Extended Computation Tree Logic

Roland Axelssoh Matthew Hagug, Stephan Kreutzér Martin Langé, and Markus
Latte!

1 Department of Computer Science, Ludwig-Maximilians-Univétsidunich,
Emai | : {rol and. axel sson, markus.latte}@fi .|l nu. de
2 Oxford University Computing Laboratory,
Enmi | : {Matt hew. Hague, st ephan. kreut zer }@onl ab. ox. ac. uk
3 Department of Elect. Engineering and Computer Science, Universikasgel, Germany,
Emai |l : martin. | ange@ni - kassel . de

Abstract. We introduce a generic extension of the popular branching-time logic
CTL which refines the temporal until and release operators with formgliages.
For instance, a language may determine the moments along a path thail an un
property may be fulfilled. We consider several classes of languagdmteto
logics with different expressive power and complexity, whose impogas mo-
tivated by their use in model checking, synthesis, abstract interpretatmniVe
show that even with context-free languages on the until operator the llgjic s
allows for polynomial time model-checking despite the significant increase-
pressive power. This makes the logic a promising candidate for appfisaitio
verification. In addition, we analyse the complexity of satisfiability and campa
the expressive power of these logics to CTdnd extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical fotisias for program spec-

ification and verification. It appeals because of its imkeitsyntax and its very reason-
able complexities: model checkingrgIME-complete [9] and satisfiability checking is
EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CT[13] or the modaly-
calculusZ,, [22]. This transition comes at a price. For CTthe model checking prob-
lem increases t@sPACEcomplete [30] and satisfiability toEXPTIME-complete [14,
33]. Furthermore, CTL cannot express regular properties like “something holds af
ter an even number of steps”. The mogatalculus is capable of doing so, and its
complexities compare reasonably to CTL: satisfiabilityls&xpPTIME-complete, and
model checking sits betweaTIME and NP \coNP. However, it is much worse from a
pragmatic perspective since its syntax is notoriously tuitite.

Common to all these (and many other) formalisms is a restnicf their expressive
power to at most regular properties. This follows since tteay be embedded into (the
bisimulation-invariant) fragment of monadic second-oidgic on graphs. This restric-
tion yields some nice properties — like the finite model propand decidability —
but implies that these logics cannot be used for certainifspegiton purposes.

For example, specifying the correctness of a communicaifotocol that uses a
buffer requires a non-underflow property: an item cannotemeaved when the buffer

is empty. The specification language must therefore be alitatk the buffer’s size. If
the buffer is unbounded, as is usual in software, this ptgpemon-regular and a reg-
ular logic is unsuitable. If the buffer is bounded, the pmbypés regular but depends on
the actual buffer capacity, requiring a different formuta éach size. This is unnatural
for verification purposes. The formulas are also likely tabmplex as they essentially
have to hard-code numbers up to the buffer length. To exmeasls properties natu-
rally one has to step beyond regularity and consider lodicewesponding expressive
power.

Also, consider program synthesis where, instead of vexgf@ program, one wants
to automatically generate a correct program (skeletom) fiee specification. This prob-
lem is very much linked to satisfiability checking, excepg model exists, one is cre-
ated and transformed into a program. This is known as cdetrgnthesis and has been
done mainly based on satisfiability checking for the mqda&hlculus [4]. The finite
model property restricts the synthesization to finite spatgrams, i.e. hardware and
controllers, etc. In order to automatically synthesizevgafe (e.g. recursive functions)
one has to consider non-regular logics.

Finally, consider the problem of verifying programs witffimite or very large state
spaces. A standard technique is to abstract the large ptate sto a smaller one [10].
This usually results in spurious traces which then have texdoided in universal path
quantification on the small system. If the original systens widinite then the language
of spurious traces is typically non-regular and, again, gicl@f suitable expressive
power is needed to increase precision [25].

In this paper we introduce a generic extension of CTL whiabvjgles a specifi-
cation formalism for such purposes. We refine the usual optrator (and its dual,
the release operator) with a formal language defining the emtsnat which the until
property can be fulfilled. This leads to a family of logics g@uetrised by a class of
formal languages. CTL is an ideal base logic because of dgispread use in actual
verification applications. Since automata easily allowdnrunambiguous measure of
input size, we present the precise definition of our logideims of classes of automata
instead of formal languages. However, we do not promote $ieeofl automata in tem-
poral formulas. For pragmatic considerations it may beib&to allow more intuitive
descriptions of formal languages such as Backus-Naur-lBomagular expressions.

As a main result we extend CTL using context-free languagigsificantly increas-
ing expressive power, while retaining polynomial time mlecteecking. Hence, we ob-
tain a good balance between expressiveness — as non-r@gofsarties become ex-
pressible — and low model-checking complexity, which matkés logic very promis-
ing for applications in verification. We also study modekcking for the new logics
against infinite state systems represented by (visiblyhgown automata, as they arise
in software model-checking, and obtain tractability rés@ibr these. For satisfiability
testing, equipping the path quantifiers with visibly puskiddanguages retains decid-
ability. However, the complexity increases frarPTIME for CTL to 3EXPTIME for this
new logic.

The paper is organised as follows. We formally introduceltiggcs and give an
example demonstrating their expressive power in Secti@egtion 3 discusses related
formalisms. Section 4 presents results on the expresswempof these logics, and

Section 5 and 6 contain results on the complexities of salbisiiy and model checking.
Finally, Section 7 concludes with remarks on further workelo space restrictions this
paper contains no detailed proofs in its main part. A fullsien with all proof details
is available online alt t p: / / ar xi v. or g/ abs/ 1006. 3709.

2 Extended Computation Tree Logic

Let? = {p,q,...} be a countably infinite set gfropositionsand X be a finite set of
action namesA labeled transition systeiTS) is a7 = (S, —, ¢), whereS is a set of
states—~ C SxXxSandl : S — 27. We usually writes -+ t instead of s, a, t) € —.
A pathis a maximal sequence of alternating states and actieas, a1, $1, as, So, . - .,
s.t.s; —ts s, foralli € N. We also write a path ag) — s, —25 s, Maximal-
ity means that the path is either infinite or it ends in a stats.t. there are na € %)
andt € S with s, — . In the latter case, the domaiiam(r) of 7 is {0,...,n}. And
otherwisedom(m):=N.

We focus on automata classes between deterministic fintibereta (DFA) and non-
deterministic pushdown automata (PDA), with the classe®afleterministic finite au-
tomata (NFA), (non-)deterministic visibly pushdown autie (DVPA/VPA) [2] and
deterministic pushdown automata (DPDA) in between. Bey®b4 one is often faced
with undecidability. Note that some of these automata efasgiefine the same class of
languages. However, translations from nondeterministbeterministic automata usu-
ally involve an exponential blow-up. For complexity estiioas it is therefore advisable
to consider such classes separately.

We call a clas€l of automataeasonablef it contains automata recognisirig and
X* and is closed under equivalences, i.edit 2 andL(A) = L(B) andB is of the
same type the8 € 2. L(.A) denotes the language accepteddy

Let 2(, 5 be two reasonable classes of finite-word automata over gifebéty.
Formulas ofExtended Computation Tree Logic oZrand 8 (CTL[2(,8]) are given
by the following grammar, wherd € 2, B € B andq € P.

¢ 1= qleVe|-p|E(@Ue) | E(¢RPp)

Formulas are interpreted over states of a transition sygtem(S, —, ¢) in the follow-
ing way.

— T,sk=q iff qel(s)

—T,sEeVyiff T,sEporT,sE=v¢

—T,sE-piff T,sl¢e

— T, s |= E(pUA) iff there exists a pathr = sg, a1, 51, ... With sg = s and3n €
dom(m)st.ay...a, € L(A)andT,s, Ev andVi <n:T,s; | ¢.

— T, s = E(eRA) iff there exists a path = s¢, a1, 51, . .. with so = s and for all
n € dom(m):ay...an &€ L(A)orT,s, Evordi <nsth.T, s, Ep.

As usual, further syntactical constructs, like other banleperators, are introduced as
abbreviations. We defing(oUA)) := —E(-@RA—1)), A(pRAY) := —E(—pUA), as
well asQFy = Q(ttUAp), QG1y = Q(££RAp) for Q € {E, A}. For presentation,

we also use languagdsinstead of automata in the temporal operators. For instance
EGL ¢ is EG* ¢ for someA with L(.A) = L. This also allows us to easily define the orig-
inal CTL operatorsQXy := QF¥ ¢, Q(gUt) := Q(pU 1)), Q(¢Rep) := Q(pR¥ 1)),

etc. The size of a formula is the number of its unique subformulas plus the sum of the
sizes of all automata i, with the usual measure of size of an automaton.

The distinction betweefl and®B is motivated by the complexity analysis. For in-
stance, when model checkiB@U+)) the existential quantifications over system paths
and runs of4 commute and we can guess a path and an accepting run in aisep-w
fashion. On the other hand, when checki{gr*1) the existential quantification on
paths and universal quantification on runs Roy- “on all prefixes ...") does not com-
mute unless we determinisg which is not always possible or may lead to exponential
costs.

However,2l and‘B can also be the same and in this case we denote the logic by
CTLI[2(]. Equally, by EFRI], resp. EG{B] we denote the fragments of CTU[*B] built
from atomic propositions, boolean operators and the teatpuperatorsEF-y, resp.
EGB¢ only. Since the expressive power of the logic only dependésoalass oflan-
guagesrather thanautomata we will write CTL[REG], CTL[VPL], CTL[CFL], etc.
to denote the logic over regular, visibly pushdown, and extafree languages, repre-
sented by any type of automaton. We close this section witiT[\@PL] example
which demonstrates the buffer-underflow property disaligs¢he introduction.

Example. Consider a concurrent producer/consumer scenario ovearachuffer. If
the buffer is empty, the consumer process requests a newrcesand halts until the
producer delivers a new one. Any parallel execution of th@eeesses should obey
a non-underflow property (NBU): at any moment, the numberrofipce actions is
sufficient for the number of consumes.

If the buffer is realised in software it is reasonable to assthat it is unbounded,
and thus, the NBU property becomes non-regular. Xet {p,c,r}, wherep stands
for productionof a buffer object¢ for consumeandr for request Consider the VPL
L={weX| |w.=|wandv|. <|v|,forallv < w}, where< denotes the
prefix relation. We express the requirements in CTL[VPL].

1. AGEXPtt : “at any time it is possible to produce an object”

2. AGF(AX“ff A EX"tt): “whenever the buffer is empty, it is impossible to consume
and possible to request”

3. AGH(EX°tt A AX"£f): “whenever the buffer is non-empty it is possible to consume
and impossible to request”

4. EFEGS £f: “at some point there is a consume-only path”

Combining the first three properties yields a specificatibtme scenario described
above and states thatraquestcan only be made if the buffer is empty. For the third
property, recall that VPL are closed under complement [2ri satisfying model
gives a raw implementation of the main characteristics efdystem. Note that if it is
always possible tgproduceand possible t@onsumadff the buffer is not empty, then
a straight-forward model with self-loops ¢ andr does not satisfy the specification.
Instead, we require a model with infinitely many differgritansitions. If we strengthen
the specification by adding the fourth formula, it becomesatisfiable.

3 Related Formalisms

Several suggestions to integrate formal languages intpdesthlogics have been made
so far. The goal is usually to extend the expressive powelajia whilst retaining its
intuitive syntax. The most classic example is Proposifiaamic Logic (PDL) [17]
which extends Modal Logic with regular expressions.

Similar extensions — sometimes using finite automata idstdaregular expres-
sions — of Temporal Logics have been investigated a long éigte The main purpose
has usually been the aim to increase the expressive poweeaofisgly weak specifi-
cation formalisms in order to obtain at leastegular expressivity, but no efforts have
been made at that point in order to go beyond that. This alptaigs why such exten-
sions were mainly based on LTL [37, 34, 23, 20], i.e. not legthe world of linear-time
formalisms.

The need for extensions beyond the use of pure temporaltopgiaalso withessed
by the industry-standarf@roperty Specification LanguadgESL) [1] and its predecessor
ForSpec [3]. However, ForSpec is a linear-time formalisrd hare we are concerned
with branching-time. PSL does contain branching-time afmes but they have been
introduced for backwards-compatibility only.

On the other hand, some effort has been made with regardsaioséons of branch-
ing-time logics like CTL [5, 7, 27]. These all refine the temglaoperators of this logic
with regular languages in some form.

Thus, while much effort has been put into regular extensadrssandard temporal
logics, little is known about extensions using richer ofsssf formal languages. We are
only aware of extensions of PDL by context-free languag8$ ¢t visibly pushdown
languages [26]. The main yardstick for measuring the expregpower of CTLR,B]
will be therefore be PDL and one of its variants, namely PDthwhe A-construct and
tests, APDL’[2(], [17, 31]. Note: for a clas8l of automata, CTL{(] is a logic using
such automata on finite words only, whereABDL’[2] uses those and theiriBhi-
variants on infinite words. In the following we will use sonfdlee known results about
APDL’[2(]. For a detailed technical definition of its syntax and seticanwe refer to
the literature on this logic [18].

There are also temporal logics which obtain higher expregsbwer through other
means. These are usually extensiong pfike the Modal Iteration Calculus [11] which
uses inflationary fixpoint constructs or Higher-Order Fixppdogic [35] which uses
higher-order predicate transformers. While most reguléresions of standard tempo-
ral logics like CTL and LTL can easily be embedded inlg, little is known about the
relationship between richer extensions of these logics.

4 Expressivity and Model Theory

We write £ <, £" with f € {lin, exp} to state that for every formula € £ there is an
equivalenty € £’ with at most a linear or exponential (respectively) blow nsize.
We usel <y L' to denote that such a translation exists, but there are fasmf £’

which are not equivalent to any formulah Also, we writel =; L' if £L <; £" and
L' <; L. We will drop the index if a potential blow-up is of no concern

_CTL[CFL]
]

PDL[CFL]— EF[CFL] EG|CFL : APDL/[DCFL]—— APDL’[CFL]
o _,CTL[DI(SF—L]’ E

PDL[IIDCFL]—EF[DIC—FI—_]— —Ee[qé 1] E A_PDL?:[VPL]

| E————__:_::=_,CTL[\:/I5L] ok
PDL[IVPL] —EF[\{PL] EG[YPL] \ - 4PDL7I[REG]

E E L _E_’_’___ _CTL[I:?EG] E
PDL[REG]— EF[REG] EG[REG] | __.cm

E E ______ o
S B

Fig. 1. The expressive power of Extended Computation Tree Logic.

A detailed picture of the expressivity results regardirg tost important CTL]
logics is given in Fig. 1. A (dashed) line moving upwards gades (strict) inclusion
w.I.t. expressive power. A horizontal continuous lineesaixpressive equivalence. The
following proposition collects some simple observations.

Proposition 4.1. 1. Forall2(,8B: CTL <;;, CTL[2,5].
2. Forall, 2,8, if A <A andB < B’ thenCTL[2,B] < CTL[',B"].

CTL[2(] extends PDL{(] since the latter is just a syntactic variation of the &F[
fragment. On the other hand, CT] can — in certain cases — be embedded into
PDL[2(]'s extension APDL’[2(]. This, however, requires a transformation from au-
tomata on finite words to automata on infinite words which shtvat these two for-
malisms are conceptually different.

Theorem 4.2. 1. For alll: PDL[2(] =, EF[2(].
2. Forall,%B: EF[] <, CTL[2(,58].
3. For all 2,%: CTL[2,B] <, APDL’[2l U B8], if %8 is a class of deterministic
automata.
4. APDL’[PDA] =, APDL’[DPDA].

Note that CFL does not admit deterministic automata. Hevene: 3 is not applicable
in that case. If for some class@6% the inclusion in part 3 holds, then it must be
strict. This is because fairness is not expressible in @Tk¢gardless of whall is, as
demonstrated by the following.

Theorem 4.3. The CTL*-formula EGFq expressing fairness is not equivalent to any
CTL[2(, B] formula, for any, 8.

Fairness can be expressed Ayls.;,, whereAy,;, is the standard &chi automaton
over some alphabet containing a test predigdt¢hat recognises the language of all
infinite paths on which infinitely many states satigfy

Corollary 4.4. 1. Forall2(,%8: CTL* £ CTL[2,8]. ‘
2. There are nd,B such that anyCTL[2,%8] is equivalent to theAPDL’[REG]
formula A Az,

At least in the case of CFLs, the premise to part 3 of Thm. 4rihotbe dropped.
Indeed, the formul&G’p is not expressible as APDL’[CFL]-formula whereL is the
language of palindromes.

Theorem 4.5. CTL[CFL] £ APDL?[CFL].

Finally, we provide some model-theoretic results which ali$o allow us to sepa-
rate some of the logics with respect to expressive powershNigrisingly, CTL[REG]
has the finite model property which is a consequence of itseeldibg into the logic
APDL’[REG]. Itis not hard to bound the size of such a model giveh #iRRDL’[REG]
has the small model property of exponential size.

Proposition 4.6. Every satisfiableCTL[REG] formula has a finite model. In fact, ev-
ery satisfiableCTL[NFA,DFA], resp.CTL[NFA,NFA] formula has a model of at most
exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.7. There is a sequence of satisfiall@ L[NFA]-formulas (¢,),en such
that the size of any model gf, is at least doubly exponential j@,,|.

The next theorem provides information about the type of rsode can expect.
This is useful for synthesis purposes.

Theorem 4.8. 1. There is a satisfiabl€TL[VPL] formula which does not have a
finite model.
2. There is a satisfiabl€TL[DCFL] formula which has no pushdown system as a
model.
3. Every satisfiabl€TL[VPL] formula has a visibly pushdown system as a model.

Proof (Sketch of Part 3).The satisfiability problem for CTL[VPL] can be translated
into that of a non-deterministic ighi visibly pushdown tree automaton (VPTA). An
unrolling of this automaton does not necessarily lead ta:thiened visibly pushdown
system. First, such a system might admit paths which vidla¢eBichi condition.
And secondly, the lack of determinism combines successodsfferent transitions
undesirably. However, Thm. 4.2 Part 3 states that CTL[VPa} e translated into
APDL’[VPL] whose satisfiability problem reduces to the emptinasblem for stair-
parity VPTA [26]. There exists an exponential reductionnirgtair-parity VPTA to
parity tree automata (PTA) which preserves satisfiabilitye emptiness test is con-
structive in the sense that for every PTA accepting a nontgfapguage there exists a
finite transition system which satisfies this PTA. This syst&n be translated back into
a visibly pushdown system satisfying the given CTL[VPL]-4PDL’[VPL]-formula.
Implementing this idea, however, requires some care amtimically involved. O

Putting Thm. 4.5, Prop. 4.6 and Thm. 4.8 together we obtarfaliowing separa-
tions. Note that the first three inequalities of the corgllean also be obtained from
language theoretical observations.

Corollary 4.9. CTL[REG] < CTL[VPL] < CTL[DCFL] < CTL[CFL].

5 Satisfiability

In this section we study the complexity of the satisfiabilitypblem for a variety of
CTL[2(,*8] logics. The presented lower and upper bounds, as showngin2rialso
yield sharp bounds for EF[and CTL[_].

Theorem 5.1. The satisfiability problems foa€ETL[DPDA, _] and for CTL[_, DPDA]
are undecidable.

Proof. Harel et al. [19] show that PDL over regular programs with dihe additional
languageL:={a"ba™ | n € N} is undecidable. Sincé € DCFL D REG, the logic
EF[DPDA] is undecidable and hence so is CTL[DPDA,As for the second claim, the
undecidable intersection problem of two DPDA, sdyand 3, can be reduced to the
satisfiability problem of the CTL[, DPDA]-formulaAF-AXff A AFPAXff. Note that
a single state with no outgoing transitions still has outggyaths labeled with. This
formula is therefore only satisfiable if(.A) N L(B) # 0. O

Theorem 5.2. The upper bounds for the satisfiability problem are as in Eig.

Proof. By Thm. 4.2(3), CTL{, 8] can be translated intdPDL’[2(U 8] with a blow-
up that is determined by the worst-case complexity of tramsing an arbitraryl-
automaton into a deterministic one. The claim follows ugheg REGC VPL and that
the satisfiability problem for\PDL’[REG] is in EXPTIME [15] and for APDL’[VPL]
is in 2EXPTIME [26]. O

The hardness results are more technically involved.

Theorem 5.3. 1. CTL[DFA, NFA] andCTL][_, DVPA] are 2EXPTIMEhard.
2. CTL[DVPA, NFA] andCTL[_, DVPA U NFA] are EXPTIMEhard.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Rg.

Proof. As CTL iseXPTIME-hard [12], so is CTL[, _]. The ZEXPTIME lower bound for
PDL[DVPA] [26] is also a lower bound for CTL[DVPA,] due to Thm. 4.2. Finally,
Thm. 5.3 and Prop. 4.1(2) complete the picture. ad

In the remaining part of this section we sketch the proof ahTh.3. For each of the
four lower bounds, we reduce from the word problem of an aéteng Turing machine
T with an exponentially or doubly exponentially, resp., spaound. These problems
are EXPTIME-hard and 8XPTIME-hard [8], respectively.

A run of such a machine can be depicted as a tree. Every nodésstar a con-
figuration — that is, for simplicity, a bounded sequence dliscé\n universal choice
corresponds to a binary branching node, and an existehti@e to an unary node. We
aim to construct a CTL[,_]-formula ¢ such that each of its tree-like models resembles
a tree expressing a successful rurfadn a given input. Thereto, the configurations are
linearized — an edge becomes a chain of edges, in the intendddl, and a node rep-
resents a single cell. The content of each cell is encodeghaspasition. However, the
linearization separates neighboring cells of consecutrdigurations. Between these

‘ DFA NFA DVPA VPA DPDA, PDA

DFA, NFA EXPTIME 2EXPTIME 2EXPTIME 3EXPTIME undec.
DVPA, VPA 2EXPTIME 3EXPTIME 2EXPTIME 3EXPTIME undec.
DPDA, PDA undec. undec. undec. undec. undec.

Fig. 2. The time complexities of checking satisfiability for a CTL{B] formula. Entries denote
completeness results. The rows contain different valueS(fas the results are independent of
whether or not the automata from this class are deterministic.

cells, certain constraints have to hold. So, the actualexngé for the reduction is that
must bridge this exponential or doubly exponential, regmp, while be of a polynomial
size inn, i.e. in the input size t@".

We sketch the construction for CTL[DFA, NFA]. The exponahsipace bound can
be controlled by a binary counter. Hence, the constraintiepnly to consecutive
positions with the same counter value. To bridge betweerstved positions, we use a
proof obligation of the formAu+ for a NFA A. In a tree model, we say that a node has
aproof obligationfor anAU-formula iff that formula is forced to hold at an ancestor but
is not yet satisfied along the path to the said node. The keyigithat we can replace
A by an equivalent automatdn without changing the models of. In our setting,D
is the deterministic automaton resulting from the powecsetstruction [28]. In other
words, we simulate an exponentially sized automaton. Hbeesmentioned obligation
reflects the value of the counter and the expected contenteif.a

One of the building blocks ofp programs the obligation with the current value
of the counter. Thereto, we encode the counter as a chairbelslin the model, say
(bit?i)lgign whereb; € B is the value of théth bit. The automatond contains states
¢ foralll < i < nandb € B. Initially, it is ensured thaD is in the state{q’ |
1 < i < n,b € B}. Informally, this set holds all possibilities for the vatuef each
bit. In A, any ¢? has self-loops for any label except foit;*. Hence, a traversal of
a chain eliminates invalid bit assignments from the subsdttaingsD into the state
{¢¥" | 1 < < n} which characterizes the counter for which the chain stafidsily
for matching, a similar construction separates proof @tigns depending on whether
or not they match the counter: unmatched obligations wilkhgsfied trivially, and
matching ones are ensured to be satisfied only if the expeetkid the current one.

For the other parts involving DVPA, again, the constructaaniulay shall imitate
a successful tree df on the input. The space bound can be controlled by a counter
with appropriate domain. The constraints between cellookecutive configurations,
however, are implemented differently. We use a deterniiniPA to push all cells
along the whole branch of the run on the stack — configuratipndnfiguration. At
the end, we successively take the cells from the stack amthr&\long each branch,
we use the counter to remove exponential or doubly expcadergisp., many elements
from stack to access the cell at the same position in the quewonfiguration. So, as
a main component ab we use eitheAU-AX£f or AGA£f for some VPAA. In the case
of a doubly exponential counter, the technique explainedCfbL[DFA, NFA] can be
applied. But this time, a proof obligation expresses a hihber and its value.

6 Model Checking

In this section we consider model-checking of CHIL_[B] against finite and infinite
transition systems, obtained as the transition graphsisib{y) pushdown automata.
Note that undecidability is quickly obtained beyond thait Fistance model checking
the genuine CTL fragment EF is undecidable over the clas®tf Rets, and for EG
model checking becomes undecidable of the class of VerycBasiallel Processes [16].

6.1 Finite State Systems

The following table summarises the complexities of modeltting CTLR(, 23] in finite
transition systems in terms of completeness. Surprisjmggpite its greatly increased
expressive power compared to CTL, CTL[PDA,DPDA] remainBTmME. In general, it
is the clasB which determines the complexity. The table therefore oolytains one
row () and several column&y). Note that PDA covers everything down to DFA while
DPDA covers DVPA and DFA.

‘ DPDA NFA VPA PDA
PDA | PTIME PSPACE EXPTIME undec.

Theorem 6.1. Model checking of finite state systems agai@$t [PDA,DPDA] is in
PTIME, CTL[PDA,VPA] is in EXPTIME and CTL[PDA,NFA] is in PSPACE

Proof (Sketch)To obtain aPTIME algorithm for CTL[PDA,DPDA] we observe that —
as for plain CTL — we can model check a CRLP] formula bottom-up for any(
and®B. Starting with the atomic propositions one computes fosaliformulas the set
of satisfying states, then regards the subformula as a pitojoo Hence, it suffices to
give algorithms folE(2Uy) andE(zRBy) for propositions: andy.

We prove the case f@(zU*y) by reduction to non-emptiness of PDA which is well-
known to be solvable iRTIME. Let T=(S, —, ¢) be an LTS andd=(Q, X, ', 6, qo, F).
We construct for every € S a PDAAT=(Q x S, X, T',¢', (g0, s), F’), where

F':={(¢q,s) | ¢ € F andy € {(s)} and
§'((q,8),a,7):={(¢,s") | ¢ € 6(q,a,~) ands =+ s" andz € £(s)}.

Clearly, if £L(A7) # 0 then there exist simultaneously a wards £(.A) and a path
min T starting ats and labeled withw, s.t.2 holds everywhere along except for the
last state in whichy holds. Note that this takes tin@(|S| - |A| - |T]).

The same upper bound can be achieved:foformulas. However, they require the
automaton to be deterministic. This is due to the quantifieration in the release
operator, as discussed in Sect. 2.

We show containment iRTIME by a reduction to the problem of model checking
a fixed LTL formula on a PDS. Lef and . A be defined as above except thatis
deterministic. We construct a PDGy = (Q x SU{g,b}, I, A, ¢"), where!’ extends
£ by ¢'(b) = dead for a fresh propositiordead. Intuitively, g represents “good” and

b “bad” states, i.e. dead-end states, in whiihRy) has been fulfilled or violated,
respectively. Furthermore) contains the following transition rules:

(g,€) if x € ¢'(s) and(g € F impliesy € ¢'(s))
(b, €) if g€ Fandy ¢ ¢'(s)
((¢:5),7) = ((¢', "), w) if none of the above match and there exc X, s.t.
s s and(¢’,w) € §(q,a,~) forsomey € I'lw € I'*

Note that| 74| = O(|T] - |.A|). Now consider the LTL formul&dead. It is not hard
to show thats =1 E(xRAy) iff ((qo,s),€) =7, Fdead. The fact that model checking
a fixed LTL formula over a PDS is iRTIME [6] completes the proof.

To show that CTL[PDA,NFA] is irPSPACEWe reduceE(zR5y) to the problem of
checking a fixed LTL formula against a determinisation ofXf&\ 5. This is a repeated
reachability problem over the product of @&i&i automaton and a determinisation of
the NFA. Since we can determinise by a subset constructiencam use Savitch’s
algorithm [29] and an on-the-fly computation of the edgetiefa Because Savitch’s
algorithm requires logarithmic space over an exponentalg, the complete algorithm
runs inPSPACE

Using the fact that every VPA can be determinised at a pgssikponentially
cost [2], we obtain an algorithm for CTL[PDA,VPA]. O

We now consider the lower bounds.

Theorem 6.2. For fixed finite state transition systems of size 1, modelkihgdor
EF[VPA] is PTIME-hard, EG[NFA] is PsPACEhard, EG[VPA] is EXPTIMEhard, and
EG[PDA] is undecidable.

Proof (Sketch)lt is known that model checking CTL iBTIME-complete. Thus, the
model checking problems for all logics between CTL and CTElTare PTIME-hard.
However, for EF[VPL] it is already possible to strengthea thsult and proveTIME-
hardness of the expression complexity, i.e. the compl@fitgodel checking on a fixed
transition system. The key ingredient is the fact that theterass problem for VPA is
PTIME-hard?

Model checking the fragment E@] is harder, namelypspAcEhard for the class
REG already. The proof is by a reduction from theiling problem [32] resembling
the halting problem of a nondeterministic linear-spacenolea Turing Machine. Two
aspects are worth noting. First, this result — as opposetieémne for the fragment
EF[R(] — heavily depends on the fact th@itis a class of nondeterministic automata.
For 20 = DFA for instance, there is no such lower bound unkesBACE= PTIME. The
other aspect is that the formulas constructed in this réoluctre of the formeEGA+£f,
no boolean operators, no multiple temporal operators, anatomic propositions are
needed.

The principle is that tilings can be represented by infinitedg over the alphabet
of all tiles. Unsuccessful tilings must have a finite prefiattbannot be extended to be-
come successful. We construct an automadamhich recognises unsuccessful prefixes.

! This can be proved in just the same wayasve-hardness of the emptiness problem for PDA.

Every possible tiling is represented by a path in a one-statssition system with uni-
versal transition relation. This state satisfies the foerBal* £f iff a successful tiling is
possible.

However, if we increase the language class to CFL we are atdadode an unde-
cidable tiling problem. The octant tiling problem asks fauzcessful tiling of the plane
which has successively longer rows [32]. Since the lengthe@fows is unbounded, we
need non-determinism and the unbounded memory of a PDA égnése unsuccessful
prefixes.

The situation is better for VPA. When usedER-operators, visibly pushdown lan-
guages are not worse than regular languages, even for mondeistic automata. This
even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model chegkimblem even
further in comparison to NFA t&xPTIME. We reduce from the halting problem for
alternating linear-space bounded Turing machines. Anpitge computation of the
machine can be consideredilaite tree. We encode a depth-first search of the tree as a
word and construct a VPA accepting all the words that do not represent an accepting
computation. As in previous proofs, one then takes a orte-gtansition system with
universal transition relation and formuig-£f. O

6.2 Visibly Pushdown Systems

We consider model checking over an infinite transition systepresented by a visibly
pushdown automaton. The following summarises the coniplersults in terms of
completeness.

‘ DFA,DVPA NFA,VPA DPDA
DFA ... VPA ‘ EXPTIME 2EXPTIME undec.

Theorem 6.3. Model checking visibly pushdown systems aga@Et[VPA,DVPA] is
in EXPTIME whereas againsCTL[VPA,VPA] itis in 2EXPTIME

Proof (sketch).To obtain the first result, we follow the game approach hirdgeth
Section 2 (hence the restriction to DVPA). We reduce the rholdecking problem
to a Buchi game played over a PDS, which is essentially the produtie formula
(including its automata) and the model. That is, for examipten a stats, 1 A 2)
the opponent can move {8, ¢1) or (s, ¢2) — the strategy is to pick the subformula
that is not satisfied. The stack alphabet is also a produdiefriodel stack and the
formula VPA stack. For a temporal operator augmented wittPA Mhe formula VPA
component is set td. to mark its bottom of stack. Then the automaton is simulated
step-wise with the model. At each step the appropriate plege decide whether to
attempt to satisfy a subformula, or continue simulating th pad run. Since deciding
these games iBXPTIME [36], we get the required result. The second result follows b
determinisation of the VPA. a0

Theorem 6.4. Model checking visibly pushdown systems aga@iEL[DFA] is hard
for EXPTIME EG[NFA] is hard for ZxPTIME and EF[DPDA] and EG[DPDA] are un-
decidable.

Proof (sketch)ExPTIME-hardness follows immediately from tiExPTIME-hardness of
CTL over pushdown systems [21] and that CTL is insensitivihéotransition labels.

2EXPTIME-hardness is similar to Bozzell'ssXPTIME-hardness for CTt[24]. This
is an intricate encoding of the runs of an alternatm@SPACETuring machine. The
difficulty lies in checking the consistency of a guessed wage of exponential length.
We are able to replace the required CTéubformula with a formula of the form4,
giving us the result.

The undecidability results are via encodings of a two caumtachine. Intuitively,
the visibly pushdown system simulates the machine, keepiegcounter in its stack. It
outputs the operations on the second counter (appropriat@iked to meet the visibly
condition) and the DPDA checks for consistency. In this way ean simulate two
counters. O

6.3 Pushdown Systems

For pushdown systems we have the following complexity-tbgo completeness re-
sults.

| DFA NFA DVPA
DFA/ NFA ‘ EXPTIME 2EXPTIME undec.

Theorem 6.5. Model checking pushdown systems agal®$t [NFA,DFA] is in EXP-
TIME, againstCTL[NFA,NFA] it is in 2EXPTIME, againstEF[DVPA] and EG[DVPA] it
is undecidable.

Proof (sketch).The decidability results are similar to the case of visiblsipdown
systems; we simply drop the visibly restriction. The loweubds which do not follow
from the results on VPA can be obtained by a reduction fromdaswnmter machines. O

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considgarparametric extension
of CTL by arbitrary classes of formal languages charadtegithe complexities of satis-
fiability and model checking as well as the expressive powdrraodel-theoretic prop-
erties of the resulting logics in accordance to the clasklesmguages. The results show
that some of the logics, in particular CTL[VPL] may be usefuprogram verification
because of the combination of an intuitive syntax with readdy low complexities of
the corresponding decision problems.

Some questions still remain to be answered. First, it is apleether the relation-
ships are strict between logics which are connected by selitical lines in Fig. 1.
Moreover, the presented separations are rather coarseeHers desirable to have a
generic approach to separate logics, e.g. QMLL CTL[B] wheneverl is a “reason-
able” subset of3.

It is an obvious task for further work to consider CThr CTL' as the base for
similar extensions, and to characterise the expressivepamd the complexities of the
resulting logics.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

. Inc. Accellera Organization. Formal semantics of Accellera ptgppecification language,

2004. In Appendix B oht t p: / / www. eda. or g/ vfv/ docs/ PSL- v1. 1. pdf .

. R. Alur and P. Madhusudan. Visibly pushdown languagerac. 36th Ann. ACM Symp.

on Theory of Computing, STOC’0dages 202-211, 2004.

. R.Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. KanzalL.Andver, S. Mador-Haim,

E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpeap@ral logic: A new
temporal property specification languagePhoc. 8th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS@R2me 2280 oL NCS pages 296-311,
Grenoble, France, 2002. Springer.

. A. Arnold, A. Vincent, and |. Walukiewicz. Games for synthesis aftcollers with partial

observationTheor. Comput. S¢i303(1):7-34, 2003.

. |. Beer, S. Ben-David, and A. Landver. On-the-fly model clieglof RCTL formulas. In

Proc. 10th Int. Conf. on Computer Aided Verification, CAV'@8ume 1427 oLNCS pages
184-194. Springer, 1998.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis ofdmvah automata: Ap-

plication to model-checking. IRroc. 8th Int. Conf. on Concurrency Theory, CONCUR’'97
volume 1243 oL NCS pages 135-150. Springer, 1997.

. T. Brazdil and I. Cera. Model checking of regCTLComputers and Atrtificial Intelligence

25(1), 2006.

. Ashok K. Chandra, Dexter C. Kozen, and Larry J.Stockmeydterdation. Journal of the

ACM, 28(1):114-133, 1981.

. E. M. Clarke and E. A. Emerson. Synthesis of synchronization tedefor branching

time temporal logic. IrLogics of Programs: Workshopolume 131 olLNCS pages 52-71,
Yorktown Heights, New York, 1981. Springer.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Countargle-guided abstraction
refinement for symbolic model checkingournal of the ACM50(5):752-794, 2003.

A. Dawar, E. Gidel, and S. Kreutzer. Inflationary fixed points in modal logicdCM
Transactions on Computational Logis(2):282-315, 2004.

E. A. Emerson and J. Y. Halpern. Decision procedures aneéssipeness in the temporal
logic of branching timeJournal of Computer and System Scien@&8s1-24, 1985.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not nevevfsited: On branching
versus linear time temporal logidournal of the ACM33(1):151-178, 1986.

E. A. Emerson and C. S. Jutla. The complexity of tree automata aigs lofprograms.
SIAM Journal on Computing9(1):132-158, 2000.

E.A. Emerson and C.S. Jutla. The complexity of tree automata aiod lofgprograms. In
Foundations of Computer Science, Annual IEEE Symposiympages 328—337, 1988.

J. Esparza. Decidability of model-checking for infinite-state carotisystemsActa Infor-
matica 34:85-107, 1997.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic afleeégrogramsJournal of
Computer and System Scienct8(2):194-211, 1979.

D. Harel, D. Kozen, and J. Tiuryynamic Logic MIT Press, 2000.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of egular programsJour-
nal of Computer and System Scien@&(2):222—-243, 1983.

J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temlpgial Annals of Pure
and Applied Logic96(1-3):187-207, 1999.

I. Walukiewicz. Model checking ctl properties of pushdown systerim FSTTCS pages
127-138, 2000.

D. Kozen. Results on the propositiopatalculus. TCS 27:333—-354, 1983.

23

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

O. Kupferman, N. Piterman, and M. Y. Vardi. Extended tempomgitleevisited. InProc.
12th Int. Conf. on Concurrency Theory, CONCUR'@dlume 2154 o£ NCS pages 519-535.
Springer, 2001.

L. Bozzelli. Complexity results on branching-time pushdown modetkimg. Theor. Com-
put. Sci, 379(1-2):286-297, 2007.

M. Lange and M. Latte. A CTL-based logic for program abstraction$’roc. 17th Work-
shop on Logic, Language, Information and Computation, WoLLIQ/dlume 6188 of_NAI,
pages 19-33. Springer, 2010.

C. loding, C. Lutz, and O. Serre. Propositional dynamic logic with recarpiegrams.J.
Log. Algebr. Program.73(1-2):51-69, 2007.

R. Mateescu, P. T. Monteiro, E. Dumas, and H. de Jong. Computadi® regular logic for
genetic regulatory networks. Rroc. 6th Int. Conf. on Automated Technology for Verification
and Analysis, ATVA'Q8/olume 5311 of NCS pages 48-63. Springer, 2008.

M. O. Rabin and D. Scott. Finite automata and their decision probld®®§! Journal
2(3):115-125, 1959.

W. J. Savitch. Relationships between nondeterministic and determinicoaplexities.
Journal of Computer and System Sciende$77-192, 1970.

A. P. Sistlaand E. M. Clarke. The complexity of propositional lineaptaal logics.Journal
of the Association for Computing MachineB2(3):733—-749, 1985.

R. S. Streett. Propositional dynamic logic of looping and converderizemtarily decidable.
Information and Contrql54(1/2):121-141, 1982.

P. van Emde Boas. The convenience of tilings. In A. Sorbi, editomplexity, Logic, and
Recursion Theoryvolume 187 ofLecture notes in pure and applied mathematisages
331-363. Marcel Dekker, Inc., 1997.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower lsufor modal logics of pro-
grams. InProc. 17th Symp. on Theory of Computing, STOCi8fges 240-251, Baltimore,
USA, 1985. ACM.

M. Y. Vardi and P. Wolper. Reasoning about infinite computatitmfermation and Compu-
tation, 115(1):1-37, 1994.

M. Viswanathan and R. Viswanathan. A higher order modal fixéat pmgic. In Proc. 15th
Int. Conf. on Concurrency Theory, CONCUR O/blume 3170 ofLNCS pages 512-528.
Springer, 2004.

I. Walukiewicz. Pushdown processes: Games and model-clgethiarmation and Compu-
tation, 164(2):234-263, 2001.

P. Wolper. Temporal logic can be more expressiveSHCS '81: Proceedings of the 22nd
Annual Symposium on Foundations of Computer Scigrages 340—-348, Washington, DC,
USA, 1981. IEEE Computer Society.

