ||. So, the vector, B′, used to represent h1 will contain
a vector of new variables, BL′ , denoting |L′| new cells, and the vector, shared
by h, BS, which denotes those cells representing S|φ|. The vector M contains
a sub-component for each of the components of B′. We use bounded(M) ∧
heap(NL⊕ML′ ⊕ (NS + MS),BL⊕BL′ ⊕BS) to ensure that h1 is a heap and
that the domains of BL, BL′ and BS are disjoint. To ensure that h#h1 holds
we notice that the domains are disjoint except for S|φ|. So, we use the clause
bounded(MS + NS). If MS + NS is bounded then we know that h and h1 do
not use any of the same cells, and so their domains must be disjoint.

Finally, we require that s, h ∗ h1 |= φ2. The size of the domain of h ∗ h1 is
less than |L∪L′ ∪ S|φ||, and so we construct the vector representation of h ∗ h1
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in a similar fashion: using the cells, BL ⊕ BL′ ⊕ BS, and the corresponding
vector of multiplicities. We then check whether the translation of φ2 accepts
the resulting vector.

The translation has the following properties that are analogous to the prop-
erties possessed by the translation from the Separation Logic to the Tree Logic
presented in section 8.2.2:

• Given an assertion, φ,

∀(s, h) ∈ Sφ ×H ′φ,|φ|
[
(s, h |= φ ⇐⇒ ∀v ∈ vectorφ,|φ|(s, h) v |= tran(φ))

]

• For an assertion, φ,

[∀(s, h).s, h |= φ] ⇐⇒ [∀(N,B,S).(N,B,S) |= tran(φ)]

The proof of these properties is given in appendix B.3.1.

8.3.3 Translating Separation Sheaves Logic to FOL=

The Presburger constraints derived in section 8.3.2 do not need to use the full
expressive power of Presburger Arithmetic. In particular, we only use connec-
tives that are not available in FOL= in two situations. Firstly, we use the ≤
connective to restrict the elements of the vector, N, between zero and one. We
can let the elements of N range over boolean atoms rather than natural num-
bers, meaning that we do not need ≤. Because the members of N are boolean,
the addition present in the translation of ∗ can be replaced with the following
formula, (ni ⇐⇒ n1i ∨ n2i)∧¬(n1i ∧ n2i), for all i ∈ 1..|N|. Finally, clauses of
the form n = 1 can be replaced with n, and n = 0 can be replaced with ¬n.

By ranging the elements of the vector N over boolean values, removing
clauses of the form, bounded(N), and replacing the equality clauses for the
boolean variables, the translation from Separation Logic to Presburger Arith-
metic can be reduced to a logic containing propositional logic, quantification
over the Boolean values, quantification over a finite domain of integers, and
equality between these integers. This is First-Order Logic with Equality.

8.3.4 Complexity of the Translation

The translation into FOL= will generate a formula whose size is O(n5) where
n denotes the length of the Separation Logic assertion (not the size). This can
be seen because, for each connective, the size of the vector (initially O(n)) may
increase by O(n) in the worst case (the −∗ connective). Therefore, the size of
the vector is always O(n2). The translation of E 7→ E1, E2 and heap(N,B) are
O(v2), where v is the size of the vector. So, these formulae are O(n4). In the
worse case, O(n) of these cases will occur, and therefore, the resulting FOL=

formula will be O(n5) in size.
FOL= is PSPACE-complete [11], and so the full decision procedure for

the Separation Logic is PSPACE-complete. We do not hope to improve on
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φ ::= Assertion
φ⇒ φ implication
⊥ falsity
x ↪→ e1, e2 allocation
x = y equality
size ≥ n size

Table 8.9: A classical fragment of the Separation Logic

(x ↪→ e1, e2) , (x 7→ e1, e2) ∗ >
size ≥ n , ¬emp ∗ . . . ∗ ¬emp (n times)

Table 8.10: Classical connectives Separation Logic encoding

this complexity because we know that the Separation Logic is also PSPACE-
complete [10].

8.4 A Classical Fragment of the Separation Logic

Recent independent work by Etienne Lozes defines a classical fragment of the
Separation Logic and shows that this fragment is as expressive as the Separation
Logic itself [9]. In this section we give an overview of this work. In section 8.5,
we present a comparison of Lozes’ work and the translation into FOL=.

We begin by introducing the classical fragment of the Separation Logic, CL,
and describing several properties that are used to show the expressivity of this
fragment. Then we show how the Separation Logic can be expressed using CL.

8.4.1 CL

The classical fragment of the Separation Logic is given in table 8.9. This frag-
ment has two new connectives: (x ↪→ e1, e2) and size ≥ n. The encoding of
these connectives in Separation Logic is shown in table 8.10.

Intuitively, (x ↪→ e1, e2), asserts that the location indicated by the variable
x (with respect to the current stack) is allocated on the heap, and that its value
matches the expression, (e1, e2). size ≥ n simply states that the heap has n cells.
We write w(φ) to denote the largest n such that size ≥ n is a sub-assertion of
φ.

In CL, expressions of the form, (x = y), (x ↪→ e1, e2) or size ≥ n are consid-
ered atomic. The Separation Logic can be expressed using boolean combinations
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of these atoms. The atoms themselves, however, cannot be encoded using only
boolean combinations.

8.4.2 Intensional Equivalence

Given a finite set of variables, X, and an integer, w, we say that two states, σ,
σ′, are intensionally equivalent, if, for all CL assertions, φ, such that FV (φ) ⊆ X
and w(φ) ≤ w, σ |= φ iff σ′ |= φ. We write σ ≈X,w σ′ to denote this equivalence.

For a given assertion φ, we can define X = FV (φ) and w = |φ|+ |X|. Given
two stores, σ, σ′, if σ ≈X,w σ′, then σ |= φ iff σ′ |= φ.

There are a finite number of classical atoms, p, such that w(p) ≤ w and
FV (p) ⊆ X. This is easily seen. For example, consider the case where X = {x}
and w = 1. There are only two assertions of the form size ≥ n (when n = 0 and
when n = 1), only four assertions of the form, x = y or x ↪→ y, z (there are four
possible pairs using the variable x and nil and x must appear on the left-hand
side of the allocation connective). We write ΦX,w to denote this finite set of
atoms.

Consequently, given an assertion, φ, of the Separation Logic, there are only
a finite number of stores such that no two stores are intensionally equivalent
(defining X = FV (φ) and w = |φ| + |X|). This follows from the finiteness of
ΦX,w: intentionally equivalent stores will satisfy the same atomic assertions in
ΦX,w. There are less that 2|ΦX,w| subsets of ΦX,w, and therefore, there are a
finite number of sets of intensionally equivalent stores.

8.4.3 Characteristic Formulae

The infinite set of all stores can be sub-divided into a finite number of sets
(equivalence classes) containing all those stores that are intentionally equivalent,
given a set of variables, X and an integer, w. These sets can be defined by a
characteristic formula. Given any state, σ, FX,wσ is the characteristic formula,
such that:

∀σ′
[
σ′ |= FX,wσ ⇐⇒ σ ≈X,w σ′

]

That is, a state, σ′, satisfies FX,wσ iff it is intentionally equivalent to σ.
We can define:

FX,wσ ,
∧

σ|=φ
φ∈ΦX,w

(φ) ∧
∧

σ2φ
φ∈ΦX,w

(¬φ)

This equations uses the observation that intentionally equivalent stores satisfy
the same atomic assertions in ΦX,w. Therefore, if σ′ is intentionally equivalent
to σ it will satisfy all those atomic assertions that σ satisfies, and the negation of
those that it does not satisfy. Conversely, if it does not satisfy the same atomic
assertions, it will not be intensionally equivalent (by definition).
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8.4.4 Expressing the Separation Logic in CL

There are a finite number of equivalence classes, for an assertion, φ, of the
Separation Logic (defining X and w as described in section 8.4.2). We write
State/≈X,w to denote this set of classes.

We can then construct a classical assertion equivalent to the assertion, φ, by
constructing the formula: ∨

C∈State/≈X,w
C|=φ

FX,wC

Intuitively, this formula works by enumerating all states that satisfy the given
formula. The assertion is then constructed from a disjunction of the character-
istic formulae for different states that satisfy the assertion, φ.

8.5 Comparison with CL

In this section we compare our encoding of the Separation Logic in FOL= with
Etienne Lozes’ classical fragment, CL, of the Separation Logic.

The first difference is the Logic into which the Separation Logic is translated.
CL is a classical fragment of the Separation Logic and is dependent on the notion
of a heap: it contains atomic assertions, (x ↪→ e1, e2) and size ≥ n. This means
that an automated decision procedure using this method will require a tool that
reasons about heap structures. Such tools are not as developed as tools that
solve problems in standard FOL=. FOL= is a widely used logic and tools exist
that are able to evaluate FOL= formulae.

Another important difference occurs when translating a Separation Logic
assertion. The construction of its CL equivalent requires the evaluation of the
assertion against an exponential number of states. This will require an external
tool that can decide the logic. Conversely, the translation into FOL= does not
require the evaluation of the original assertion.

These two differences lead to an important distinction between the two re-
sults: the translation into FOL= provides a decision procedure for the validity
and satisfaction problems of the Separation Logic. A given assertion can be
translated into FOL= without an external procedure that evaluates Separation
Logic assertions, and several efficient tools are available to check the resulting
FOL= formula.

The complexity of the two approaches is also worth considering. The trans-
lation into CL generates a formula from an exponential number of characteristic
formulae, which are polynomial in size (ΦX,w can contain O(w) size atoms, and
O(|X|3) allocation atoms). The subsets of ΦX,w represent the sets of intention-
ally equivalent states. For each of these classes we must determine whether its
characteristic formula is included in the translation into CL. This means that
we must evaluate the original Separation Logic assertion an exponential number
of times during the translation. Therefore, the resulting formulae is exponen-
tial in size, requiring a call to a Separation Logic checking tool an exponential
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number of times, finishing with the evaluation of the CL formula. Conversely,
the translation into FOL= will generate a formula whose size is O(n5) where n
denotes the length of the Separation Logic assertion (not the size). FOL= can
be easily evaluated using existing tools that can evaluate FOL= formulae.

It can be noted that the translation to CL only has quantifiers on the outside
of the formula. However, the translation into FOL= does not have this property.

In summary, the translation into CL provides an important theoretical result
(that the spatial connectives, ∗ and −∗, can be eliminated from the Separation
Logic). The translation into FOL= shows the further result that a classical
logic, without the notion of heaps, can express the Separation Logic, and also
provides an effective decision procedure.

8.6 Evaluation

In this chapter we have shown two main results: the Separation Logic is ex-
pressible in the Tree Logic, and that the Separation Logic can be expressed in
FOL=.

The translation from Separation Logic to Tree Logic highlighted some im-
portant differences between the two logics. Firstly, we were unable to represent
stacks adequately in the Tree Logic, and so, the test for validity requires the ex-
ternal enumeration of all stacks. To describe stacks in the Tree Logic we would
have required existential quantification. For example, a translation of the Sep-
aration Logic assertion, (x 7→ x, x), that does not depend on an available stack,
may yield the Tree Logic formula, x[x[x[0]]]. To check the validity of this for-
mula we require the formula to hold for all values of x; that is, ∀x.(x 7→ x, x).
The Tree Logic with quantifiers has been shown to be undecidable [12].

A further distinction between the two logics lies in the semantics of composi-
tion. In the Separation Logic, the composition connective is a partial connective:
not all heaps can be composed. Composition in the Tree Logic, however, is a
total connective. As a result, we need to enforce explicitly the conditions under
which two heaps can be composed. These conditions add to the complexity of
the translation, although not significantly.

To enforce that the trees we consider represent valid heaps, we need to enu-
merate all of the possible values a location may take. This requires a large dis-
junctive formula of depth two. However, we can take advantage of the Sheaves
Logic to reduce this formula to a single branch of depth two. This is because
the Sheaves Logic uses sets rather than singleton labels for element formulae.
This observation allows us to avoid the potentially huge Sheaves Logic formula
resulting from the translation of the disjunctive formula, and instead construct
a much smaller formula, where the set of possible values is the set of labels on
an element formula in the Sheaves Logic. Additionally, the same sub-formula is
used several times to represent all values at all locations. We may exploit the
benefits of the Recursive Sheaves Logic by using the same recursive variable be-
neath each location branch, rather than many copies of the formula representing
any value.
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We then provided a second new decision procedure for the Separation Logic,
taking Dal Zilio et al’s approach as our inspiration. This procedure encodes
the Separation logic in FOL=. A benefit of this result over the translation into
Tree Logic is that this encoding is able to express stacks, and so the enumeration
of an exponential number of stacks is not required when determining validity.
Additionally, the complexity of evaluating the FOL= formulae is significantly
lower that the complexity of evaluating Tree Logic formulae: FOL= is less
expressive than Presburger Arithmetic, and the complexity of the Tree Logic is
doubly exponential when abstracting over the cost of Presburger Arithmetic.

Due to time constraints, an implementation of this new decision procedure
for the Separation Logic has not been attempted. In chapter 9 an implementa-
tion is offered as a potential extension to the project. The resulting tool could
then be used to evaluate the decision procedure against the existing decision
procedure that involves the enumeration of all heaps and stacks that need to be
considered when evaluating an assertion.

The translation of the Separation Logic into FOL= presented in this chapter
differs from Dal Zilio et al’s work in several ways. One such difference is the
absence of support vectors. The translation into FOL= does not require a
support vector that contains the element formulae required to express the tree
structures, nor does it require automata to evaluate the formula. This is an
expected result since heaps are flat structures, and the support vectors were
required to express depth.

Another difference is that the resulting formulae required a smaller logic than
the Presburger Arithmetic. This is because we only needed counts of zero and
one — unlike the Sheaves Logic, where the element counts are unbounded. This
meant that the addition in the translation from Separation Logic to Presburger
Constraints could be replaced with boolean connectives. The counts range over
zero and one because of the uniqueness constraints: a count of greater than
one indicates that a location may occur more than once. This violates the
requirement that locations are unique.

However, because counts can only range over zero and one, we lose the ability
to denote a data structure of any size. In the Sheaves Logic, the notion of a basis
was used. A basis describes the complete set of elements, and, therefore, we can
express any tree as a set of counts of the element formulae in the basis. When
the uniqueness constraints are introduced, this property is lost. To represent a
heap of size n, we require O(n) elements in its vector translation. We were able
to use the size of the given assertion to limit the size of the heaps that needed
to be considered.
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Chapter 9

Conclusions and Future
Work

In this chapter we present the conclusions gained from the work described in the
preceding chapters. We finish by describing several areas of future work that
follow from this project.

9.1 Conclusions

The primary objective of this project was to test, via a prototypical implemen-
tation, the viability of Dal Zilio et al’s decision procedure for the Tree Logic [8].
A naive implementation of Dal Zilio et al’s work was shown to perform poorly:
the doubly exponential complexity meant that only the simplest of formulae
could be evaluated satisfactorily. However, we were able to show significant
improvements through the use of several optimisations, reducing a run-time ex-
ceeding 30 minutes to less than four seconds. We were also able to identify
several further optimisations that may reduce this time further.

We have observed that the tool performs well on several examples, but that
the run-times increase exponentially, meaning that large formulae cannot be
solved satisfactorily. Through testing we have shown that the depth of a formula
contributes significantly to the run-time of the tool. We have identified that this
slow-down may be caused by the repetition inherent in the Sheaves Logic, and
that the Recursive Sheaves Logic may be extended to reduce this repetition.
This is a good opportunity for future work.

Further to the implementation of Dal Zilio et al’s decision procedure, we
investigated the applications of Dal Zilio et al’s work to the Separation Logic.
The results of this work are two new decision procedures for the Separation
Logic. The first procedure encodes the logic in the Tree Logic, and the second
encodes the logic in First-Order Logic with equality.

The first decision procedure is a translation from the Separation Logic to
the Tree Logic. This enables us to easily extend the functionality of the tool

88



produced during this project to include the evaluation of satisfaction and validity
for the Separation Logic. Furthermore, by providing a translation from the
Separation Logic to the Tree Logic we were able to identify several difficulties
in representing unique locations in the Tree Logic. We found that we needed to
exploit the size of a formula to be able to enforce the uniqueness constraints,
and that we had to enumerate the assignment of values to the location variables
externally.

The second translation uses the ideas in Dal Zilio et al’s work to produce
a novel decision procedure for the Separation Logic. This decision procedure
encodes the Separation Logic in simple First-Order Logic with Equality and does
not require the additional enumeration of variable assignments. This translation
also produced the new result that the Separation Logic is expressible in FOL=.

Recent independent work by Etienne Lozes [9] shows that the Separation
Logic can be expressed in a classical fragment of the logic, which has as atoms
the size of a heap, equality of stack variables and the values stored at locations
in the heap. Our translation from the Separation Logic to FOL= has several
advantages over this work: the translation to FOL= does not rely on the notion
of a heap, and does not require an external decision procedure for the Separation
Logic.

9.2 Future Work

There are many avenues of work that follow from this project. We outline some
of the possibilities below:

• The Kleene Star — in section 2.4.11 we discuss the Kleene Star: a modality
that was not implemented as part of this project. An extension to the
project is to extend the functionality of the tool produced during this
project to include the evaluation of the Kleene Star.

• Further optimisations — in section 7.4.6 we present several potential op-
timisations that may increase the efficiency of the tool produced during
this project. Following on from this project, the full development, im-
plementation and evaluation of these optimisations may be attempted.
Additionally, we may wish to look for extra optimisations that have not
been identified in this report.

• Separation Logic to Tree Logic — in section 8.2 we provide a translation
from the Separation Logic to the Tree Logic. We may wish to implement
this translation, utilising the tool implemented for this project to evaluate
the resulting Tree Logic formula. We may then wish to compare this
method of deciding the Separation Logic with existing decision procedures.

• Separation Logic to FOL= — in section 8.3 we reduce the Separation Logic
to First-Order Logic with Equality. An implementation of this decision
procedure, using an external tool to evaluate FOL=, will allow us to
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determine the viability of the procedure and compare it with existing
decision procedures for the Separation Logic.

• ‘Trees with pointers’ — a ‘trees with pointers’ model brings together the
heap-model and the tree-model by adding unique location identifiers and
cross-references (XML idrefs) to the Tree Logic. It is probable that the
translation from the Separation Logic to FOL= may be extended to this
model by re-introducing the notion of a basis from Dal-Zilio et al’s work.

However, the ‘trees with pointers’ model is not enough to provide a Hoare
logic [19] for a tree update language. The Context Logic [20] provides
a solution to this problem through the introduction of ‘contexts’, that
represent trees with ‘holes’. This ‘hole’ may be created when deleting
a sub-tree at a location specified by a variable whose value can only be
known at run-time, or when adding a tree to a variable location.

Because the size of a context cannot be restricted using the observations
exploited for the Separation Logic and the Tree Logic, it is likely that
new ideas will be required to provide a decision procedure for the Context
Logic. Using the results presented in this report, or otherwise, finding
a decision procedure for the full Context Logic presents a challenging
extension to this project.
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Appendix A

Implementation

A.1 Translations

A.1.1 Translation of the Placement Modality

In section 5.3.1 a translation of A@a into Sheaves Logic is given. The proof of
the translation is given below:

Assume A = ∃(n1, . . . , np).φA · (α1[B1], . . . , αp[Bp])
And that Bi = ∃NB.φBi ·E for i ∈ 1..p
where NB and E are common to all Bi.

We define:
A@a =def

∃NB.

[
(∃(n1, . . . , np).

(
φA ∧

∨
i∈1..p
a∈αi

(
ni = 1 ∧∧j∈1..p

i6=j
(nj = 0) ∧ φBi

))]
·E

Proof:
For all trees, d, d |= A@a iff a[d] |= A iff a[d] ∈ JAK

Because A = ∃(n1, . . . , np).φA · (α1[B1], . . . , αp[Bp])
a[d] ∈ JAK
iff a[d] ∈ J∃(n1, . . . , np).φA · (α1[B1], . . . , αp[Bp])K
iff ∃(n1, . . . , np).φA ∧ ∃i ∈ 1..p.

(
a ∈ αi ∧ d ∈ JBiK ∧ ni = 1 ∧∧j∈1..p

i6=j
(nj = 0)

)

iff ∃(n1, . . . , np).φA ∧ ∃i∈1..p
a∈αi

(
d ∈ JBiK ∧ ni = 1

∧
j∈1..p
i6=j

(nj = 0)

)

As Bi = ∃NB.φBi ·E, for all i ∈ 1..p
where NB and E are common to all Bi

∃(n1, . . . , np).φA∃i∈1..p
a∈αi

(
d ∈ JBiK ∧ ni = 1

∧
j∈1..p
i6=j

(nj = 0)

)
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iff ∃(n1, . . . , np).φA∃i∈1..p
a∈αi

(
d ∈ J∃NB.φBi ·EK ∧ ni = 1

∧
j∈1..p
i6=j

(nj = 0)

)

And, since NB and E are common to all Bi:

∃(n1, . . . , np).φA∃i∈1..p
a∈αi

(
d ∈ J∃NB.φBi ·EK ∧ ni = 1

∧
j∈1..p
i6=j

(nj = 0)

)

iff d ∈
s
∃NB.

[
(∃(n1, . . . , np).

(
φA ∧

∨
i∈1..p
a∈αi

(
ni = 1 ∧∧j∈1..p

i6=j
(nj = 0) ∧ φBi

))]
·E

{

as required.

�

A.1.2 Translating Sheaves Logic to Recursive Sheaves Logic

The translation from Sheaves Logic to Recursive Sheaves Logic is given in table
5.6. The proof of this translation is given below, the proof is by induction over
the Sheaves Logic formula A:

• Base case: A = >— the RSL translation is 〈X ← ∃N.(N ≥ 0).∅⊥[X];X〉.
Proof by induction on the structure of trees:

– Base case: d = 0 — X is satisfied when N = 0.

– Inductive Step: assume d satisfies X when N = n and d′ satisfies X
when N = n′.

∗ Case 1: d′′ = d|d′ — d is of the form (n) · ∅⊥[X] and d′ is of the
form (n′) · ∅⊥[X]. Therefore d′′ is of the form (n + n′) · ∅⊥[X].
We know that n+ n′ ≥ 0 as n, n′ ≥ 0.

∗ Case 2: d′′ = a[d] where a is any label. a ∈ ∅⊥ trivially and d
satisfies X by induction, therefore d′′ is of the form (1).∅⊥[X]
(and 1 ≥ 0).

• Case 2: A = ∃N.φ(N) ·E — that is, A = ∃N.φ(N).(α1[A1], . . . , αn[An])

By induction, we know that Ai = 〈Di;Xi〉 for all i ∈ 1..n. We must
also enforce that all recursive variable names are unique, that is (using
the notation rvn(A) to denote the recursive variable names used in A)
rvn(Ai) ∩ rvn(Aj) 6= ∅ ⇒ i = j for all i, j ∈ 1..n.

Taking Y such that Y /∈ ⋃i∈1..n rvn(Ai) (that is, a unique recursive vari-
able name) we translate A to:

〈Y ← ∃N.φ(N) · (α1[X1], . . . , αn[Xn]), D1, . . . , Dn;Y 〉
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Because we ensured that all recursive variable names are unique, the be-
haviour of the recursive formulae X1, . . . , Xn will remain the same as the
variable names used in each formula are unique to that formula.

The set of trees accepted by the translation is equal to the set of tree
accepted by A because, since Y is unique, the formula which must be sat-
isfied is ∃N.φ(N) · (α1[X1], . . . , αn[Xn]). The Presburger formula remains
unchanged and the element formulae maintain the same αs. Each Ai is
replaced by the Xi obtained from the induction step. Each Xi will accept
the same set of trees as the corresponding Ai by induction and the use of
unique names.

�

A.2 Optimisations

A.2.1 Extended Sheaves Logic Direct Translations

In section 6.1 we extended the Sheaves Logic to include ⊥ and 0. For the cases
when the translation from Tree Logic to Sheaves Logic is not the same as the
translation given in section 2.4.5, the encoding is detailed explicitly in table
A.1. Most of the translations are trivial, proofs for the interesting cases are
given below:

• Case 0 ⇒ A

0 ⇒ A iff ¬0 ∨A iff ∃N.N > O ∨ φA(N) ·E.

• Case A⇒ ⊥
A⇒ ⊥ iff ¬A iff ∃N.¬φA(N) ·E.

• Case A⇒ 0

A⇒ 0 iff ¬A ∨ 0 iff ∃N.¬φA(N) ∨N = 0 ·E.

• Case > | A
If A = ∃N.φA(N) ·E, we can express truth over the basis E as ∃M.M ≥
0·E. The composition of A = ∃N.φA(N)·E and B = ∃M.M ≥ 0·E by the
standard Sheaves Logic translations is ∃N.N1,N2.(N = N1 +N2∧N1 ≥
0 ∧ φA(N2)) ·E. This is equivalent to ∃N,M.N ≥M ∧ φA(M) ·E.

• Case > . A

As above, let A = ∃N.φA(N) ·E and > = ∃M.M ≥ 0 ·E. Then > . A =
∃N.∀M.(M ≥ 0⇒ φA(N + M)) ·E; as M ≥ 0 is always true, the formula
reduces to ∃N∀M.φA(N + M) ·E.

• Case A . ⊥
Let A = ∃N.φA(N) ·E and ⊥= ∃N.F ·E. Then A . ⊥= ∃N∀M.φA(M)⇒
F ·E which is equivalent to ∀M.¬φA(M) ·E.
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Assume A = ∃N.φA(N) ·E

0 ∧ 0 =def 0
0 ∧ > =def 0
0 ∧ ⊥ =def ⊥
> ∧ > =def >
> ∧ ⊥ =def ⊥
> ∧ A =def A
⊥ ∧ ⊥ =def ⊥
⊥ ∧ A =def ⊥

0 ∨ 0 =def 0
0 ∨ > =def >
0 ∨ ⊥ =def 0
> ∨ > =def >
> ∨ ⊥ =def >
> ∨ A =def >
⊥ ∨ ⊥ =def >
⊥ ∨ A =def A

0 | 0 =def 0
0 | > =def >
0 | ⊥ =def ⊥
0 | A =def A
> | > =def >
> | ⊥ =def ⊥
⊥ | ⊥ =def ⊥
⊥ | A =def ⊥

0 ∧ A =def ∃N.N = O ∧ φA(N) ·E
0 ∨ A =def ∃N.N = O ∨ φA(N) ·E
> | A =def ∃N,M.N ≥M ∧ φA(M) ·E

0 . 0 =def 0
0 . > =def >
0 . ⊥ =def ⊥
0 . ⊥ =def A
> . > =def ⊥
> . ⊥ =def >
> . ⊥ =def ⊥
⊥ . ⊥ =def >
⊥ . ⊥ =def >
⊥ . ⊥ =def >
⊥ . A =def >
A . > =def >

0 ⇒ 0 =def >
0 ⇒ > =def >
> ⇒ > =def 0
> ⇒ ⊥ =def >
> ⇒ ⊥ =def ⊥
> ⇒ A =def A
⊥ ⇒ ⊥ =def >
⊥ ⇒ ⊥ =def >
⊥ ⇒ ⊥ =def >
⊥ ⇒ A =def >
A ⇒ > =def >

¬> =def ⊥
¬ ⊥ =def >
a[⊥] =def ⊥
0@a =def ⊥
>@a =def >
⊥ @a =def ⊥

0 ⇒ ⊥ =def ∃N.N > O ·AnyE
0 ⇒ A =def ∃N.N > O ∨ φA(N) ·E
> . A =def ∃N∀M.φA(N + M) ·E
A ⇒ ⊥ =def ∃N.¬φA(N) ·E
A ⇒ 0 =def ∃N.¬φA(N) ∨N = 0 ·E
A . ⊥ =def ∀M.¬φA(M) ·E
A . 0 =def ∃N∀M.¬φA(M) ∨N + M = 0 ·E
¬0 =def ∃N.N > O ·AnyE
a[>] =def ∃(n1, n2).n1 = 1 ∧ n2 = 0 · (a[>], {a}⊥[>])

a[0] =def ∃(n1, n2, n3).




n1 = 1∧
n2 = 0∧
n3 = 0


 · (a[0], a[A1], {a}⊥[>])

where A1 = ∃(n).n > 0 ·AnyE

Table A.1: Translating Tree Logic to Extended Sheaves Logic
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• Case A . 0

Let A = ∃N.φA(N) · E and 0 = ∃N.N = 0 · E. Then A . 0 =
∃N∀M.φA(M)⇒M+N = 0 ·E which is equivalent to ∃N∀M.¬φA(M)∨
N + M = 0 ·E.

• Case ⊥ . B
For any B, ⊥ .B is vacuously true: there are no trees which satisfy false,
and therefore, all trees that do, when composed with a tree, satisfy any
given formula.

• Case a[0]

The translation for a[0] is the formula produced when the standard Sheaves
Logic translation is applied to the formula.

• Case a[>]

By applying the standard translation we acquire, ∃(n1, n2, n3).(n1 = 1 ∧
n2 = 0 ∧ n3 = 0).(a[>], a[⊥], a⊥[>]). Because a[⊥] is unsatisfiable, we
must assert that n2 = 0. This does not change the Presburger constraint,
and, since (a[>], a⊥[>]) refines (a[>], a[⊥], a⊥[>]), we can redefine the
translation over this reduced basis, giving ∃(n1, n2).n1 = 1 ∧ n2 = 0 ·
(a[>], {a}⊥[>]).

• Case a[⊥]

By applying the standard translation we acquire, ∃(n1, n2, n3).(n1 = 1 ∧
n2 = 0 ∧ n3 = 0).(a[>], a[⊥], a⊥[>]). Because a[⊥] is unsatisfiable, we
must assert that n1 = 0. This requires that n1 = 0 and n1 = 1. This
condition in unsatisfiable, and therefore the translation is ⊥.

�

A.2.2 Translating Extended Sheaves Logic to Recursive
Sheaves Logic

To prove the correctness of the translation (given in table 6.1) from Extended
Sheaves Logic to Recursive Sheaves Logic it only remains to prove that X⊥ is
equivalent to falsity in the Tree Logic, and that X0 is equivalent to 0 in the
Tree Logic. This is because we know that X> is equivalent to truth by the
proof given in appendix A.1.2. The proof for the case when A = ∃N.φ(N) · E
also carries through to the Extended Sheaves Logic with the exception that the
recursive variable names X>, X⊥ and X0 are not unique to each sub-formula.
This does not change the argument significantly since X>, X⊥ and X0 are
self-contained formulae that accept the same trees in each sub-formula. The
presence or absence of any other formulae that do not redefine X>, X⊥ and X0

will not alter their behaviour.
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• Case A =⊥ — the RSL translation is 〈X⊥ ← ∃N.(F).∅⊥[X⊥];X⊥〉.
We need to prove that X⊥ ← ∃N.(F).∅⊥[X⊥] accepts no trees. The Pres-
burger constraint, F is not satisfiable, and therefore the RSL translation
will accept no trees.

• Case A = 0 — the RSL translation is 〈X0 ← ∃N.(N = 0).∅⊥[X0];X0〉.
We need to prove that X0 accepts tree d iff d ≡ 0. Suppose for contra-
diction that X0 accepts a tree that is not equivalent to 0. Then it must
be the case that N > 0. This is a contradiction (as required) since the
Presburger constraint enforces N = 0.

�

A.2.3 Basis Optimisation

A relation R refines a basis E = (E1, . . . , En) to another basis F = (F1, . . . , Fm)
iff for all i ∈ 1..n:

JEiK =
⋃

(i,j)∈R
JFjK

We need to show that if this property holds, then R′ also refines the basis E to
the basis F′, where:

R′ = {(i, j)|Fj ≡⊥ orFj = ∅[X]}

and F′ is the basis F, with the elements Fj removed if Fj ≡⊥ or Fj = ∅[X].

Proof:

We need to show that for all i ∈ 1..n:

JEiK =
⋃

(i,j)∈R′
JF ′jK

It is easy to see that,

⋃

(i,j)∈R′
JF ′jK =

⋃

(i,j)∈R
JFjK−

⋃

(i,j)∈R
Fj≡⊥

JFjK−
⋃

(i,j)∈R
Fj≡∅[X]

JFjK

If Fj ≡⊥ then JFjK = ∅, and if Fj = ∅[X] then JFjK = {a[D]|a ∈ ∅∧D |= X} = ∅.
In both cases, JFjK is the empty set, therefore:

⋃

(i,j)∈R′
JF ′jK =

⋃

(i,j)∈R
JFjK−

⋃

(i,j)∈R
Fj≡⊥

∅ −
⋃

(i,j)∈R
Fj≡∅[X]

∅
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And so, ⋃

(i,j)∈R′
JF ′jK =

⋃

(i,j)∈R
JFjK

as required.

�

A.3 Testing

Three sets of test data were used when testing the system in section 7.1. This
test data is provided in tables A.2 and A.3, A.4, A.5.
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EXPTRUE 0 OFTYPE 0;

EXPFALSE a[0] OFTYPE 0;

EXPTRUE 0 OFTYPE T;

EXPTRUE a[0] OFTYPE T;

EXPTRUE a[0] | b[0] OFTYPE T;

EXPFALSE 0 OFTYPE F;

EXPFALSE a[0] OFTYPE F;

EXPFALSE a[0] | b[0] OFTYPE F;

EXPTRUE a[0] OFTYPE a[0];

EXPFALSE a[a[0]] OFTYPE a[0];

EXPTRUE a[0] OFTYPE a[0];

EXPTRUE a[a[0]] OFTYPE a[T];

EXPTRUE a[b[0]] OFTYPE a[T];

EXPFALSE b[0] OFTYPE a[T];

EXPFALSE a[0] | a[0] OFTYPE a[T];

EXPFALSE a[0] | b[0] OFTYPE a[T];

EXPFALSE a[0] OFTYPE a[0] | b[0];

EXPTRUE a[0] | b[0] OFTYPE a[0] | T;

EXPTRUE a[0] OFTYPE a[0] | T;

EXPFALSE b[0] OFTYPE a[0] | T;

EXPTRUE a[0] OFTYPE a[0] | 0;

EXPFALSE a[0] | a[0] OFTYPE a[0] | 0;

EXPFALSE a[0] OFTYPE a[0] | F;

EXPFALSE a[0] | 0 OFTYPE a[0] | F;

EXPFALSE 0 OFTYPE 0@a;

EXPFALSE a[0] OFTYPE 0@a;

EXPFALSE b[0] OFTYPE 0@b;

EXPFALSE a[a[0]] OFTYPE 0@a;

EXPFALSE a[0] OFTYPE a[0]@a;

EXPFALSE a[a[0]] OFTYPE a[0]@a;

EXPTRUE a[0] OFTYPE a[0] AND a[T];

EXPFALSE a[a[0]] OFTYPE a[0] AND a[T];

EXPTRUE a[0] OFTYPE a[0] -> a[T];

EXPTRUE a[0] OFTYPE 0 |> a[0];

EXPTRUE a[0] OFTYPE b[0] |> a[0] | T;

EXPTRUE a[0] OFTYPE F |> F;

EXPTRUE VALID (0 OR p[0]) | NOT(p[0]);

EXPTRUE VALID q[NOT 0] |> NOT(0);

EXPTRUE VALID (T |> NOT((q[0] OR T) |> 0))@q;

EXPTRUE VALID NOT(((0 OR p[0])@p)@p@p);

EXPTRUE VALID (NOT(p[T]) OR NOT(q[T]))@q;

Table A.2: Simple test cases
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EXPTRUE VALID p[T] |> p[T] | T;

EXPTRUE VALID NOT(p[T] |> 0);

EXPTRUE VALID (T | (NOT(0) OR 0)) | T;

EXPTRUE VALID (T | q[T])@q OR 0;

EXPFALSE VALID a[T] -> a[0];

EXPFALSE VALID NOT(0) AND T;

EXPFALSE VALID T |> 0;

EXPFALSE VALID a[0]@a;

EXPTRUE SAT a[0]@a;

EXPTRUE VALID a[0] -> NOT a[0] OR NOT b[0];

Table A.3: Simple test cases continued

EXPTRUE a[0] | b[0] OFTYPE a[0] | b[0];

EXPTRUE b[0] | a[0] OFTYPE a[0] | b[0];

EXPFALSE a[0] | b[0] | b[0] OFTYPE a[0] | b[0];

EXPTRUE a[0] | a[0] OFTYPE a[0] | a[0];

EXPFALSE a[0] | a[0] | a[0] OFTYPE a[0] | a[0];

EXPFALSE a[0] | b[0] OFTYPE a[0] AND b[0];

EXPTRUE a[0] | b[0] OFTYPE (a[0] | T) AND (b[0] | T);

EXPTRUE a[0] | b[0] OFTYPE (a[0] | T) -> (b[0] | T);

EXPTRUE a[0] | b[0] OFTYPE a[0] -> (b[0] | T);

EXPFALSE a[0] | b[0] OFTYPE (a[0] | T) -> b[0];

EXPTRUE a[0] OFTYPE b[0] |> a[0] | b[0];

EXPFALSE a[0] OFTYPE b[0] |> a[0] | b[b[0]];

EXPTRUE VALID NOT((q[q[0]] | q[0])@q);

EXPTRUE a[b[0]|c[d[0]]] OFTYPE a[T|c[T]] | T;

EXPFALSE VALID a[T|c[T]] | T -> a[b[0]|c[d[0]]];

EXPTRUE SAT a[0]|b[c[0]|d[0]] |> a[0]|b[c[0]|d[0]] | b[c[0]];

EXPFALSE a[0] | b[0] | c[0] | a[0] | b[0] SUBTYPE T | b[0] | T | e[0];

EXPTRUE VALID (a[b[0]] |> a[T] | e[0]) |> (e[0] | T);

EXPFALSE SAT a[b[0] | c[0]] AND a[b[0] | d[0]];

EXPTRUE SAT a[b[0] | c[0]] OR a[b[0] | d[0]];

Table A.4: Moderate test cases
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EXPFALSE SAT a[b[c[NOT e[0] AND NOT f[0]]]] AND (a[b[c[e[0]]]] OR

a[b[c[f[0]]]]);

EXPTRUE VALID a[a[a[a[a[a[0]]]]]] -> a[a[a[a[T]]]];

EXPTRUE SAT a[b[(e[0] OR f[0]) | T]] -> a[b[T]] AND (a[b[e[0]]] OR

a[b[f[0] | a[0] | b[f[T]]]]);

EXPFALSE VALID a[b[(e[0] OR f[0]) | T]] -> a[b[T]] AND (a[b[e[0]]]

OR a[b[f[0] | a[0] | b[f[T]]]]);

EXPTRUE SAT a[b[a[0] | b[0] | c[d[T]] |> a[0] | b[0]| c[d[0]] | T]];

EXPTRUE SAT a[0] | a[b[c[0]]] | T AND a[T] | a[T] | 0 | 0;

EXPTRUE SAT a[0] | a[b[T]] | b[0] AND a[b[0]] | b[0] | a[0];

EXPTRUE SAT a[0] | a[b[T]] | b[0] AND a[b[0]] | b[0] | a[0] AND

a[T] | a[T] | b[T] AND a[T] | b[0] | a[0];

EXPFALSE SAT a[0] | a[b[T]] | b[0] AND a[b[0]] | b[0] | a[0] AND

a[T] | a[T] | b[T] AND a[0] | b[0] | a[0];

EXPFALSE SAT f[0] | a[b[T]] | b[0] AND a[b[0]] | b[0] | a[0] AND

a[T] | a[T] | b[T] AND a[T] | b[0] | a[0];

EXPTRUE SAT a[0] | a[b[c[0]]] | T OR a[T] | a[T] | 0 | 0;

EXPTRUE SAT a[0] | a[b[T]] | b[0] OR a[b[0]] | b[0] | a[0];

EXPTRUE SAT a[0] | a[b[T]] | b[0] OR (a[b[0]] | b[0] | a[0] AND

a[T] | a[T] | b[T] AND a[T] | b[0] | a[0]);

EXPTRUE SAT a[0] | a[b[T]] | b[0] OR a[b[0]] | b[0] | a[0] OR a[T]

| a[T] | b[T] AND a[0] | b[0] | a[0];

EXPTRUE SAT f[0] | a[b[T]] | b[0] OR a[b[0]] | b[0] | a[0] OR a[T]

| a[T] | b[T] OR a[T] | b[0] | a[0];

EXPTRUE SAT a[b[c[e[0] OR f[0]]]] AND (a[b[c[e[0]]]] OR

a[b[c[f[0]]]]);

EXPTRUE SAT a[0] | b[c[d[c[e[0]]]]] -> a[T] | b[c[d[T]]] | T;

EXPFALSE VALID a[b[0]] | b[c[d[e[T]]]] -> a[b[T]] | T | 0 |

b[c[d[e[0]]]];

EXPTRUE SAT a[b[0]] | b[c[d[e[T]]]] -> a[b[0]] | T | 0 |

b[c[d[e[T]]]];

EXPTRUE SAT a[T] | b[a[0] OR c[d[e[b[0] | d[0]]]]] |> a[T] | b[a[0]]

| b[c[d[e[b[0] | d[0]]]]] | T;

EXPTRUE SAT a[a[b[b[b[c[e[T]]]]]]];

EXPFALSE VALID a[a[b[b[c[e[T]]]]]];

Table A.5: Difficult test cases
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Appendix B

Theory

B.1 Deciding the Separation Logic

B.1.1 Composition Adjunct (−∗)
In section 8.1.2 we state that to evaluate an assertion of the form s, h |= φ1 −∗
φ2, we only need consider a finite set of heaps, h′. The domain of h′ must be
a subset of L′ ∪ Sφ,s, where L′ is a set of max(|φ1|, |φ2|) locations, such that
L and L′ are disjoint, and Sφ,s is the set s(FV (φ)). The set of values mapped
to by this heap must be a subset of Sφ,s ∪ {nil, v}. The heap, h ∗ h′, is then a
heap whose domain is a subset of L ∪ L′ ∪ Sφ,s, and whose values are a subset
of Sφ,s ∪ {nil, v}. The proof of this property follows.

We begin by introducing a result given by Calcagno, Yang and O’Hearn [10]:
given a state (s, h) and assertions φ, ψ, let X be FV (φ)∪FV (ψ) and B a finite
set consisting of the first max(|φ|, |ψ|) locations in Loc−(dom(h)∪s(X)) where
the ordering is given by ord. Pick a value V ∈ V al − s(X) − {nil}. Then
(s, h) |= φ −∗ ψ holds iff for all h1 such that

• h#h1 and (s, h1) |= φ

• dom(h1) ⊆ B ∪ s(X)

• for all l ∈ dom(h1), h1(l) ∈ (s(FV (X))∪{nil, v})× (s(FV (X))∪{nil, v})

we have that (s, h ∗ h1) |= ψ.
The property that we wish to prove is a corollary of this result. It is easy to

see that the set L is the set B, and that s(X) ⊆ Sφ,s, since FV (φ1)∪FV (φ2) ⊆
FV (φ), and Sφ,s = s(FV (φ)).

Finally, the domain of h ∗ h1 is a subset of L∪L′ ∪Sφ,s because the domain
of h is a subset of L ∪ Sφ,s and the domain of h1 is a subset of L′ ∪ Sφ,s. The
domain of h ∗h′ is therefore a subset of (L∪Sφ,s)∪ (L′ ∪Sφ,s), or L∪L′ ∪Sφ,s.

�
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B.1.2 Reducing Heaps

Also in section 8.1.2 we introduce the notation Rφ,s(h). We use this notation
to denote a heap that has been translated to an equivalent heap in the set Hφ,s.

Intuitively, to translate a heap to an equivalent heap in Hφ,s, we can relocate
any heap cells that are not explicitly referred to in the given assertion, φ; we
can de-allocate those cells that are redundant (that is, there only needs to be
a finite number of cells that are not explicitly referred to by φ because φ can
only refer to indirectly to a finite number of cells, via assertions of the form
¬(x 7→ y, z), for example); and we can replace all uninteresting values with the
equally uninteresting value, v.

B.1.3 A Finite Set of Heaps

In section 8.1.2 we state that checking whether an assertion, φ, holds for all
heaps, h, given a state, s, we only need to consider the set of heaps whose
domain is a subset of a set L∪Sφ,s, where L is a set of |φ| locations not in Sφ,s.
Additionally, the heap must map all locations in its domain to values in the set
Sφ,s ∪ {nil, v}, where v is a unique element not appearing in Sφ,s, L or {nil}.

This property follows from the following results introduced by Calcagno,
Yang and O’Hearn [10]:

• Given a state (s, h) and assertions φ, ψ, let X be FV (φ)∪FV (ψ) and B a
finite set consisting of the first max(|φ|, |ψ|) locations in Loc− (dom(h)∪
s(X)) where the ordering is given by ord. Pick a value v ∈ V al− s(X)−
{nil}. Then (s, h) |= φ −∗ ψ holds iff for all h1 such that

– h#h1 and (s, h1) |= φ

– dom(h1) ⊆ B ∪ s(X)

– for all l ∈ dom(h1), h1(l) ∈ (s(FV (X)) ∪ {nil, v}) × (s(FV (X)) ∪
{nil, v})

we have that (s, h ∗ h1) |= ψ.

• Given a stack, s, and an assertion, φ, checking (s, h) |= φ for all h is
decidable. This corollary holds because s, h |= φ for all h iff s, [] |= (¬φ) −∗
false.

Therefore, (s, h) |= φ for all h iff s, [] |= (¬φ) −∗ false. s, [] |= (¬φ) −∗ false iff
for all h’ such that

• []#h′ and (s, h′) |= ¬φ

• dom(h′) ⊆ B ∪ s(X)

• for all l ∈ dom(h′), h′(l) ∈ (s(X) ∪ {nil, v})× (s(X) ∪ {nil, v})
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we have that (s, [] ∗ h′) |= false, where B is the set consisting of the first
max(|¬φ|, |false|) locations in Loc− (dom([]) ∪ s(X)).

Since max(|¬φ|, |false|) = |φ|, X = FV (¬φ)∪FV (false) = FV (φ), and []#h′

always holds, we have, (s, h) |= φ iff for all h’ such that

• dom(h′) ⊆ B ∪ s(FV (φ))

• for all l ∈ dom(h′), h′(l) ∈ (s(FV (φ)) ∪ {nil, v})× (s(FV (φ)) ∪ {nil, v})

we have that (s, h′) |= ¬φ⇒ (s, h′) |= false. The contrapositive of this statement
is (s, h′) |= true ⇒ (s, h′) |= φ, which is equivalent to (s, h′) |= φ. The result
follows since L|φ| = B and Sφ,s = s(FV (φ)) by definition.

�

B.1.4 A Finite Set Of Stacks

In section 8.1.2 we also state that checking whether an assertion, φ, holds for
all states, s, we only need to consider the stacks that map all free variables of φ
to an element of a set S|φ| ∪ {nil} and all other variables to nil. We also state
that we can translate any stack to a stack in this set.

This follows directly from a property introduced by Calcagno, Yang and
O’Hearn [10] that follows:

To check (s, h) |= φ for all states, we can observe that the relationship of
the variable is important, not their values. We define the relation, ≈X , to
denote that for two states, the relationship between the variables stored in X
or in the heap are the same. It can be shown that, if (s, h) ≈FV (φ) (s′, h′),
then, if (s, h) |= φ, then (s′, h′) |= φ. It can also be shown that, for any state,
(s, h), and assertion, φ, there is a state, (s′, h′) such that (s, h) ≈FV (φ) (s′, h′)
and s′(V ar − FV (φ)) ⊆ {nil} and s′(FV (φ)) ⊆ B ∪ {nil}, where B is the set
consisting of the first |FV (φ)| locations in Loc.

B.1.5 H ′φ,n

We can show Hφ,s,L|φ| ⊆ H ′φ,|φ|, since, if h ∈ Hφ,s,L|φ| , then the domain of h is

a subset of L|φ| ∪ Sφ,s. Because |Sφ,s| ≤ |S|φ||, |dom(h)| ≤ |φ| + |S|φ|| and so

h ∈ H ′φ,|φ|. Similarly, S ⊆ Sφ, since, if s ∈ S, then s maps all variables not in

FV (φ) to nil, and hence, s ∈ Sφ.
So, if ∀s ∈ Sφ∀h ∈ H ′φ,|φ|s, h |= φ, then ∀s ∈ S∀h ∈ Hφ,s,L|φ|s, h |= φ and

so ∀s, h.(s, h) |= φ. In the other direction, ∀s, h.(s, h) |= φ ⇒ ∀s ∈ Sφ∀h ∈
H ′φ,|φ|s, h |= φ, trivially.

B.2 Translating Separation Logic to Tree Logic

The translation from Separation Logic to Tree Logic is given in table 8.6. In this
section we provide the proof that the translation has the following properties:
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• given a formula, φ, and a stack, s,

∀h ∈ Hφ,s [(s, h |= φ ⇐⇒ heaptran(h) |= tran(φ, s))]

• given a stack, s, and an assertion, φ,

[∀h(s, h |= φ)] ⇐⇒ [∀d(d |= tran(φ, s))]

We first prove some useful properties that will be used throughout the proof.
Then we prove that, if h ∈ Hφ,s,L, heaptran(h) will satisfy the formula,
tran′(φ, s, φ, L), iff the heap, h, satisfies φ. We then use this property to show
the first property that we wish to prove. Finally, we show that the second
property is a consequence of the first.

We begin by showing some useful properties:

1. If L ⊆ L′, then heap(L, s, φ)⇒ heap(L′, s, φ).

2. If d |= heap(L, s, φ), then there is a heap, h ∈ Hφ,s,L, such that heaptran(h) =
d.

3. If h ∈ Hφ,s,L, then heaptran(h) |= heap(L, s, φ).

4. If h = h1 ∗ h2 and h ∈ Hφ,s,L, then h1, h2 ∈ Hφ,s,L.

5. If d = d1|d2 and d |= heap(L, s, φ), then d1 |= heap(L, s, φ) and d2 |=
heap(L, s, φ).

The proof of these properties is as follows:

1. Assume L ⊆ L′ and a tree, d satisfies heap(L, s, φ), then it is a tree of
the form x1[y1[z1[0]]]| . . . |xn[yn[zn[0]]], where xi ∈ L ∪ Sφ,s, all xi are
unique, and yi, zi ∈ Sφ,s ∪ {nil, v} for all i ∈ 1..n. Since L ⊆ L′, it is
also the case that xi ∈ L′ ∪ Sφ,s, and yi, zi ∈ Sφ,s ∪ {nil, v}. Therefore,
d |= heap(L′, s, φ).

2. If a tree, d satisfies heap(L, s, φ), then it is a tree of the form
x1[y1[z1[0]]]| . . . |xn[yn[zn[0]]], where xi ∈ L ∪ Sφ,s, all xi are unique, and
yi, zi ∈ Sφ,s ∪ {nil, v} for all i ∈ 1..n. Therefore, it is the translation
of a heap, h, of the form, h = (x1 7→ y1, z1) ∗ . . . ∗ (xn 7→ yn, zn). The
domain of h is then a subset of L ∪ Sφ,s, and its values are all in the set
Sφ,s ∪ {nil, v}. Therefore, h ∈ Hφ,s,L, and such an h exists.

3. If heap, h ∈ Hφ,s,L, then it is of the form, h = (x1 7→ y1, z1) ∗ . . . ∗
(xn 7→ yn, zn), where xi ∈ L ∪ Sφ,s, and yi, zi ∈ Sφ,s ∪ {nil, v} for all
i ∈ 1..n. heaptran(h) will be of the form x1[y1[z1[0]]]| . . . |xn[yn[zn[0]]],
and therefore, heaptran(h) will satisfy heap(L).

4. Since h = h1 ∗ h2, it must be the case that h1, h2 ∈ Hφ,s,L since the
domains of h1 and h2 are subsets of the domain of h, and their values are
the same as the values in h.
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5. Since d |= heap(L, s, φ) is must be the composition of elements satisfying
a unique Ai in heap(L, s, φ). d1 and d2 will each be formed from a subset
of the elements in d, and therefore, their elements will satisfy the same Ai
in heap(L, s, φ). For those elements that are not in d1 but in d2 (and vice
versa), the sub-formula 0 is satisfied instead of the sub-formula Ai, and
hence heap(L, s, φ) is still satisfied.

We now prove:

∀h ∈ Hφ,s,L [s, h |= φ ⇐⇒ heaptran(h) |= tran′(φ, s, φ, L)]

for a given formula, φ and a stack, s, by induction on sub-formulae, ψ, of φ:

• Case ψ = (E 7→ E1, E2). We want s, h |= (E 7→ E1, E2) ⇐⇒ heaptran(h) |=
JEKs

[
JE1Ks

[
JE2Ks

[
0
]]]

.

⇒: suppose s, h |= (E 7→ E1, E2), then h = (JEKs 7→ JE1Ks, JE2Ks) and
heaptran(h) = JEKs

[
JE1Ks

[
JE2Ks

[
0
]]]

and so

heaptran(h) |= JEKs
[
JE1Ks

[
JE2Ks

[
0
]]]

.

⇐: suppose heaptran(h) |= JEKs
[
JE1Ks

[
JE2Ks

[
0
]]]

, then heaptran(h) =

JEKs
[
JE1Ks

[
JE2Ks

[
0
]]]

and so h = (JEKs 7→ JE1Ks, JE2Ks), consequently
s, h |= (E 7→ E1, E2).

• Case ψ = (E1 = E2). We want s, h |= (E1 = E2) ⇐⇒ heaptran(h) |=
tran′((E1 = E2), s, φ, L).

This property follows immediately since its value does not depend on the
contents of h. The translation evaluates E1 = E2 and returns T or F as
required. Therefore, the required property will hold by definition.

• Case ψ = false. We want s, h |= false ⇐⇒ heaptran(h) |= tran′(false, s, φ, L).

This is immediate since tran′(false, s, φ, L) = F.

• Case ψ = (φ1 ⇒ φ2). We want s, h |= (φ1 ⇒ φ2) ⇐⇒ heaptran(h) |=
tran′((φ1 ⇒ φ2), s, φ, L). That is, s, h |= (φ1 ⇒ φ2) ⇐⇒ heaptran(h) |=
(tran′(φ1, s, φ, L)⇒ tran(φ1, s, φ, L). We assume inductively that s, h |=
φi ⇐⇒ heaptran(h) |= tran′(φi, s, φ, L) for i ∈ {1, 2}.
s, h |= (φ1 ⇒ φ2) ⇐⇒ ((s, h |= φ1)⇒ (s, h |= φ2)) ⇐⇒ ((heaptran(h) |=
tran′(φ1, s, φ, L))⇒ (heaptran(h) |= tran′(φ2, s, φ, L))) ⇐⇒
heaptran(h) |= (tran′(φ1, s, φ, L)⇒ tran′(φ1, s, φ, L)), as required.

• Case ψ = emp. We want s, h |= emp ⇐⇒ heaptran(h) |= tran′(emp, s, φ, L).
That is, s, h |= emp ⇐⇒ heaptran(h) |= 0.

⇒: if s, h |= emp then h = [], and so heaptran(h) = 0. Therefore,
heaptran(h) |= 0.

⇐: if heaptran(h) |= 0 then heaptran(h) ≡ 0 and so h = []. Therefore,
s, h |= emp, as required.

107



• Case ψ = φ1 ∗ φ2. We want s, h |= φ1 ∗ φ2 ⇐⇒ heaptran(h) |=
tran′((φ1 ∗ φ2), s, φ, L). That is, s, h |= φ1 ∗ φ2 ⇐⇒ heaptran(h) |=
(tran′(φ1, s, φ, L)|tran′(φ2, s, φ, L)).

⇒: suppose s, h |= φ1 ∗ φ2. Then, there exists h1, h2 such that, h1#h2,
h = h1 ∗ h2, (s, h1) |= φ1 and (s, h2) |= φ2.
heaptran(h) = heaptran(h1)|heaptran(h2) since h = h1 ∗ h2. By (4)
and induction heaptran(h1) |= tran′(φ1, s, φ, L) and heaptran(h2) |=
tran′(φ2, s, φ, L), and so heaptran(h) |= tran′(φ1, s, φ, L)|tran′(φ2, s, φ, L).

⇐: suppose heaptran(h) |= (tran′(φ1, s, φ, L)|tran′(φ2, s, φ, L)). There-
fore, there exists d1, d2 such that heaptran(h) = d1|d2 and
d1 |= tran′(φ1, s, φ, L) and d2 |= tran′(φ2, s, φ, L). Inductively we know
that d1 |= heap(L, s, φ) and d2 |= heap(L, s, φ). So, by (2), there are
h1, h2 such that heaptran(h1) = d1 and heaptran(h2) = d2. Since
heaptran(h) = heaptran(h1)|heaptran(h2), it follows that h = h1 ∗ h2

(and h1#h2 since h is a heap). By induction, s, h1 |= φ1 and s, h2 |= φ2,
consequently, h |= φ1 ∗ φ2, as required.

• Case ψ = φ1 −∗ φ2. We want s, h |= φ1 −∗ φ2 ⇐⇒ heaptran(h) |=
tran′((φ1 −∗ φ2), s, φ, L). That is, s, h |= φ1 −∗ φ2 ⇐⇒ heaptran(h) |=
(tran′(φ1, s, φ, L

′)∧heap(L′, s, φ)).(heap(L∪L′, s, φ)⇒ tran′(φ2, s, φ, L∪
L′)).

⇒: assume s, h |= φ1 −∗ φ2, then for all h1 such that h#h1 and s, h1 |= φ1,
s, (h ∗ h1) |= φ2. For heaptran(h) |= (tran′(φ1, s, φ, L

′) ∧ heap(L′, s, φ)) .
(heap(L∪L′, s, φ)⇒ tran′(φ2, s, φ, L∪L′)) to hold we require that for all
d, if d |= tran′(φ1, s, φ, L)∧heap(L′, s, φ), then d|heaptran(h) |= heap(L∪
L′, s, φ)⇒ tran′(φ2, s, φ, L ∪ L′).
So, we assume d |= tran′(φ1, s, φ, L

′)∧heap(L′, s, φ). Since d |= heap(L′, s, φ),
by (2) we know that there is an h1 such that heaptran(h1) = d and
h1 ∈ Hφ,s,L′ . Therefore, heaptran(h1) |= tran′(φ1, s, φ, L) and so s, h1 |=
φ1 by induction. There are now two cases to consider: whether h#h1.
If h#h1 does not hold, then heaptran(h)|heaptran(h1) 2 heap(L ∪ L′)
since heaptran(h)|heaptran(h1) will contain some element formulae with
the same top branch — contradicting heap(L ∪ L′, s, φ) — and hence
heaptran(h)|heaptran(h1) |= heap(L ∪ L′, s, φ) ⇒ tran′(φ2, s, φ, L ∪ L′)
holds. In this case, the heap h1 should not appear in the universal quan-
tification over heaps, and so truth is the correct result. In the second
case, h ∗h1 will be a valid heap whose domain is the union of dom(h) and
dom(h1). Since L and L′ are the disjoint components of the domains of
the two heaps, heaptran(h)|heaptran(h1) |= heap(L ∪ L′, s, φ). By our
original assumption, s, h ∗ h1 |= φ2, so, by induction, heaptran(h ∗ h1) |=
tran′(φ2, s, φ, L ∪ L′). heaptran(h ∗ h1) = heaptran(h)|heaptran(h1) =
heaptran(h1)|d, and so d|h1 |= heap(L ∪ L′) ⇒ tran′(φ2, s, φ, L ∪ L′) as
required.

⇐: assume heaptran(h) |= (tran′(φ1, s, φ, L
′)∧heap(L′, s, φ)). (heap(L∪

L′, s, φ) ⇒ tran′(φ2, s, φ, L ∪ L′). That is, for all trees d, such that
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d |= tran′(φ1, s, φ, L
′) ∧ heap(L′, s, φ), then d|heaptran(h) |= heap(L ∪

L′, s, φ)⇒ tran′(φ2, s, φ, L ∪ L′).
We require that h |= φ1 −∗ φ2. To check this assertion we must evaluate
(s, h ∗ h1) |= φ2 for all h1 ∈ Hφ,s,L′ where L′ = Lmax(|φ1|,|φ2|), and for
whom h#h1 and s, h |= φ1 hold.

Since L′ = Lmax(|φ1,φ2|), h1 we have heaptran(h1) |= heap(L′, s, φ) (by
(3)). Since h#h1, and (h ∗ h1) ∈ Hφ,s,L∪L′ and by (3), we know that
heaptran(h)|heaptran(h1) |= heap(L∪L′, s, φ). Additionally, given (s, h1) |=
φ1, we know heaptran(h1) |= tran′(φ1, s, φ, L

′) by induction. Conse-
quently, heaptran(h)|heaptran(h1) |= tran′(φ2, s, φ, L ∪ L′) by assump-
tion.

Because h#h1, heaptran(h)|heaptran(h1) = heaptran(h ∗ h1), and so, by
induction, (s, h ∗ h1) |= φ2, as required.

Finally, we show that, given a stack, s, and an assertion, φ:

[∀h(s, h |= φ)] ⇐⇒ [∀d(d |= tran(φ, s))]

That is,

[∀h(s, h |= φ)] ⇐⇒ [∀d(d |= heap(L, s, φ)⇒ tran′(φ, s, φ, L)]

where L = L|φ|.

• ⇒: suppose, ∀h(s, h |= φ). Also assume that d |= heap(L, s, φ). Then,
by (2), there is a heap h such that heaptran(h) = d and h ∈ Hφ,s,L. We
know ∀h(s, h |= φ), and that,

∀h ∈ Hφ,s,L [s, h |= φ ⇐⇒ heaptran(h) |= tran′(φ, s, φ, L)]

and so, since d = heaptran(h), d |= tran′(φ, s, φ, L), as required.

• ⇐: suppose, ∀d(d |= heap(L) ⇒ tran′(φ, s, φ, L)). Since, to test satis-
faction for all heaps, we only need to consider those heaps in Hφ,s,L, we
require ∀h ∈ Hφ,s,L(s, h |= φ). We know that,

∀h ∈ Hφ,s,L [s, h |= φ ⇐⇒ heaptran(h) |= heap(L, s, φ)⇒ tran′(φ, s, φ, L)]

We also know that heaptran(h) |= heap(L, s, φ) ⇒ tran′(φ, s, φ, L) be-
cause ∀d(d |= heap(L, s, φ)⇒ tran′(φ, s, φ, L)). Therefore ∀h ∈ Hφ,s,L(s, h |=
φ), and so ∀h.(s, h |= φ)

�
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B.3 Translating Separation Logic to FOL=

B.3.1 Translating Separation Logic to Presburger Arith-
metic

In section 8.3 we give a translation from the Separation Logic to FOL=. We
now prove the following properties:

• Given an assertion, φ,

∀(s, h) ∈ Sφ×H ′φ,|φ|
[
(s, h |= φ) ⇐⇒ ∀v ∈ vectorφ,|φ|(s, h) v |= tran(φ))

]

• For an assertion, φ,

[∀(s, h).s, h |= φ] ⇐⇒ [∀(N,B,S) (N,B,S) |= tran(φ)]

We begin by showing some properties that will be used throughout the proof.
We then show the first property using induction, and finish by showing how the
second property can be derived from the first.

The properties that will be used throughout the proof are:

1. If (N,B,S) |= bounded(N)∧heap(N,B), where N = NL⊕NS, |NL| = p,
|BL| = 3p, |NS| = |FV (φ)| and |BS| = 3|FV (φ)|, then there exists a
state, (s, h) such that s ∈ Sφ, h ∈ H ′φ,p and (N,B,S) ∈ vectorφ,p(s, h).

2. If s ∈ Sφ and h ∈ H ′φ,p, then for all (N,B,S) ∈ vectorφ,p(s, h), (N,B,S) |=
bounded(N) ∧ heap(N,B) and N = NL ⊕ NS, |NL| = p, |BL| = 3p,
|NS| = |FV (φ)| and |BS| = 3|FV (φ)|.

3. If B = B′⊕B′′, N = N′⊕N′′ and heap(N,B) holds, then both heap(N′,B′)
and heap(N′′,B′′) hold.

4. If N = N1 + N2 and heap(N,B), then heap(N1,B) and heap(N2,B)
hold.

We state these properties without proof.
The property,

∀(s, h) ∈ Sφ ×H ′φ,|φ|
[
(s, h |= φ) ⇐⇒ ∀v ∈ vectorφ,|φ|(s, h) v |= tran(φ))

]

for an assertion, φ, is equivalent to, ∀(s, h) ∈ Sφ ×H ′φ,|φ|



(s, h |= φ) ⇐⇒
∀(N,B,S) ∈ vectorφ,|φ|(s, h)(N,B,S) |=

(
bounded(N) ∧ heap(N,B)
⇒ tran′(φ)(N,B,S)

)



By property (2) we know that bounded(N) ∧ heap(N,B) holds, so we need to
prove that, ∀(s, h) ∈ Sφ ×H ′φ,|φ|

[
(s, h |= φ) ⇐⇒ ∀(N,B,S) ∈ vectorφ,|φ|(s, h) (N,B,S) |= tran′(φ)

]
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The proof of this property is by induction on the sub-formulae, ψ of φ. The
case, ψ = φ1 −∗ φ2 is presented below. We assume that h ∈ H ′φ,p for some
p. At the top level p = |φ|, but, recursively, p will increase in the case of the
composition adjunct. Therefore, our induction hypothesis is:

[(s, h |= φ) ⇐⇒ ∀(N,B,S) ∈ vectorφ,p(s, h) (N,B,S) |= tran′(φ)]

Where p ≥ |φ|.

• Case ψ = φ1 −∗ φ2: we require that s, h |= φ1 −∗ φ2 iff, ∀(N,B,S) ∈
vectorφ,p(s, h), where N = NL ⊕NS, and B = BL ⊕BS and,

(N,B,S) |= ∀M,BL′ .




tran′(φ1)(M,BL′ ⊕BS,S)
∧ bounded(MS + NS) ∧ bounded(M)

∧ heap
(

NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS

)

⇒ tran′(φ2)




NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS,
S







where M = ML′ ⊕MS, |ML′ | = max(|φ1|, |φ2|), |MS| = |FV (φ)|, and
|BL′ | = 3(max(|φ1|, |φ2|)).
⇒: assume that s, h |= φ1 −∗ φ2. Therefore, for all h1, where s, h1 |= φ1

and h#h1 holds, s, h ∗ h1 |= φ2.

We also assume that tran′(φ1)(M,BL′ ⊕BS,S) ∧ bounded(MS + NS) ∧
bounded(M)∧ heap(NL⊕ML′ ⊕ (NS + MS),BL⊕BL′ ⊕BS) holds. Let
q = max(|φ1|, |φ2|). We have that |ML′ | = q, |MS| = |FV (φ)|, |BL′ | = 3q
and |BS| = 3|FV (φ)|. We also know that bounded(M) holds, and, since
(by properties (3) and (4)) heap(NL⊕ML′⊕ (NS +MS),BL⊕BL′⊕BS)
implies heap(ML′ ⊕MS,BL′ ⊕ BS). Consequently, we can use (1) to
deduce that there exists a state, (s, h1) such that s ∈ Sφ, h1 ∈ H ′φ,q
and (M,BL′⊕BS,S) ∈ vectorφ,q(s, h1). Since tran′(φ1)(M,BL′⊕BS,S)
holds and q ≥ |φ1|, we know that s, h1 |= φ1 by induction.

Because heap(NL⊕ML′⊕(NS+MS),BL⊕BL′⊕BS) and bounded(MS+
NS) hold, we know that h#h1 holds. This is because heap(NL ⊕ML′ ⊕
(NS + MS),BL ⊕BL′ ⊕BS) enforces that the domains of the heaps rep-
resented by the vectors are disjoint. The vector BS is the only component
shared between the two bases. Because we know that bounded(MS + NS)
holds, we know that the cells in BS cannot be present both of the heaps,
since, if a cell was present in both heaps, the summation of the vectors
NS and MS would not be bounded.

By the original assumption, and since s, h1 |= φ1 and h#h1, we know that
s, h ∗ h1 |= φ2. We can deduce that h ∗ h1 ∈ H ′φ,p+q since h ∈ H ′φ,p and
h1 ∈ H ′φ,q. This is because the domain of h∗h1 is the union of dom(h) and
dom(h1). Since these domains contain at most p and q elements not in the
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domain denoted by BS respectively, |dom(h∗h1)| ≤ p+q+|FV (φ)|, and so
h ∗ h1 ∈ H ′φ,p+q. By induction, ∀v ∈ vectorφ,p+q(s, h ∗ h1), v |= tran′(φ2).

It now remains to show that (NL⊕ML′⊕(NS+MS),BL⊕BL′⊕BS,S) ∈
vectorφ,p+q(s, h ∗ h1).

We know that (NL ⊕NS,BL ⊕BS,S) ∈ vectorφ,p(s, h) and that (ML′ ⊕
MS,BL′⊕BS,S) ∈ vectorφ,q(s, h1). Therefore, we have the bijections RhL
and RhS between h and (NL ⊕NS,BL ⊕BS,S) (as defined in table 8.7),

and similarly, the bijections Rh1

L′ and Rh1

S . We can define the appropriate
bijections between (NL ⊕ML′ ⊕ (NS + MS),BL ⊕ BL′ ⊕ BS,S) and
vectorφ,p+q(s, h ∗ h1) as follows:

∀j ∈ 1..p
[
(l, j) ∈ Rhh1

LL′ iff(l, j) ∈ RhL
]

∀j ∈ 1..q
[
(l, p+ j) ∈ Rhh1

LL′ iff(l, j) ∈ Rh1

L′

]

Similarly,

∀j ∈ 1..|FV (φ)|
[
(l, j) ∈ Rhh1

S iff(l, j) ∈ RhS ∨ (l, j) ∈ Rh1

S

]

It is clear that these bijections have the required properties. We know
that for each x ∈ FV (φ), vx = s(x) since neither the stack nor the vector
S differ.

⇐: we assume that the right-hand side of the iff holds. That is,

(N,B,S) |= ∀M,BL′ .




tran′(φ1)(M,BL′ ⊕BS,S)
∧ bounded(MS + NS) ∧ bounded(M)

∧ heap
(

NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS

)

⇒ tran′(φ2)




NL ⊕ML′ ⊕ (NS + MS),
BL ⊕BL′ ⊕BS,
S







where M = ML′ ⊕MS, |ML′ | = max(|φ1|, |φ2|), |MS| = |FV (φ)|, and
|BL′ | = 3(max(|φ1|, |φ2|)).
We must now show that, for all heaps, h1 ∈ H ′φ,q, where q = max(|φ1|, |φ2|),
h#h1 and s, h1 |= φ1, s, h ∗ h1 |= φ2.

So, for an h1 ∈ H ′φ,q, where h#h1 and s, h1 |= φ1 hold, we know by
induction that ∀v ∈ vectorφ,q(s, h1) |= tran′(φ1). We know by the defi-
nition of vectorφ,q(s, h1) that v = (M,B′,S) where M = ML′ ⊕MS and
B′ = BL′ ⊕ BS. Since h1 ∈ H ′φ,q and s ∈ Sφ we also know by (2) that
bounded(M) and heap(ML′ ⊕MS,BL′ ⊕BS).

Since we know that h#h1 we can also deduce that bounded(MS + NS)
and heap(NL⊕ML′ ⊕ (NS + MS),BL⊕BL′ ⊕BS). bounded(MS + NS)
holds because both NS and MS apply to the same vector of cells, BS. If
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bounded(MS +NS) did not hold, then there would be a cell that occurs in
both heaps, and hence their domains will not be disjoint and h#h1 will not
hold. Similarly, heap(NL⊕ML′⊕(NS+MS),BL⊕BL′⊕BS) holds because
we know that heap(NL ⊕NS,BL ⊕BS) and heap(ML′ ⊕MS,BL′ ⊕BS)
hold. Because these properties hold, heap(NL⊕ML′ ⊕ (NS + MS),BL⊕
BL′⊕BS) will not hold only if the two heaps do not have disjoint domains.
Since h#h1, this is never the case.

By our original assumption, and the properties shown above, we can con-
clude that tran′(φ2)(NL ⊕ML′ ⊕ (NS + MS),BL ⊕BL′ ⊕BS,S) holds.
Since (NL ⊕ NS,BL ⊕ BS,S) ∈ vectorφ,p(s, h) and (ML′ ⊕MS,BL′ ⊕
BS,S) ∈ vectorφ,q(s, h1), we know that (NL ⊕ML′ ⊕ (NS + MS),BL ⊕
BL′ ⊕BS,S) ∈ vectorφ,p+q(s, h ∗h1) (this was shown in the proof for ⇒).
Hence, by induction, s, h ∗ h1 |= φ2, as required.

Finally, we show that, for an assertion, φ,

[∀(s, h).s, h |= φ] ⇐⇒ [∀(N,B,S).(N,B,S) |= tran(φ)]

That is,

[∀(s, h).s, h |= φ] ⇐⇒
[
∀(N,B,S).(N,B,S) |=

(
bounded(N) ∧ heap(N,B)
⇒ tran′(φ)(N,B,S)

)]

• ⇒: suppose, ∀(s, h)(s, h |= φ). Also assume that (N,B,S) |= (bounded(N)∧
heap(N,B)). Then, by (1), (N,B,S) ∈ vectorφ,|φ|(s, h) and (s, h) ∈
Sφ ×H ′φ,|φ|. We have already proved that, for all (s, h) ∈ Sφ ×H ′φ,|φ|,
[
(s, h |= φ) ⇐⇒ ∀(N,B,S) ∈ vectorφ,|φ|(s, h)(N,B,S) |= tran′(φ)

]

And, since ∀(s, h)(s, h |= φ), we can conclude, (N,B,S) |= tran′(φ).

• ⇐: suppose,

∀(N,B,S).(N,B,S) |= (bounded(N) ∧ heap(N,B)⇒ tran′(φ)(N,B,S))

To test validity, we only need to consider states, (s, h) ∈ Sφ ×H ′φ,|φ|. We

know that, for all (s, h) ∈ Sφ ×H ′φ,|φ|,



(s, h |= φ) ⇐⇒
∀(N,B,S) ∈ vectorφ,|φ|(s, h)(N,B,S) |=

(
bounded(N) ∧ heap(N,B)
⇒ tran′(φ)(N,B,S)

)



We also know that vectorφ,|φ|(s, h)(N,B,S) |= (bounded(N)∧heap(N,B)⇒
tran′(φ)(N,B,S)) by the original assumption. Therefore, for all (s, h) ∈
Sφ ×H ′φ,|φ|(s, h |= φ). Consequently, ∀(s, h)(s, h |= φ), as required.

�
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Appendix C

User Guide

In this section we present an introductory guide to the use of the tool produced
during this project. We assume that the reader has knowledge of simple logic
(conjunction, implication, etc.), but not of the Tree Logic itself.

We begin by introducing the notion of a tree. We then discuss the Tree
Logic, followed by a discussion of the different commands offered by the tool.
Finally we give several simple examples illustrating the use of the tool.

C.1 Trees

The representation of tree structures used by this tool is a simple one. We begin
with an “empty tree”, that is, a tree that has nothing in it. A tree can be built
from the empty tree by adding a branch to the empty tree. Trees with more
than one branch can be built by joining to smaller trees together. There are
two ways to join trees together: they can be placed in parallel with each other,
or they can be stacked, one on top of the other.

Figure C.1 shows the construction of a tree using these methods. First two
trees with a single branch are created (a[0] and b[0]). The notation, a[0] means
that a branch, labelled a, has been put on top of the empty tree, resulting in
a tree with a single branch. We then compose these two trees together using
the composition (|) operator. The results in a tree with two branches, labelled
a and b. It is worth noting that many branches may share the same label, and
that there is no restriction upon the use of mutual labels. Finally, we construct
a deeper tree by putting two copies of this tree on top of each other.

C.2 Tree Logic

We use the Tree Logic to make assertions about trees. We can think of Tree
Logic formulae as a type system for tree languages: if a tree satisfies a formula,
A, then the tree is of type A, or that the tree matches type A.
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a b

a[0] and b[0]

a b

a[0]|b[0]

ba

ba

a[0]|b[a[0]|b[0]]

Figure C.1: Constructing trees
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A,B ::= Formula
F False
A ∧ B Conjunction
A ⇒ B Implication
0 Void
A|B Composition
A . B Guarantee
n[A] Location
A@n Placement

Table C.1: The Tree Logic syntax

This logic consists of the usual logical connectives (conjunction, disjunction,
etc.) and adds several connectives that reason specifically about trees. The
composition (|) and branch (a[A]) connectives correspond to the structure of
trees directly. A formula of the form a[A] matches any tree of the form a[D],
where D is a tree that matches the sub-formula, A. Similarly, a formula of the
form, A|B, matches any tree of the form D|D′, where D is a tree that matches
the formula, A, and D′ matches B. At this point we should note that the order
of the sub-trees does not matter. We can decompose a tree in anyway that
we require. For example, a tree of the form, D|D′|D′′, can be split into several
pairs of trees: (D|D′, D′′), (D.D′|D′′), (D|D′′, D′) and all possible permutations
of these pairs.

These two connectives have their adjuncts, guarantee (.) and placement(@).
The guarantee connective is written A . B. A tree will match this formula if
it will match B when composed with any tree that matches A. This can be
vacuously true: if no trees match A, then A . B will holds for any tree. For
example, we may have a formula B that matches a deck of cards. Formula A
may represent the set of black cards, and so A.B matches the set of red cards,
since, when the black cards are added, the result matches a complete deck.

The placement operator is written A@a. A tree matches this formula if the
tree formed by placing a branch labelled a atop the tree matches the formula
A. For example, if the formula A represents a box containing several toys, the
formula, A@box, will match a collection of toys, since, when the box branch is
put on top of the toys, the resulting tree is a box, with several toys as a sub-tree.

The full syntax and semantics of the Tree Logic are given in tables C.2 and
C.2 respectively.

C.3 Using the Tool

The tool produced as part of this project has a command line interface. Input
is read from the standard input, and output is sent to the standard input.
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d |= F Never

d |= A∧ B , d |= A ∧ d |= B
d |= A ⇒ B , d |= A ⇒ d |= B
d |= 0 , d ≡ 0

d |= A|B , ∃d′, d′′.d ≡ d′|d′′ ∧ d′ |= A∧ d′′ |= B
d |= A . B , ∀d′.d′ |= A ⇒ d′|d |= B
d |= n[A] , ∃d′.d ≡ n[d′] ∧ d′ |= A
d |= A@n , n[d] |= A

Table C.2: Satisfaction of Tree Logic formulae

There are four different types of actions that this tool can perform: a typing
test, a subtype test, a satisfiability test and a validity test. Each command is
terminated by a semi-colon. Additionally, the commands may be preceded with
the keywords EXPTRUE or EXPFALSE. These keywords tell the tool to expect
that the result of the following command will be true or false respectively. The
output of the tool will say that the outcome has met expectations, or it has not
— rather than giving the true or false answer.

The four different commands are explained below:

• VALID — a validity problem takes a tree logic formula as its input and
outputs ‘true’ if the formula is valid, ‘false’ otherwise.

• SATISFIABLE — a satisfaction problem takes a tree logic formula as its
input and outputs ‘true’ if the formula is satisfiable, ‘false’ otherwise.

• SUBTYPE — a sub-typing problem takes two tree logic formulae, A and B
as its input and returns ‘true’ if the formula A represents a sub-type of B.
This is equivalent to testing the validity of A ⇒ B.

• OFTYPE — a typing problem takes a tree, d, and a formula, A as its input,
and returns ‘true’ if d |= A, and ‘false’ otherwise.

The full grammar of the input that this tool accepts is given in table C.3.

C.4 Examples

In this section we present three simple examples to illustrate the use of the tool.

C.4.1 Types

Suppose we are dealing with an organiser. The organiser may contain meet-
ing records, that contain the details of a person and the details of a meeting.
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commands:
problem; A command terminated with a semi-colon.
EXPTRUE problem; A command whose result is expected to be ‘True’.
EXPFALSE problem; A command whose result is expected to be ‘False’.

problem:
VALID tl A validity problem.
SATISFIABLE tl A satisfiability problem.
tl SUBTYPE tl A sub-typing problem
tree OFTYPE tl A satisfaction problem
EXIT Quit the program.

tree:
0 Void
a[tree] Branch
tree|tree Composition
(tree) Parenthesis

tl:
0 Void
T Truth
F Falsity
a[tl] Branch
tl@a Placement
tl|tl Composition
tl -> tl Implication
tl AND tl Conjunction
tl OR tl Disjunction
tl |> tl Guarantee
NOT tl Negation
(tl) Parenthesis

Table C.3: The input grammar
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For simplicity, we will represent a person using the formula, person[0], and a
meeting using the formula, (person[0]|details[0]). When given a tree, we may
check that it represents a valid set of details using the formula, person[0] .
(person[0]|details[0]). (Of course, in this case, the formula, details[0] would
suffice. For the purposes of this example, we assume that we don’t know the
format of details precisely.)

If we have a tree, details[0], we may want to ensure that we can construct
a valid meeting record from it. Hence, we would give the tool the following
command:

details[0] OFTYPE person[0] |> (person[0] | details[0]);

The following output is produced:

> details[0] OFTYPE person[0] |> (person[0] | details[0]);

Typing problem: details[0] : (person[0] |> (person[0] | details[0]))

true

C.4.2 Sub-types

We may wish to use the tool to check whether the type denoted by one formula
is a sub-type of another. Suppose that we are dealing with people records, where
each person simply has a name. We could represent a person using the following
formula: person[name[0]]. We may the wish to describe a musician, who has an
instrument as well as a name. A musician can be represented with the formula,
person[name[0]|ins[0]]. To check if a musician is a sub-type of a person we use
the following command:

person[name[0] | ins[0]] SUBTYPE person[name[0]];

The following output is produced:

> person[name[0] | ins[0]] SUBTYPE person[name[0]];

Subtyping problem: person[(name[0] | ins[0])] <= person[name[0]]

false

Note that the answer returned is ‘false’. This is because our formula for a
person is restricted to people who only have names. To correct the situation,
the formula, person[name[0]|T], should be used to represent a person.

C.4.3 Validity

Suppose that we have a formula, box[toys[0]], that denotes a box of toys. We
may wish to query whether any toys that are put in a box represents a box of
toys. This requires the following formula: toys[0]⇒ box[toys[0]]@box, and the
command,

VALID toys[0] -> box[toys[0]]@box
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The output from the tool is,

> VALID toys[0] -> box[toys[0]]@box;

Validity problem: (toys[0] -> (box[toys[0]])@box)

true
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