
Collapsible Pushdown Automata and Recursion Schemes∗

M. Hague† A. S. Murawski‡ C.-H. L. Ong§ O. Serre¶

Abstract

Collapsible pushdown automata (CPDA) are a new kind

of higher-order pushdown automata in which every sym-

bol in the stack has a link to a stack situated somewhere

below it. In addition to the higher-order stack operations

pushi and popi, CPDA have an important operation called

collapse, whose effect is to “collapse” a stack s to the prefix

as indicated by the link from the topmost symbol of s. Our

first result is that CPDA are equi-expressive with recursion

schemes as generators of (possibly infinite) ranked trees. In

one direction, we give a simple algorithm that transforms

an order-n CPDA to an order-n recursion scheme that gen-

erates the same tree, uniformly for all n ≥ 0. In the other

direction, using ideas from game semantics, we give an ef-

fective transformation of order-n recursion schemes (not as-

sumed to be homogeneously typed, and hence not necessar-

ily safe) to order-n CPDA that compute traversals over an

abstract syntax graph of the scheme, and hence paths in the

tree generated by the scheme. Our equi-expressivity result

is the first automata-theoretic characterization of higher-

order recursion schemes. Thus CPDA are also a charac-

terization of the simply-typed lambda calculus with recur-

sion (generated from uninterpreted 1st-order symbols) and

of (pure) innocent strategies.

An important consequence of the equi-expressivity re-

sult is that it allows us to reduce decision problems on trees

generated by recursion schemes to equivalent problems on

CPDA and vice versa. Thus we show, as a consequence of a

recent result by Ong (modal mu-calculus model-checking

of trees generated by recursion schemes is n-EXPTIME

complete), that the problem of solving parity games over

the configuration graphs of order-n CPDA is n-EXPTIME

complete, subsuming several well-known results about the

solvability of games over higher-order pushdown graphs by

(respectively) Walukiewicz, Cachat, and Knapik et al. An-

∗We direct readers to the (downloadable) long version [13] of this paper

in which all proofs are presented.
†Matthew.Hague@comlab.ox.ac.uk Oxford University

Computing Laboratory (OUCL)
‡Andrzej.Murawski@comlab.ox.ac.uk OUCL
§Luke.Ong@comlab.ox.ac.uk OUCL
¶Olivier.Serre@liafa.jussieu.fr LIAFA (CNRS and

Université Paris Diderot – Paris 7)

other contribution of our work is a self-contained proof of

the same solvability result by generalizing standard tech-

niques in the field. By appealing to our equi-expressivity

result, we obtain a new proof of Ong’s result.

In contrast to higher-order pushdown graphs, we show

that the monadic second-order theories of the configuration

graphs of CPDA are undecidable. It follows that – as gen-

erators of graphs – CPDA are strictly more expressive than

higher-order pushdown automata.

1 Introduction

Higher-order pushdown automata (PDA) were first in-

troduced by Maslov [18] as accepting devices for word lan-

guages. As n varies over the natural numbers, the lan-

guages accepted by order-n pushdown automata form an

infinite hierarchy. In op. cit. Maslov gave an equivalent def-

inition of the hierarchy in terms of higher-order indexed

grammars. Yet another characterization of Maslov’s hier-

archy was given by Damm and Goerdt [9, 10]: they studied

higher-order recursion schemes that satisfy the constraint

of derived types, and showed that the word languages gen-

erated by order-n such schemes coincide with those ac-

cepted by order-n PDA. Maslov’s hierarchy offers an attrac-

tive classification of the semi-decidable languages: orders

0, 1 and 2 are respectively the regular, context-free and in-

dexed languages [2], though little is known about languages

at higher orders (see e.g. [12]).

Higher-order PDA as a generating device for (possibly

infinite) labelled ranked trees was first studied by Knapik,

Niwiński and Urzyczyn [16]. As in the case of word lan-

guages, an infinite hierarchy of trees can be defined, accord-

ing to the order of the generating PDA; lower orders of the

hierarchy are well-known classes of trees: orders 0, 1 and 2

are respectively the regular [20], algebraic [8] and hyperal-

gebraic trees [15]. Knapik et al. considered another method

of generating such trees, namely, by higher-order (determin-

istic) recursion schemes that satisfy the constraint of safety.

A major result of that work is the equi-expressivity of the

two methods as tree generators. A question of fundamen-

tal importance in higher-type recursion is to find a class of

automata that characterizes the expressivity of higher-order

23rd Annual IEEE Symposium on Logic in Computer Science

1043-6871/08 $25.00 © 2008 IEEE
DOI 10.1109/LICS.2008.34

452

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

recursion schemes1. The results of Damm and Goerdt, and

of Knapik et al. may be viewed as attempts to answer the

question; they have both had to impose syntactic constraints

(of derived types and safety respectively, which seem some-

what unnatural) on recursion schemes in order to establish

their results. An exact correspondence with (general) recur-

sion schemes has never been proved before.

A partial answer was recently obtained by Knapik,

Niwiński, Urzyczyn and Walukiewicz. In an ICALP’05

paper [17], they proved that order-2 homogeneously-typed

(but not necessarily safe) recursion schemes are equi-

expressive with a variant class of order-2 pushdown au-

tomata called panic automata. In this paper, we give a com-

plete answer to the question. We introduce a new kind of

higher-order pushdown automata (which generalizes push-

down automata with links [1], or equivalently panic au-

tomata, to all finite orders), called collapsible pushdown au-

tomata (CPDA), in which every symbol in the stack has a

link to a (necessarily lower-ordered) stack situated some-

where below it. In addition to the higher-order stack oper-

ations pushi and popi, CPDA have an important operation

called collapse, whose effect is to “collapse” a stack s to

the prefix as indicated by the link from the top1-symbol of

s. The main result (Theorems 4.3 and 5.1) of this paper is

that for every n ≥ 0, order-n recursion schemes and order-n

CPDA are equi-expressive as generators of ranked trees.

Our equi-expressivity result has a number of important

consequences. It allows us to reduce decision problems on

trees generated by recursion schemes to equivalent prob-

lems on CPDA and vice versa. Chief among them is the

Modal Mu-Calculus Model-Checking Problem over ranked

trees (equivalently Alternating Parity Tree Automaton Ac-

ceptance Problem, or equivalently Monadic Second-Order

(MSO) Model-Checking Problem). We observe that all

these problems reduce to the problem of solving a parity

game played on a collapsible pushdown graph i.e. the con-

figuration graph of a corresponding collapsible pushdown

system (CPDS). Recently one of us has shown [19] that the

above decision problems for trees generated by order-n re-

cursion schemes are n-EXPTIME complete. Thanks to our

Equi-Expressivity Theorems, it follows that the same (n-

EXPTIME complete) decidability result holds for the corre-

sponding CPDS Problem, which subsumes many known re-

sults [22, 5, 17]. Moreover our approach yields techniques

that are significantly different from standard methods for

solving model-checking problems on infinite graphs gener-

ated by finite machines.

This transfer of techniques goes both ways. Indeed an-

other contribution of our work is a self-contained (and with-

out recourse to game semantics) proof of the solvability of

1Higher-order recursion schemes are essentially simply-typed lambda

calculus with general recursion and uninterpreted first-order function sym-

bols.

parity games on collapsible pushdown graphs by generaliz-

ing standard techniques in the field. By appealing to our

Equi-Expressivity Theorems, we obtain new proofs for the

decidability (and optimal complexity) of model-checking

problems of trees generated by recursion schemes as stud-

ied in [19].

In contrast to higher-order pushdown graphs (which do

have decidable MSO theories [6]), we show that the MSO

theories of collapsible pushdown graphs are undecidable.

Hence collapsible pushdown graphs are, to our knowledge,

the first example of a general2 and natural class of finitely-

presentable graphs that have undecidable MSO theories

while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

Fix a stack alphabet Γ and a distinguished bottom-of-

stack symbol ⊥ ∈ Γ. An order-0 stack is just a stack

symbol. An order-(n + 1) stack s is a non-null sequence

(written [s1 · · · sl]) of order-n stacks such that every non-

⊥ Γ-symbol a that occurs in s has a link to a stack (of order

k where k ≤ n) situated below it in s; we call the link

a (k + 1)-link. The order of a stack s is written ord(s);
and we shall abbreviate order-n stack to n-stack. As usual,

the bottom-of-stack3 symbol ⊥ cannot be popped from or

pushed onto a stack. We define ⊥k, the empty k-stack, as:

⊥0 = ⊥ and ⊥k+1 = [⊥k]. When displaying n-stacks in

examples, we shall omit the bottom-of-stack symbols and

1-links (i.e. links to stack symbols) to avoid clutter (writing

e.g. [[][a b]] instead of [[⊥][⊥ a b]].

The set Opn of order-n stack operations consists of the

following four types of operations:

1. popk for each 1 ≤ k ≤ n

2. collapse

3. push
a,k
1 for each 1 ≤ k ≤ n and each a ∈ (Γ \ {⊥ })

4. pushj for each 2 ≤ j ≤ n.

First we introduce the auxiliary operations: topi, which

takes a stack s and returns the top (i − 1)-stack of s;

and pusha
1 , which takes a stack s and pushes the sym-

bol a onto the top of the top 1-stack of s. Precisely let

s = [s1 · · · sl+1] be a stack with 1 ≤ i ≤ ord(s), we

define

topi [s1 · · · sl+1]
︸ ︷︷ ︸

s

=

{
sl+1 if i = ord(s)
topi sl+1 if i < ord(s)

2Pace nested trees [3], which are a highly constrained class of acyclic

graphs with “jump edges”, as reflected in the specialized vocabulary of

their logical representation.
3Thus we require an order-1 stack to be a non-null sequence

[a1 · · · al] of Γ-symbols such that for all 1 ≤ i ≤ l, ai = ⊥ iff i = 1.

453

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

and define pusha
1 [s1 · · · sl+1]

︸ ︷︷ ︸

s

by

{
[s1 · · · sl pusha

1 sl+1] if ord(s) > 1
[s1 · · · sl+1 a] if ord(s) = 1

(1)

We can now explain the four operations in turn. For i ≥ 1
the order-i pop operation, popi, takes a stack and returns it

with its top (i − 1)-stack removed. Let 1 ≤ i ≤ ord(s) we

define popi [s1 · · · sl+1]
︸ ︷︷ ︸

s

by

{
[s1 · · · sl] if i = ord(s) and l ≥ 1
[s1 · · · sl popisl+1] if i < ord(s)

(2)

We say that a stack s0 is a prefix of a stack s (of the same

order), written s0 ≤ s, just if s0 can be obtained from s by

a sequence of (possibly higher-order) pop operations.

Take an n-stack s and let i ≥ 2. To construct push
a,i
1 s

we first attach a link from a fresh copy of a to the (i − 1)-
stack that is immediately below the top (i − 1)-stack of s,

and then push the symbol-with-link onto the top 1-stack of

s. As for collapse, suppose the top1-symbol of s has a

link to (a particular copy of) the k-stack u somewhere in s.

Then collapse s causes s to “collapse” to the prefix s0 of

s such that topk+1 s0 is that copy of u. Finally, for j ≥ 2,

the order-i push operation, pushj , simply takes a stack s

and duplicates the top (j − 1)-stack of s, preserving its link

structure.

Example 2.1 Take the 3-stack s = [[[a]] [[][a]]].

We have

push
b,2
1 s = [[[a]] [[][a b]]]

collapse (push
b,2
1 s) = [[[a]] [[]]]

push
c,3
1 (push

b,2
1 s)

︸ ︷︷ ︸

θ

= [[[a]] [[][a b c]]].

Then push2 θ and push3θ are respectively

[[[a]] [[][a b c][a b c]]] and

[[[a]] [[][a b c]] [[][a b c]]].

We have collapse (push2 θ) = collapse (push3 θ) =
collapse θ = [[[a]]].

One way to define these stack operations formally is

to work with an appropriate numeric representation of the

links. Knapik et al. [17] have shown how this can be done

in the order-2 case. Here we introduce a different encoding

of links that works for all orders. The idea is simple: take

an n-stack s and suppose there is a link from (a particular

occurrence of) a symbol a in s to some (j−1)-stack. Let s0

be the unique prefix of s whose top1-symbol is that occur-

rence of a. Then there is a unique k such that collapse s0 =
popk

j s0 where popk
j means popj ; · · · ; popj

︸ ︷︷ ︸

k

. We shall

represent the occurrence of a with its link as a(j,k) in s.

Formally, a symbol-with-link of an n-stack is written a(j,k),

where a ∈ Γ, 1 ≤ j ≤ n and k ≥ 1, such that4 if j = 1 then

k = 1. Even though there is no link from ⊥, for technical

convenience, we assume if a = ⊥ then j = k = 1.

Example 2.2 To illustrate our numeric encoding of links,

we revisit Example 2.1. Take the 3-stack s =
[[[a]] [[][a]]] defined therein. Omitting the super-

script (1, 1) to save writing, we have

push
b,2
1 s = [[[a]] [[][a b(2,1)]]]

push
c,3
1 (push

b,2
1 s)

︸ ︷︷ ︸

θ

= [[[a]] [[][a b(2,1) c(3,1)]]].

Then push2 θ and push3θ are respectively

[[[a]] [[][a b(2,1) c(3,1)][a b(2,2) c(3,1)]]] and

[[[a]] [[][a b(2,1) c(3,1)]] [[][a b(2,1) c(3,2)]]].

Henceforth we shall adopt our numeric representation

of symbols-with-links. We can now give the formal defi-

nitions of collapse, push
b,i
1 and pushj (in terms of popj

and pushb
1 as defined in (2) and (1) respectively). Let

1 ≤ i ≤ ord(s) and 2 ≤ j ≤ ord(s) we define

collapse s = popf
e s where top1 s = a(e,f)

push
b,i
1 s = pushb(i,1)

1 s

and define pushj [s1 · · · sl+1]
︸ ︷︷ ︸

s

by

{

[s1 · · · sl+1 s
〈j〉
l+1] if j = ord(s)

[s1 · · · sl pushjsl+1] if j < ord(s)

where Θ〈j〉 is the operation of replacing every superscript

(j, kj) (for some kj) occurring in the stack Θ by (j, kj +
1); note that in case j = ord(s), the link structure of sl+1

is preserved by the copy (as represented by s
〈 j 〉
l+1) that is

pushed on top of s by pushj .

Definition 2.3 Fix an alphabet Σ. A word-language gen-

erating n-CPDA is a 5-tuple A = 〈Q, Σ, Γ, q0 ∈ Q, ∆ ⊆
Q × Σ × Q × Opn 〉 where Γ is a stack alphabet, Q is a

finite state-set, and q0 is the initial state. Configurations of

an n-CPDA are pairs of the form (q, s) where q ∈ Q and

4Thus 1-links are invariant – they always point to the preceding symbol

and no stack operation will change that.

454

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

s is an n-stack over Γ; we call (q0,⊥n) the initial config-

uration. The transition relation ∆ induces a labelled tran-

sition relation over configurations: (q, s)
a
> (q′, θ(s)) if

(q, a, q′, θ) ∈ ∆. We say that a1 · · · al ∈ Σ∗ is accepted by

A just if we have (q0,⊥n)
a1

> (q1, s1)
a2

> · · ·
al

> (q′,⊥n)
for some q′ ∈ Q. Standardly the language recognized by A
is the set of words it accepts. (An n-PDA is just an n-CPDA

in which collapse is not a stack operation.)

Example 2.4 [1] We define the language U (for Urzyczyn)

over the alphabet { (,), ∗ } as follows. A U -word is com-

posed of 3 segments:

(· · · (· · · (
︸ ︷︷ ︸

A

(· · ·) · · · (· · ·)
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

• Segment A is a prefix of a well-bracketed word that

ends in (, and the opening (is not matched in the

(whole) word.

• Segment B is a well-bracketed word.

• Segment C has length equal to the number of (in A,

whether matched or unmatched.

Note that each U -word has a unique decomposition.

E.g. (() (() (()) ∗ ∗ ∗ and ((
n

)
n

(∗n ∗ ∗ are in U (their

respective B-segments are underlined and empty). The

language U is not context free (by applying the “uvwxy”

Lemma to the preceding example) but recognizable by a

non-deterministic 2-PDA. Surprisingly, U is recognizable

by a deterministic 2-CPDA defined (informally) as follows:

- on reading (do push2 ; push
a,2
1

- on reading) do pop1

- on reading the first ∗ do collapse, and on reading any

subsequent ∗ do pop2.

This illustrates the power of collapse. We conjecture that U

is not recognizable by any deterministic 2-PDA (because of

the need to guess the transition from segment A to B).

Definition 2.5 A tree-generating n-CPDA is a 5-tuple

〈Σ, Γ, Q, δ, q0 〉 where Σ is a ranked alphabet (i.e. each Σ-

symbol f has an arity ar (f) ≥ 0) and δ : Q × Γ −→
(Q × Opn + { (f ; q1, · · · , qar(f)) : f ∈ Σ, qi ∈ Q }) is

the transition function. A generalized configuration (ranged

over by γ, γi, etc.) is either a configuration or a triple of the

form (f ; q1, · · · , qar(f); s). We define
ℓ
> , a labelled transi-

tion relation over generalized configuration by clauses, one

for each of the three types5 of labels ℓ that annotate
ℓ
> ,

namely, I , P and O:

I. (q, s)
(q′,θ)
> (q′, s′) if for some θ ∈ Opn we have

δ(q, top1 s) = (q′, θ) and s′ = θ(s)

P. (q, s)
(f ;q)
> (f ; q1, · · · , qar(f); s) if δ(q, top1 s) =

(f ; q1, · · · , qar(f)), writing q = q1, · · · , qar(f)

5I for internal or hidden Player-move, P for Player-move, and O for

Opponent-move.

O. (f ; q1, · · · , qar(f); s)
(f,i)
> (qi, s) for each 1 ≤ i ≤

ar(f).

A computation path of an n-CPDA A is a finite or

infinite transition sequence of the form ρ = γ0

ℓ0
>

γ1

ℓ1
> γ2

ℓ2
> · · · where γ0 is the initial configura-

tion. Every computation path is uniquely determined by

the associated label sequence, namely, ℓ0 ℓ1 ℓ2 · · · . Ob-

serve that such label sequences satisfy the regular expres-

sion (I∗ P O)ω + (I∗ P O)∗ Iω if the sequence is infinite,

and (I∗ P O)∗ I∗(ε + P + P O) if the sequence is finite.

The Σ-projection of ρ is the subsequence ℓr1 ℓr2 ℓr3 · · · of

labels of the shape (f, i) (in which case ar(f) ≥ 1) or of

the shape (f ; ε) (in which case ar (f) = 0, and the label

marks the end of the Σ-projection). We say the CPDA A
generates the Σ-labelled tree t just in case the branch lan-

guage6 of t coincides with the Σ-projection of computation

paths of A.

Remark 2.6 Are n-CPDA strictly more expressive than n-

PDA? (It follows from the definition that they are at least as

expressive as n-PDA.) When viewed as generators of word

languages, the answer is no7 for n = 2 but conjectured to

be yes for n > 2. When viewed as tree generators, the

conjecture is yes for all n (this is equivalent to the Safety

Conjecture [16] in view of Sections 4 and 5). When viewed

as generators of directed graphs, the answer is yes for all n

– see Section 6.

3 Recursion schemes

Types are generated from the base type o using the ar-

row constructor →. Every type A can be written uniquely

as A1 → · · · → An → o (arrows associate to the right),

for some n ≥ 0 which is called its arity; we shall of-

ten write A simply as (A1, · · · , An, o). We define the

order of a type by ord(o) = 0 and ord(A → B) =
max(ord(A) + 1, ord(B)). Let Σ be a ranked alphabet

i.e. each Σ-symbol f has an arity ar (f) ≥ 0 which deter-

mines its type (o, · · · , o
︸ ︷︷ ︸

ar(f)

, o). Further we shall assume that

each symbol f ∈ Σ is assigned a finite set Dir(f) of ar(f)
directions, and we define Dir(Σ) =

⋃

f∈Σ Dir(f). Let D be

a set of directions; a D-tree is just a prefix-closed subset of

D∗, the free monoid of D. A Σ-labelled tree is a function

t : Dom(t) −→ Σ such that Dom(t) is a Dir(Σ)-tree, and

6The branch language of t : Dom(t) −→ Σ consists of infinite words

(f1, d1)(f2, d2) · · · just if for 0 ≤ i < n, we have t(d1 · · · di) = fi+1;

and of finite words (f1, d1) · · · (fn, dn)a just if for 0 ≤ i < n, we have

t(d1 · · · di) = fi+1 and t(d1 · · · dn) = a.
7As language generators, 2-CPDA are equi-expressive with non-

deterministic 2-PDA (see [1]).

455

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

for every node α ∈ Dom(t), the Σ-symbol t(α) has arity

k if and only if α has exactly k children and the set of its

children is {α i : i ∈ Dir(t(α)) } (i.e. t is a ranked tree).

We shall assume that the ranked alphabet Σ contains a dis-

tinguished nullary symbol ⊥ which will be used exclusively

to label “undefined” nodes.

Note. We write [m] as a shorthand for { 1, · · · , m }.

Henceforth we fix a ranked alphabet Σ for the rest of the

paper, and set Dir(f) = [ar(f)] for each f ∈ Σ; thus

Dir(Σ) = [ar (Σ)], writing ar (Σ) to mean max{ ar(f) :
f ∈ Σ }.

For each type A, we assume an infinite collection VarA

of variables of type A, and write Var to be the union of

VarA as A ranges over types; we write t : A to mean

that the expression t has type A. A (deterministic) recur-

sion scheme is a tuple G = 〈Σ,N ,R, S 〉 where Σ is

a ranked alphabet of terminals; N is a set of typed non-

terminals; S ∈ N is a distinguished start symbol of type o;

R is a finite set of rewrite rules – one for each non-terminal

F : (A1, · · · , An, o) – of the form F ξ1 · · · ξn → e where

each ξi is in VarAi , and e ∈ T o(Σ ∪ N ∪ { ξ1, · · · , ξn })
i.e. e is an applicative term of type o generated from ele-

ments of Σ ∪ N ∪ { ξ1, · · · , ξn }. The order of a recursion

scheme is the highest order of the types of its non-terminals.

We use recursion schemes as generators of Σ-labelled

trees. The value tree of (or the tree generated by) a re-

cursion scheme G, denoted [[G]], is a possibly infinite ap-

plicative term, but viewed as a Σ-labelled tree, constructed

from the terminals in Σ, that is obtained by unfolding the

rewrite rules of G ad infinitum, replacing formal by actual

parameters each time, starting from the start symbol S. See

e.g. [16] for a formal definition.

Example 3.1 Let G be the order-2 unsafe (in the sense of

[16]) recursion scheme with rewrite rules where z : o and

ϕ : (o, o):







S → H a

H z → F (g z)
F ϕ → ϕ (ϕ (F h))

g
nn

nn
n

PP
PP

P

a g
nn

nn
n

PP
PP

P

a h

h

...

where the arities of the terminals g, h, a are 2, 1, 0 re-

spectively. The value tree [[G]] (as shown on the

right) is the Σ-labelled tree defined by the infinite term

g a (g a (h (h (h · · ·)))). The only infinite path in the tree

is the node-sequence ε · 2 · 22 · 221 · 2211 · · · .

4 From CPDA to recursion schemes

In this section we show that there is an effective trans-

lation from order-n CPDA A to order-n recursion schemes

GA (where n ≥ 0) such that A and GA define the same

Σ-labelled tree (Theorem 4.3). We begin by introducing a

method to represent order-n stacks and configurations by

applicative terms constructed from non-terminals of order

n. Our approach simplifies somewhat the (order-2) transla-

tion in [17] and generalizes it to all finite orders.

Fix a tree-generating n-CPDA A. W.l.o.g. we assume

that the state-set of A is [m] where m ≥ 1. Let 0 be the base

type. Inductively, for n ≥ 0, we define the type n + 1 =
nm → n where nm = n × · · · × n

︸ ︷︷ ︸

m times

. Thus n + 1 = nm →

(n − 1)
m → · · · → 0m → 0. For each stack symbol a,

each 1 ≤ e ≤ n and each state 1 ≤ p ≤ m, we introduce a

non-terminal

Fa,e
p : (n − e)m → (n − 1)m → · · · → 0m → 0

that represents the symbol a with a link of order e (in

state p). Note that the type of Fa,e
p is not homogeneous

in the sense of Knapik et al. [16]. In addition, for each

0 ≤ i ≤ n − 1, we introduce a non-terminal Ωi : i, and fix

a start symbol S : 0. Let NA be the set of all non-terminals.

We shall use the following shorthand: Let P (i) be a term

with an occurrence of i; we write 〈P (i) | i〉 as a shorthand

for the m-tuple 〈P (1), · · · , P (m) 〉. E.g. 〈Fa,e
i | i〉 means

〈Fa,e
1 , · · · ,Fa,e

m 〉 : ((n − e)m → n)m.

A term M : n − j where 0 ≤ j ≤ n is said to be head

normal if its head symbol is a non-terminal of the formFa,e
p

i.e. M has the shape Fa,e
p LMn−1 · · ·Mn−j , for some a, e

and p and for some vectors of terms L, Mn−1, · · · , Mn−j

of the appropriate types; we shall call Fa,e
p the head non-

terminal of M . Let 0 ≤ j ≤ n, 1 ≤ p ≤ m and let s be a

j-stack, a pair of the form (p, s) is called a j-configuration

(thus a configuration is an n-configuration). We shall use

head-normal terms of type n − j, which has the general

shape Fa,e
p LMn−1 · · ·Mn−j : n − j, to represent j-

configurations; equivalently we use m-tuples of the form

〈Fa,e
i LMn−1 · · ·Mn−j | i〉 : (n − j)m

to represent j-stacks. Suppose the configuration (p, s) is

represented by Fa,e
p LMn−1 · · ·M0 : 0. The idea is that

for 1 ≤ k ≤ n, we have (p, topk s) is represented by

Fa,e
p LMn−1 · · ·Mn−(k−1) : n − (k − 1),

(p, popk s) is represented by Mn−k,p Mn−k−1 · · ·M0 : 0,

and (p, collapse s) is represented by Lp Mn−e−1 · · ·M0 :
0. In particular the 0-configuration (p, top1 s) – where the

top1-symbol of s is a with a link to the (e − 1)-stack that

is represented by the m-tuple L : (n− e)m – is represented

by Fa,e
p L : n.

What does it mean for a term to represent a configura-

tion? To give a precise answer, we first consider labelled

456

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

rewrite rules of the general form, with q ranging over states

and θ over Opn:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)

−_ Ξ(q,θ)

where for each 0 ≤ j ≤ n − 1, we have Ψj =
Ψj1, · · · , Ψjm is a vector of variables, with each Ψji : j;

similarly Φ = Φ1, · · · , Φm is a vector of variables, with

each Φi : n − e. The shape of Ξ(q,θ) depends on the pair

(q, θ) as shown in Table 1, where 2 ≤ j ≤ n and 1 ≤ e, k ≤
n: The labelled rewrite rules induce a family of labelled

outermost transition relations
(q,θ)
−→ ⊆ T 0(NA)×T 0(NA).

Informally we define M
(q,θ)
−→ M ′ just if M ′ is obtained

from M by replacing the head (equivalently outermost)

non-terminal F by the right-hand side of the corresponding

rewrite rule in which all formal parameters are in turn re-

placed by their respective actual parameters; since each bi-

nary relation
(q,θ)
−→ is a partial function, we shall write M

(q,θ)
−→

to mean M ′. We shall write
θ

−→ to mean the set of all tran-

sitions M
(q,θ)
−→ M ′ that preserves the state q of M . Let

α = θ1 ; · · · ; θl be a (composite) sequence of stack op-

erations. We write
α

−→ ⊆ T 0(NA) × T 0(NA) to be the

sequential composition of the partial function
θ1−→, · · · ,

θl−→
(in this order).

The position of a given stack symbol in an n-stack s

can be described by a sequence of (possibly higher-order)

pop operations that can “collapse” the stack up to the point

where that position becomes the top1-symbol. For example,

the position of b in the 2-stack [[a a][a b a][a a][a]]

is pop2
2 ; pop1. In general such sequences are not unique,

though they can be normalized to one in which the respec-

tive orders of the pop operations form a non-increasing se-

quence. We shall call a normalized sequence for a given

stack s an s-probe. We say that a ground-type term M

represents a configuration (p, s) if for every s-probe α, if

the top1-symbol of α s is a(j,k), then the head non-terminal

of M
α

−→ is Fa,j
p ; further (M

α
−→)

popk
j

−→ = (M
α

−→)
coll.
−→,

and it represents the configuration (p, collapse(α s)). Note

that F⊥,1
p Ωn−1 Ωn−1 · · ·Ωn−j : n − j represents the j-

configuration (p,⊥n−j). The following Theorem confirms

that our notion of representation is the right one.

Theorem 4.1 (Correctness) Let M be a ground-type term,

(p, s) be a configuration, and θ be a stack operation. Sup-

pose M represents (p, s). If M
θ

−→ M ′ then M ′ represents

the configuration (p, θ s).

Definition 4.1 Fix a tree-generating order-n CPDA A =
〈Σ, Γ, Q, δ, q0 〉 with Q = [m] for some m ≥ 1, and q0 = 1.

The order-n recursion scheme determined by A, written

GA, consists of a start rule:

S −_ F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0

and two types of rewrite rules (according to the type of their

label), namely, I and P :

I. For each (q, θ) ∈ δ(p, a) and 1 ≤ e ≤ n, there is an

I-type rewrite rule

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

where Ξ(q,θ) is as given in Table 1.

P. For each (f ; q1, · · · , qar(f)) ∈ δ(p, a) and 1 ≤ e ≤ n,

we have a P -type rule:

Fa,e
p Ξ

(f ;q)
−_ f (Fa,e

q1
Ξ) · · · (Fa,e

qar(f)
Ξ).

where Ξ is a shorthand for ΦΨn−1 · · ·Ψ0. We write −→⊆
T 0(Σ∪NA)×T 0(Σ∪NA) for the one-step reduction rela-

tion8 between ground-type applicative terms, defined to be

the substitutive and contextual closure of the rewrite rules.

A ground-type term R is called a redex if for some

term R′ we have R −→ R′ is a substitutive instance of a

rewrite rule
ℓ

−_, and the redex is said to be P -type or I-

type according to the type of ℓ; by abuse of notation, we

shall write R
ℓ

−_ R′. A ground-type term is either head

terminal (i.e. of the shape f N1 · · ·Nar(f)) or head non-

terminal (i.e. the head symbol is a non-terminal). A head

non-terminal ground term is either atomic (i.e. S or Ω0) or

it is head normal (i.e. the head symbol is of the form Fa,e
p),

in which case, it is an I-type or P -type redex. In order to

prove the Theorem (Equi-Expressivity 1), we define by rule

induction a binary relation
ℓ
⇒ over pairs of the form (E, R)

where ℓ ranges over I-, P - and O-labels (as defined in Def-

inition 2.5), E ranges over active contexts9, and R over re-

dexes and head-terminal ground-type terms, as follows:

ℓ is I- or P -type R
ℓ

−_ R′

(E, R)
ℓ
⇒ (E, R′)

ℓ = (f, i) is O-type

(E, f N)
ℓ
⇒ (E[f N1 · · ·Ni−1 [-]Ni+1 · · ·Nar(f)], Ni)

Thus, suppose (E, R)
ℓ
⇒ (E′, R′); it follows from def-

inition that if ℓ is I- or P -type, then E[R] −→ E[R′]
(i.e. E = E′); otherwise ℓ is O-type and E[R] = E′[R′].

Set E0 = [] and R0 = F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0 (note that

S −→ E0[R0]). Thanks to Theorem 4.1, we can now prove

the following lemma (from which the Equi-Expressivity

Theorem 1 follows):

8When defining −→ and the tree generated by the recursion scheme

GA, we ignore the labels ℓ that annotate the rules
ℓ

−_.
9An active context is just an ground-type applicative term that contains

a ground-typed hole, into which a term may be inserted.

457

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

Cases of (q, θ) Corresponding Ξ(q,θ)

(q, push
b,k
1) Fb,k

q Ψn−k 〈F
a,e
i Φ Ψn−1 | i〉Ψn−2 · · · Ψ0

(q, pushj) Fa,e
q Φ Ψn−1 · · ·Ψn−(j−1)〈F

a,e
i Φ Ψn−1 · · ·Ψn−j | i〉Ψn−(j+1) · · ·Ψ0

(q, popk) Ψn−k,q Ψn−k−1 · · ·Ψ0

(q, coll.) Φq Ψn−e−1 · · ·Ψ0

Table 1. Definition of Ξ(q,θ)

Lemma 4.2 There is a 1-1 correspondence between (finite

or infinite) computation path of A of form γ0

ℓ0
> γ1

ℓ1
>

γ2

ℓ2
> · · · and

ℓ
⇒-reduction sequences (E0, R0)

ℓ0⇒

(E1, R1)
ℓ1⇒ (E2, R2)

ℓ2⇒ · · · such that for every i ≥ 0,

if Ri is head-normal, then Ri represents γi.

Theorem 4.3 (Equi-Expressivity 1) Let A be a tree-

generating CPDA. The recursion scheme GA (as defined

in Definition 4.1) generates the same Σ-labelled tree as the

CPDA A.

5 From recursion schemes to CPDA

The previous section shows that order-n recursion

schemes are at least as expressive as order-n CPDA. In

this section we shall sketch a proof of the converse. Hence

CPDA and recursion schemes are equi-expressive. We have

already mentioned related results by Damm and Goerdt and

by Knapik et al. Note that in both these cases, correspon-

dence is established with recursion schemes that are subject

to highly non-trivial syntactic constraints; further the trans-

lation techniques depend on the constraints in a crucial way.

Our translation from recursion schemes to CPDA is novel;

it is based on (innocent) game semantics [14] and, in partic-

ular, the notions of long transform and traversal introduced

in [19].

Let G be an order-n recursion scheme. The long trans-

form of G, written G, is another recursion scheme (of or-

der 0) obtained from G by a series of syntactic transforma-

tions. First we replace the right-hand sides e of all G-rules

by their η-long forms10
peq. Then explicit application sym-

bols are introduced: Each ground-type subterm Fe1 · · · en,

where F is a non-terminal, is replaced by @AFe1 · · · en

for a suitable type A. Finally, to arrive at G, we curry each

of the transformed rules: Fξ1 · · · ξn → e′ is replaced by

F → λξ1 · · · ξn.e′. By renaming we can ensure that for

each variable name ϕi there is a unique node λϕ such that

10Given †s1 · · · sm : (A1, · · · , An, o), we define p† s1 · · · smq =
λϕ1 · · ·ϕn.†ps1q · · ·psmqpϕ1q · · ·pϕnq.

ϕi occurs in ϕ. E.g. the long transform of the scheme from

Example 3.1 is






S = λ.@ H (λ.a)
H = λz.@ F (λy.g (λ.z) (λ.y))
F = λϕ.ϕ (λ.ϕ (λ.@ F (λx.h (λ.x)))).

λ

1��
@

0
tt

yytt 1
II

$$II

λz
1��

λ

1��
@

0
tt

zztt 1
JJ

$$JJ

a

λϕ
1��

λy
1��

ϕ
1��

g
1
ss

yyss 2
II

$$II

λ

1��
λ

1��
λ

1��
ϕ

1��
z y

λ

1��
@

0

>>

1
KK

%%KK

λx
1��

h
1��

λ
1��

x

Given G, we fur-

ther define a labelled

directed graph Gr(G),
which will serve as

a blueprint for the

eventual definition of

CPDA(G), the CPDA

corresponding to G.

To construct Gr(G),
we first take the for-

est consisting of all

syntactic trees of the

right-hand sides of G.

We orient the edges

towards the leaves and

enumerate the outgoing

edges of any node

from 1 to ar(f), where

f is the node label,

except that edges from

nodes labelled by @ are

numbered from 0. Let

us write v = Ei(u) iff (u, v) is an edge enumerated by i.

Next, for any non-terminal F , we identify (“glue together”)

the root rtF of the syntactic tree of the right-hand side of

the rule for F with all nodes labelled F (which were leaves

in the forest). The node rtS , where S is the start symbol

of G, will be called the root of Gr(G). The graph Gr(G)
for the order-2 recursion scheme in Example 3.1 is given

on the right.

We are now ready to describe CPDA(G). The set

of nodes of Gr(G) will become the stack alphabet of

CPDA(G). The initial configuration will be the n-stack

push
v0,1
1 ⊥n, where v0 is the root of Gr(G). For ease of

458

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

explanation, we define the transition map δ as a function

that takes a node u ∈ Gr(G) to a sequence of stack opera-

tions, by a case analysis of the label lu of u. When lu is not

a variable, the action is just push
v,1
1 , where v is an appro-

priate successor of the node u. More precisely, v is defined

to be E0(u) (if lu = @), E1(u) (if lu = λϕ) or Ei(u) (if

lu ∈ Σ and i is the direction that the automaton is to ex-

plore in the generated tree). Finally, suppose lu is a variable

ϕi and its binder is a lambda node λϕ which is in turn a

j-child. Then, assuming ϕ is of order l ≥ 1, the action will

be δ(u) which is defined to be

pushn−l+1 ; pop
p+1
1 ; push

Ei(top1),n−l+1
1

if j = 0, and

pushn−l+1 ; pop
p
1 ; collapse ; push

Ei(top1),n−l+1
1

otherwise, where push
Ei(top1),k
1 is defined to be the op-

eration s 7→ push
Ei(top1 s),k
1 s. If the variable has or-

der 0 we use pop
p+1
1 ; push

Ei(top1),1
1 if j = 0, and

pop
p
1 ; collapse ; push

Ei(top1),1
1 otherwise. It can be

shown that runs of CPDA(G) are in 1-1 correspondence

with traversals, as defined in [19]. Since traversals are sim-

ply uncoverings (in the sense of [14]) of paths in the value

tree [[G]] we have the following theorem:

Theorem 5.1 (Equi-Expressivity 2) For any order-n re-

cursion scheme G, the CPDA determined by it, CPDA(G),
generates the value tree [[G]].

Remark 5.1 The proof of the preceding Theorem is effec-

tive. W. Blum [4] has constructed a tool (in F#) called

HOG (Higher-Order Grammar), downloadable from his

homepage, which implements (among other things) the al-

gorithm that transforms an order-n recursion scheme G to

the order-n CPDA, CPDA(G), that generates [[G]].

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsi-

ble pushdown graphs i.e. we want to know whether we can

decide, for any position in such a game, if Éloı̈se has a win-

ning strategy from it, and if so, determine its complexity.

An order-n collapsible pushdown system11 (n-CPDS) is

given by a quadruple A = 〈Γ, Q, ∆, q0 〉 where Γ is the

stack alphabet, Q is a finite state-set, ∆ ⊆ Q×Γ×Q×Opn

is the transition relation, and q0 is the initial state. Config-

urations of an n-CPDS are pairs of the form (q, s) where

q ∈ Q and s is an n-stack over Γ. We define a one-step la-

belled transition relation of the CPDS A, written
ℓ
> where

11We use collapsible pushdown system (as opposed to automaton) when-

ever the device is used to generate a graph.

ℓ ∈ Q × Opn, which is a family of binary relations over

configurations, as follows: (q, s)
(q′,θ)
> (q′, s′) iff we have

(q, top1 s, q′, θ) ∈ ∆ and s′ = θ(s). The initial config-

uration is (q0,⊥n). We can now define the configuration

graph of A: vertices are just the (reachable) configura-

tions, and the edge relation is the relation
ℓ
> restricted to

the reachable configurations.

Example 6.1 Take the 2-CPDS12 with state-set { 0, 1, 2 },

stack alphabet { a, b,⊥} and transition relation given by

(0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0)

where − means any symbol, † means any non-⊥ symbol,

and t, a, b, 0 and 1 are shorthand for the stack operations

push2, push
a,2
1 , push

b,2
1 , collapse and pop1 respectively.

We present its configuration graph (with edges labelled by

stack operations only) in Table 2.

Let G = 〈V, E 〉 denote the configuration graph of A, let

QE ∪ QA be a partition of Q and let Ω : Q → C ⊂ N

be a colouring function. Altogether they define a partition

VE∪VA of V whereby a vertex belongs to VE iff its control

state belongs to QE, and a colouring function Ω : V → C

where a vertex is assigned the colour of its control state. The

structure G = 〈G, VE, VA 〉 is an n-CPDS game graph and

the pair G = 〈 G, Ω 〉 is a n-CPDS parity game. A play in

G from the initial vertex v0 = (q0,⊥n) works as follows:

the player who controls v0 (Éloı̈se if v0 ∈ VE or Abelard

otherwise) moves a token from v0 to some neighbour v1

(we assume here that G has no dead-end), then the player

that controls the token moves it to a neighbour v2 of v1 and

so on. A play is therefore an infinite path v0v1 · · · and is

won by Éloı̈se iff lim inf〈Ω(vi) : i ≥ 0 〉 is even. Finally,

v0 is winning for some player if he has a winning strategy

from it. See [21, 24, 23] for more details.

In this section we consider the problem:

(P1) Given an n-CPDS parity game decide if Éloı̈se has a

winning strategy from the initial configuration.

The Problem (P1) is closely related to the following:

problems:

(P2) Given an n-CPDS graph G, and a mu-calculus for-

mula ϕ, does ϕ hold at the initial configuration of G?

(P3) Given an alternating parity tree automaton and n-

CPDS graph G, does it accept the unravelling of G?

(P4) Given an MSO formula ϕ and an n-CPDS graph G,

does ϕ hold at the root of the unravelling of G?

From the well-known techniques of [11], it follows that

Problem (P1) is polynomially equivalent to Problems (P2)

and (P3); and Problem (P1) is equivalent to Problem (P4)

– the reduction from (P1) to (P4) is polynomial, but non-

elementary in the other direction.

12This is inspired by an example in [7].

459

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

0[[]]
t // 1[[][]]

a //

b��

0[[][a]]
t // 1[[][a][a]]

a //

b��

0[[][a][a a]]
t // 1[[][a][a a][a a]] · · ·

b��
2[[][b]]

1��

0

ggOOOOOO

2[[][a][a b]]

1��

0

iiSSSSSSSS

2[[][a][a a][a a b]] · · ·

1��

0

kkWWWWWWWWWWW

2[[][]] 2[[][a][a]]

1��

0

kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

2[[][a][a a][a a]] · · ·

1��

0

llYY

2[[][a][]] 2[[][a][a a][a]] · · ·

1��

0

llXXX

2[[][a][a a][]]

Table 2. Configuration graph of a 2­CPDS

A useful fact is that the unravelling of an n-CPDS graph

is actually generated by an n-CPDA (one mainly has to note

that putting labels on the edges makes the n-CPDS graph

deterministic and hence its unravelling as desired). Thus an

important consequence of the Equi-Expressivity Theorems

is the following.

Theorem 6.1 Let t be a tree generated by an order-n re-

cursion scheme. Consider the following problems:

(P′
2) Given t and a modal mu-calculus formula ϕ, does ϕ

hold at the root of t?

(P′
3) Given t and an alternating parity tree automaton,

does the automaton accept t?

(P′
4) Given t and an MSO formula ϕ, does ϕ hold at the

root of t?

Then problem (Pi) is polynomially equivalent to problem

(P′
i) for every i = 2, 3, 4.

Since the Modal Mu-Calculus Model Checking Problem

for trees generated by (higher-order) recursion schemes is

decidable [19], we obtain the following as an immediate

consequence.

Theorem 6.2 Problems (P1), (P2), (P3) and (P4) are de-

cidable with complexity n-EXPTIME complete.

Another remarkable consequence of the Equi-

Expressivity Theorems is that they give totally new

techniques for model-checking or solving games played

on infinite structures generated by automata. In particular

they lead to new proofs / optimal algorithms for the special

cases that have been considered previously [22, 5, 17].

Conversely, as the Equi-Expressivity Theorems work in

both directions, we note that a solution of Problem (P1)
would give a new proof of the decidability of Problems

(P′
2), (P′

3) and (P′
4), and would give a new approach to

problems on recursion schemes. Actually, the techniques

of [22, 17] can be generalized to solve n-CPDS parity

games without reference to [19]. Further they give effective

winning strategies for the winning player (which was

not the case in [17] where the special case n = 2 was

considered).

Theorem 6.3 The problem of solving an n-CPDS parity

game is n-EXPTIME complete and it can be achieved with-

out reference to the decidability result in [19]. Further one

can build an n-CPDA with output that realizes a winning

strategy for the winning player.

Remark 6.2 This result can easily be generalized to the

case where the game has an arbitrary ω-regular winning

condition, and is played on the ε-closure of the configura-

tion graph of an n-CPDS graph. Consequently parity games

on Caucal graphs [6, 5] are a special case of this problem.

The Caucal graphs have decidable MSO theories [6]. Do

the configuration graphs of CPDS also have decidable MSO

theories?

Theorem 6.4 (Undecidability) MSO theories of configu-

ration graphs of CPDS are undecidable. Hence the class

of ε-closure of configuration graphs of CPDS strictly con-

tains the Caucal graphs.

•
A //

B��

•
A //

B��

•
A //

B��

· · ·

•
A //

•
A //

B��

•
A //

B��

· · ·

•
A //

•
A //

B��

· · ·

•
A //

· · ·

For a proof, recall that MSO in-

terpretation preserves MSO decid-

ability. Now consider the following

MSO interpretation I of the config-

uration graph of the 2-CPDS in Ex-

ample 6.1:

IA(x, y) = x
C
−→ y ∧ x

R
−→ y

IB(x, y) = x
1

−→ y

with C = 1
∗
b a t b 1∗ and R = 0 t a 0 ∨ 1 0 t a 0 1. Note

that for the A-edges, the constraint C requires that the tar-

get vertex should be in the next column to the right, while

R specifies the correct row. Observe that I’s image is the

“infinite half-grid” which has an undecidable MSO theory.

460

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

7 Conclusions and further directions

In this paper, we introduce collapsible pushdown au-

tomata and prove that they are equi-expressive with (gen-

eral) recursion schemes for generating trees. This is the

first automata-theoretic characterization of higher-order re-

cursions schemes. We think that the equi-expressivity re-

sult is significant because it acts as a bridge, enabling inter-

translation between model-checking problems about trees

generated by recursion schemes on the one hand, and solv-

ability of games on collapsible pushdown graphs on the

other. We show (Theorem 6.4) that order-n CPDS are

strictly more expressive than order-n pushdown systems for

generating graphs.

There are a number of further directions:

(i) The most pressing open problem is whether order-n

CPDA are equi-expressive with order-n PDA for generating

trees (see Remark 2.6). The conjecture is that the former

are strictly more expressive. Specifically the Urzyczyn tree

is definable by a 2-CPDA [1] but we conjecture that it is not

definable by an n-PDA for any n ≥ 2.

(ii) Is it possible to give a finite description of the set of

winning positions of an n-CPDS parity game? Over gen-

eralized configuration graphs (whose vertices are all con-

figurations, not just the reachable), we believe that the set

of winning positions of an n-CPDS parity game is repre-

sentable by a finite automaton that reads a stack with links

from bottom to top, and that, when processing a link, has

access to the state it was in after reading the stack pointed

to.

(iii) Is there an à la Caucal definition for the ε-closure of

CPDS graphs? As trees generated by n-CPDA are exactly

those obtained by unravelling an n-CPDS graph, is there a

class of transformations T from trees to graphs such that

every (n + 1)-CPDS graph is obtained by applying a T -

transformation to some tree generated by an n-CPDA? Note

that a T -transformation may in general not preserve MSO

decidability, but should preserve mu-calculus decidability

of trees generated by n-CPDA.

(iv) The algorithm that transforms recursion schemes to

CPDA (briefly sketched in Section 5) uses ideas in game

semantics. It would be an interesting (and challenging) to

obtain a translation based on first principles.

References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not

a restriction at level 2 for string languages. In Proc. FOS-

SACS’05, LNCS 3411, 2005, pp. 490-501.

[2] A. Aho. Indexed grammars - an extension of context-free

grammars. J. ACM 15:647-671, 1968.

[3] R. Alur and P. Madhusudan. Languages of nested trees. In

Proc. CAV’06, 2006.

[4] W. Blum. A tool for constructing structures gener-

ated by higher-order recursion schemes and collapsible

pushdown automata. web.comlab.ox.ac.uk/oucl/

work/william.blum/, 2007.

[5] T. Cachat. Higher order pushdown automata, the Caucal

hierarchy of graphs and parity games. In Proc. ICALP’03,

LNCS 2719, pp. 556-569, 2003.

[6] D. Caucal. On infinite terms having a decidable monadic

theory. In Proc. MFCS’02, LNCS 2420, pp. 165-176, 2002.

[7] D. Caucal and S. Hassen. Higher-order recursive schemes.

Private communication, 28 pages, July 2006.

[8] B. Courcelle. The monadic second-order logic of graphs IX:

machines and their behaviours. TCS 151:125-162, 1995.

[9] W. Damm. The IO- and OI-hierarchy. TCS 20:95-207, 1982.

[10] W. Damm and A. Goerdt. An automata-theoretical character-

ization of the OI-hierarchy. Info. & Control 71:1-32, 1986.

[11] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus

and determinacy. In Proc. FOCS’91, pp. 368-377, 1991.

[12] J. Engelfriet. Interated stack automata and complexity

classes. Info. & Comp. 95:21-75, 1991.

[13] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre.

Collapsible pushdown automata and recursion schemes.

2007. 56 pages, downloadable from

users.comlab.ox.ac.uk/luke.ong/

publications/cpda-long.pdf.

[14] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for

PCF: I. Models, observables and the full abstraction prob-

lem, II. Dialogue games and innocent strategies, III. A fully

abstract and universal game model. Info. & Comp. 163:285-

408, 2000.

[15] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic

theories of hyperalgebraic trees. In Proc. TLCA’01, LNCS

2044, pp. 253-267, 2001.

[16] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order

pushdown trees are easy. In Proc. FOSSACS’02, LNCS

2303, pp. 205-222, 2002.

[17] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz.

Unsafe grammars and panic automata. In Proc. ICALP’05,

LNCS 3580, pp. 1450-1461, 2005.

[18] A. N. Maslov. Multilevel stack automata. Problems of Infor-

mation Transmission, 12:38-43, 1976.

[19] C.-H. L. Ong. On model-checking trees generated by higher-

order recursion schemes. In Proc. LICS’06, pp. 81-90, 2006.

[20] M. O. Rabin. Decidability of second-order theories and au-

tomata on infinite trees. Trans. AMS 141:1-35, 1969.

[21] W. Thomas. On the synthesis of strategies in infinite games.

In Proc. STACS’95, LNCS 900, pp. 1-13, 1995.

[22] I. Walukiewicz. Pushdown processes: games and model-

checking. Info. & Comp. 157:234-263, 2001.

[23] I. Walukiewicz. A landscape with games in the backgroung.

In Proc. LICS’04, pp. 356-366, 2004.

[24] W. Zielonka. Infinite games on finitely coloured graphs with

applications to automata on infinite trees. TCS 200(1-2):135-

183, 1998.

461

Authorized licensed use limited to: Oxford University Libraries. Downloaded on May 28, 2009 at 08:11 from IEEE Xplore. Restrictions apply.

