
Collapsible Pushdown Automata and Recursion Schemes

M. Hague∗ A. S. Murawski† C.-H. L. Ong‡ O. Serre§

(Preliminary version, 16 January 2007)

Abstract

Collapsible pushdown automata(CPDA) are a new kind of higher-order pushdown automata in which
every symbol in the stack has a link to a stack situated somewhere below it. In addition to the higher-order
stack operationspushi andpopi, CPDA have an important operation calledcollapse, whose effect is to
“collapse” a stacks to the prefix as indicated by the link from thetop1-symbol ofs. Our first result is
that CPDA are equi-expressive withrecursion schemesas generators of node-labelled ranked trees. In one
direction, we give a simple algorithm that transforms an order-n CPDA to an order-n recursion scheme that
generates the same tree, uniformly for alln ≥ 0. In the other direction, using ideas from game semantics, we
give an effective transformation of order-n recursion schemes (not assumed to behomogeneously typed, and
hence not necessarilysafe) to order-n CPDA that computetraversalsover a certain finite graph determined
by the scheme, and hence paths in the tree generated by the scheme. Our equi-expressivity result is the first
such automata-theoretic characterization of (general) recursion schemes.

An important consequence of the equi-expressivity result is that it allows us to translate decision prob-
lems on trees generated by recursion schemes to equivalent problems on CPDA andvice versa. For example,
since the Modal Mu-Calculus Model-Checking Problem for trees generated by order-n recursion schemes
is n-EXPTIME complete, we show that it follows that the same decidability result holds for the problem
of solving a parity game played on an order-n collapsible pushdown graphi.e. the configuration graph of a
corresponding (order-n) collapsible pushdown system; the latter subsumes severalwell-known results about
the solvability of games over (higher-order) pushdown graphs by (respectively) Walukiewicz, Cachat, and
Knapik et al. Moreover our approach yields techniques that are radically different from standard methods
for solving model-checking problems on infinite graphs generated by finite machines. This transfer of tech-
niques goes both ways. Another innovation of our work is a self-contained proof of the solvability of parity
games on collapsible pushdown graphs by generalizingstandardtechniques in the field. By appealing to our
equi-expressivity result, we obtain a new proof of the decidability (and optimal complexity) of the Modal
Mu-Calculus Model-Checking Problem of trees generated by recursion schemes.

In contrast to higher-order pushdown graphs, we show that Monadic Second-Order (MSO) theories of
collapsible pushdown graphs are undecidable. Hence collapsible pushdown graphs are, to our knowledge,
the first example of a natural class of finitely-presentable graphs that have undecidable MSO theories while
enjoying decidable modal mu-calculus theories.

Keywords: Higher-order (collapsible) pushdown automata, higher-order recursion schemes, ranked and or-
dered trees, solution of parity games over configuration graphs.

∗Oxford University Computing Laboratory (OUCL). web.comlab.ox.ac.uk/oucl/work/matthew.hague/
†OUCL. web.comlab.ox.ac.uk/oucl/work/andrzej.murawski/
‡OUCL. users.comlab.ox.ac.uk/luke.ong/
§LIAFA (CNRS and Universit́e Paris VII). www.liafa.jussieu.fr/˜serre/

1

Contents

1 Introduction 3

2 Collapsible pushdown automata (CPDA) 4

2.1 Stacks with links .. . 4

2.2 A formal definition of CPDA stack operations 5

2.3 Tree-generating CPDA 6

3 Recursion schemes 7

3.1 The tree generated by a (deterministic) recursion scheme 8

3.2 Graph representing a recursion scheme 10

4 From CPDA to recursion schemes 14

4.1 Term representation of stacks and configurations 14

4.2 Correctness of the representation 17

4.3 The recursion schemeGA determined by a CPDAA . 21

5 From recursion schemes to CPDA 23

5.1 CPDA(G) - the CPDA determined by a recursion schemeG 23

5.2 Correctness of the transform 28

6 Games over collapsible pushdown graphs 35

6.1 Solving games over collapsible pushdown games: a direct proof 37

6.2 Extensions, consequences 54

7 Conclusions and further directions 57

2

1 Introduction

Higher-order pushdown automata(PDA) were first introduced by Maslov [17, 18] as accepting devices for
word languages. Asn varies over the natural numbers, the languages accepted by order-n pushdown automata
form an infinite hierarchy. Inop. cit.Maslov gave an equivalent definition of the hierarchy in terms ofhigher-
order indexed grammars. Yet another characterization of Maslow’s hierarchy was given by Damm and Goerdt
[8, 9]: they studiedhigher-order recursion schemesthat satisfy the constraint ofderived types, and showed
that the word languages generated by order-n such schemes coincide with those accepted by order-n PDA.
Maslow’s hierarchy offers an attractive classification of the semi-decidable languages: orders 0, 1 and 2 are
respectively the regular, context-free and indexed languages, though little is known about languages at higher
orders.

Higher-order PDA as a generating device for (possibly infinite) labelled ranked trees was first studied by
Knapik, Niwiński and Urzyczyn [15]. As in the case of word languages, an infinite hierarchy of trees is defined,
according to the order of the generating PDA; lower orders of the hierarchy are well-known classes of trees:
orders 0, 1 and 2 are respectively the regular [22], algebraic [7] and hyperalgebraic trees [14]. Knapiket al.
considered another method of generating such trees, namely, by higher-order (deterministic) recursion schemes
that satisfy the constraint ofsafety. A major result in that work is the equi-expressivity of the two methods as
tree generators. Open since the early 1980s, a question of fundamentalimportance in higher-type recursion is
to find the class of automata that characterizes the expressivity of higher-order recursion schemes1. The results
of Damm and Goerdt, and of Knapiket al.may be viewed as attempts to answer the question; they have both
had to impose syntactic constraints (of derived types and safety respectively2, which seem awkward and rather
unnatural) on recursion schemes in order to establish their results. An exact correspondence with (general)
recursion schemes has never been proved before.

A partial answer was recently obtained by Knapik, Niwiński, Urzyczyn and Walukiewicz. In an ICALP’05
paper [16], they proved that order-2 homogeneously-typed (but not necessarily safe) recursion schemes are
equi-expressive with a variant class of order-2 pushdown automata called panic automata. In this paper, we
give a complete answer to the question. We introduce a new kind of higher-order pushdown automata (which
generalizespushdown automata with links[2], or equivalently panic automata, to all finite orders), called
collapsible pushdown automata(CPDA), in which every symbol in the stack has a link to a (necessarily lower-
ordered) stack situated somewhere below it. In addition to the higher-orderstack operationspushi andpopi,
CPDA have an important operation calledcollapse, whose effect is to “collapse” a stacks to the prefix as
indicated by the link from thetop1-symbol ofs. The main result of this paper (Theorem 5 and Theorem 9) is
that for everyn ≥ 0, order-n recursion schemes and order-n CPDA are equi-expressive as generators of trees.

Our equi-expressivity result has a number of far-reaching consequences. It allows us to translate decision
problems on trees generated by recursion schemes to equivalent problems on CPDA andvice versa. Chief
among them is the Modal Mu-Calculus Model-Checking Problem (equivalently Alternating Parity Tree Au-
tomaton Acceptance Problem, or equivalently Monadic Second-Order (MSO) Model-Checking Problem). We
observe that all these problems reduce to the problem of solving a parity game played on acollapsible push-
down graphi.e. the configuration graph of a corresponding collapsible pushdown system (CPDS). Recently
one of us has shown [20] that the above decision problems for trees generated by order-n recursion schemes
aren-EXPTIME complete. Thanks to our Equi-Expressivity Theorems, it follows that the same (n-EXPTIME
complete) decidability result holds for the corresponding CPDS problems, which subsumes many known re-
sults [26, 3, 16]. Moreover our approach yields techniques that are radically different from standard methods for
solving model-checking problems on infinite graphs generated by finite machines. We stress that this transfer

1Higher-order recursion schemes are essentially simply-typed lambda calculus with general recursion and uninterpreted first-order
function symbols

2As constraints on recursion schemes,derived typesandsafetyare actually equivalent; see [10] for a proof.

3

of techniques goes both ways. Indeed another innovation of our work isa self-contained (and without recourse
to game semantics) proof of the solvability of parity games on collapsible pushdown graphs by generalizing
standardtechniques in the field. By appealing to our Equi-Expressivity Theorems, we obtain new proofs for
the decidability (and optimal complexity) of model-checking problems of trees generated by recursion schemes
as studied in [20].

In contrast to higher-order pushdown graphs (which do have decidable MSO theories [5]), we show that
MSO theories of collapsible pushdown graphs are undecidable. Hence collapsible pushdown graphs are, to
our knowledge, the first example of a natural class of finitely-presentable graphs that have undecidable MSO
theories while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

We first introduce(higher-order) collapsible pushdown automata, assuming that the reader is familiar with the
notion of higher-order pushdown automata as presented by Knapiket al. in their FOSSACS 2002 paper [15].
An order-n CPDA, orn-CPDA for short, is just an order-n pushdown automata (PDA) in which every non-⊥
symbol in the order-n stack has alink to a (necessarily lower-ordered) stack situated below it.

2.1 Stacks with links

Fix a stack alphabetΓ and a distinguishedbottom-of-stack symbol⊥ ∈ Γ. An order-0 stack(or simply0-stack)
is just a stack symbol. Anorder-(n + 1) stack (or simply (n + 1)-stack) s is a non-null sequence (written
[s1 · · · sl]) of n-stacks such that every non-⊥ Γ-symbola that occurs ins has a link to a stack of some orderk
(say, where0 ≤ k ≤ n) situated below it ins; we call the link a(k + 1)-link. Theorder of a stacks is written
ord(s).

As usual, the bottom-of-stack symbol⊥ cannot be popped from or pushed onto a stack. Thus we require
anorder-1 stackto be a non-null sequence[a1 · · · al] of elements ofΓ such that for all1 ≤ i ≤ l, ai = ⊥ iff
i = 1. We define⊥k, theemptyk-stack, as follows:⊥0 = ⊥ and⊥k+1 = [⊥k] .

We first define the operationspopi andtopi with i ≥ 1: topi s returns the top(i− 1)-stack ofs, andpopi s
returnss with its top(i− 1)-stack removed. Precisely lets = [s1 · · · sl+1] be a stack with1 ≤ i ≤ ord(s):

topi [s1 · · · sl+1]︸ ︷︷ ︸
s

=

{
sl+1 if i = ord(s)

topi sl+1 if i < ord(s)

popi [s1 · · · sl+1]︸ ︷︷ ︸
s

=

{
[s1 · · · sl] if i = ord(s) andl ≥ 1

[s1 · · · sl popisl+1] if i < ord(s)

By abuse of notation, we settopord(s)+1 s = s. Note thatpopi s is undefined iftopi+1 s is a one-element
i-stack. For examplepop2 [[⊥ a b]] is undefined.

There are two kinds ofpush operations. First the first-orderpush. Let a be a non-⊥ stack symbol and
1 ≤ k ≤ ord(s), we define a new stack operationpusha,k

1 that, when applied tos, first attaches a link from
a to the(k − 1)-stackimmediatelybelow the top(k − 1)-stack ofs, then pushesa (with its link) onto the top

4

1-stack ofs. Formally for1 ≤ k ≤ ord(s) anda ∈ (Γ \ {⊥}), we define

pusha,k
1 [s1 · · · sl+1]︸ ︷︷ ︸

s

=





[s1 · · · sl push
a,k
1 sl+1] if k < ord(s)

[s1 · · · sl sl+1 a
†] if k = ord(s) = 1

[s1 · · · sl push
â
1 sl+1] if k = ord(s) ≥ 2 andl ≥ 1

where

• a† denotes the symbola with a link to the 0-stacksl+1

• â denotes the symbola with a link to the(k − 1)-stacksl; and we define

pushâ
1 [t1 · · · tr+1]︸ ︷︷ ︸

t

=





[t1 · · · tr pushâ
1 tr+1] if ord(t) > 1

[t1 · · · tr+1 â] otherwise i.e.ord(t) = 1

The higher-orderpushj , wherej ≥ 2, simply duplicates the top(j − 1)-stack ofs. Precisely, lets =
[s1 · · · sl+1] be a stack with2 ≤ j ≤ ord(s):

pushj [s1 · · · sl+1]︸ ︷︷ ︸
s

=





[s1 · · · sl+1 sl+1] if j = ord(s)

[s1 · · · sl pushjsl+1] if j < ord(s)

Note that in casej = ord(s) above, the link structure ofsl+1 is preserved by the copy that is pushed on top by
pushj .

Finally there is an important operation calledcollapse. We say that then-stacks0 is a prefix of ann-
stacks, written s0 ≤ s, just in cases0 can be obtained froms by a sequence of (possibly higher-order)pop
operations. Take ann-stacks whosetop1-element has a link to (a particular copy of)k-stacku somewhere in
s, such thattopk+1 s0 is (that copy of)u for somes0 ≤ s. Thencollapse s is defined to bes0.

2.2 A formal definition of CPDA stack operations

One way to give a formal semantics of the stack operations is to work with appropriate numeric representations
of the links. Knapiket al. have shown how this can be done in the order-2 case – called panic automata– in
[16]. Here we introduce a different encoding of stacks with links that works for all orders. The idea is simple:
take an order-n stack s and suppose there is a link from (a particular occurrence of) a symbol a in s to some
(j − 1)-stack. First denote bys′ the unique prefix ofs whosetop1-element is the occurrence ofa. Then there
exists a uniquek such thatcollapse s′ = popj ; · · · ; popj︸ ︷︷ ︸

k

s. In s, we represent the occurrence ofawith its link

asa(j,k), where the superscipt(j, k) is a shorthand for the iterated stack operationpopk
j = popj ; · · · ; popj︸ ︷︷ ︸

k

.

In the formal definition, asymbol-with-linkof an order-n CPDA is writtena(j,k), wherea ∈ Γ, 1 ≤ j ≤ n
andk ≥ 1, such that3 if j = 1 thenk = 1. Further, purely for convenience, we require that ifa = ⊥ then
j = k = 1.

3Thus 1-links are invariant – they always point to the preceding symbol and no stack operation will change that.

5

The setOpn of order-n CPDA stack operationscomprises four types of operations:

1. popk for each1 ≤ k ≤ n

2. pushj for each2 ≤ j ≤ n

3. pusha,k
1 for each1 ≤ k ≤ n and eacha ∈ (Γ \ {⊥}), and

4. collapse.

We define them in terms of the standard stack operations of an order-n PDA (namely,popj ’s, topj ’s and
push−1 ’s) as follows, where1 ≤ i ≤ ord(s) and2 ≤ j ≤ ord(s):

pushb,i
1 s = pushb(i,1)

1 s

collapse s = popf
e s wheretop1 s = a(e,f)

pushj [s1 · · · sl+1]︸ ︷︷ ︸
s

=





[s1 · · · sl+1 s
〈j〉
l+1] if j = ord(s)

[s1 · · · sl pushjsl+1] if j < ord(s)

whereΘ〈j〉 is the operation of replacing every superscript occurring inΘ of the form(j, kj) (for somekj) by
(j, kj + 1). The meaning ofpopj is the standard one.

Example 2.1 Take the 3-stacks = [[[⊥ a]] [[⊥][⊥ a]]] . (To save writing, we omit the superscript
(1, 1).) We have

pushb,2
1 s = [[[⊥ a]] [[⊥][⊥ a b(2,1)]]]

pushc,3
1 (pushb,2

1 s) = [[[⊥ a]] [[⊥][⊥ a b(2,1) c(3,1)]]]

push2(push
c,3
1 (pushb,2

1 s)) = [[[⊥ a]] [[⊥][⊥ a b(2,1) c(3,1)][⊥ a b(2,2) c(3,1)]]]

push3(push
c,3
1 (pushb,2

1 s)) = [[[⊥ a]] [[⊥][⊥ a b(2,1) c(3,1)]] [[⊥][⊥ a b(2,1) c(3,2)]]]

and we have

collapse(push2(push
c,3
1 (pushb,2

1 s))) = collapse(push3(push
c,3
1 (pushb,2

1 s))) = [[[⊥ a]]]

2.3 Tree-generating CPDA

Collapsible pushdown automataare a generalization (to all finite orders) ofpushdown automata with links
[2, 1], which are essentially the same aspanic automata[16]. There are various versions of CPDA, depending
on whether the automaton is used as an accepting or generating device (forword language, or a labelled tree
or graph, in which case there is an accompanying input alphabet of an appropriate kind) or to describe a com-
putational process. Here we consider the version for generatingΣ-labelled trees, for a given ranked alphabet
Σ. (When it is used to generate graphs – see Section 6, we shall refer to thedevice as collapsible pushdown
systems.)

6

Definition 2.2 A tree generatingorder-n collapsible pushdown automaton(n-CPDA) is given by a 5-tuple
A = 〈Σ,Γ, Q, δ, q0 〉 whereΣ is a ranked alphabet,Γ is a stack alphabet,Q is a finite set of control states,q0
is the initial state, andδ is the transition function

δ : Q× Γ −→ (Q× Opn + { (f ; q1, · · · , qar(f)) : f ∈ Σ, qi ∈ Q })

(We requireδ to respect the standard convention that⊥ cannot be pushed onto or popped from the stack.)

Configurationsof ann-CPDA are pairs of the form(q, s) whereq ∈ Q ands is ann-stack overΓ; we
call (q0,⊥n) the initial configuration. A generalized configuration(ranged over byγ, γi, etc.) is either a
configuration or a triple of the form(f ; q1, · · · , qar(f); s). We define aone-step labelled transition relationof
A over generalized configuration by clauses, one for each of the three kinds4 of labelI , P andO:

I . (q, s)
(q′,θ)
> (q′, s′), if for someθ ∈ Opn, we haveδ(q, top1 s) = (q′, θ) ands′ = θ(s)

P. (q, s)
(f ;q)
> (f ; q1, · · · , qar(f); s), if δ(q, top1 s) = (f ; q1, · · · , qar(f))

O. (f ; q1, · · · , qar(f); s)
(f,i)
> (qi, s), for each1 ≤ i ≤ ar(f).

The labelled transition relation isdeterministicin the sense that for any generalized configurationγ and for any

label`, if γ
`
> γ1 andγ

`
> γ2 thenγ1 = γ2. We writeγ1 > γ2 just if γ1

`
> γ2 for some label̀ . Note that the

unlabelled> is not deterministic in general, but it is when restricted to configurations (becauseδ is).

A computation pathof A is a finite or infinite transition sequence of the form

ρ = γ0
`0
> γ1

`1
> γ2

`2
> · · ·

whereγ0 is the initial configuration. Every computation path is uniquely determined by the associatedlabel
sequence, namely,`0 `1 `2 · · · . Observe that such label sequences satisfy the regular expression(I∗ P O)ω +
(I∗ P O)∗ Iω if the sequence is infinite, and(I∗ P O)∗ I∗(ε + P + P O) if the sequence is finite. TheΣ-
projectionof ρ is the subsequencèr1 `r2 `r3 · · · of labels of the shape(f, i) (in which casear(f) ≥ 1) or of
the shape(f ; ε) (in which casear(f) = 0, and the label occurs at the end of theΣ-projection). We say the
CPDAA generates theΣ-labelled treet just in case thebranch language5 of t coincides with theΣ-projection
of computation paths ofA.

Remark 2.3 Order-2 collapsible pushdown automata (2-CPDA) are a slight variant ofpushdown automata
with links in [2, 1]. They are essentially the same aspanic automatain the sense of Knapiket al. [16], which
use numeric indices to represent links.

3 Recursion schemes

Typesare generated by the grammarA ::= o | A → A. Every typeA 6= o can be written uniquely asA1 →
· · · → An → o (by convention arrows associate to the right) which we shall abbreviate to(A1, · · · , An, o), for
somen ≥ 1 which is called itsarity; the base typeo has arity 0. We define theorder of a type by:ord(o) = 0
andord(A→ B) = max(ord(A)+1, ord(B)). LetΣ be aranked alphabeti.e. eachΣ-symbolf has an arity

4I for internal or hidden Player-move,P for Player-move, andO for Opponent-move.
5The branch languageof t : Dom(t) −→ Σ consists of infinite words(f1, d1)(f2, d2) · · · just if for 0 ≤ i < n, we have

t(d1 · · · di) = fi+1; and of finite words(f1, d1) · · · (fn, dn)a just if for 0 ≤ i < n, we havet(d1 · · · di) = fi+1 andt(d1 · · · dn) = a.

7

ar(f) ≥ 0 which determines its typeo→ · · · → o→︸ ︷︷ ︸
ar(f)

o. Further we shall assume that each symbolf ∈ Σ is

assigned a finite setDir(f) = { 1, · · · , ar(f) } of directions, and we defineDir(Σ) =
⋃

f∈Σ Dir(f). LetD be
a set of directions; aD-tree is just a prefix-closed subset ofD∗, the free monoid ofD. A Σ-labelled treeis a
functiont : Dom(t) −→ Σ such thatDom(t) is aDir(Σ)-tree, and for every nodeα ∈ Dom(t), theΣ-symbol
t(α) has arityk if and only if α has exactlyk children and the set of its children is{α 1, · · · , α k } i.e. t is a
ranked(and ordered) tree. We writeT ∞(Σ) for the set of (finite and infinite)Σ-labelled ranked and ordered
trees.

3.1 The tree generated by a (deterministic) recursion scheme

Let Ξ be a set of typed symbols. The set ofapplicative terms of typeA generated fromΞ, writtenTA(Ξ), is
defined by induction over the following rules: iff : A is an element ofΞ thenf ∈ TA(Ξ); if s ∈ TA→B(Ξ) and
t ∈ TA(Ξ) thenst ∈ TB(Ξ). For simplicity we writeT (Ξ) to meanTo(Ξ), the set of ground terms. In caseΞ
is a ranked alphabet (and so everyΞ-symbol has an order-0 or order-1 type determined by its arity) we identify
terms inT (Ξ) with the finite trees inT ∞(Ξ).

For each typeA, we assume an infinite setVarA of variables of typeA, such thatVarA andVarB are
disjoint wheneverA 6= B; and we writeVar for the union ofVarA asA ranges over types. We use let-
tersx, y, ϕ, ψ, χ, ξ etc. to range over variables. We writes : A to mean “the expressions has typeA”. A
(deterministic)recursion schemeis a 4-tupleG = 〈Σ,N ,R, S 〉 where

• Σ is a ranked alphabet ofterminals(including a distinguished symbol⊥ : o)

• N is a finite set of typednon-terminals; we use upper-case lettersF,H, etc. to range over non-terminals

• S ∈ N is a distinguishedstart symbolof typeo

• R is a finite set of rewrite rules, one for each non-terminalF : (A1, · · · , An, o), of the form

F ξ1 · · · ξn → e

where eachξi is a variable of typeAi, ande is an applicative term inT (Σ ∪ N ∪ { ξ1, · · · , ξn }). Note
that the expressions on either side of the arrow are terms of ground type.

Theorder of a recursion scheme is defined to be the highest order of (the types of)its non-terminals.

Value tree [[G]] of a recursion schemeG

In this paper we use recursion schemes as generators ofΣ-labelled trees. Informally thevalue tree6 of (or
the treegeneratedby) a recursion schemeG, [[G]], is a possibly infinite applicative term (of ground type),
constructed from the terminals inΣ, that is obtained by unfolding the rewrite rules ofG ad infinitum, replacing
formal by actual parameters each time, starting from the start symbolS.

To define[[G]], we first introduce a map(·)⊥ : T (Σ ∪ N) −→ T (Σ) that takes an applicative term
and replaces each non-terminal, together with its arguments, by⊥. We define(·)⊥ by structural recursion as

6We would like to refer to theΣ-labelled tree generated by a recursion scheme as itsvalue tree, because the name is a good
counterpoint tocomputation tree. We have in mind here the distinction betweenvalueandcomputationemphasized by Moggi [19].
The idea is that the value tree is obtained from the computation tree by a (possibly infinite) process of evaluation.

8

follows: we letf range overΣ-symbols, andF over non-terminals inN

f⊥ = f

F⊥ = ⊥

(st)⊥ =

{
⊥ if s⊥ = ⊥

(s⊥t⊥) otherwise.

Clearly if s ∈ T (Σ ∪ N) is of ground type thens⊥ ∈ T (Σ) is of ground type. Henceforth we shall identify
ground-type terms inT (Σ) with finite trees inT ∞(Σ).

Next we define a one-step reduction relation→G which is a binary relation over terms inT (Σ ∪ N).
Informally s →G s′ just if s′ is obtained froms by replacing some occurrence of a non-terminalF by the
right-hand side of its rewrite rule in which all formal parameters are in turn replaced by their respective actual
parameters, subject to the proviso that theF must occur at the head of a subterm of ground type. Formally→G

is defined by induction over the following rules:

• (Substitution). Ft1 · · · tn →G e[t1/ξ1, · · · , tn/ξn] whereFξ1 · · · ξn → e is a rewrite rule ofG.

• (Context). If t→G t′ then(st) →G (st′) and(ts) →G (t′s).

The relation↓G between terms and trees is then defined as follows: We say thats ↓G t wheres ∈ T (Σ ∪ N)
andt ∈ T ∞(Σ) just if

• there is a finite reduction sequences = t0 →G · · · →G tn = t, andt is a finite tree, none of whose
node is labelled⊥; or

• there is an infinite reduction sequences = t0 →G t1 →G t2 · · · such thatt = lim〈 t⊥i : i ∈ ω 〉, andt
may be a finite tree (in which case, some oft’s nodes are labelled⊥) or an infinite tree.

Recall thatT ∞(Σ) is a complete partial order with respect to the approximation orderingv as defined by:
t v t′ just if Dom(t) ⊆ Dom(t′) and for allw ∈ Dom(t), we havet(w) = ⊥ or t(w) = t′(w) (i.e.t′ is obtained
from t by replacing some⊥-labelled nodes byΣ-labelled trees). We can finally define theΣ-labelled ranked
tree[[G]], called thevalue treeof (or the treegeneratedby)G, as follows:

[[G]] = sup{ t ∈ T ∞(Σ) : S ↓G t }.

The supremum is well-defined because the set in question is directed, whichis a consequence of the Church-
Rosser property ofG viewed as a rewrite system. We writeRecTreenΣ for the class of value trees[[G]] where
G ranges over order-n recursion schemes.

9

Example 3.1 LetG be the order-2 (unsafe7) recursion scheme with rewrite rules:

S → H a

H z → F (g z)

F ϕ → ϕ (ϕ (F h))

wherez : o andϕ : (o, o), and the arities of the terminalsg, h, a are2, 1, 0 respectively, and the type of a
variable is written as its superscript. The value tree[[G]] is theΣ-labelled tree representing the infinite term
g a (g a (h (h (h · · ·)))):

g

ww
ww

w
GG

GG
G

a g

ww
ww

w
GG

GG
G

a h

h

...

The only infinitepath in the tree is the node-sequenceε · 2 · 22 · 221 · 2211 · · · .

3.2 Graph representing a recursion scheme

We write [n] as a shorthand for{ 1, · · · , n } and [n]0 for { 0, · · · , n }. Fix a ranked alphabetΣ. Typically8

Dir(f) = [ar(f)] (but we always have|Dir(f)| = ar(f) for eachΣ-symbol f). We defineDir(Σ) =⋃
f∈Σ Dir(f).

We recall the long transform of a recursion scheme as introduced in [21]. Fix a recursion schemeG. Rules
of the new recursion schemeG (which, we shall see, can be regarded as order 0) are obtained fromthose ofG
by applying the following four operations in turn, which we calllong transform. For eachG-rule:

1. Expand the RHS to itsη-long form. I.e. we hereditarilyη-expand every subterm – even if it is of ground
type – provided it occurs in anoperand position(i.e. it is the second argument of some occurrence of
the application operator). Note that each applicative terms ∈ T (Σ ∪ N ∪ { ξ1, · · · , ξl }) can be written
uniquely as† s1 · · · sm where† is either a variable (i.e. someξj) or a non-terminal or a terminal. Suppose
† s1 · · · sm : (A1, · · · , An, o). First we define

p† s1 · · · smq = λϕ.† ps1q · · · psmq pϕ1q · · · pϕnq

whereϕ is a listϕ1 · · ·ϕn of (fresh) pairwise-distinct variables (which is a null list iffn = 0) of types
A1, · · · , An respectively, none of which occurs free in† ps1q · · · psmq. Take anye = † s1 · · · sm of
ground type. Theη-long form of e is defined to be† ps1q · · · psmq.

7Thesafetyconstraint (on lambda terms) may be regarded as a reformulation of theconstraint on lambda terms imposed by Damm’s
derived types, first introduced in his major study on the semantics of Algol-like languages[8]. To definesafety, we first need to
introducehomogeneous types: The base typeo is homogeneous; a function typeA1 → (A2 → · · · → (An → o) · · ·) is homogeneous
just if eachAi is homogeneous, andord(A1) ≥ ord(A2) ≥ · · · ≥ ord(An). We say that a term (or a rewrite rule or a recursion
scheme) ishomogeneously typedjust if all types that occur in it are homogeneous. Knapiket al. [15] define safety as follows: A
homogeneously-typed term of orderk > 0 is said to beunsafeif it contains an occurrence of a parameter of order strictly less thank,
otherwise the term issafe. An occurrence of an unsafe termt, as a subexpression of a termt′, is safeif it occurs in an operand position
(i.e. it is in the context· · · (ts) · · ·), otherwise the occurrence isunsafe. A recursion scheme issafe if no unsafe term has an unsafe
occurrence in the right-hand side of any rewrite rule. Note that it follows from the definition that all recursion schemes of order at most
1 are safe.

8The only exception is the symbol@A of the auxiliary alphabetΛG, where we haveDir(@A) = [ar(@A) − 1]0.

10

For example theη-long form ofg a : o is g (λ.a); we shall see that the “dummy lambda-abstraction”9
λ.a

(that binds anull list of variable) plays a useful rôle in the syntactic representation of the game semantics
of a recursion scheme.

2. Insert long-apply symbols@A: Replace each ground-type subterm of the shapeD e1 · · · en, whereD :
(A1, · · · , An, o) is a non-terminal andn ≥ 1 (i.e. D has order at least 1), by@AD e1 · · · en where
A = ((A1, · · · , An, o), A1, · · · , An, o). In the following, we shall often omit the type tagA from @A.

3. Curry the rewrite rule. I.e. we transform the ruleF ϕ1 · · · ϕn → e′ to

F → λϕ1 · · · ϕn.e
′.

In casen = 0, note that the curried rule has the formF → λ.e′.

4. Rename bound variables afresh, so that any two variables that are bound by different lambdas have
different names.

For every recursion schemeG, the system of transformed rules inG defines an order-0 recursion scheme
– called thelong transformof G – with respect to an enlarged ranked alphabetΛG, which isΣ augmented by
certain variables and lambdas (of the formλξ which is a short hand forλξ1 · · · ξn wheren ≥ 0) but regarded
as terminals. The alphabetΛG is a finite subset of the set

Σ ∪ Var ∪ {@A : A ∈ ATypes}︸ ︷︷ ︸
Non-lambdas

∪ {λξ : ξ ⊆ Var }︸ ︷︷ ︸
Lambdas

whereATypesis the set of types of the shape((A1, · · · , An, o), A1, · · · , An, o) with n ≥ 1. We rank the
symbols inΛG as follows:

• variable symbolϕ : (A1, · · · , An, o) in Var has arityn

• long-apply symbol@A whereA = ((A1, · · · , An, o), A1, · · · , An, o) has arityn+ 1

• lambda symbolλξ has arity 1, for every list of variablesξ ⊆ Var .

Further, forf ∈ ΛG, we define

Dir(f) =

{
[ar(@A) − 1]0 if f = @A

[ar(f)] otherwise

For technical reasons (to be clarified shortly), the leftmost child of an@-labelled nodeα is in direction 0 (i.e. it
isα’s 0-child); for all other nodes, the leftmost child is in direction 1. Thenon-terminalsofG are exactly those
of G, except that each is assigned a new type, namely,o. We can now define thecomputation treeλ(G) to be
the value tree[[G]] of the order-0 recursion schemeG. It follows thatλ(G) is a regular tree.

A Λ-labelled deterministic digraph(or DDG, for short) is a quadruple

K = 〈V, E ⊆ V × V, l : V −→ Λ, v0 ∈ V 〉

where the underlying digraph〈V,E 〉 is vertex-labelled by the functionl : V −→ Λ (whereΛ is a ranked
alphabet), and edge-labelled byDir(Λ) in thatE =

⋃
i∈Dir(Λ)Ei, such that

9To my knowledge, Colin Stirling was the first to use a tree representation of lambda terms in which “dummy lambdas” are
employed; see his CSL 2005 paper [23]. Motivated by property-checking games in Verification, he has introduced a game that is
played over such trees as a characterization of higher-order matching[24].

11

(i) for eachi ∈ Dir(Λ), we haveEi ⊆ V × V is a partial function

(ii) for eachv ∈ V , and eachi ∈ Dir(l(v)), we haveEi(v) is defined i.e.{ v′ : (v, v′) ∈ Ei } is a singleton
set.

In the following we shall assume thatV is finite. It is easy to see that every finiteΛ-labelled tree can be
presented as a DDG, and the unfolding of aΛ-labelled DDG is aΛ-labelled tree.

Fix a higher-order recursion schemeG and an associated long transformG. We define theHORS graph
Gr(G) to be theΛG-labelled DDG determined byG

Gr(G) = 〈V, E ⊆ V × V, λG : V −→ ΛG, v0 ∈ V 〉

thatq is obtained by the following procedure:

1. First we define the ranked alphabetΛ+
G = ΛG ∪NG where each symbol inNG (i.e. a non-terminal ofG)

is given arity 0.

2. For eachG-rule (say)F → λϕ1 · · ·ϕn.e, the correspondingΛ+
G-labelled DDG

DF = 〈VF , EF ⊆ VF × VF , lF : VF −→ Λ+
G, rtF 〉

given by theΛ+
G-labelled tree that is determined by the right-hand side of the rule, namely,λϕ1 · · ·ϕn.e.

Note that we havelF (rtF) = λϕ1 · · ·ϕn with reference to the ruleF given above.

3. Set the digraphD to be the disjoint union of the underlying digraph ofDF , asF ranges overNG. We
then define the underlying digraph ofGr(G) to beD quotiented by the equivalence classesEF , one for
eachF in NG; where we define

EF =


 ⋃

H∈N
G

l−1
H ({F })


 ∪ { rtF }

I.e. in Gr(G) all vertices inEF are identified, for eachF ∈ NG. Henceforth, as a vertex ofGr(G), we
shall refer to the equivalence classEF by the representativertF .

The edge-labels ofGr(G) are inherited from the edge-labels of the component DDGsDF (we define
Ei(rtF) = EF

i (rtF) for eachF ∈ NG). The vertex-labels are defined by

λG(v) =

{
lF (rtF) if v = EF for someF ∈ NG

lH(v) otherwise, supposev is a vertex inVH

The rootv0 of Gr(G) is rtS , whereS is the start symbol ofG.

In the following, we shall only concern ourselves with the connected component of Gr(G) that contains the
root node (and assume thatGr(G) is that connected component). It is easy to see that unfoldingGr(G) gives
the computation treeλ(G).

Example 3.2 We revisit the recursion scheme of Example 3.1 and consider the graph determined by it. First
the long transform:

G :





S = Ga

Gz = F (g z)

F ϕ = ϕ (ϕ (F h))

7→ G :





S = λ.@G (λ.a)

G = λz.@F (λy.g (λ.z) (λ.y))

F = λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x))))

The graphGr(G) is then given in Figure 1.

12

λ

1��
@

0qq
q

xxqq 1
KK

K

%%KK
K

λz
1��

λ

1��
@

0rr
r

xxrr 1
LL

L

%%LL

a

λϕ
1��

λy
1��

ϕ
1��

g
1qqq

xxqqq 2
KK

K

%%KK
K

λ

1��
λ

1��

λ

1��
ϕ

1��

z y

λ

1��
@

0

AA

1
MM

M

&&MM

λx
1��
h

1��
λ

1��
x

Figure 1: The graph determined by an order-2 recursion scheme.

13

Notations and features of HORS graphs

Fix a HORS graphGr(G) = 〈V,E, λG, v0 〉. We shall call a node ofGr(G) prime just if it is the 0-child10 of a
@-labelled node. By construction, a prime node is labelled by a lambda. We define thedepthof a node to be the
length of the shortest path from the root to the node (so that the root has depth 0). Letu be a node. We define
pred(u) = {u′ ∈ V : (u′, u) ∈ E } i.e. the set ofpredecessorsof u. For every nodeu labelled by a variableϕi

(say), itsbinder, writtenbinder(u), is the node that is labelledλϕ, whereϕ is a list of variables that contains
ϕi. (Since bound variables are renamed to prevent any clash in the construction ofG, every variable node in
Gr(G) has a unique binder.) We say thatu is thei-parameterof binder(u) just if ϕi is theith-item of the list
ϕ. Thespanof the variable nodeu is defined to be the depth ofbinder(u) minus the depth ofu.

We note the following features of HORS graphs:

(i) Except the root and possibly some prime nodes, every nodeu has a unique predecessor.

(ii) For every non-root nodeu, there is somej such that foreverypredecessorv of u, u is thej-child of v;
hence (and in this case) we can say thatu is aj-child. Indeed a node is a 0-child if and only if it is prime.

(iii) For every nodeu, there is a unique shortest path frombinder(u) to u, and this path does not contain any
prime node.

For convenience, and whenever it is safe to do so, we shall confuse anodeu with its ΛG-labelλG(u).

4 From CPDA to recursion schemes

In this section we prove that for everyn ≥ 0, and everyn-CPDA A, there is an order-n recursion scheme
GA such thatA andGA define the sameΣ-labelled tree. We begin by introducing a method to represent
higher-order stacks and configurations by applicative terms constructed from non-terminals of the same order;
the correctness of the representation is then established in Theorem 3. The Theorem is quite general: it is
independent of the transition relation of the automaton, nor does it matter whether the automaton is for defining
a tree or a graph. In case the automatonA is for generating aΣ-labelled treet (say), we show in Section 4.3
how an order-n deterministic recursion schemeGA can be constructed that defines the same tree i.e.[[GA]] = t.
The correctness of the transformGA (Theorem 5) is then obtained as a corollary of Theorem 3.

Our construction simplifies the translation (order-2) in [16] and generalizes it to all finite orders. For
convenience let the state-set ofA be [m] wherem ≥ 1. Let 0 be the base type. Inductively, forn ≥ 0, we
define the type

n+ 1 = nm → n

wherenm = n× · · · × n︸ ︷︷ ︸
m times

. Thusn+ 1 = nm → (n− 1)m → · · · → 0m → 0.

4.1 Term representation of stacks and configurations

Fix an order-nCPDAA. We shall first introduce a general scheme for representing stacks and configurations of
A by applicative terms generated from the non-terminals fromNA. The key result in this section is a correctness
theorem (Theorem 3) for the representation scheme.

10The leftmost child of a@-labelled node is the latter’s 0-child (i.e. the child is at the end of a 0-labelled edge); the leftmost child of
any other node is a 1-child.

14

Recall that every non-⊥ symbol in ann-stack has a link to some stack (of order necessarily less thann)
that lies below it in the stack. If the stack pointed to is of orderj − 1 where1 ≤ j ≤ n, the link is said to be a
j-link. A 1-link from a symbolalwayspoints to the symbolimmediatelybelow it; no stack operation will alter
it. Henceforth we shall use the formal definition of higher-order stacks,according to which a symbol with link
takes the forma(j,k). For technical convenience, we require thatj = k = 1 in casea = ⊥. E.g. the initial
configuration is(q0,⊥n) with top1 ⊥n = ⊥(1,1).

For each stack symbola, each1 ≤ e ≤ n and each state1 ≤ p ≤ m, we introduce a non-terminal

Fa,e
p : (n− e)m → (n− 1)m → · · · → 0m → 0

(Note that the type ofFa,e
p is non-homogeneous in the sense of Knapiket al. [15].) In addition, for each

0 ≤ i ≤ n − 1, we introduce a non-terminalΩi : i; and we fix a start symbolS : 0. The setNA of non-
terminalsis defined as follows:

NA = {Fa,e
p : a ∈ Γ, 1 ≤ p ≤ m, 1 ≤ e ≤ n } ∪ {Ωi : 0 ≤ i ≤ n− 1 } ∪ {S : 0 }

whereS : 0 is the distinguished start symbol. LetT j(NA) be the set ofapplicative terms(or simply terms)
of typej generated from the elements ofNA. In the following we shall use the following shorthand. LetP (i)
be a term with an occurrence ofi; we write〈P (i) | i〉 to mean them-tuple〈P (1), · · · , P (m) 〉. E.g.〈Fa,e

i | i〉
means〈 Fa,e

1 , · · · ,Fa,e
m 〉 : ((n− e)m → n)m.

A termM : n − j where0 ≤ j ≤ n is said to behead normalif its head symbol is a non-terminal of
the formFa,e

p i.e.M has the shapeFa,e
p LMn−1 · · ·Mn−j , for somea, e andp and for some vectors of terms

L,Mn−1, · · · ,Mn−j of the appropriate types; we shall callFa,e
p thehead non-terminalof M . Let 0 ≤ j ≤ n,

1 ≤ p ≤ m and lets be aj-stack, a pair of the form(p, s) is called aj-configuration (thus a configuration is
ann-configuration). The idea is that we use head-normal terms of typen − j – which has the general shape
Fa,e

p LMn−1 · · ·Mn−j : n− j – to representj-configurations; equivalently we usem-tuples of the form

〈Fa,e
i LMn−1 · · ·Mn−j | i〉 : (n− j)m

to representj-stacks.

Suppose the head-normal ground-type term

Fa,e
p LMn−1 · · ·M0 : 0

represents the configuration(p, s). Then the 0-configuration(p, top1 s) — where thetop1-element ofs, say,a
with a link to thee-stack represented by them-tupleL : (n− e)m — is represented byFa,e

p L : n. Further for
each1 ≤ j ≤ n and1 ≤ p ≤ m, we have:

• The(j − 1)-configuration(p, topj s) is represented byFa,e
p LMn−1 · · ·Mn−(j−1) : n− (j − 1).

• The configuration(p, popj s) is represented byMn−j,pMn−j−1 · · ·M0 : 0.

• The configuration(p, collapse s) is represented byLpMn−e−1 · · ·M0 : 0.

Take a head-normal ground-type termFa,e
p LMn−1 · · ·M0 : 0. For each1 ≤ j ≤ n, we shall call them-tuple

Mn−j : (n − j)m its (n − j)-factor; by abuse of language, we shall callL : (n − e)m its n-factor. Let
1 ≤ j ≤ n; we say that ground-type termsM andN are(n− j)-similar, writtenM ∼n−j N , just if they have
the same head non-terminal, and for each0 ≤ k ≤ n, providedk 6= j,M andN have the same(n−k)-factors.
It follows from the definition that ifM andN are(n− j)-similar and have the same(n− j)-factor, then they
are (syntactically) identical terms.

15

Labelled rewrite rules and the labelled transition relation

Definition 4.1 (i) We first consider labelled rewrite rules of the general form

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

where for each0 ≤ j ≤ n − 1, we haveΨj = Ψj1, · · · ,Ψjm is a vector of variables, with eachΨji : j;
similarly Φ = Φ1, · · · ,Φm is a vector of variables, with eachΦi : n − e. The shape ofΞ(q,θ) depends on the
pair (q, θ), as shown in Table 1 below, where2 ≤ j ≤ n and1 ≤ e, k ≤ n in the following: In the following,

Cases of(q, θ) CorrespondingΞ(q,θ)

(q, pushb,k
1) Fb,k

q Ψn−k 〈F
a,e
i Φ Ψn−1 | i〉Ψn−2 · · · Ψ0

(q, pushj) Fa,e
q Φ Ψn−1 · · ·Ψn−(j−1)〈F

a,e
i Φ Ψn−1 · · ·Ψn−j | i〉Ψn−(j+1) · · ·Ψ0

(q, popk) Ψn−k,q Ψn−k−1 · · ·Ψ0

(q, coll.) Φq Ψn−e−1 · · ·Ψ0

Table 1: Definition ofΞ(q,θ)

whenever we useθ, instead of(p, θ), to label a rewrite rule

Fa,e
p Φ Ψn−1 · · ·Ψ0

θ
−_ Ξ(p,θ)

it is understood that the statep is preserved.

(ii) The labelled rewrite rules induce a family ofoutermostlabelled one-step transition relations
(q,θ)
−→ ⊆

T 0(NA)×T 0(NA), indexed by the label(q, θ), whereq ranges over states andθ ranges over stack operations.

Informally we defineM
(q,θ)
−→M ′ just ifM ′ is obtained fromM by replacing thehead(equivalently, outermost)

non-terminalF by the right-hand side of the corresponding rewrite rule in which all formalparameters are in

turn replaced by their respective actual parameters. Formally
(q,θ)
−→ is defined by the following rule schemes: for

a ∈ Γ, 1 ≤ p, q ≤ m, 1 ≤ e ≤ n, θ ∈ Opn, and for each rewrite ruleFa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ), we have

the rule scheme

Fa,e
p LMn−1 · · ·M0

(q,θ)
−→ Ξ(q,θ)[L/Φ,Mn−1/Ψn−1 · · · ,M0/Ψ0]

whereL,Mn−1, · · · ,M0 range over vectors of terms respecting the type ofFa,e
p .

Note that each binary relation
(q,θ)
−→ is a partial function. Letα = θ1 ; · · · ; θl be a (composite) sequence of

stack operations. We write
α

−→ ⊆ T 0(NA)×T 0(NA) to be the sequential composition of the partial function
θ1−→, · · · ,

θl−→ (in this order). As
α

−→ is a partial function, whenever there is anM ′ such thatM
α

−→ M ′, we
shall often use the postfix notationM

α
−→ to denote (the necessarily unique)M ′.

It is straightforward to check that for any head-normal ground-type termM , we have

(M
pushj
−→)

popk−→ =

{
M

popk−→ if j < k

M if j = k

16

Lemma 1 Suppose, for a fixed2 ≤ j ≤ n,M andN are (n− j)-similar ground-type terms.

(i) If j1 > j thenM
popj1−→ andN

popj1−→ are identical terms; ifj1 < j thenM
popj1−→ andN

popj1−→ are (n − j)-
similar.

(ii) Let Fa,e
p be the head non-terminal ofM andN with e ≥ 2. If e > j thenM

coll.
−→ andN

coll.
−→ are identical

terms; and ife < j thenM
coll.
−→ andN

coll.
−→ are (n− j)-similar.

Proof Straightforward consequences of the definitions of the transition relation. �

For example take a head normal ground-type termM with 2 ≤ j ≤ n; we haveM andM
pushj
−→ are

(n− j)-similar.

4.2 Correctness of the representation

The position of a given stack symbol in ann-stacks can be described by a sequence ofpop operations that
are needed to “collapse” the stack up to the point where that position becomes thetop1-element. For example,
the position ofb in the 2-stack (the top of stack is at the right-hand end)[[⊥ a a] [⊥ a b a] [⊥ a a] [⊥ a]]
is pop2

2 ; pop1. In general such sequences are not unique, though they can be normalized to one in which
the respective orders of thepop operations form a non-increasing sequence. (Equivalently A sequence is nor-
malized if it is inequivalent to any sequence of shorter length.) We shall calla normalized sequence for a
given stacks an s-probe. Informally we say that a ground-type termM representsa configuration(p, s) if
for everys-probeα if the top1-element ofα s is a(j,k), then the head non-terminal ofM

α
−→ is Fa,j

p ; further

(M
α

−→)
popk

j
−→ = (M

α
−→)

coll.
−→, and it represents the configuration(p, collapse(α s)).

Definition 4.2 Let s be ann-stack. A sequenceα of stack operations of the shape

popk1
j1

; · · · ; popkl

jl

such thatl ≥ 0, andj1 > · · · > jl ≥ 1, and eachki ≥ 1, is said to be ans-probejust in caseα s is defined.

(i) We say that a ground-type termM representsthe configuration(p, s) if for everys-probeα, we haveM
α-matches(p, s).

(ii) We say thatM α-matchesthe configuration(p, s) just if for somej andk, we havetop1(α s) = a(j,k)

and there existm-tuplesLn−j , Nn−1, · · · , N0 of the required types such that

M
α

−→ Fa,j
p Ln−j Nn−1 · · ·N0;

further if a 6= ⊥ then

(M
α

−→)
popk

j
−→ = (M

α
−→)

coll.
−→

and(M
α

−→)
popk

j
−→ representsthe configuration(p, collapse(α s)).

Henceforth whenever we assert that a termα-matches a configuration(p, s), it has the force thatα is ans-probe.

Note thatF⊥,1
p Ωn−1 Ωn−1 · · ·Ωn−j : n − j represents thej-configuration(p,⊥n−j). We havetop1 ⊥n =

⊥(1,1), andid is the only⊥n-probe.

17

Lemma 2 (i) If M represents(p, s) then for everys-probeα, we have(M
α

−→) represents(p, α s).

(ii) Let α be ans-probe. If(M
α

−→) represents(p, α s) thenM α-matches(p, s).

Proof Straightforward consequences of the definitions. �

Having pinned down the notion of a term representing a configuration, we now show that the representation
is preserved by the stack operations. This confirms that our notion of representation is the right one.

Theorem 3 (Correctness)LetM be a ground-type term,(p, s) be a configuration, andθ be a stack operation.

If M represents(p, s) andM
θ

−→ is defined, thenM
θ

−→ represents the configuration(p, θ s).

Proof SupposeM = Fa,e
p U Vn−1 · · ·V0 represents the configuration(p, s). We aim to prove thatM

θ
−→

represents(p, θs) for each of the four cases of the operationθ ∈ Opn.

Case 1:θ = pushb,j0
1 whereb is a non-⊥ symbol and1 ≤ j0 ≤ n.

We haveM
θ

−→ Fb,j0
p Vn−j0 〈F

a,e
i U Vn−1 | i〉Vn−2 · · ·V0. Letα = popk1

j1
; · · · ; popkl

jl
be an(θ s)-probe.

• Supposel = 0 i.e.α is the identity operationid . We need to show that(M
θ

−→) id -matches(p, θs). Now
top1 (θ s) = b(j0,1); assumingb 6= ⊥, we check that

(M
θ

−→)
popj0−→ = (M

θ
−→)

coll.
−→ = Vn−j0,p Vn−j0−1 · · ·V0.

It remains to show that(M
θ

−→)
popj0−→ represents the configuration(p, collapse(id (θ s))) = (p, popj0

(θ s)),
which is equivalent to 




M represents(p, s) if j0 = 1

(M
popj0−→) represents(p, popj0

s) if j0 > 1

Both cases follow from the assumption thatM represents(p, s): the former because(M
pushb

1j0
−→)

j0
−→ =

M , and the latter because of Lemma 2.

• Supposel ≥ 1 andj1 ≥ 2. We have(M
θ

−→) α-matches(p, θs) iff M α-matches(p, s), which follows
from the assumption.

• Supposej1 = 1. It follows thatl = 1 andα = popk1
1 wherek1 ≥ 1. Setα′ = popk1−1

1 (we shall assume

that pop0
1 = id). Plainly (M

θ
−→) α-matches(p, θs) iff M α′-matches(p, s), which is an immediate

consequence of the assumption.

Case 2:θ = pushj where2 ≤ j ≤ n.

We haveM
θ

−→ Fa,e
p U Vn−1 · · · 〈F

a,e
i U Vn−1 · · ·Vn−j | i〉 · · ·V0. Let α = popk1

j1
; · · · ; popkl

jl
be an

(θ s)-probe. There are two subcases:

a. The probeα reaches intopopj (θ s) = S; i.e. l ≥ 1 andj1 ≥ j.

b. The probeα is confined totopj (θ s); i.e. eitherl ≥ 1 andj1 < j, or l = 0.

18

Case 2a: Since

(M
θ

−→)
popj1−→ =





M
popj1−→ if j < j1

M if j = j1

and correspondingly

(p, popj1
(θ s)) =

{
(p, popj1

s) if j < j1

(p, s) if j = j1

we have(M
θ

−→) α-matches(p, θ s) as required.

Case 2b: Let b be the set of(θ s)-probes of this case. We define a partial order< overb-probes byα1 < α2

just if there is a non-empty sequence ofpop-operations such thatβ(α2(θ s)) = α1(θ s); in other wordsα1(θ s)

is a prefix ofα2(θ s). We shall show, by an induction argument, that(M
θ

−→)
α

−→ represents(p, α (θ s)) for ev-

eryb-probeα; note that this implies(M
θ

−→) α-matches(p, θ s) as required. The base case is trivial. Suppose

for all b-probesα < α0, we have(M
θ

−→)
α

−→ represents(p, α (θ s)). We aim to show that(M
θ

−→)
α0−→ rep-

resents(p, α0 (θ s)). Take anyα0 (θ s)-probeβ; we want to show that ((M
θ

−→)
α0−→) β-matches(p, α0(θ s)).

Now α0 ; β is equivalent to a(θ s)-probe of either case a or case b. The former case has already been dealt
with. In the latter case, eitherα0 ; β < α0 or β = id . If α0 ; β < α0, then by the induction hypothe-

sis ((M
θ

−→)
α0−→)

β
−→) represents(p, β(α0(θ s))), which implies that(M

θ
−→)

α0−→ β-matches(p, α0(θ s)) as

desired. It remains to prove ((M
θ

−→)
α0−→) id -matches(p, α0(θ s)). Suppose thetop1-element ofα0(θ s) is

b(e
′,f ′). Sincetopj (θ s) = topj S, thetop1-element ofα0 S is b(e

′,g) where

g =

{
f ′ if e′ 6= j

f ′ − 1 if e′ = j

(Note that in casee′ = j, by definition ofpushj we havef ′ ≥ 2.) SinceM represents(p, s) by assumption,

it follows that the head non-terminal ofM
α0−→ is Fb,e′

p . NowM
θ

−→ andM are(n − j)-similar. Sinceα0 is

ab-probe, by applying Lemma 1 repeatedly, we have(M
θ

−→)
α0−→ andM

α0−→ are(n − j)-similar. Hence the

head non-terminal of(M
θ

−→)
α0−→ is alsoFb,e′

p . It remains to prove that, assumingb 6= ⊥, we have

((M
θ

−→)
α0−→)

pop
f ′

e′−→ = ((M
θ

−→)
α0−→)

coll.
−→ (1)

and

((M
θ

−→)
α0−→)

pop
f ′

e′−→ represents(p, collapse(α0(θ s))). (2)

But since thetop1-element ofα0(θ s) is b(e
′,f ′), we have

(p, popf ′

e′ (α0(θ s))) = (p, collapse(α0(θ s)));

further, by the induction hypothesis (in casee′ < j) or the assumption ofM representing(p, s) (in casee′ ≥ j)

as appropriate, we have((M
θ

−→)
α0−→)

pop
f ′

e′−→ represents(p, popf ′

e′ (α0(θ s))); hence (2) holds. It now remains to
prove (1). We consider the three cases ofe′ in turn:

i. Case ofe′ < j: SinceM andM
θ

−→ are(n− j)-similar, by applying Lemma 1 repeatedly, we have

((M
θ

−→)
α0−→)

pop
f ′

e′−→ ∼n−j (M
α0−→)

pop
f ′

e′−→

((M
θ

−→)
α0−→)

coll.
−→ ∼n−j (M

α0−→)
coll.
−→

19

SinceM
α0−→ represents(p, α0 s) andα0 S hastop1-elementb(e

′,f ′), we have(M
α0−→)

pop
f ′

e′−→ = (M
α0−→)

coll.
−→.

Thus

((M
θ

−→)
α0−→)

pop
f ′

e′−→ ∼n−j ((M
θ

−→)
α0−→)

coll.
−→.

But observe that((M
θ

−→)
α0−→)

pop
f ′

e′−→ and((M
θ

−→)
α0−→)

coll.
−→ have the same(n− j)-factor. Hence

((M
θ

−→)
α0−→)

pop
f ′

e′−→ = ((M
θ

−→)
α0−→)

coll.
−→

as required.

ii. Case ofe′ = j: By definition ofpushj , we havetop1 (α0 s) = b(e
′,f ′−1) andf ′ ≥ 2. SinceM represents

(p, s) by assumption, we haveM α0-matches(p, s). It follows that

(M
α0−→)

pop
f ′−1

e′−→ = (M
α0−→)

coll.
−→. (3)

Now, as a consequence of Lemma 1, for some vectorsP ,Nn−1, · · · , Nn−j+1 of terms of the appropriate
types, we have

{
(M

θ
−→)

α0−→ Fb,e′

p P Nn−1 · · ·Nn−j+1 〈F
a,e
i U Vn−1 · · ·Vn−j | i〉Vn−j−1 · · ·V0

M
α0−→ Fb,e′

p P Nn−1 · · ·Nn−j+1 Vn−j Vn−j−1 · · ·V0

(4)

and hence we have
(M

α0−→)
coll.
−→ = ((M

θ
−→)

α0−→)
coll.
−→. (5)

In view of (3) and (5), in order to prove (1), it suffices to prove

(M
α0−→)

pop
f ′−1
j

−→ = ((M
θ

−→)
α0−→)

pop
f ′

j
−→ . (6)

But it follows from (4) that

((M
θ

−→)
α0−→)

popj
−→ = Fa,e

p U Vn−1 · · ·Vn−j Vn−j−1 · · ·V0

and so, sincef ′ ≥ 2, we have((M
θ

−→)
α0−→)

pop
f ′

e′−→ = ((M
θ

−→)
α0−→)

coll.
−→ as required.

iii. Case ofe′ > j: By applying Lemma 1 repeatedly, we have

((M
θ

−→)
α0−→)

pop
f ′

e′−→ = (M
α0−→)

pop
f ′

e′−→

((M
θ

−→)
α0−→)

coll.
−→ = (M

α0−→)
coll.
−→

Since(M
α0−→)

pop
f ′

e′−→ = (M
α0−→)

coll.
−→ we have((M

θ
−→)

α0−→)
pop

f ′

e′−→ = ((M
θ

−→)
α0−→)

coll.
−→ as required.

Case 3:θ = popk where1 ≤ k ≤ n.

This is an immediate consequence of Lemma 2.

Case 4:θ = collapse.

Supposetop1 S = a(e,k) and a 6= ⊥ so thatθ s = popk
e s; we haveM

θ
−→ Up Vn−e−1 · · ·V0. By

assumption, we haveM id -matches(p, s). It follows that(M
id
−→)

popk
e−→ Up Vn−e−1 · · ·V0; further(M

id
−→)

popk
e−→,

which equalsM
θ

−→, represents the configuration(p, collapse(ids)) = (p, θ s), as required. �

20

4.3 The recursion schemeGA determined by a CPDAA

Definition 4.3 Fix a tree-generating order-n CPDAA = 〈Σ,Γ, Q, δ, q0 〉 with Q = [m] for somem ≥ 1, and
q0 = 1. The order-n recursion scheme determined byA, writtenGA, is defined by the following rewrite rules.
There are two kinds of rewrite rules, corresponding to the labelsI andP:

I . For each(p, a, q, θ) ∈ δ and1 ≤ e ≤ n, we have the rule:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(q,θ)
−_ Ξ(q,θ)

whereΞ(q,θ) is as given in Table 1.

P. For each(p, a, (f ; q1, · · · , qar(f))) ∈ δ and1 ≤ e ≤ n, we have the rule:

Fa,e
p Φ Ψn−1 · · ·Ψ0

(f,q)
−_ f (Fa,e

q1
Φ Ψn−1 · · ·Ψ0) · · · (Fa,e

q
ar(f)

Φ Ψn−1 · · ·Ψ0).

Finally there is thestart rule: S −_ F⊥,1
1 Ωn−1 Ωn−1 · · ·Ω0. We write−→⊆ T 0(Σ ∪ N) × T 0(Σ ∪ N) for

the one-step reduction relation11 between ground-type applicative terms (orground terms, for short), defined to
be the substitutive and contextual closure of the rewrite rules. We write−→∗ as the reflexive, transitive closure
of −→.

A ground termR is called aredexif for some termR′ we haveR −→ R′ is a substitutiveinstance of a
rewrite rule of label̀ (say), and the redex is said to beP-typeor I -typeaccording to the type of̀; by abuse

of notation, we shall writeR
`

−_ R′. A ground term is eitherhead non-terminal(i.e. the head symbol is a
non-terminal) orhead terminal(i.e. of the shapef N1 · · ·Nar(f)). A head non-terminal ground term is either
atomic (i.e.S or Ω0) or it is head normal(i.e. the head symbol is of the formFa,e

p , in which case, the ground
term is anI -type orP-type redex).

It follows from the definition that for every one-step reductionM −→M ′, there are a unique redexR with

R
`

−_ R′ and a uniqueactive context12 E such thatM = E[R] andM ′ = E[R′]. To indicate theactive
redex(and its occurrence in the term), we shall sometimes writeM as(E,R), and write the one-step reduction

as (E,R)
`

−→ (E,R′), which we shall callP-typeor I -typeaccording to the type of the label`. We shall
call expressions of the shape(E,R) an active term; in general the ground-type termR may be a redex or a
head-terminal term.

Path reduction sequences

Path reduction sequencesare finite or infinite sequences of one-step reductions starting from the start symbol
S. In essence, they constitute a reduction strategy for computing paths in the tree generated by the recursion
schemeGA. Given a path in[[GA]] as specified by a word in the branch language (e.g.(f, 2) (g, 1) a) the
path reduction strategy (that computes it) begins rewriting fromS in a sequence ofmacro steps; each macro
step computes an element (i.e. aΣ-symbol and a direction) of the word. Take the word(f, 2) (g, 1) a. The
path reduction sequence begins fromS by rewriting the leftmost redex until it reaches a head terminal term
f N1 · · · Nar(f), upon whichN2 is selected, corresponding to the pair(f, 2); the next macro step then starts

11When defining−→ and the tree generated by the recursion schemeGA, we simply ignore the labels̀ that annotate the rewrite

rules
`

−_.
12An active contextis just an ground-type applicative term that contains a ground-typed hole, into which a term may be inserted.

21

fromN2 by rewriting the leftmost redex until it reaches a head terminal termg P1 · · ·Par(g), whereuponP1 is
selected, corresponding to(g, 1); the (terminal) macro step then starts fromP1 by rewriting the leftmost redex
until it reachesa, which is a terminal node of the tree.

A path reduction sequenceis a finite or infinite sequence ofmacro steps. Formally amacro stepis a
finite or infinite sequence of one-step reductions (of active terms) organized into (up to) three stages, starting
from a given active term(E,R1); if it terminates, the macro step returns an active term(E′, N) such that
(E,R1) −→

∗ (E′, N). The three stages are as follows:

1. A finite (possibly empty) or infinite sequence ofI -typeone-step reductions

(E,R1)
(q1,θ1)
−→ (E,R2)

(q2,θ2)
−→ (E,R3)

(q3,θ3)
−→ (E,R4) · · ·

for some active contextE. The sequence terminates (at(E,Rr+1)) iff for somer ≥ 0, we haveRr+1 is
not anI -type redex (i.e.Rr+1 is aP-type redex). If theI -type reduction sequence does not terminate, the
macro step is said to bepartial.

2. A P-typeone-step reduction(E,Rr+1)
(f ;q)
−→ (E, f N1 · · ·Nar(f)) whereq = q1 · · · qar(f).

3. A O-type one-step reduction: Thehead-terminalactive term(E, f N1 · · ·Nar(f)) is transformed to
(E′, Ni) for some1 ≤ i ≤ ar(f), where

E′ = E[f N1 · · ·Ni−1 [-]Ni+1 · · ·Nar(f)]

if ar(f) ≥ 1 (in which case, by abuse of notation, we write(E, f N1 · · ·Nar(f))
(f,i)
−→ (E′, Ni), even

thoughE[f N1 · · ·Nar(f)] andE′[Ni] are identical terms); otherwise (i.e.f is nullary), there is no trans-
formation, and the macro step in question is the terminal step of the path reductionsequence.

Thus a typical macro step is a sequence of one-step reductions that may have the following shape:

(E,R1)
(q1,θ1)
−→ · · ·

(qr,θr)
−→ (E,Rr+1)

(f ;q)
−→ (E, f N1 · · ·Nar(f))

(f,i)
−→ (E′, Ni)

with E′ = E[f N1 · · ·Ni−1 [-]Ni+1 · · ·Nar(f)] andr ≥ 0. There are two other possibilities, namely,ar(f) =
0 (in which case the macro step in question is the final step), or the macro step mayconsist of an infiniteI -type
reduction (in which case it is a partial step).

Proposition 4 The path reduction sequences compute all maximal traces of theΣ-labelled tree generated by
GA.

Proof Take a macro step starting from a given decomposed term(E,R); stages 1 and 2 are completely de-
termined; and stage 3 is specified by anO-type label(f, i), in casear(f) ≥ 1, with 1 ≤ i ≤ ar(f). Thus a
(maximal) path reduction sequence starting fromS can be specified by

• an infinite sequence ofO-type labels, or

• a finite sequence ofO-type labels (ending in an partial macro step), or

• a finite sequence ofO-type labels ending in a terminal macro step (specified by a nullaryΣ-symbol).

�

22

We are now in a position to state the second major result of the section.

Theorem 5 (Equi-Expressivity 1) Let A be a tree-generating CPDA, and letGA be the recursion scheme
determined byA. Then the CPDA and the recursion scheme generate the sameΣ-labelled tree.

Proof Because of Proposition 4, it suffices to prove

Claim: For any (finite or infinite) computation path ofA of the formγ0
`0
> γ1

`1
> γ2

`2
> · · · ,

there is a unique path reduction sequenceS −→ (E0, R0)
`0−→ (E1, R1)

`1−→ (E2, R2)
`2−→

· · · with E0 = [-] such that for everyi ≥ 0, if Ri is head-normal, thenRi representsγi. The
converse also holds.

To see why the claim is true, supposeRi = Fa,e
p U Vn−1 · · ·V0 andRi representsγi = (p, s). We consider

the various types of the label`i in turn. First, thanks to Theorem 3, we have(p, s)
(q,θ)
> γi+1 iff Ri

(q,θ)
−→ Ri+1;

and if either side of the preceding bi-implication holds, thenRi+1 representsγi+1, and we haveEi = Ei+1.

Secondly, it follows from Definition 4.3 thatγi

(f ;q)
> (f ; q1, · · · , qar(f); s) = γi+1 iff

Fa,e
p U Vn−1 · · ·V0︸ ︷︷ ︸

Ri

(f ;q)
−→ f (Fa,e

q1
U Vn−1 · · ·V0) · · · (F

a,e
q
ar(f)

U Vn−1 · · ·V0)
︸ ︷︷ ︸

Ri+1

;

further if either side of the preceding bi-implication holds, and ifar(f) ≥ 1, then for some1 ≤ j ≤ ar(f), we

have(f ; q1, · · · , qar(f); s)
(f ;j)
> (qj , s) = γi+2 andRi+2 = Fa,e

qj U Vn−1 · · ·V0 representsγi+2, with Ei+2 =

Ei+1[f (Fa,e
q1 U Vn−1 · · ·V0) · · · [-] · · · (F

a,e
q
ar(f)

U Vn−1 · · ·V0)] as required; and this concludes the proof.�

5 From recursion schemes to CPDA

The previous section demonstrates that higher-order recursion schemes are at least as expressive as CPDAs. In
this section we shall sketch a proof of the converse. Hence, CPDAs andrecursion schemes are in fact equi-
expressive. A number of related results can be found in the literature, but an exact correspondence with general
recursion schemes has never been proved before. Notably, in orderto establish a correspondence between
recursion schemes and HOPDAs, Damm and Goerdt (for word languages [8, 9]) as well as Knapik, Niwiński
and Urzyczyn (for labelled trees [15]), have had to impose constraints on the shape of the former (calledderived
typesandsafetyrespectively) and their translation techniques relied on the restrictions in a crucial way.

Our translation from recursion schemes to CPDA is novel: we transform anarbitrary order-n recursion
schemeG to an order-n collapsible pushdown automatonAG that computes thetraversalsover the computation
treeλ(G) (in the sense of Ong [20, 21]). The game-semantic interpretation ofG is aninnocent strategy(in the
sense of Hyland and Ong [13]), which coincides with thevalue tree[[G]] ofG, so that paths in the value tree are
plays of the strategy. Traversals over the computation tree are just (appropriate representations of)uncoverings
[13] of paths in the value tree.

5.1 CPDA(G) - the CPDA determined by a recursion schemeG

Fix an order-n recursion schemeG and the HORS graph

Gr(G) = 〈V, E ⊆ V × V, λG : V −→ ΛG, v0 ∈ V 〉

23

determined by it. Note thatG is not assumed to be homogeneously typed, and hence, not necessarily safe. We
shall construct an order-n collapsible pushdown automaton, writtenCPDA(G), that computestraversalsover
the computation treeλ(G). Thus it is an automaton that computes the innocent strategy[[G]] given by the value
tree ofG. (Traversals and computation trees are introduced in Ong’s preprint [20, 21].)

Remark 5.1 For convenience, in the definition of the transformCPDA(G), we shall writepusha,1
1 aspusha

1,
effectively ignoring the 1-link (to the preceding stack symbol). This is harmless since 1-links are guaranteed
not to feature in any of collapse operations in of the transformCPDA(G).

Definition 5.2 The transformCPDA(G) is ann-CPDA that has the setV of nodes as the stack alphabet.
The initial configuration is then-stack[· · · [⊥ v0] · · ·] i.e. pushv0

1 ⊥n, wherev0 is the root ofGr(G). Let
u range over the stack symbols ofCPDA(G). For ease of explanation, we define the transition mapδ as a
function that takes a nodeu ∈ V to a sequence of stack operations, by a case analysis of the label (fromΛG)
of u. The definition is presented in Figure 2. In the Figure (and henceforth),we shall writepusha

1 for pusha,1
1

for simplicity.

If u’s label is not a variable, the action is just apushv
1, wherev is an appropriate child of the

nodeu. Precisely:

(A) If the label is an@ thenδ(u) = push
E0(u)
1 .

(S) If the label is aΣ-symbolf thenδ(u) = push
Ei(u)
1 , where1 ≤ i ≤ ar(f) is the direction

requested by the Environment, or Opponent.

Note that iff is nullary, the automaton terminates (since Opponent has no move to make).

(L) If the label is a lambda thenδ(u) = push
E1(u)
1 .

Supposeu is labelled by a variable which is thei-parameter of the lambda nodebinder(u); and
supposebinder(u) is aj-child. Letp be the span of the variable nodeu.

(V1) If the variable has orderl ≥ 1, then

δ(u) =

{
pushn−l+1 ; popp+1

1 ; push
Ei(top1),n−l+1
1 if j = 0

pushn−l+1 ; popp
1 ; collapse ; push

Ei(top1),n−l+1
1 otherwise

wherepopp
1 means the operationpop1 iteratedp times, andpushEi(top1),k

1 is defined to

be the operations 7→ push
Ei(top1 s),k
1 s.

(V0) Otherwise (i.e. the variable has order 0)

δ(u) =

{
popp+1

1 ; push
Ei(top1)
1 if j = 0

popp
1 ; collapse ; push

Ei(top1)
1 otherwise.

Figure 2: Definition of the transformCPDA(G).

Let s ands′ range over configurations (i.e.n-stack contents) ofCPDA(G). We define a binary relation→
over configurations: we say thats → s′ just if s′ = δ(top1 s)(s). We write→∗ for the reflexive, transitive

24

closure of→.

Remark 5.3 (i) The definition ofCPDA(G) as presented is not formally an instance of a CPDA: the tran-
sition function maps stack symbols to composites of stack actions, based on a case analysis. However
it can be transformed to a proper CPDA, and in general the equivalent CPDA has more than one control
states.

(ii) The transformation is radically different from the compilation method of Knapik et al.[15, 16]. To date, it
is not known whether the approach in [16] is extendable to non-homogeneously typed recursion schemes
of order 2. More generally, it is not known whether the method is extendable to arbitrary recursion
schemes of all finite orders.

Question. Are order-n CPDA equi-expressive (for generating trees) with order-(n+ 1) PDA?

How doesCPDA(G) work?

The transformCPDA(G) computes traversals over the computation treeλ(G). Take a computation sequence
of traversals13:

t1 > t2 > t3 > · · ·

starting from the singleton traversalt1 consisting of the root of the graphGr(G) (so that for eachi, the traversal
ti+1 extendsti by one node). Let

s1 → s2 → s3 → · · ·

be the corresponding computation sequence ofCPDA(G) starting from the initial configurations1.

The two computation sequences are closely related in a lock-step fashion. First we shall see that for each
i ≥ 1, the top 1-stack ofsi (regarded as a sequence of nodes) is the P-view ofti i.e.

top2 si = ptiq.

Secondly we construct a kind of approximant ofti, written t̂i, which is obtained fromti by removing all
segmentsw sandwiched between matching pairs of the shape

$ w λ

i
}}

where$ is either an order-1 variable or an@-symbol, andi ≥ 1. Note that by definition of traversal, the
segmentw necessarily has the shape

λϕ · · · x

iyy

wherex is an order-0 variable symbol andϕ is a list of variables in whichx occurs. We then transform each
n-stacksi to a sequence of nodessi, which will be shown to coincide witĥti.

13Here traversals are justified sequences of nodes of the graphGr(G), as opposed to nodes of the computation treeλ(G) which is
the unfolding ofGr(G). The latter is the notion defined in the preprint [21], but the difference is of no significance for the purpose we
have in mind.

25

How to construct the sequencesi from an n-stacksi?

We follow a simple recipe.

1. We “flatten” then-stacksi so that it has the form of a well-bracketed sequence such as the following(top
of stack is the right-hand end)

[[[· · ·] · · · [· · ·]][[· · ·]] · · · [[· · ·][· · ·]]]

2. The target of any pointer to a stack is deemed to be the rightmost symbol representing the stack, i.e. it is
always an occurrence of] .

3. The required subsequence – which we shall write assi – is obtained by a right-to-left scan of the well-
bracketed sequence above according to the following rules.

• When an occurrence of] is encountered, we simply continue the scan without recording] .

• We record any stack symbols that are being scanned.

• Whenever we encounter the source of a link, the scan jumps to its target (anoccurrence of])
without recording any nodes sandwiched in-between. The source of the link is always recorded.

• The scan ends when the first[is hit.

Note that the last condition is necessary to ensure thats is suitably defined for any prefix of a reachable
stack. This will be important in the proof of Proposition 7.

Here is a more formal definition.

Definition 5.4 Let s be ann-stack. The sequences of stack symbols is defined as follows.

s =





ε top2s = [] ,

(pop1s)u top1s = u andu does not have a link,

(collapse s)u top1s = u andu has a link.

Examples

We illustrate the workings ofCPDA(G) by examples and point out the correspondence between runs of the
automaton and the traversals it computes.

Example 5.5 Take the following traversal over the computation tree ofG in Example 3.2:

@ λz
0��

@ λϕ
0��

ϕ
1��

λy

1

{{
g λ

2��
y

1
{{

λ

1

{{
ϕ

1

xx
λy

1

xx g λ

1~~
z

1

vv
λ

1

vv
a

We give a run of the corresponding 2-CPDA that computes the above traversal in Figure 3.

To save space, we only present the interesting configurations in which thetop1-element of the stack is a
variable node. In the picture, the top of a stack is at the right-hand end, and links are represented by dotted
arrows. Sett to be the prefix of the above traversal that ends in the node labelled byz. We have

t̂ = @ λz @ λϕ ϕ λ ϕ λy g λ z

which coincides with the2-stacks (see Figure 3) by following the recipe.

26

[[@ λz @ λϕ ϕ]]

→ [[@ λz @ λϕ ϕ] [@ λz @ λy]]
ww

→∗ [[@ λz @ λϕ ϕ] [@ λz @ λy
ww

g λ y]]

→ [[@ λz @ λϕ ϕ λ]]

→ [[@ λz @ λϕ ϕ λ ϕ]]

→ [[@ λz @ λϕ ϕ λ ϕ] [@ λz @ λy]]
vv

→∗ [[@ λz @ λϕ ϕ λ ϕ] [@ λz @ λy
vv

g λ z]] s

→ [[@ λz @ λϕ ϕ λ ϕ] [@ λ]]

→ [[@ λz @ λϕ ϕ λ ϕ] [@ λ a]]

Figure 3: A run of a 2-CPDA

Example 5.6 Consider the order-3 HORS graph in Figure 5. For ease of reference, we give nodes numeric
names, which are indicated (within square-brackets) as superscripts. Take the traversalt in Figure 4.

0 1 2 9
~~

10 11
��

12
��

3
��

4
��

9
��

10 11
~~

12
{{

5
zz

6
zz

13
yy

14
}}

3
||

4
||

9
||

10 11
~~

12
{{

5
zz

6
zz

15
yy

16
vv

17
vv

Figure 4: An order-3 traversal

@[0]

iiiiiiiiii

ZZZZZZZZZZZZZZZZZZZZZZZZZ

λΨ[1] λϕz[9]

Ψ[2]

pp
pp

p
JJ

JJ
f [10]

ss
ss

HH
HH

λx1x2
[3]

λ
[17]

λ
[11] λ

Ψ[4]

nnnnn

NNNNNN ϕ[12]

vv
vv

KKKKK

λx′1x
′
2
[5]

λ
[7]

λ
[13] λ

x1
[6] x2

[8] ϕ[14]

tt
t

JJ
JJ

J

λ
[15] λ

z[16]

Figure 5: An example of an order-3 HORS graph.

27

We present a run of the 3-CPDA that computes the traversalt in Figure 6 followed by Figure 7 and Figure 8
(for ease of reading, we represent nodes by their labels).

To see the correspondence with the traversalt, note that configurationss2 ands3 in Figures 7 and 8 respec-
tively have the sametop1-element which is node 6 (labelled byx1). They correspond respectively to the two
prefixes oft that end in node 6.

The traversalt corresponding tos3 is the prefix oft that ends in the later occurrence of 6; we have

t̂ = @ λΨ Ψ λϕz f λ ϕ λ ϕ λx1x2 Ψ λϕz f λ ϕ λx′1x
′
2
x1

The reader might wish to check thatt̂ = s3. (Note that the justification pointers are uniquely reconstructible
from the underlying sequence of nodes and their respective labels.)

5.2 Correctness of the transform

In this section we first set out (in Proposition 7), given any order-n recursion schemeG, the way in which the
reachable configurations of the transformCPDA(G)

s1 → s2 → · · · → sn → · · ·

can be said to compute traverals over the computation treeλ(G) (i.e. theΛG-labelled tree obtained fromGr(G)
by unfolding)

t1 > t2 > · · · > tn > · · ·

in a lock-step fashion. It then follows (from the Correspondence Theorem in [21]) thatCPDA(G) computes
(all paths in) theΣ-labelled tree[[G]] generated byG.

Lemma 6 Let s be a reachable configuration of ann-CPDA, and letu be an occurrence of a stack symbol in
s. Supposeu has a link to ani-stackσ. Then for everyi < j ≤ n, thei-stackσ is contained in the samej-stack
in whichu occurs.

Proof Since the property is preserved by everyn-CPDA instruction, the Lemma follows by induction on the
number of instructions it takes to obtains from the initial configuration. �

For example, the following 3-stack is not reachable:b has a link to the 1-stack[c] , but the source (i.e.b)
and the target (i.e.[c]) of the link arenot in the same 2-stack

[[[c]] [[a] [b
yy

]]]

Definition 5.7 LetG be an order-n recursion scheme, lets be a reachable configuration ofCPDA(G), and let
t be a traversal overλ(G). We shall say thats computest if and only if the following conditions hold.

(a) top2(s) = ptq.

(b) s = t̂.

(c) Supposetop2(s) = [v1, · · · , vn]. Let v′1, · · · , v
′
n be the respective occurrences ofv1, · · · , vn in t that

contribute toptq. Thenpopn−i
1 (s) computest≤v′

i
for any1 ≤ i < n.

(d) Using the same notation as in (c), supposevi has a link to anl-stackσ. Let sσ be the prefix ofs such that
σ is its topl-stack, i.e.sσ = collapse(popn−i

1 s). Thensσ computest<v′
i
.

28

[
[[@ λΨ Ψ]]

]

→
[

[[@ λΨ Ψ] [@ λϕz]]
zz

]

→∗

[
[[@ λΨ Ψ] [@ λϕz

||
f λ ϕ]]

]

→



[[@ λΨ Ψ λx1x2]]
((

[[@ λΨ Ψ] [@ λϕz
xx

f λ ϕ]]




→



[[@ λΨ Ψ λx1x2

''
Ψ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ]]




→



[[@ λΨ Ψ λx1x2

))

Ψ] [@ λϕz]]
zz

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ]]




→∗




[[@ λΨ Ψ λx1x2

))

Ψ] [@ λϕz
{{

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ]]




→ 


[[@ λΨ Ψ λx1x2

''

Ψ λx′1x
′

2]]

((
[[@ λΨ Ψ λx1x2

**

Ψ] [@ λϕz
xx

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ]]




→

Figure 6: A run of a 3-CPDA (Part 1 of 3).

29

→ 


[[@ λΨ Ψ λx1x2

&&

Ψ λx′1x
′

2

((

x1]]

[[@ λΨ Ψ λx1x2

))

Ψ] [@ λϕz
yy

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ]]




s2

→
[

[[@ λΨ Ψ] [@ λϕz
||

f λ ϕ λ]]

]

→
[

[[@ λΨ Ψ] [@ λϕz
||

f λ ϕ λ ϕ]]

]

→



[[@ λΨ Ψ λx1x2]]

))
[[@ λΨ Ψ] [@ λϕz

xx
f λ ϕ λ ϕ]]




→



[[@ λΨ Ψ λx1x2

((

Ψ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ λ ϕ]]




→



[[@ λΨ Ψ λx1x2

**

Ψ] [@ λϕz]]
zz

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ λ ϕ]]




→∗




[[@ λΨ Ψ λx1x2

**

Ψ] [@ λϕz
{{

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ λ ϕ]]




→ 


[[@ λΨ Ψ λx1x2

((

Ψ λx′1x
′

2]]

((
[[@ λΨ Ψ λx1x2

**

Ψ] [@ λϕz
xx

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ λ ϕ]]




→

Figure 7: A run of a 3-CPDA (Part 2 of 3).

30

→ 


[[@ λΨ Ψ λx1x2

((

Ψ λx′1x
′

2

''

x1]]

[[@ λΨ Ψ λx1x2

**

Ψ] [@ λϕz
yy

f λ ϕ]]

[[@ λΨ Ψ] [@ λϕz
yy

f λ ϕ λ ϕ]]




s3

→
[

[[@ λΨ Ψ] [@ λϕz
||

f λ ϕ λ ϕ λ]]

]

→
[

[[@ λΨ Ψ] [@ λϕz
||

f λ ϕ λ ϕ λ z]]

]

→
[

[[@ λΨ Ψ λ]]

]

Figure 8: A run of a 3-CPDA (Part 3 of 3).

Note that the definition is not circular, sincet≤v′
i

(1 ≤ i < n) andt<v′
i

(1 ≤ i ≤ n) are strictly shorter thant. In
what follows we shall blur the distinction betweenvi and its occurrencev′i, as it will be clear from the context
which occurrence is meant.

Proposition 7 LetG be an order-n recursion scheme and lets be a reachable configuration ofCPDA(G).

(i) Let u be a node ofλ(G). Thenu has a link ins if and only if it is aj-child (j > 0) labelled by a lambda
of typeA which has orderl ≥ 1. Further, ifu has a link, it points to an(n− l)-stack.

(ii) There exists a traversalt overλ(G) such thats computest.

Proof We prove the Proposition by induction on the number of→-stepss is from the initial configuration.
Clearly, the above assertions are valid whens is the initial configuration.

For the inductive cases, supposes→ s′. Assuming that (i) holds fors, (ii) holds fors andt, we shall prove
that (i) holds fors′ and (ii) holds fors′ andt′, wheret′ is a suitable one-node extension oft. We shall do so by
a case analysis of the label oftop1(s) = u.

First supposeu’s label is not a variable. Thens′ = pushv
1s, for an appropriate nodev. In particular, no

new link is created. For (i), observe that, becauseu’s label is not a variable, it follows from the structure of
λ(G) that if v was aj-child (j > 0) labelled by a lambda of typeA, thenu would have to be aΣ-symbol and,
consequently,A would have order0. Thus, (i) still holds, because no new links have been created.

For (ii), let t′ = tv, wherev has a pointer to a suitable node (there is only one way in which a pointer from
v can be inserted so as to maket′ into a traversal). Then we havet > t′. We shall show thats′ computest′.

For (a) we need to check thattop2s
′ = pt′q. We havetop2s

′ = (top2s)v and, in all three cases correspond-
ing to the rules(A), (S), (L), pt′q = ptqv holds. Thus, by induction hypothesis, we gettop2s

′ = pt′q. For
(b) we note thats′ = sv and t̂′ = t̂v. So, by induction hypothesis,s′ = t̂′. (c) follows immediately from the
induction hypothesis and, because no new links have been created, so does (d).

31

Next supposeu’s label is an order-l variable, which is thei-parameter ofbinder(u) (note that then we have
i ≥ 1) and supposebinder(u) is aj-child. Thens′ = δ(u)s whereδ(u) is given in Definition 5.2. There are
four cases; in the following we shall use the notations from the Definition.

1. Casel ≥ 1 and j = 0. Supposeu’s label is the order-l variableϕi.

By the induction hypothesis of (ii),umust be the last node oft. It then follows from the definition of a traversal
thatt has the following shape:

t = · · · u0 u1

0
��

· · · u

i
��

@ λϕ ϕi

(in the figure, the label of a node is the symbol just below it). Since the P-viewof a traversal is a path in the
HORS graph,ptq has the shape· · ·u0 u1 · · ·u︸ ︷︷ ︸

θ

and the segmentθ has lengthp + 1, wherep is the span of the

variable nodeu.

Consider the operationδ(u) = pushn−l+1; pop
p+1
1 ; push

Ei(top1),n−l+1
1 . By the induction hypothesis of

(ii), the top 1-stack ofs - call it σ - is the P-view oft. Since the top 1-stack ofpushn−l+1s is a copy ofσ,
applyingpopp+1

1 to pushn−l+1s returns a stack that has the@-labelled nodeu0 as thetop1-element. The node
that ispush1ed onto the top of the stack at this point is thei-child of u0, which we callv. Further, it has a link
to the top(n− l)-stack of the prefixs of s′.

It follows from the structure ofλ(G) thatv must be labelled byλψ (say) of the same type as the labelϕi

of u, i.e. its type is also of orderl ≥ 1. Thus, sincei ≥ 1, (i) follows as required.

For (ii) sett′ = tv, wherev has a pointer (labelled byi) to the occurrence ofu0 indicated in the figure
above. Thent′ is a traversal and we havet > t′. We shall show thats′ computest′.

(a) We need to showtop2s
′ = pt′q. By definition ofs′, we havetop2s

′ = (top2s)≤u0v, i.e. top2s
′ is the

prefix of the 1-stacktop2s - regarded as a sequence - up to and including the occurrence ofu0 described
above, extended byv. By induction hypothesis (a) we havetop2s = ptq. Thus

top2s
′ = ptq≤u0v = pt≤u0qv = pt′q

as required (the second equation holds becauseu0 appears inptq).

(b) We haves′ = sv andt̂′ = t̂v. Sinces = t̂ by induction hypothesis (b), we haves′ = t̂′.

(c) Because the top 1-stack ofs′ is (a copy of) a prefix oftop2s extended withv, we can simply appeal to
the induction hypothesis (c).

(d) For the same reason as above, (d) holds for all links intop2s
′ except (possibly) the single new link. Let

σ′ be the(n− l)-stack pointed at fromv. Then we haves′σ′ = s. Becauset = t′<v ands computest, (d)
also holds for the new link.

2. Casel ≥ 1 and j > 0. Suppose the label ofu is the order-l variableϕi, which is theith item of the listϕ.

By induction hypothesis (ii) and definition of a traversal,t has the following shape:

t = · · · u0 u1 · · · u

i
��

Ψ λϕ ϕi

32

Further, the variableψ has the same type asλϕ, which (say) is of orderl′. It follows that l′ > l and, conse-
quently,l′ ≥ 1. By induction hypotheses (i) and (ii),s has the following shape

s = [· · · · · · · · · [· · ·σ · · · [· · ·u1 · · ·u]︸ ︷︷ ︸
top 1-stack ofs

]

︸ ︷︷ ︸
top (n− l)-stack ofs

· · ·]

whereinu1 has a link to some(n − l′)-stackσ. Sincel′ > l, the (n − l′)-stackσ is embedded in the top
(n − l)-stack ofs (Lemma 6), as indicated by the figure above. Note that, by induction hypothesis (iid), sσ

computest<u1 . In particular thetop1-element ofσ must beu0.

Now, to see the structure ofs′, consider the operationδ(u). Letw = topn−l+1s. The operationpushn−l+1s
pushes a copy ofw on top ofs. The rest ofδ(u), namely,

popp
1; collapse; push

Ei(top1),n−l+1
1 ,

affects only the top (duplicate) copy ofw. Applyingpopp
1 topushn−l+1s returns a stack that hasu1 as thetop1-

element; thecollapse-operation then reduces it to a stack that has a copyσ′ (say) ofσ as its top(n− l′)-stack,
i.e. itstop1-element isu0. The node that ispush1ed onto the top of the stack at the end of theδ(u)-operation
(to yield s′) is thei-child of u0, which we shall callv. Observe that the structure ofλ(G) implies thatv must
then be labelled byλχ (say) whose type is the same as that ofϕi, i.e. its order isl. Sincev is linked to the
(n− l)-stackw, (i) is satisfied.

For (ii) let t′ = tv, wherev has ani-pointer to the distinguished occurrence ofu0. t′ is then a traversal such
thatt > t′. We need to show thats′ computest′.

(a) Observe thatpt′q = pt<u0qu0v = pt<u1qv. Sincesσ computest<u1 , so doess′σ′ . Hence,top2s
′ =

pt<u1qv = pt′q.

(b) Observe thats′ = sv andt̂′ = t̂v. Thus, by induction hypothesis,s′ = t̂′.

(c) Sinces′σ′ computest<u1 , (c) holds.

(d) We only need to verify (d) for the new link (all other links satisfy (d) becauses′σ′ computest<u1). Recall
thatv points at the stackw. Sinces′w = s andt′<v = t, (d) holds becauses computest.

3. Casel = 0 and j = 0. Supposeu’s label is the order-0 variablex.

By induction hypothesis (ii) and the definition of a traversal,t must have the following shape:

t = · · · u0 u1

0
��

· · · u

i
��

@ λϕ x

As in 1., ptq has the shape· · ·u0 u1 · · ·u︸ ︷︷ ︸
θ

and the segmentθ has lengthp+1, wherep is the span of the variable

nodeu.

Consider the operationδ(u) = popp+1
1 ; push

Ei(top1)
1 . Applying popp+1

1 to s returns a stack that has the
@-labelled nodeu0 as thetop1-element. The node that ispush1ed onto the top of the stack at this point is the
i-child of u0, which we callv. It follows from the structure ofλ(G) thatv must be labelled byλ, i.e. its type
has order0. Thus, sincev has no link, (i) follows as required.

For (ii) sett′ = tv, wherev has a pointer (labelled byi) to the occurrence ofu0 indicated above. Thent′ is
a traversal and we havet > t′. We shall show thats′ computest′.

33

(a) We need to showtop2s
′ = pt′q. By definition of s′, we havetop2s

′ = (top2s)≤u0v. By induction
hypothesis (ii), we havetop2s = ptq. Thus

top2s
′ = ptq≤u0v = pt≤u0qv = pt′q

as required (the second equation holds becauseu0 appears inptq).

(b) We haves′ = (popp+1
1 s) v and t̂′ = t̂≤u0v. By induction hypothesis (iic),popp+1

1 s computest≤u0 , in

particularpopp+1
1 s = t̂≤u0 . Thus, (b) holds.

(c) We simply appeal to the induction hypothesis (iic).

(d) Note that no new links have been created in this case, so it suffices to appeal to the induction hypothesis
(iid).

4. Casel = 0 and j > 0. Suppose the label ofu is the order-0 variablex, which is theith item of the listϕ.

By induction hypothesis (ii) and definition of a traversal,t has the following shape:

t = · · · u0 u1 · · · u

i
��

ψ λϕ x

Further, the variableΨ has the same type asλϕ, which (say) is of orderl′. It follows thatl′ > l. By induction
hypotheses (i) and (ii),s has the following shape

s = [· · · · · ·σ · · · [· · ·u1 · · ·u]︸ ︷︷ ︸
top 1-stack

· · ·]

whereinu1 has a link to some(n− l′)-stackσ. Note that, by induction hypothesis (iid),sσ computest<u1 . In
particular thetop1-element ofσ must beu0.

Now, to understand whats′ looks like, consider the operationδ(u) = popp
1; collapse; push

Ei(top1)
1 . Apply-

ing popp
1 to s returns a stack that hasu1 as thetop1-element; thecollapse-operation then reduces it to a stack

that hasσ as its top(n − l′)-stack, i.e. itstop1-element isu0. The node that is thenpush1ed onto the top of
the stack at the end of theδ(u)-operation (to yields′) is thei-child of u0, which we shall callv. Observe that
the structure ofλ(G) implies thatv must then be labelled byλ. Sincev does not have a link, (i) is satisfied.

For (ii) let t′ = tv, wherev has ani-pointer to the distinguished occurrence ofu0. t′ is then a traversal such
thatt > t′. We need to show thats′ computest′.

(a) Observe thatpt′q = pt<u1qv. Sincesσ computest<u1 , we havetop2s
′ = pt<u1qv = pt′q.

(b) Observe thats′ = sσv and t̂′ = t̂<u1v. Again, sincesσ computest<u1 , we havesσ = t̂<u1 and (b)
follows.

(c) Becausesσ computest<u1 , (c) holds.

(d) Again, it suffices to appeal to the fact thatsσ computest<u1 , because no new links have been created.

�

34

Note that in the above prooft′ was constructed froms′ in a lock-step fashion. Moreover, observe that, when
the last node of a traversal is not aΣ-symbol, traversals (as well as the corresponding runs ofCPDA(G)) can
be extended in a unique way. Similarly, when the last node of a traversal is aΣ-symbolf , both traversals and
the corresponding runs ofCPDA(G) can be extended inar(f) matching ways. Consequently, we have:

Corollary 8 Supposes computest. Thens andt are “bisimilar” with regard to → and> respectively:

(i) If s→ s′ then there existst′ such thatt > t′ ands′ computest′.

(ii) If t > t′ then there existss′ such thats→ s′ ands′ computest′.

Theorem 9 (Equi-Expressivity 2) For every order-n recursion schemeG, CPDA(G) computes all paths in
the value tree[[G]] generated byG.

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsible pushdown graphsi.e. we want to know whether one
can decide, for any position in such a game, ifÉlöıse has a winning strategy from it, and if so, determine its
complexity. Anorder-n collapsible pushdown system14 (n-CPDS) is given by a quadrupleA = 〈Γ, Q,∆, q0 〉
whereΓ is the stack alphabet,Q is a finite state-set,∆ ⊆ Q × Γ × Q × Opn is the transition relation,
and q0 is the initial state. Configurationsof an n-CPDS are pairs of the form(q, s) whereq ∈ Q and s

is ann-stack overΓ. We define a one-step labelled transition relation of the CPDSA, written
`
> where

` ∈ Q × Opn, which is a family of binary relations over configurations, as follows:(q, s)
(q′,θ)
> (q′, s′) just

if we have(q, top1 s, q
′, θ) ∈ ∆ ands′ = θ(s). The initial configuration is(q0,⊥n). We can now define the

configuration graphof A: vertices are just the (reachable) configurations, and the edge relationis the relation
`
> restricted to the reachable configurations.

Example 6.1 Take the 2-CPDS15 with state-set{ 0, 1, 2 }, stack alphabet{ a, b,⊥} and transition relation
given by

(0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0)

where− means any symbol,† means any non-⊥ symbol, andt, a, b, 0 and1 are shorthand for the stack opera-
tionspush2, pusha,2

1 , pushb,2
1 , collapse andpop1 respectively. We present its configuration graph (with edges

labelled by stack operations only) as follows:

0[[]]
t // 1[[][]]

a //

b��

0[[][a]]
t // 1[[][a][a]]

a //

b��

0[[][a][a a]]
t // 1[[][a][a a][a a]] · · ·

b��
2[[][b]]

1��

0

ggPPPPPP

2[[][a][a b]]
1��

0

iiTTTTTTTT

2[[][a][a a][a a b]] · · ·
1��

0

kkXXXXXXXXXXXX

2[[][]] 2[[][a][a]]
1��

0

kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

2[[][a][a a][a a]] · · ·
1��

0

llYYY

2[[][a][]] 2[[][a][a a][a]] · · ·
1��

0

llYY

2[[][a][a a][]]

14We use collapsible pushdownsystem(as opposed toautomaton) whenever the device is used to generate a graph.
15This is inspired by an example in [6].

35

LetG = 〈V,E 〉 denote the configuration graph ofA, letQE∪QA be a partition ofQ and letΩ : Q −→ C ⊂ N

be a colouring function. Altogether they define a partitionVE ∪ VA of V whereby a vertex belongs toVE iff
its control state belongs toQE, and a colouring functionΩ : V −→ C where a vertex is assigned the colour
of its control state. The structureG = 〈G,VE, VA 〉 is ann-CPDS game graphand the pairG = 〈 G,Ω 〉 is an
n-CPDS parity game. A play in G from the initial vertexv0 = (q0,⊥n) is defined as follow: the player that
controlsv0 (Élöıse ifv0 ∈ VE or Abelard otherwise) moves a token fromv0 to some neighbourv1 (we assume
here thatG has no dead-end), then the player that controls the token moves it to a neighbourv2 of v1 and so on.
A play is therefore an infinite pathv0v1 · · · and is won byÉlöıse iff lim inf〈Ω(vi) : i ≥ 0 〉 is even. Finally,v0
is winning for a player if he has a winning strategy from it. See [25, 28, 27]for more details.

In this section we consider the following problem:

(P1) Given ann-CPDS parity game decide if́Elöıse has a winning strategy from the initial configuration.

From the well-known techniques of [11], it follows that (i) Problem (P1) is polynomially equivalent to Problems
(P2) and (P3) in the following; and (ii) Problem (P1) is equivalent to Problem (P4) – the reduction from (P1)
to (P4) is polynomial, but non-elementary one in the other direction :

(P2) Given ann-CPDS graphG, and a mu-calculus formulaϕ, doesϕ hold at the initial configuration ofG?

(P3) Given an alternating parity tree automaton andn-CPDS graphG, does it accept the unravelling ofG?

(P4) Given an MSO formulaϕ and ann-CPDS graphG, doesϕ holds at the root of the unravelling ofG?

An useful fact is that the unravelling of ann-CPDS graph is actually generated by ann-CPDA (one mainly
has to note that putting labels on the edges makes then-CPDS graphdeterministicand hence its unravelling as
desired).

Lemma 10 Let A = 〈Γ, Q,∆, q0 〉 be somen-CPDS and letG be its configuration graph. Then lett be
the tree obtained by unravellingG and by labeling every node by control state andtop1 stack element of the
corresponding configuration inG. Thent is generated by ann-CPDA of polynomial size in the one ofA.

Proof Consider the followingn-CPDAA′ = 〈Σ,Γ, Q′, δ, q0 〉 where we set:

• Trans = {(q, θ) | ∃p ∈ Q, a ∈ Γ s.t. (p, a, q, θ) ∈ ∆} is the set of all transitions that can be applied in
A.

• Q′ = Q ∪ Trans

• Σ = Q× Γ is the set of shapes (here are do not care of the link) and the arity of(q, a) ∈ Σ is |{(q′, θ) |
(q, a, q′, θ) ∈ ∆}|.

• For everyq ∈ Q, and everya ∈ Γ, δ(q, a) = ((q, a); (q1, θ1), · · · , (qk, θk)) where{(q1, θ1), · · · , (qk, θk)} =
{(q′, θ) | (q, a, q′, θ) ∈ ∆}.

• For every(q, θ) ∈ Trans, and everya ∈ Γ, δ((q, θ), a) = (q, θ).

Then one easily checks thatA′ generatest. �

36

An important consequence of the Equi-Expressivity Theorem is the following.

Theorem 11 Let t be a tree generated by an order-n recursion scheme. Consider the following problems:

(P′
2) Givent and a modal mu-calculus formulaϕ, doesϕ hold at the root oft?

(P′
3) Givent and an alternating parity tree automaton, does the automaton acceptt?

(P′
4) Givent and an MSO formulaϕ, doesϕ hold at the root oft?

Then problem(Pi) is polynomially equivalent to problem(P′
i) for everyi = 2, 3, 4.

Since the modal Mu-calculus model checking problem for trees generatedby (higher-order) recursion
schemes is decidable [20], we obtain the following as an immediate consequence.

Theorem 12 Problems(P1) – (P4) are decidable with complexityn-EXPTIME complete.

Hence the Equi-Expressivity Theorem is a powerful tool to transfer decidability properties from recur-
sion schemes to CPDS. Another remarkable consequence is that it gives totally new techniques for model-
checking or solving games played on infinite structure generated by automata. In particular it leads to new
proofs/optimal algorithms for the special cases that were considered previously [26, 3, 16]. Conversely, as the
Equi-Expressivity Theorem works in both directions, one can note that asolution of problem(P1) would give a
new proof of the decidability of problems(P1)–(P1), and would give a new approach to problems on recursion
schemes.

Actually, the techniques of [26, 16] can be generalized to solven-CPDS parity games without referring to
[20]. Further it gives effective winning strategies for the winning player (which was not the case in [16] where
the special casen = 2 was considered).

Theorem 13 Solving ann-CPDS parity game isn-EXPTIME complete and it can be achieved without appeal-
ing to a translation to recursion schemes and to the decidability result in [20].Moreover, one can build an
n-CPDA with output that realizes a winning strategy for the winning player.

The next section is devoted to the proof of Theorem 13

6.1 Solving games over collapsible pushdown games: a directproof

We an order-n collapsible pushdown systemP = 〈Γ, Q,∆〉, a partitionQE∪QA ofQ and a colouring function
Ω : Q → C ⊂ N. We denote byG = (V,E) the transition graph ofP, by G = 〈G,VE, VA〉 the game graph
associated with the previous partition ofQ, and byG = 〈G,Ω〉 the parity game onP induced by the previous
colouring function.

In this section, we give a proof of Theorem 13,i.e. we explain how to solve the parity gameG defined
from P. Here, we only focus on deciding the winner from a configuration of the form (pin,⊥n), that is a
configuration with an empty stack. Then it is easy to solve the game from any configuration. Indeed if one
wants to decide for some configuration(p, σ) ∈ V , it suffices to construct a newn-CPDS that mimicsP excepts
that from its initial configuration it starts by reaching configuration(p, σ) and only when this has happens the
simulation ofP starts. Therefore(p, σ) is winning for the same player inG and in the (naturally defined) new
n-CPDS game. Note that this reduction is linear in the size of bothP and in the length of(p, σ).

37

The section is organized as follows. We start by giving a general overview of the proof. Then we prove
a technical result (Lemma 14) which allows to restrict our attention to a specificclass ofn-CPDS (collapse
rank-aware CPDS). For this class, we provide a reduction of ann-CPDS game to an(n − 1)-CPDS games,
which allows to conclude using an inductive argument.

Overview of the proof and preliminaries

We follow the general approach of [26] and [16]. In [26], in order tosolve a pushdown parity game, one builds
a simulation game that is played on a finite game graph and is equipped with a parity condition. Then one
proves that a configuration in the pushdown game is winning forÉlöıse iff a corresponding configuration is
winning for her in the simulation game. Moreover from a winning strategy in the simulation game, one can
built a winning strategy in the pushdown game. The increase of memory resultsin the use of a stack. In
[16] the authors consider parity games on2-CPDS16 and mostly adapt the construction of [26]. To handle the
collapse actions, they need to make the CPDSrank aware. Assume that the play is in some configurationv
where collapse may be applied. Applying collapse leads to some configurationv′, and the stack content inv′

has already appeared beforev in the play. Thecollapse ancestorof v is the latest configuration in the play with
this stack content. A CPDS is rank aware (to be defined formally) if the top stack symbol contains thecollapse
rank which is the minimal rank of a state occurring between the collapse ancestor ofthe current configuration
and the current configuration. Now solving a2-CPDS game when the2-CPDS is rank aware, can be done by
adaptingthe reduction in [26] (now the simulation game is no longer played on a finite graph but can still be
solved). Let us mention an important point here. In [16], the authors proves the following: if one player win
the2-CPDS game then he wins the simulation game. Hence this proves the equivalence of both games but do
not provide a way to build a strategy in the2-CPDS game.

Here, we extend the result of [16] ton-CPDS parity game for anyn. Moreover, from our proof, we can
effectively build winning strategies in then-CPDS game. The proof works by induction onn. Note that the
special case wheren = 1 is the one of parity pushdown game studied in [26].

What follows do not rely on a specific representation of the links and therefore we do not make it more
precise.

We start with some definitions adapted from the one introduced in [16].

Definition 6.2 Consider a partial playΛ in G ending in a configuration(q, s) such thattop1(s) has ann-link.
Hence there is inΛ at least one configuration of the form(q′, collapse(s)) for someq′ ∈ Q. Then the closest
to (q, s) is called thecollapse ancestorof (q, s). Thecollapse rankof (q, s) is the minimal colour of a state
occurring inΛ between the panic ancestor of(q, s) and(q, s). Note that these notions are not defined iftop1(s)
has ank-link for somek < n: indeed it may happen that no configuration of the form(q′, collapse(s)) was
visited inΛ, and therefore the collapse ancestor notion can not be adapted.

Definition 6.3 An n-CPDS equipped with a colouring function iscollapse rank-awareiff there exists a func-
tion ColRk : Γ → N such that, when defined, the collapse rank of every configuration(q, s) is equal to
ColRk(top1(s)). In other words, the collapse rank is stored in thetop1-element of the stack.

We also introduce a notion of ancestor.

Definition 6.4 Consider a playΛ = v1v2 · · · in G and consider that we attach to everyk-stack (for any
1 ≤ k ≤ (n− 1)) an identifier (which is an integer) as follows: if apushk operation is applied at configuration

16They use the terminologypanic automatainstead of collapsible pushdown automata.

38

vm in Λ, the top(k−1)-stack of configurationvm+1 is assigned identifierm, and all identifiers for thej-stacks
for j < (k−1) in this new top(k−1)-stack are copied from the former top(k−1)-stack. Now, for2 ≤ k ≤ n
thek-ancestorof some configurationv in Λ is the configurationvm wherem is the identifier ofv’s top(k−1)-
stack, and thelevel rank fork is the minimal colour of a state occurring inΛ between the(k− 1)-ancestor ofv
andv.

Example 6.5 In the following (order-3) example, we assume that the colour ofvi is i, and the identifierj of a
stack[· · ·] is denoted by[· · ·] j . Starting fromv1 = [[[] 0] 0] , consider the following sequence of stack
actions:

[[[] 0] 0] = v1
push2−→ [[[] 0[] 1] 0] = v2

push
a,2
1−→ [[[] 0[a(2,1)] 1] 0] = v3

push3−→ [[[] 0[a(2,1)] 1] 0[[] 0[a(2,1)] 1] 3] = v4
push2−→ [[[] 0[a(2,1)] 1] 0[[] 0[a(2,1)] 1[a(2,1)] 4] 3] = v5

Then the2-ancestor ofv5 is v4 and hence the level rank for2 of v5 is 4. The3-ancestor ofv5 is v3 and the level
rank for3 of v5 is therefore3. The2 ancestor ofv4 is v1 and therefore the level rank for2 of v4 is 1.

We show, as in [16, Lemma 6.3], that we can restrict our attention to CPDS games where the underlying
CPDS is collapse rank-aware.

Lemma 14 For anyn-CPDSP and any parity gameG on it, one can construct a collapse rank-awaren-CPDS
P ′ and an associated parity gameG′ such thatÉlöıse has a winning strategy inG from some configuration
(pin,⊥n) iff she has a winning strategy inG′ from the same configuration.

Proof

The proof is an non-trivial adaptation of the one of [16, Lemma 6.3] to the general setting ofn-CPDS
(instead of2-CPDS).

Fix an n-CPDSP = 〈Γ, Q,∆〉, a partitionQE ∪ QA of Q and a colouring functionΩ : Q → C ⊂
N. Denote byG the induced parity game. We define a collapse rank-aware (to be proven)n-CPDSP ′ =
〈Γ′, Q′,∆′〉 such thatQ ⊂ Q′ andΓ′ = Γ × C × C{2,...,n} × C{2,...,n}. A configuration(q, s) of P ′ with its
top1(s) = (a,mc, τ, τold) having a(k + 1)-link will satisfy the following.

• mc is the minimal colour seen since thek-ancestor of thek-stack pointed to by the(k + 1)-link. In
particular, when the link is ann-link, equivalently when the collapse rank is defined,mc will be the
collapse rank: indeed the(n − 1)-stack pointed by then-link is such that itsn-ancestor is exactly the
collapse ancestor of the current configuration and hencemc is the smallest colour seen since the collapse
ancestor. By abuse of notation, we designate in the sequelmc as thecollapse rank.

• τ is thelevel rank, that is, for anyi = 2, · · · , n, τ(i) is the level rank fori.

• τold is such thatτold(k) = h whereh = τ ′(k) with top1(popk(s)) = (a′,m′
c, τ

′, τ ′old) if exists and
otherwise may be anyh. In other wordτold(k) gives the level rank fork for the (k − 1)-stack just
above the current one. Note thatτold is introduced here only for technical reasons and is actually easy to
maintain (one has to care only when pushing).

39

The transition relation ofP ′ mimics the one ofP and updates the ranks as explained below.

In order to save space and to make the construction more understandable,we do not describe formally
∆′ but explain howP ′ is supposed to behave. It should be clear that∆′ can be formally described to fit this
informal description (and that some extra control states are needed). Note also that the following description
contains also the inductive proof of its validity, namely thatmc, τ andτold are as stated above.

AssumeP ′ is in some configuration(q, s) with top1(s) = (a,mc, τ, τold). The following behaviours are
those allowed in such a configuration.

1. For every(q, a, q′, popk) ∈ ∆ with 1 ≤ k ≤ n, let popk(s) = s′ and lettop1(s
′) = (a′,m′

c, τ
′, τ ′old).

ThenP ′ can go to the configuration(q′, s′′) wheres′′ is obtained froms′ by replacingtop1(s
′) by

(a′,min(m′
c, τ(k),Ω(q′)), τ ′′, τ ′old), with

τ ′′(i) =

{
min(τ ′(i), τ(k),Ω(q′)) if i ≤ k

min(τ(i),Ω(q′)) if i > k

Indeed the play since this move was ending by a sequence(q1, s1)(q2, s2) · · · (q, s) (here the dots are
for intermediate configurations that have no importance for the current argument) where(q2, s2) is the
k-ancestor of(q, s) and was reached from(q1, s1) by applying apushk move, andtopk(s1) = topk(s

′),
which in particular means that(q1, s1) and(q′, s′) have the samei-ancestors fori ≤ k and thattop1(s1)
andtop1(s

′) are equal and point to two respective(h− 1)-stacks (for someh) that both have the sameh-
ancestor. Hence, the collapse rank in(q′, s′) being the smallest colour since theh-ancestor of the pointed
(h−1)-stack it is equal to the minimum of the collapse rank in(q1, s1) (namelym′

c) with Ω(q′) and with
the minimal colour visited in(q2, s2) · · · (q, s), which is (as(q2, s2) is thek-ancestor of(q, s)) equal to
τ(k). Hence the collapse rank ismin(m′

c, τ(k),Ω(q′)).
Now the level rank in(q′, s′) for somei ≤ k being the smallest colour seen since thei-ancestor of(q′, s′),
and thisi-ancestor being the same as in(q1, s1), the level rank is the minimum of the level rank fori
in (q1, s1) (namelyτ ′(i)) with Ω(q′) and with the minimal colour visited in(q2, s2) · · · (q, s) (namely
τ(k)). Hence it is equal tomin(τ ′(i), τ(k),Ω(q′)).
Thei-ancestor of(q′, s′) for somei > k equals thei-ancestor of(q, s), and hence the level rank fori has
to be simply updated from the one in(q, s) (namelyτ(i)) by taking the minimum withΩ(q′).
Finally theτ ′old information needs not to be updated.

2. For every(q, a, q′, pushj) ∈ ∆ with 2 ≤ j ≤ n, let pushj(s) = s′ and thentop1(s
′) = (a,mc, τ, τold).

ThenP ′ can go to the configuration(q′, s′′) wheres′′ is obtained froms′ when replacingtop1(s
′) by

(a,min(mc,Ω(q′)), τ ′, τ ′old) with τ ′(i) = min(τ(i),Ω(q′)) if i 6= j andτ ′(j) = Ω(q′), andτ ′old(i) =
τold(i) if i 6= j andτ ′old(j) = τ(j).

Indeed, in the new configuration, theh-ancestor of the(h− 1)-stack pointed bytop1(s
′) (for someh) is

the same as theh-ancestor of the(h − 1)-stack pointed bytop1(s) and hence the collapse rank simply
needs to be updated by taking the minimum of the former one (namelymc) with the current colour
(namelyΩ(q′)).
Now, thei-ancestors for anyi 6= j in (q, s) and (q′, s′) are the same and therefore the level rank for
i simply needs to be updated by taking the minimum of the former one (namelyτ(i)) with the current
colour (namelyΩ(q′)).
Thej-ancestor of(q′, s′) is (q, s), and hence the level rank forj in (q′, s′) equalsΩ(q′).
Finally, one hastop1(popi(s)) = top1(popi(s

′)) for everyi 6= j and thereforeτ ′old(i) = τold(i) gives the
correct value, and astop1(popj(s

′)) = (a,mc, τ, τold), one must setτ ′old(j) = τ(j).

3. For every(q, a, q′, pushb
1,k) ∈ ∆ with 1 ≤ k ≤ n, andb ∈ (Γ \ {⊥}), thenP ′ applypush

(b,m′
c,τ ′,τ ′

old
)

1,k

40

wherem′
c = min(τold(k), τ(k),Ω(q′)), τ ′(i) = min(τ(i),Ω(q′)) for everyi andτ ′old(i) = τold(i) for

everyi.

In order to define the correct value form′
c one needs to consider the minimal colour since thek ancestor

of the(k−1)-stack pointed by the newk-link. The play since the last move was ending by a sequence of
the form(q1, s1) · · · (q2, s2)(q3, s3) · · · (q, s) (here the dots are for intermediate configurations that have
no importance for the current argument) where(q1, s1) is thek-ancestor of the(k − 1) stack pointed
by the new link,(q3, s3) is thek-ancestor of(q, s) and therefore the move from(q2, s2) is apushk one.
Moreover it is easily checked thattopk(s2) = topk(popk(s)) and thereforetop1(s2) = top1(popk(s)).
Hence,τold(k) is the level rank fork in (q2, s2). Now note that the smallest colour visited since(q3, s3)
is by definition the level rank fork in (q, s) (namelyτ(k)) and therefore the correct value form′

c is
the minimum of the minimum between(q1, s1) and (q2, s2) with the minimum between(q3, s3) and
(q, s) and Ω(q′), that ism′

c = min(τold(k), τ(k),Ω(q′)). Note that hereτold(k) makes sense as if
top1(popk(s)) is not defined it would means thatpopk(s) would be empty and thenpushb

1,k is not allowed
(there is no(k − 1)-stack to target).

Then thei-ancestors for alli in (q, s) and(q′, s′) are the same and therefore the level rank fori simply
needs to be updated by taking the minimum of the former one (namelyτ(i)) with the current colour
(namelyΩ(q′)).

Finally, one hastop1(popi(s)) = top1(popi(s
′)) for every i and thereforeτ ′old(i) = τold(i) gives the

correct value.

4. For every(q, a, q′, collapse) ∈ ∆, let collapse(s) = s′ and lettop1(s
′) = (a′,m′

c, τ
′, τold). ThenP ′ can

go to the configuration(q′, s′′) wheres′′ is obtained froms′ by replacingtop1(s
′) by

(a′,min(m′
c,mc,Ω(q′)), τ ′′, τ ′old) with τ ′′(i) = min(τ ′(i),mc,Ω(q′)) for everyi.

Indeed the play since the last move (namelycollapse) was ending by a sequence of the form
(q1, s1) · · · (q2, s2)(q3, s3) · · · (q, s) (here the dots are for intermediate configurations that have no im-
portance for the current argument) where(q1, s1) is thek-ancestor of the(k − 1)-stack pointed by the
k-link in the top symbol of(q, s), (q2, s2) is such thattopk(s2) = topk(s

′) and(q3, s3) is reached from
(q2, s2) by a pushk move. Consider thei ancestor for(q′, s′): it is the same than the one in(q2, s2)
and therefore the minimum colour seen since thei-ancestor is the minimum colour of the one seen since
the i-ancestor in(q2, s2) (namelyτ ′(i)) of the minimum colour visited since(q3, s3) and ofΩ(q′). As
mc is the minimum colour since(q1, s1) and as thei-ancestor of(q′, s′) must appear before(q1, s1) the
previous minimum is the same asmin(τ ′(i),mc,Ω(q′)).
Using exactly the same arguments, one deduces that the collapse rank in(q′, s′) equalsmin(m′

c,mc,Ω(q′)).
Finally theτ ′old information needs not to be updated.

From the previous description (and the included inductive proof) we conclude thatP ′ is collapse rank-
aware.

Now, in order to conclude the proof of Lemma 14, one considers the parity gameG
′′ onP ′′ defined using

the same partition as the fromQ (the control state ofQ′ \Q inducing configurations with exactly one successor
can be controlled by any player), and extendingΩ to Q′ by assigning the maximal colour to states inQ′ \ Q
(hence not modifying the winner). For this game, it should then be clear thatwe have the desired property.�

Remark 6.6 Note that building a collapse rank-awaren-CPDS from a non-aware one increases the stack al-
phabet byC2n+1 and the state set byCn (recall that we need extra states, that where hidden in the previous
description, mainly to storeτ)

41

Main reduction

In order to solve CPDS parity games, we give a reduction that built from ann-CPDS parity gameG anequiva-
lent (n− 1)-CPDS parity gamẽG. By equivalent we mean the following.

1. A configuration(pin,⊥n) is winning forÉlöıse inG iff (p′in,⊥n−1) is winning forÉlöıse inG̃, wherep′in
depends onpin (and can be easily constructed);

2. From a winning strategy foŕElöıse from(pin,⊥n) in G, one can deduce a strategy for her inG̃ from
(p′in,⊥n−1);

3. From a winning strategy foŕElöıse from(p′in,⊥n−1) in G̃, one caneffectively construct a strategy for
her inG from (pin,⊥n);

Note the last two points implies the first one, and our proof will actually establishthese two points. Also
note that we get a similar statement for Abelard, by considering the game defined by the colouring functionΩ′

where we setΩ′(v) = Ω(v) + 1 for every state vertexv in the game graph.

Also note that the last point is effective. Hence, applying inductively the reduction will give an effective
construction of strategies for both players in ann-CPDS game. This was not the case in the proof for2-CPDS
game in [16].

The reduction we present below (i.e. the description of̃G) can be though as a generalization of those
presented in [26] and in [16]. The proof generalizes the one in [26] and partially (for the easy implication) the
one in [16].

From now on we fix a collapse rank-awaren-CPDSP = 〈Γ, Q,∆〉, a partitionQE ∪ QA of Q and a
colouring functionΩ : Q → C = {0, . . . , d}. The mapping computing the collapse rank is denotedColRk.
By G, we denote the implied parity game, and we fix an initial configuration(pin,⊥n).

For a configurationv = (q, s) of P, we define itsstack heightsh(v) to be length ofs seen as ann-stack.
More precisely,sh(v) is such thats = [s1 · · · ssh(v)].

For an infinite playΛ = v0v1 · · · , let StepsΛ be the set of indices of positions where no configuration of
strictly smaller stack height is visited later in the play. More formally,StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥
sh(vi)}. Note thatStepsΛ is always infinite and hence induces a decomposition of the playΛ into finite pieces.

For all pair(i, j) ∈ StepsΛ, with i 6= j and such that there is nok ∈ StepsΛ such thati < k < j, we define
mcol(i, j) = min{Ω(vk) | i ≤ k ≤ j} and

kind(i, j) =

{
S if sh(vj) = sh(vi) + 1

B if sh(vj) = sh(vi)

In the factorization induced byStepsΛ, a factorvi · · · vj will be called abumpif kind(i, j) = B, and will
be called aStair if kind(i, j) = S. A bumpvi · · · vj wherej = i+ 1 is called atrivial bump.

For any playΛ with StepsΛ = {n0 < n1 < · · · }, one defines the sequences(mcolΛi)i≥0 ∈ CN where
mcolΛi = mcol(ni, ni+1) and(kindΛ

i))i≥0 ∈ {B,S}N wherekindΛ
i = kind(ni, ni+1).

The sequence(mcolΛi)i≥0 fully characterizes the parity condition.

Proposition 15 For a playΛ the following equivalences hold:Λ is winning forÉlöıse ifflim inf((mcolΛi)i≥0)
is even.

42

The main idea to solveG is to build an(n−1)-CPDS parity gamẽG played on a game graph̃G defined by an
exponentially larger(n−1)-CPDS with the same set of colours. This new gamesimulatesthe pushdown game,
in the sense that the sequences of visited colours during a correct simulation play are exactly the sequences
(mcolΛi)i≥0 for playsΛ in the original game. Moreover, a play in which a player does not correctlysimulate
then-CPDS game is loosing for that player.

Before providing a description of the game graphG̃, let us consider the following informal description of
this simulation game.

In this simulation game, the players only recall an(n − 1)-stack with some extra information. Such an
(n− 1)-stack aims at simulate a configuration inG whose top(n− 1) is that stack.

The most interesting case is when, simulating a configurationv with a control statep and a top(n − 1)-
stacks, the player owningp wants to apply a transitionpushn and change the control state toq. For every
strategy ofÉlöıse, there is a (possibly empty) set of possible finite continuations of the play that will end with
returning to a configuration with the same stack content as the one inv. If this happens, it means that eventually
a configuration with stack height equal tosh(v) is reached. Hence, in the simulation gameÉlöıse, is required to
declare a vector

−→
R = (R0, . . . , Rd) of (d+1) subsets in2Q, whereRi is the set of all states the game can be in

when coming back to a configuration with stack heightsh(v) along these plays where in addition the smallest
visited colour while the stack height is greater thansh(v) is i.

Then Abelard has two options. He can continue the game by simulating thepushn transition and update the
control state (we call this apursuemove). Otherwise, he can pick a setRi and a stater ∈ Ri, and continue the
simulation from that stater (we call this ajumpmove). If he does a pursue move, the players now remember
the vector

−→
R claimed byÉlöıse; if, later on, apopn transition is simulated, a special configuration is reached

whereÉlöıse wins if and only if the resulting state is inRκ whereκ is the smallest colour seen since the stack
height was greater thansh(v) (this information is encoded in the control state, reset after each pursue move and
updated after each jump move. If Abelard does a jump move to a stater in Ri, the currently stored value forκ
is updated tomin(κ, i,Ω(r)), which is the smallest colour seen since the current stack level was reached).

Now we discuss the other kinds of transitions, includingcollapse, that can be simulated.

• pushk, popk, or pusha
1,k for somek < n and somea ∈ Γ: the simulation is an exact one and hences is

modifies and the control state is updates.

• collapse if the top1 symbol has ak-link for somek < n: the simulation is an exact one and hence
modifiess and updates the control state.

• pusha
1,n: in this case as we only recall an(n− 1)-stack there is no meaning of putting ann-link. Hence

instead we apply a rulepush(a,
−→
R)

1,1 , where
−→
R is the last vector declared byÉlöıse (it is stored in the control

state and easily retrieved). The idea behind this is that, if one simulates acollapse from this new stack
content, then the play is returning to the previous stack height, and hence one has to check whether the
vector

−→
R , thatÉlöıse claimed to describe the possible behaviours on returning to the previous stack level,

was correct with respect to this collapse (see below). We equip this symbolwith a1-link but actually we
will never allow to apply collapse from it so one could consider that we do not have a link at all here (but
we did not formally allow this in our definition of CPDS).

• collapse if the top1 symbol simulates one with ann-link, equivalently is of the form(a,
−→
R): in this case

we check whether the new control stater reached when applyingcollapse belongs toRColRk(a) (recall
that then-CPDSP is collapse rank aware and thatColRk computes this rank inP). If it is the case,
Élöıse wins, otherwise Abelard does.

43

(q, push
(b,

−→
R)

1,1 (s),
−→
R,min(κ,Ω(q)))(q, θ(s),

−→
R,min(κ,Ω(q)))

tt ff(p, s,
−→
R, κ)

(p, s,
−→
R, κ, q)

(p, s,
−→
R, κ, q,

−→
T)

(q, s,
−→
T ,Ω(q)) (t, s,

−→
R,min(κ, i,Ω(t)))

i

If ∃ (r, popn) ∈ ∆(p, a) s.t. r ∈ Rκ

andtop1(s) = a or (a,
−→
S)

or
If ∃ (r, collapse) ∈ ∆(p, a) s.t. r ∈ SColRk(a)

andtop1(s) = (a,
−→
S)

If ∃ (r, popn) ∈ ∆(p, a) s.t. r /∈ Rκ

andtop1(s) = a or (a,
−→
S)

or
If ∃ (r, collapse) ∈ ∆(p, a) s.t. r /∈ SColRk(a)

andtop1(s) = (a,
−→
S)

∀ (q, θ) ∈ ∆(p, a) s.t.
top1(s) = a or (a,

−→
S) andθ = pushk or popk or pushb

1,k, b ∈ Γ, k < n;
or top1(s) = a andθ = collapse ∀ (q, pushb

1,n) ∈ ∆(p, a) with top1(s) = a or (a,
−→
S)

∀ (q, pushn) ∈ ∆(p, a)

andtop1(s) = a or (a,
−→
S)

∀
−→
T ∈ P(Q)d+1

∀ t ∈ Ti

Figure 9: Local structure of̃G.

Therefore the main vertices of the simulation game graph are configurations of the form(p, s,
−→
R, κ) where

s is an(n− 1)-stack on the alphabetΓ ∪ (Γ ×P(Q)d+1) and they are controlled by the player that controlsp.
Intermediate configurations are used to handle the previously described intermediate steps. The local structure
is given in Figure 9 (circled vertices are those controlled byÉlöıse). Two special verticestt andff are used
to simulatepopn moves andcollapse moves from configurations with ann-link on their top1 symbol. Here
verticestt andff are designed so that the player that controls it looses a game that reachessuch a vertex: for
this,tt is assigned an even colour whileff is assigned an odd colour, and both vertices have a loop on them and
no other outgoing edge.

The simulation game graph is equipped with a colouring function on the vertices and on the edges: vertices
of the form(p, s,

−→
R, κ) have colourΩ(p), and an edge leaving from a vertex(p, s,

−→
R, κ, q,

−→
T) has a colour

in {0, . . . , d} only if it simulates a bump (the colour isi iff the bump has colouri). It is easily seen that
intermediate vertices can be introduced to have only colours on vertices. A precise description of the graph is
given in the detailed proof of the following main result. The simulation parity game isdenoted̃G.

Theorem 16 A configuration(pin,⊥n) is winning forÉlöıse inG if and only if(pin,⊥n−1, (∅, . . . ,∅),Ω(pin))
is winning forÉlöıse inG̃. Moreover the gamẽG is an(n− 1)-CPDS parity game.

Proof of Theorem 16

We start with a precise description ofG̃ and with some extra definitions. Then we give a full proof of Theorem
16

44

The game graph G̃ Let us first precisely describe the game graphG̃. As what follows is only a formal
definition of the graph represented in Figure 9, one could skip this or refer only in case the figure is not clear
enough.

• The main vertices of̃G are those of the form(p, s,
−→
R, κ), wherep ∈ Q, s is any(n − 1)-stack (with

links) on the stack alphabetΓ∪ (Γ×P(Q)d+1),
−→
R = (R0, . . . , Rd) ∈ P(Q)d+1 andκ ∈ {0, . . . , d}. A

vertex(p, s,
−→
R, κ) is reached when simulating a partial playΛ in G such that:

– The last vertex inΛ has control statep and its top(n − 1)-stacks′ is such thatπ(s′)=ν(s) where
π(s′) denotes the stack obtained froms′ by replacing everyn-link by a1-link andν(s) is the stack
obtained froms by replacing every symbol(γ,

−→
S) by γ (and by preserving the link structure). This

roughly means thats ands′ are very slightly different representations of a same stack.

– Élöıse claimed that she has a strategy to continueΛ in such a way that ifs is eventually popped
(by apopn action), the control state reached after poppingα belongs toRm, wherem denotes the
minimal colour visited since the current stack height (of then-stack) was reached.

– The colourκ is the smallest one since the current stack height was reached from a lower stack level.

– Moreover, iftop1(s) is of the form(a,
−→
S) then thetop1 symbol of the last vertex inΛ has ann-

linked and ifcollapse is applied in the next move inΛ thenÉlöıse claimed that the control state of
the configuration that is reached belongs toSk wherek is the collapse rank,i.e. k = ColRk(a).

A vertex(p, s,
−→
R, κ) is controlled byÉlöıse if and only ifp ∈ QE.

• Verticestt andff are there to ensure the correctness of the vectors
−→
R encoded in the main vertices and

of the vectors
−→
S encoded in the stack for symbols of the form(a,

−→
S). Vertextt is controlled by Abelard,

whereas vertex of the formff belongs toÉlöıse. There is a loop on each of these vertices and it is the
only edge from it. We assign an odd colour toff and an even colour tott: hence the player controlling
such a vertex is loosing.

There is a transition from some vertex(p, s,
−→
R, κ) to tt, if and only if one of the two cases happens:

– top1(s) = a or (a,
−→
S) and there is a transition rule(r, popn) ∈ ∆(p, a) such thatr ∈ Rκ (this

means that
−→
R is correct with respect to this transition rule).

– top1(s) = (a,
−→
S) and there is a transition rule(r, collapse) ∈ ∆(p, a) such thatr ∈ SColRk(a)

(this means that
−→
S is correct with respect to this transition rule).

Symmetrically, there is a transition from a vertex(p, s,
−→
R, κ) to vertexff if and only one of the two cases

happens:

– top1(s) = a or (a,
−→
S) and there is a transition rule(r, popn) ∈ ∆(p, α) such thatr /∈ Rκ (this

means that
−→
R is not correct with respect to this transition rule).

– top1(s) = (a,
−→
S) and there is a transition rule(r, collapse) ∈ ∆(p, a) such thatr /∈ SColRk(a)

(this means that
−→
S is not correct with respect to this transition rule).

• To simulate a transition rule that does not remove the topmost(n− 1)-stack, one only has to update the
control state, the componentκ and apply the corresponding transformation on the stack. More precisely

– there is a transition to(q, θ(s),
−→
R,min(κ,Ω(q))) if (q, θ) ∈ ∆(p, a), top1(s) = a or (a,

−→
S) and

θ = pushk, popk or pushb
1,k for someb ∈ Γ and somek < n.

45

– there is a transition to(q, collapse(s),
−→
R,min(κ,Ω(q))) if (q, collapse) ∈ ∆(p, a) andtop1(s) =

a (this means that there is ak-link for somek < n and hence the simulated collapse do not remove
the top(n− 1)-stack).

– there is a transition to(q, push(b,
−→
R)

1,1 (s),
−→
R,min(κ,Ω(q))) if (q, pushb

1,n) ∈ ∆(p, a) andtop1(s) =

a or (a,
−→
S), for someb ∈ Γ. In this case, as we only have(n−1)-stacks inG̃, we replace then-link

by a (dumb)1-link and annotate the symbolb by the last vector
−→
R claimed byÉlöıse (if one wants

to simulate collapse forb then the control state reached should be in a set described in
−→
R because

the stack level reached is the one just behind the current one).

• To simulate a transition rule(q, pushn) ∈ ∆(p, a), the player that controls(p, s,
−→
R, κ) goes in(p, s,

−→
R, κ, q).

This vertex is controlled býElöıse who has to give a vector
−→
T = (T0, . . . , Td) ∈ P(Q)d+1 that de-

scribes the control states that can be reached if the play eventually comes back to the stack height
just left by performing thepushn action. To describe this vector, she goes to the corresponding ver-
tex (p, s,

−→
R, κ, q,

−→
T).

The vertex(p, s,
−→
R, κ, q,

−→
T) is controlled by Abelard who chooses either to simulate a bump or a stair.

In the first case, he additionally has to pick the minimal colour in this bump. To simulate a bump with
minimal colouri, he goes to a vertex(t, s,

−→
R,min(κ, i,Ω(t))), for somet ∈ Ti, through an edge coloured

by i.

To simulate a stair, Abelard goes to the vertex(q, s,
−→
T ,Ω(q)).

The last component (that stores the smallest colour seen since the currently simulated stack level was
reached) has to be updated in each of these cases. After simulating a bump of minimal colour i, the
minimal colour ismin(κ, i,Ω(s)). After simulating a stair, the colour has to be initialized (since a new
stack height is simulated). Its value, is thereforeΩ(q), which is the unique colour since the (new) stack
level was reached.

The only vertices that are coloured are those of the form(p, s,
−→
R, κ) and the colour of such a vertex isΩ(p).

Some edges are also coloured. See Figure 9 for details.

Remark 6.7 In the definition of parity games we were requiring to have a total colouring function working
only on vertices. For this, one can add extra intermediate states and introduce a new colour larger thand to fit
the definition without changing the issue of that game.

Finally the following fact is easily checked.

Property 17 The game graph̃G is generated by a(n− 1)-CPDS.

Proof It is immediate. The only point to note is that the verticestt andff can be simulated using a control state
where the CPDS is looping. �

Factorization of a play in G̃ Recall that inG̃ some edges are coloured. Hence, to represent a play, we have
to encode this information on edge colouring. A play will be represented as asequence of vertices together
with colours in{0, . . . , d} that correspond to colours appearing on edges.

For any play inG̃, around is a factor between two visits through vertices of the form(p, s,
−→
R, κ). We have

the following possible forms for a round:

46

• The round is of the form(p, s,
−→
R, κ)(q, θ(s),

−→
R,min(κ,Ω(q))) and corresponds therefore to the simula-

tion of a trivial bump.

• The round is of the form(p, s,
−→
R, κ)(p, s,

−→
R, κ, q)(p, s,

−→
R, κ, q,

−→
T)i(t, s,

−→
R,min(κ, i,Ω(t))) and corre-

sponds therefore to the simulation of a rulepushn followed by a sequence of moves that ends by coming
back to the former stack level. Moreover the minimal colour in this sequence ofmoves isi.

• The round is of the form(p, s,
−→
R, κ)(p, s,

−→
R, κ, q)(p, s,

−→
R, κ, q,

−→
T)i(q, s,

−→
T ,Ω(q)) and corresponds

therefore to the simulation of a rulepushn leading to a new stack height below which the play will never
go. We designate it has astair.

For any playλ = v0v1v2 · · · in G̃, we consider the subset of indices corresponding to vertices of the form
(p, s,

−→
R, κ). More precisely:

Roundsλ = {n ∈ N | vn = (p, s,
−→
R, κ), for somep, s,

−→
R, κ}

Therefore, the setRoundsλ induces a natural factorization ofλ into rounds.

Definition 6.8 (Rounds factorization) For a (possibly partial) playλ = v0v1v2 · · · , we callrounds factoriza-
tion of λ, the (possibly finite) sequence(λi)i≥0 of roundsλ defined as follows. LetRoundsλ = {n0 < n1 <
n2 < · · · }, then for all0 ≤ i < |Roundsλ|, λi = vni

· · · vni+1 .

Therefore, for everyi ≥ 0, the first vertex inλi+1 equals the last one inλi. Moreover,λ = λ1�λ2�λ3�· · · ,
whereλi � λi+1 denotes the concatenation ofλi with λi+1 without its first vertex.

Finally, thecolour of a round is the smallest colour in{0, . . . , d} appearing in the round.

In order to prove both implications of Theorem 16, we build from a winning strategy forÉlöıse in one game
a winning strategy for her in the other game. The main argument to prove that the new strategy is winning is to
prove a correspondence between the factorizations of plays in both games.

Direct implication Assume that the configuration(pin,⊥) is winning for Élöıse inG, and letΦ be a corre-
sponding strategy for her.

UsingΦ, we define a strategyϕ for Élöıse inG̃ from (pin,⊥n−1, (∅, . . . ,∅),Ω(pin)). StrategyΦ stores
a partial play inG, that is an element inV ∗ (whereV denotes the set of vertices ofG). This memory will be
denoted byΛ. At the beginningΛ is initialized to the vertex(pin,⊥n). We first describeϕ, and then we explain
howΛ is updated. Both the strategyϕ and the update ofΛ, are described for a round.

Choice of the move. Assume that the play is in some vertex(p, s,
−→
R, κ) for p ∈ QE. The move given by

ϕ depends onΦ(Λ):

• If Φ(Λ) = (r, popn), thenÉlöıse goes tott (Proposition 18 will prove that this move is always possible).

• If Φ(Λ) = (r, collapse) andtop1(s) is of the form(a,
−→
S), thenÉlöıse goes tott (Proposition 18 will

prove that this move is always possible).

• If Φ(Λ) = (q, θ), for someθ = pushk, popk or pushb
1,k with b ∈ Γ andk < n, or θ = collapse and

top1(s) ∈ Γ, thenÉlöıse goes to(q, θ(s),
−→
R,min(κ,Ω(q))).

• If Φ(Λ) = (q, pushb
1,n), thenÉlöıse goes to(q, push(b,

−→
R)

1,1 (s),
−→
R,min(κ,Ω(q))).

47

• If Φ(Λ) = (q, pushn), thenÉlöıse goes to(p, s,
−→
R, κ, q).

In this last case, or in the case wherep ∈ QA and Abelard goes to(p, s,
−→
R, κ, q), we also have to explain

how Élöıse behaves from(p, s,
−→
R, κ, q). She has to provide a vector

−→
T ∈ P(Q)d+1 that describes which

states can be reached if the play eventually comes back to the previous stackheight, depending on the minimal
colour visited in the meantime. In order to define

−→
T , she considers the set of all possible continuation of

Λ · (q, pushn(σ)) (where(p, σ) denotes the last vertex ofΛ) where she respects her strategyΦ. For each
such play, she checks whether some configuration of the form(s, σ′) with sh(σ′) = sh(σ) is visited after
Λ · (q, pushn(σ)), that is if the new top(n − 1)-stack is eventually removed (note that it could be due either
to apopn action either to acollapse). If it is the case, she considers the first such configuration(s, σ′) and the
smallest colouri visited between(q, pushn(σ)) (included) and(s, σ′) (excluded). For everyi ∈ {0, . . . d}, Ti

is exactly the set of statess ∈ Q such that the preceding case happens. Finally, we set
−→
T = (T0, . . . , Td) and

Élöıse moves to(p, s,
−→
R, κ, q,

−→
T).

Update ofΛ. The memoryΛ is updated after each visit to a vertex of the form(p, s,
−→
R, κ). We have three

cases depending on the kind of the round:

• The round is a trivial bump and therefore a transition(q, θ) whereθ is of the formpushk, popk, pushb
1,k,

pushb
1,n or collapse was simulated. Let(p, σ) be the last vertex inΛ, then the updated memory is

Λ · (q, θ(σ)).

• The round is a bump. Therefore a bump of colouri (wherei is the colour of the round) starting with
some transition(q, pushn) and ending in a states ∈ Si was simulated. Let(p, σ) be the last vertex in
Λ. Then the memory becomesΛ extended by(q, pushn(σ)) followed by a sequence of moves, where
Élöıse respectsΦ, that ends by some configuration(s, σ′) with sh(σ) = sh(σ′) while havingi as smallest
colour. By definition ofSi such a sequence of moves always exists.

• The round is a stair and therefore we have simulated the transition(q, pushn). If (p, σ) denotes the last
vertex inΛ, then the updated memory isΛ · (q, pushn(σ)).

Therefore, with any partial playλ in G̃ in which Élöıse respects her strategyϕ, is associated a partial play
Λ in G. An immediate induction shows thatÉlöıse respectsΦ in Λ. The same arguments works for an infinite
play λ, and the corresponding playΛ is therefore infinite, starts from(pin,⊥n) andÉlöıse respectsΦ in that
play. Therefore she wins inΛ.

The following proposition is a direct consequence of howϕ was defined.

Proposition 18 Letλ be a partial play inG̃ that starts from(pin,⊥n−1, (∅, . . . ,∅),Ω(pin)), ends in a vertex

of the form(p, s,
−→
R, κ), and whereÉlöıse respectsϕ. LetΛ be the play associated toλ built by the strategyϕ.

Then the following holds:

1. Λ ends in a vertex of the form(p, σ) whereπ(topn(σ)) = ν(s).17

2. κ is the smallest visited colour inΛ since the last configuration with a stack height strictly smaller than
sh(σ).

3. Assume thatΛ is extended, that́Elöıse keeps respectingΦ and that the next move after(p, σ) is to apply
a transition(r, popn). Thenr ∈ Rκ.

17Recall thatπ(σ′) denotes the stack obtained fromσ′ by replacing everyn-link by a 1-link andν(s) is the stack obtained froms

by replacing every symbol(γ,
−→
S) by γ (and by preserving the link structure).

48

4. Assume thatΛ is extended, that́Elöıse keeps respectingΦ, that the next move after(p, σ) is to apply a

transition(r, collapse) and thattop1(σ) has ann-link. Thentop1(s) = (a,
−→
S) andr ∈ SColRk(a).

Remark 6.9 Proposition 18 implies that the strategyϕ is well defined when it provides a move tott. Moreover,
one can deduce that, ifÉlöıse respectsϕ, ff is never reached.

For infinite plays that do not reachtt, using the definitions of̃G andϕ, we easily deduce the following
proposition.

Proposition 19 Let λ be an infinite play inG̃ that starts from(pin,⊥n−1, (∅, . . . ,∅), Ω(pin)), and where
Élöıse respectsϕ. We additionally suppose thatλ never reaches the vertextt. LetΛ be the associated play built
by the strategyϕ. Let(λi)i≥0 be the round factorization ofλ. Then, for everyi ≥ 1 the following hold:

1. λi is a bump if and only ifkindΛ
i = B.

2. λi has colourmcolΛi .

Proposition 19 implies that for any infinite playλ in G̃ starting from(pin,⊥n−1, (∅, . . . ,∅),Ω(pin)) where
Élöıse respectsϕ, if λ never reachestt then the minimum colour infinitely often visited inλ is lim inf((mcolΛi)i≥0)
for the corresponding playΛ in G. Hence, using Proposition 15 we conclude thatλ is winning if and only ifΛ
is winning. AsΛ is winning forÉlöıse, it follows thatλ is also winning for her. Henceϕ is a winning strategy
for Élöıse, as any play where she respects it either reachestt (and therefore satisfies the parity condition) or
satisfies the parity condition (by proposition 15 and 19).

Converse implication For the converse implication, one could adapt the proof of the direct implication to
show that if Abelard has a winning strategy inG he also has one iñG. The construction is the same as for
Élöıse except that now Abelard has to decide whether to do a pursue move or ajump move. For this he
computes his own vector

−→
T ′ (asÉlöıse was doing in the previous construction) and checks for consistency with

the one (
−→
T) claimed byÉlöıse: if they are consistent (i.e. there is somet ∈ Ti ∩ T

′
i for somei) he does a jump

move for thist, otherwise he does a pursue move. One can check that this strategy is winning for him in G̃.

Here we give a different proof, that builts a winning strategy inG from one inG̃. This is more involved than
the proof sketched just above, but it has the major interest to provide an effective construction for strategies in
CPDS parity games.

Assume now that́Elöıse has a winning strategyϕ in G̃ from (pin,⊥n−1, (∅, . . . ,∅),Ω(pin)). Usingϕ, we
build a strategyΦ for Élöıse inG for plays starting from(pin,⊥n).

StrategyΦ uses, as memory, a (1-) stackΠ, to store the complete description of a play inG̃. Recall here
that a play inG̃ is represented as a sequence of vertices together with colours in{0, . . . d}.

Therefore the stack alphabet ofΠ is the set of vertices of̃G together with{0, . . . , d}. In the following,
top(Π) will denote the top stack symbol ofΠ while StCont(Π) will be the word obtained by readingΠ from
bottom to top (without considering the bottom-of-stack symbol ofΠ). In any play where she respectsΦ,
StCont(Π) will be a play inG̃ that starts from(pin,⊥n−1, (∅, . . . ,∅),Ω(pin)) and wheréElöıse respects her
winning strategyϕ. Moreover, for any playΛ whereÉlöıse respectsΦ, we will always have thattop(Π) =

(p, s,
−→
R, κ) if and only if the current configuration(p, σ) is such thatπ(topn(σ)) = ν(s). Finally, if Élöıse

keeps respectingΦ, and if the next move is to a configuration with a stack height smaller thansh(σ), then its
control state will be inRκ if the configuration is reached by applying apopn action, and will be inSColRk(a)

where(a,
−→
S) = top1(s). Initially, Π only contains(pin,⊥n−1, (∅, . . . ,∅),Ω(pin)).

49

In order to describeΦ, we assume that we are in some configuration(p, σ) and thattop(Π) = (p, s,
−→
R, κ).

We first describe hoẃElöıse plays ifp ∈ QE, and then we explain how theΠ is updated.

• Choice of the move.Assume thatp ∈ QE and thatÉlöıse has to play from some vertex(p, σ). For this,
she considers the value ofϕ onStCont(Π).

If it is a move tott, she plays an action(r, popn) for some stater ∈ Rκ if exists or she play(r, collapse)
for somer ∈ SColRk(a) wheretop1(s) = (a,

−→
S). Lemma 20 will prove that such a move always exists.

If the move given byϕ is to go to some vertex(q, θ(s),
−→
R,min(κ,Ω(q))) with θ = pushk, popk or

pushb
1,k for somek < n andb ∈ Γ, she plays the transition(q, θ).

If the move given byϕ is to go to some vertex(q, pushb,
−→
R

1,1 (s),
−→
R,min(κ,Ω(q))), then she applies the

transition(q, pushb
1,n).

If the move given byϕ is to go to some vertex(p, s,
−→
R, κ, q), thenÉlöıse applies the transition(q, pushn).

• Update of Π. Assume that the last move, played byÉlöıse or Abelard, was to go from(p, σ) to some
configuration(r, σ′) with sh(σ′) < sh(σ) (i.e. the move was either apopn or a collapse involving an
n-link).

– If the move is apopn one, thenÉlöıse pops inΠ until she finds some configuration of the form

(p′, s′,
−→
R′, κ′, p′′,

−→
R′′) that is not preceded by a colour in{0, . . . , d}. This configuration is therefore

in the stair that simulates the step where the stack levelsh(σ) is reached. Eve updatesΠ by pushing

κ in Π followed by(r, s′,
−→
R′,min(κ′, κ,Ω(r))).

– If the move is acollapse one, then letd = sh(s) − sh(s′) (d denotes the decrease of the stack

height). TheńElöıse pops inΠ until she finds some configuration of the form(p′, s′,
−→
R′, κ′, p′′,

−→
R′′)

that is not preceded by a colour in{0, . . . , d}. If d = 1 she stops otherwise she keeps popping
until she finds another such configuration (and so on until she foundd such configurations). Let

(p′, s′,
−→
R′, κ′, p′′,

−→
R′′) be thed-th such configuration (this configuration is therefore in the stair that

simulates the step where the stack levelsh(σ′) was left). Eve updatesΠ by pushingColRk(a),

where(a,
−→
S) = top1(s) in Π followed by (r, s′,

−→
R′,min(κ′, ColRk(a),Ω(r))). Note that we

actually have
−→
R′′ =

−→
S .

Assume that the last move, played byÉlöıse or Abelard, was to go from(p, σ) to some configuration
(q, σ′) with sh(σ) = sh(σ′): hence the simulated move is(q, θ) for someθ = pushk, popk, pushb

1,k or

pushb
1,n for somek < n andb ∈ Γ. ThenÉlöıse updatesΠ by pushing(q, θ(s),

−→
R,min(κ,Ω(q))) if

θ 6= pushb
1,n and(q, push

(b,
−→
R)

1,1 (s),
−→
R,min(κ,Ω(q))) otherwise.

Finally, assume that the last move, played byÉlöıse or Abelard, was to go from(p, σ) to some configura-
tion (q, σ′) with sh(σ′) = sh(σ)+1, let (p, s,

−→
R, κ, q,

−→
S) = ϕ(StCont(Π) ·(p, s,

−→
R, κ, q)). Intuitively,

−→
S describes which stateśElöıse can ensure to reach if a configuration with stack heightsh(s) is eventu-
ally reached (while not visiting a configuration of lower stack height).Élöıse updatesΠ by successively
pushing(p, s,

−→
R, κ, q), (p, s,

−→
R, κ, q,

−→
S), and(q, s,

−→
S ,Ω(q)).

The following lemma gives the meaning of the information stored inΠ.

Lemma 20 Let Λ be a partial play inG, whereÉlöıse respectsΦ, that starts from(pin,⊥n) and that ends in
a configuration(p, σ). We have the following facts:

50

1. top(Π) = (p, s,
−→
R, κ) with

−→
R ∈ P(Q)d+1, 0 ≤ θ ≤ d andπ(topn−1(σ)) = ν(s).

2. StCont(Π) is a partial play inG̃ that starts from(pin,⊥n, (∅, . . . ,∅),Ω(pin)), that ends with(p, s,
−→
R, κ)

and whereÉlöıse respectsϕ.

3. κ is the smallest colour visited since the stack height is greater or equal thansh(σ).

4. If Λ is extended by some move(r, popn), thenr ∈ Rθ.

5. If Λ is extended by some move(r, collapse) and if top1(σ) has ann-link, thentop1(s) = (a,
−→
S) and the

control state in the new configuration belongs toSColRk(a).

Proof The proof goes by induction onΛ. We first show that the fourth point is a consequence of the second
and third points. Assume that the next move after(p, σ) is to apply an action(r, popn). The second point
implies that(p, s,

−→
R, κ) is winning forÉlöıse inG̃. If p ∈ QE, by definition ofΦ, there is some edge from that

vertex tott, which means thatr ∈ Rθ and allows us to conclude. Ifp ∈ QA, note that there is no edge from
(p, s,

−→
R, κ) (winning position forÉlöıse) to the loosing vertexff . Hence we conclude the same way.

We now show that the fifth point is a consequence of the second and third points. Assume that the next
move after(p, σ) is to apply an action(r, collapse) and that it involves ann-link. The second point implies
that(p, s,

−→
R, κ) is winning forÉlöıse inG̃. If p ∈ QE, by definition ofΦ, there is some edge from that vertex

to tt, which means thatr ∈ SColRk(a) and allows us to conclude. Ifp ∈ QA, note that there is no edge from

(p, s,
−→
R, κ) (winning position forÉlöıse) to the loosing vertexff . Hence we conclude the same way.

Let us now prove the other points. For this, assume that the result is proved for some playΛ, and letΛ′ be
some extension ofΛ. We have several cases, depending on howΛ′ extendsΛ:

• Λ′ is obtained by applying a rule of typepushk, popk or pushb
1,k′ for somek < n, k′ ≤ n andb ∈ Γ.

The result is trivial in that case.

• Λ′ is obtained by applying acollapse rule involving ak-link for somek < n. The result is also immediate
in this case.

• Λ′ is obtained by applying apopn rule. Let (p, σ) be the last configuration inΛ, and let
−→
R be the

last vector intop(Π) when being in configuration(p, σ). By induction hypothesis, it follows thatΛ′ =
Λ · (r, σ′) is such thatr ∈ Rθ. Considering howΠ is updated, and using the fourth point, we easily
deduce that the new strategy stackΠ is as desired.

• Λ′ is obtained by applying acollapse rule involving ann-link. Let (p, σ) be the last configuration inΛ,
and let(a,

−→
S) be top1(Π) when being in configuration(p, σ). By induction hypothesis, it follows that

Λ′ = Λ · (s, σ′) is such thats ∈ SColRk(a). Considering howΠ is updated, and using the fifth point, we
easily deduce that the new strategy stackΠ is as desired.

�

Now, the following result is an easy consequence of the previous lemma.

Lemma 21 Let Λ be a partial play inG starting from (pin,⊥n) and whereÉlöıse respectsΦ. Let λ =
StCont(Π), whereΠ denotes the strategy stack in the last vertex ofΛ. Let (λi)i=0,...,k be the round fac-
torization ofλ. Then the following holds:

• λi is a bump if and only ifkindΛ
i is a bump.

51

• λi has colourmcolΛi .

Both lemmas 20 and 21 are for partial plays. A version for infinite plays wouldallow to conclude. Let
Λ be an infinite play inG. We define an infinite version ofλ by considering the limit of the stack contents
(StCont(Πi))i≥0 whereΠi is the strategy stack after thei-th first moves inΛ. It is easily seen that such a limit
exists, is infinite and corresponds to a play won byÉlöıse inG̃. Moreover the results of Lemma 21 apply.

Let Λ be a play inG with initial vertex(pin,⊥n), and wheréElöıse respectsΦ, and letλ be the associated
infinite play inG̃. In particularλ is won byÉlöıse. Thus, using Lemma 21 and Proposition 15, we conclude,
as in the direct implication, thatΛ is winning.

Complexity issues

The following Theorem gives the decidability and complexity bound of Theorem 13.

Theorem 22 Solving ann-CPDS parity game is ann-EXPTIME complete problem.

Proof The proof is by induction onn. Casen = 1 is the one of pushdown parity games [26]. Assume the
result holds forn − 1 and consider ann-CPDS parity game givenG by ann-CPDSP = 〈Γ, Q,∆〉 for some
n > 1. In a first step one transformsG into an equivalent game generated by a collapse rank-awaren-CPDS. By
remark 6.6 this increases both the states set and the stack alphabet by a factor in |C|O(n) (C is the set of colors).
Then one solves the gamẽG and concludes. Solving̃G can be achieved in(n − 1)-EXPTIME and the game
G̃ is built from a CPDS with a states set of size2O(|Q|2|C|O(n)) and a stack alphabet of sizeO(|Γ|2|Q|C|O(n)).
Hence solvingG can be achieved inn-EXPTIME.

Hardness follows from hardness for solving a parity game played on a (non-collapsible) higher order push-
down graph. A self content proof of this result was established by Thierry Cachat and Igor Walukiewicz, but
was unfortunately not published.

Here we sketch another proof of this result that relies on the following result: checking emptiness of a
nondeterministic higher-order pushdown automaton of ordern is an (n − 1)-EXPTIME complete problem
[12]. Trivially this result is still true if we assume that the input alphabet is reduced to a single letter. The
following result is also proved in [12]: checking emptiness of an alternatinghigher-order pushdown automaton
of ordern is ann-EXPTIME complete problem. Nevertheless note that this last result does not imply directly
hardness for games on higher order pushdown graphs (because in general it is moredifficult to check emptiness
for an alternating device than to solve a reachability game on the corresponding class of graphs18: the problems
are trivially equivalent only when considering infinite words on a single letter alphabet).

Now consider an order-(n+1) nondeterministic higher order pushdown automatonA whose input alphabet
is reduced to a single letter. The language accepted byA is non-empty if and only if there is a path from the
initial configuration ofA to a final configuration ofA in the transition graphG of A. Equivalently the language
accepted byA is non-empty if and only ifÉlöıse wins the reachability gameG overG where she controls
all vertices (and where the play starts from the initial configuration ofA and where final vertices are those
corresponding to final configurations ofA). Now consider the reduction used to prove Theorem 13 and apply
it to G: it leads to an equivalent reachability gameG̃ that is now played on the transition graph of an order-n

higher order pushdown automaton. In the new game graph, the main verticesare of the form(p, s,
−→
R, κ): here

−→
R is actually a pair(R0, R1) (we consider a reachability condition) andκ is either0 or 1. The important fact is

18As an example: solving a reachability game on a finite graph is in P while checking emptiness for an alternating automata on finite
word (even if one considers a1 letter alphabet) is PSPACE-complete

52

thatR0 andR1 can be forced to be singletons: this follows from the fact that all vertices inG are controlled by
Élöıse (and then from the proof’s details). Therefore, one concludes that the size of the game graph associated
with G̃ is polynomial in the size ofA. Hence, one has shown the following: checking emptiness for an
order-(n + 1) nondeterministic higher order pushdown automaton whose input alphabet is reduced to a single
letter can be polynomially reduced to solve a reachability game over the transitiongraph of an order-n higher
order pushdown automaton. In conclusion, this last problem isn-EXPTIME hard (and actuallyn-EXPTIME-
complete). �

Strategies

We finally focus on winning strategies. From the proof of the converse implication of Theorem 16 one can
infer that it is possible to construct effectively strategies for both playerin a parity CPDS game. Here, we give
a more precise statement by providing a precise information on the memory needed in such a game. Recall that
for regular games on finite graph, it is well know since Büchi Landweber seminal paper that a finite automaton
with output suffices to represent winning strategies. For pushdown parity game, Walukiewicz has shown in [26]
that pushdown automaton with output suffices to compute a winning strategy and this result was then extended
(without proof) by Thierry Cachat [3] who showed that higher-order pushdown automata with output (of order
n) allow to compute winning strategy for higher order pushdown game (of ordern). Here we extend this last
result to CPDS parity games, which terminates the proof of Theorem 13.

Theorem 23 In ann-CPDS parity game one can build, for the player having a winning strategy from a given
configuration with an empty stack, a (deterministic)n-CPDA with output19 realizing a winning strategy. More-
over the stack used by the strategy automaton has exactly the same structure20 has the one in the game.

Proof The following proof is not totally formal. Indeed, we believe that a totally formal and detailed proof
would be very hard to understand (and to write) and we expect the following sketch to be rather convincing.

First note that in the proof of Lemma 14, if one has ann-CPDA with output realizing a winning strategy in
the rank-aware game one also has ann-CPDA with output realizing a winning strategy in the non-aware game.

Hence it suffices to consider the proof of the converse implication of Theorem 16 and infers that if the
winning strategyϕ in G̃ is realized by an(n− 1)-CPDA with output, the strategyΦ in G can be realized by an
n-CPDA with output.

Recall that strategyΦ was using a stackΠ to store plays iñG. Then it considers the value ofϕ on that stack
content to decide which move to play. Hence, if strategyϕ can be realized by an(n − 1)-CPDA with output,
one can instead of representing a play inΠ represent the sequence of memory values used byϕ: the resulting
structure is ann-stack (stack of(n − 1)-stack). Nevertheless there is still some work to do. Indeed the new
strategy stack (that we also denoteΠ) has not the same shape as the one in the game: this is mainly because
in the formerΠ we where storing all bumps which may cause the stack to be much larger than theone in the
gameG. Nevertheless, we only need the information on the last vertex of a bump, and never need to retrieve
information on an intermediate vertex in previous bumps in the current stack level; actually the only important
information is the one concerning vertices corresponding to stack height such that no vertex later has a stack
height smaller orequalto this one. Hence after performing a bump we can forgot about the information on the
initial vertex of the bump and only recall the one on the last vertex of the bump.Therefore, the resulting strategy
stack (again denotedΠ) has the same shape (except forn-links) than the current stack in the game. Moreover

19An n-CPDA with output is defined as a CPDA except that the transition function also provide a symbol (in a specific alphabet –
here one describing moves in the game) to be output for every transition

20Here we mean that if one replaces every symbol in the CPDA stack and in the strategy stack by a fixed new symbol then the two
resulting stacks are the equal

53

the update after apopn move is now very easy, as one simply needs to perform apopn in Π (recall that we
no longer keep information on intermediate nodes appearing on successive bumps on a same stack level). It
remains to explain how the update can be handled for acollapse involving ann-link. This is very simple: one
only has to attachn-links in Π when simulating apusha

1,n action and follow this link if a collapse is applied
later. Note that now the stackΠ and the one in the game have the same shape. �

6.2 Extensions, consequences

Solving games with anω-regular winning condition

Theorem 13 can easily be generalized to the case where on considers onω-regular winning condition.

In order to define such a winning condition, we may assume that the collapsiblepushdown graph comes
with an edge labeling. More precisely we start with an order-n collapsible pushdown system with input

A = 〈Γ, Q,A,∆ ⊆ Q× Γ ×A×Q×Opn, q0 ∈ Q〉

whereΓ is the stack alphabet,Q is a finite set of control states,A is an input alphabet,∆ is the transition
relation andq0 is the initial state. We require∆ to respect the standard convention that⊥ cannot be pushed
onto or popped from the stack. Configurations are defined as for the case without input. Now the one-step
transition relation→ is the union of the one-step transition relations→a (wherea ranges overA) defined by
(q, s) →a (q′, s′) iff for someθ ∈ Opn, we have(q, top1s, a, q

′, θ) ∈ ∆, ands′ = θ(s). Then the configuration
graph ofA is defined as the graph whose vertices are the reachable configurationsof A (defined as previously)
and the edge relation is the relation→ restricted to the reachable configurations. As for the unlabeled case,
we partition the control states into E-states and A-states, and this extends naturally to a partition of the vertices
of the CPD graph. Finally, the winning condition is given by anω-regular languageΩ ⊆ Aω, and a play is
winning for Élöıse iff its underlyingA-labeling belongs toΩ.

In order to prove the decidability of games over collapsible pushdown graphs with anω-regular winning
condition we give a more general reduction result.

Proposition 24 Let G be a game over someA-labeled graphG = (V,E ⊆ V × A × V) with anω-regular
winning conditionΩ. Then one can define a parity gameG

′ over a graphG′ = (V × S,E′) for some setS
containing a distinguished states0 such that the following holds: for any vertexv ∈ V , Élöıse wins fromv in
G if and only if she wins from(v, s0) in G

′.

Moreover, from a winning strategy from(v, s0) in G
′, one can effectively build a corresponding winning

strategy fromv in G that only requires a finite amount of extra memory.

Proof The main idea of the construction is to consider a deterministic parity automaton acceptingΩ and to
plug it inG in order to compute on the fly the unique run of it on the labeling of the currentplay.

Let S = 〈S,A, δ, s0, ρ〉 be adeterministicparity automaton acceptingΩ: S is a finite set of control states,
A is an input alphabet,δ : Q×A→ Q is a transition function andρ : Q→ N is a priority function. We define
G′ = (V × S,E′) to be such that

E′ = {((v1, s1)(v2, s2)) | ∃a ∈ A s.t. (v1, a, v2) ∈ E andδ(s1, a) = s2}

LetVE ∪VA be the partition of the vertices inG. Then one considers the partitionVE ×S∪VA×S and defines
G

′ to be the parity game defined onG′ equipped with this partition together with the priority function assigning
to any vertex(v, s) the priorityρ(s).

54

Assume that́Elöıse has a winning strategy inG′ from some vertex(v, s0). Letϕ′ : (V × S)∗ → (V × S)
be such a winning strategy21. Fromϕ′ we define a winning strategyϕ for Élöıse inG. First note that asG is
edge-labeled, a play is now an infinite sequence of the form(v0, a0, v1)(v1, a1, v2)(v2, a2, v3) · · · and hence a
strategy is a mapping from(V ×A×V)∗ into (V ×A×V). Letλ = (v0, a0, v1)(v1, a1, v2) · · · (vk−1, ak−1, vk)
be some partial play ending in a vertexvk controlled byÉlöıse. Lets0s1 · · · sk be the (unique) run ofS
on a0a1 · · · ak−1. Then it easily follows thatλ′ = (v0, s0)(v1, s1) · · · (vk, sk) is a partial play inG

′ and
henceϕ′(λ′) = (vk+1, sk+1) is well defined. As((vk, sk), (vk+1, sk+1)) ∈ E′ then there is at least one
ak ∈ A such that(vk, ak, vk+1) ∈ E. Let us pick any suchak and setϕ(λ) = (vk, ak, vk+1). The
strategyϕ is trivially well-defined, and we claim that it is wining. Indeed, consider an infinite play λ =
(v0, a0, v1)(v1, a1, v2)(v2, a2, v3) · · · in G whereÉlöıse respectsϕ. From howϕ was defined, we deduce that
if s0s1s2 · · · is the unique run ofS ona0a1a2 · · · , thenλ′ = (v0, s0)(v1, s1)(v2, s2) · · · is a play inG

′ where
Élöıse respects her winning strategyϕ′ and hence is winning for her. Therefore, it follows thats0s1s2 · · · is an
accepting run ofS ona0a1a2 · · · and hence thata0a1a2 · · · ∈ Ω, equivalently thatλ is winning forÉlöıse.

Conversely, using the same construction for Abelard, one built from a winning strategy for him inG′ a
winning strategy inG.

One should note that the increase of memory from a winning strategy inG
′ to a winning strategy inG can

be handled by a finite automaton, namelyS. �

Hence we have the following corollary of Theorem 13.

Corollary 25 Given anyn-CPDA game equipped with anω-regular winning condition it is decidable whether
Élöıse has a winning strategy from the initial configuration. Moreover one can construct ann-CPDS with
output that realizes a winning strategy for the player that wins from the initial configuration.

Proof Applying Proposition 24, one gets anequivalentparity game. It is then easy to check that if one
starts with a collapsible pushdown graph, the resulting graph is still a collapsible one (of same order) as the
transformation only operates on the control states. Then decidability followsfrom the one for parity collapsible
pushdown games. �

ε-closure of CPD graphs

Theorem 13 can easily be generalized to the case where the game is played on theε-closure of the configuration
graph of ann-CPDS graph.

Hence One considers an order-n collapsible pushdown automaton with input andε-transitionA, that is an
order-n collapsible pushdown automaton with input alphabetA containing a special symbol denotedε. As
explain previously, it defines anA-labeled transition graphG = (V,E ⊆ V × A × V). Theε-closure ofG,
denotedGε∗, is the graph(V ε∗, Eε∗ ⊆ V ε∗ × (A \ {ε}) × V ε∗) where

• V ε∗ ⊆ V is the subset of vertices reachable from the initial configuration by a finite sequence of transi-
tions such that the last one is not labeled byε.

• (v, a, v′) ∈ Eε∗ if and only if v, v′ ∈ V ε∗ and there is a path inG from v to v′ labeled by a (possibly
empty) sequence ofε transition followed by a transition labeled bya.

21One could consider forϕ a memoryless strategy, but we prefer to consider the general case here has we may later argue that one can
build effective winning strategies forω-regular collapsible pushdown games from winning strategies for parity collapsible pushdown
games that we may not choose memoryless.

55

We consider a partition of the control states ofA into E-states and A-states, and assign a priority to each
control state. The game structure extends naturally to a partition of and a priority function on the vertices of
Gε∗. We aim at deciding the winner in the resulting game from the initial configuration. For this we prove a
more general reduction result.

Proposition 26 LetGε∗ be a parity game on theε-closure of some(A∪{ε})-labeled graphG = (V,E). Then
one can define a parity gameG′ over an unlabeled graphG′ = (V ′ = V ∪ V × {E,A}, E′) such that the
following holds: for any vertexv ∈ V , Élöıse wins fromv in G

ε∗ iff she wins fromv in G
′.

Moreover, from a winning strategy fromv in G
′, one can effectively build a corresponding winning strategy

fromv in G
ε∗.

Proof By definition, a transition inGε∗ can be naturally decomposed as a sequence ofε transitions inG ended
by a non-ε transition inG. The graphG′ aims at making this decomposition explicit: inG′ when some player
(let us sayÉlöıse) wants to mimic ana-transition fromv to v′ (for somea, v, v′), then she moves fromv to
(v1, E) then to(v2, E) and so on until reaching a vertex(vk, E) from which she finally moves tov′. Such a
sequence of moves is possible provided(v, ε, v1), (v1, ε, v2), . . . , (vk−1, ε, vk)(vk, a, v

′) is a valid sequence of
moves inG (note here that we may havek = 0 in which case this sequence is replaced by(v, a, v′) and the
simulation is an exact one). Note that to make this work, one has to assign every vertex inV × E to Élöıse. A
symmetrical simulation is defined for Abelard. �

Hence we have the following corollary of Theorem 13.

Corollary 27 Given any parity game over theε-closure of a collapsible pushdown graph, it is decidable
whetherÉlöıse has a winning strategy from the initial configuration. Moreover one can construct ann-CPDS
with output that realizes a winning strategy for the player that wins from the initialconfiguration.

Proof Applying Proposition 26, one gets anequivalentparity game. It is then easy to check that if one starts
with theε-closure of a collapsible pushdown graph, the resulting graph is still a collapsible one (of same order)
as the transformation only operates on the control states. Then decidability follows from the one for parity
collapsible pushdown games. �

Using the same techniques, one can get a result that generalizes both Corollary 25 and Corollary 27.

Corollary 28 Given game over theε-closure of a collapsible pushdown graph equipped with anω-regular
winning condition, it is decidable whetherÉlöıse has a winning strategy from the initial configuration. More-
over one can construct ann-CPDS with output that realizes a winning strategy for the player that wins from
the initial configuration.

CPDS graphsvsCaucal graphs

The class ofε-closure of configuration graphs of CPDS admits decidable Mu-calculus theories, as parity games
are decidable from Corollary 27. Moreover this class contains the class of Caucal graphs [5] as these graphs
are exactly those obtained by taking theε-closure of the transition graphs of (non-collapsible) higher-order
pushdown graphs [4].

Now recall that Caucal graphs enjoy decidable MSO theories [5], and therefore one can consider the similar
problem for (ε-closure) configuration graphs of CPDS. The next result proves that the MSO theories of those
graphs are not decidable in general, and this implies that the inclusion of Caucal graphs inside the class of
ε-closure of configuration is a strict one.

56

Theorem 29 (Undecidability) MSO theories of configuration graphs of CPDS are not in general decidable.
Hence the class ofε-closure of configuration of CPDS graphs strictly contains the Caucal graphs.

Proof Consider the following MSO interpretationI of the configuration graph of the 2-CPDS in Example 6.1.

IA(x, y) = x
C

−→ y ∧ x
R

−→ y

IB(x, y) = x
1

−→ y

with C = 1
∗
b a t b 1∗ andR = 0 t a 0 ∨ 1 0 t a 0 1. We observe that the (image of the) interpretation is the

following “infinite half-grid”

• A //

B

��

• A //

B

��

• A //

B

��

•

B

��

· · ·

• A // • A //

B

��

• A //

B

��

•

B

��

· · ·

• A // • A //

B

��

•

B

��

· · ·

• A // •

B

��

· · ·

• · · ·

Note that for theA-edges, the constraintC requires that the target vertex should be in the next column to the
right, whileR specifies the correct row. Since the interpretationI preserves MSO decidability, and its image
has an undecidable MSO theory (because the Halting Problem of Turing machines can be reduced to it), the
MSO theory of the above configuration graph must be undecidable. �

7 Conclusions and further directions

In this paper, we introducecollapsible pushdown automataand prove that they are equi-expressive with (gen-
eral) recursion schemes for generating trees. This is the first automata-theoretic characterization of higher-order
recursions schemes. We argue that the equi-expressivity result is significant because it acts as a bridge, enabling
inter-translation between model-checking problems about trees generatedby recursion scheme and solvability
of games on collapsible pushdown graphs. We show (Theorem 29) that order-n CPDS are strictly more expres-
sive then order-n pushdown systems for generating graphs.

As for further directions :

1. The most pressing open problem is whether order-n CPDA are equi-expressive with order-n PDA for
generating trees. The conjecture is that the former are strictly more expressive. Specifically it is conjec-
tured thatUrzyczyn tree[2] is definable by a 2-CPDA but not by any 2-PDA.

2. Is there a finite way to represent the set of winning positions of ann-CPDS parity game (equivalently to
represent the set of vertices where a given modal mu-calculus formula holds)?

3. Is there aǹa la Caucal definition for theε-closure of CPDS graphs? As trees generated byn-CPDA are
exactly those obtained by unravelling ann-CPDS graph, is there a class of transformationsT from trees
to graphs such that every(n + 1)-CPDS graph is obtained by applying aT -transformation to some tree
generated by ann-CPDA. Note that aT -transformation may in general not preserve MSO decidability,
but should preserve modal mu-calculus decidability of trees generated byn-CPDA.

57

4. The algorithm that transforms recursion schemes to CPDA (briefly sketched in Section 5) uses ideas in
game semantics. It would be an interesting (and we believe challenging) problem to obtain a translation
that uses only first principles.

References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string languages.
Technical Report PRG-RR-04-023, Oxford University Computing Laboratory, 2004.

[2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string languages.
In Proceedings of the 8th International Conference on Foundations of Software Science and Computa-
tional Structures (FOSSACS’05), volume 3411 ofLecture Notes in Computer Sciences, pages 490–501.
Springer-Verlag, 2005.

[3] T. Cachat. Higher order pushdown automata, the Caucal hierarchyof graphs and parity games. InPro-
ceedings of Automata, Languages and Programming, 30th International Colloquium (ICALP’03), volume
2719 ofLecture Notes in Computer Sciences, pages 556–569. Springer-Verlag, 2003.

[4] A. Carayol and S. Ẅohrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata. InProceedings of the 23rd Conference on Foundations of Software Technology
and Theoretical Computer Science (FST&TCS’03), volume 2914 ofLecture Notes in Computer Sciences,
pages 112–123. Springer-Verlag, 2003.

[5] D. Caucal. On infinite terms having a decidable monadic theory. InProceedings of Mathematical Foun-
dations of Computer Science 2002, 27th International Symposium (MFCS’02), volume 2420 ofLecture
Notes in Computer Sciences, pages 165–176. Springer-Verlag, 2002.

[6] D. Caucal and S. Hassen. Higher-order recursive schemes. Private communication, 28 pages, July 2006.

[7] B. Courcelle. The monadic second-order logic of graphs IX: machines and their behaviours.Theoretical
Computer Science, 151:125–162, 1995.

[8] W. Damm. The IO- and OI-hierarchy.Theoretical Computer Science, 20:95–207, 1982.

[9] W. Damm and A. Goerdt. An automata-theoretical characterization of theOI-hierarchy.Information and
Control, 71:1–32, 1986.

[10] J. de Miranda.Structures generated by higher-order grammars and the safety constraint. PhD thesis,
University of Oxford, 2006. Forthcoming.

[11] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. InProceedings of the 32nd
Annual Symposium on Foundations of Computer Science (FOCS’91), pages 368–377. IEEE Computer
Society, 1991.

[12] J. Engelfriet. Interated stack automata and complexity classes.Information and Computation, pages
21–75, 1991.

[13] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, observables and the full
abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game
model. Information and Computation, 163:285–408, 2000.

58

[14] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees. InProceed-
ings of Typed Lambda Calculi and Applications, 5th International Conference (TLCA’01), volume 2044
of Lecture Notes in Computer Sciences, pages 253–267. Springer-Verlag, 2001.

[15] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. InProceedings of the
5th International Conference on Foundations of Software Science and Computational Structures (FOS-
SACS’02), volume 2303 ofLecture Notes in Computer Sciences, pages 205–222. Springer-Verlag, 2002.

[16] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic automata. In
Proceedings of Automata, Languages and Programming, 32nd International Colloquium (ICALP’05),
volume 3580 ofLecture Notes in Computer Sciences, pages 1450–1461. Springer-Verlag, 2005.

[17] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet mathematics Doklady,
15:1170–1174, 1974.

[18] A. N. Maslov. Multilevel stack automata.Problems of Information Transmission, 12:38–43, 1976.

[19] E. Moggi. Notions of computation and monads.Information and Computation, 93:55–92, 1989.

[20] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. InProceedings of
the 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages 81–90. IEEE Computer
Society, 2006.

[21] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. Preprint, 2006.

[22] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.Transactions of the
American Mathematical Society, 141:1–35, 1969.

[23] C. Stirling. Higher-order matching and games. InProceedings of Computer Science Logic, 19th In-
ternational Workshop (CSL’05), volume 3634 ofLecture Notes in Computer Sciences, pages 119–134.
Springer-Verlag, 2005.

[24] C. Stirling. Decidability of higher-order matching. InProceedings of Automata, Languages and Program-
ming, 33rd International Colloquium (ICALP’06), volume 4052 ofLecture Notes in Computer Sciences,
pages 348–359. Springer-Verlag, 2006.

[25] W. Thomas. On the synthesis of strategies in infinite games. InProceedings of the 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’95), volume 900 ofLecture Notes in Computer
Sciences, pages 1–13. Springer-Verlag, 1995.

[26] I. Walukiewicz. Pushdown processes: games and model-checking. Information and Computation,
157:234–263, 2001.

[27] I. Walukiewicz. A landscape with games in the backgroung. InProceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science (LICS’04), pages 356–366. Computer Society Press, 2004.

[28] W. Zielonka. Infinite games on finitely coloured graphs with applications toautomata on infinite trees.
Theoretical Computer Science, 200(1-2):135–183, 1998.

59

