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Abstract

Collapsible pushdown automa{€PDA) are a new kind of higher-order pushdown automata irckvh
every symbol in the stack has a link to a stack situated somelelow it. In addition to the higher-order
stack operationgush,; andpop,, CPDA have an important operation calledl/apse, whose effect is to
“collapse” a stacks to the prefix as indicated by the link from thep,-symbol ofs. Our first result is
that CPDA are equi-expressive witbcursion schemeas generators of node-labelled ranked trees. In one
direction, we give a simple algorithm that transforms areo¥d CPDA to an order: recursion scheme that
generates the same tree, uniformly forafk 0. In the other direction, using ideas from game semantics, we
give an effective transformation of orderrecursion schemes (not assumed ttvbmogeneously typednd
hence not necessaribafe to ordern CPDA that computéraversalsover a certain finite graph determined
by the scheme, and hence paths in the tree generated by #raecBur equi-expressivity result is the first
such automata-theoretic characterization of (generaljrséon schemes.

An important consequence of the equi-expressivity resuhat it allows us to translate decision prob-
lems on trees generated by recursion schemes to equivatdems on CPDA andice versa For example,
since the Modal Mu-Calculus Model-Checking Problem foesrgenerated by orderrecursion schemes
is n-EXPTIME complete, we show that it follows that the same dability result holds for the problem
of solving a parity game played on an ordecollapsible pushdown grapite. the configuration graph of a
corresponding (ordet) collapsible pushdown system; the latter subsumes sewvetibknown results about
the solvability of games over (higher-order) pushdown bsalpy (respectively) Walukiewicz, Cachat, and
Knapik et al. Moreover our approach yields techniques that are raglidéffierent from standard methods
for solving model-checking problems on infinite graphs gatea by finite machines. This transfer of tech-
nigues goes both ways. Another innovation of our work is &emhtained proof of the solvability of parity
games on collapsible pushdown graphs by generaltisgdardtechniques in the field. By appealing to our
equi-expressivity result, we obtain a new proof of the dability (and optimal complexity) of the Modal
Mu-Calculus Model-Checking Problem of trees generatedebynsion schemes.

In contrast to higher-order pushdown graphs, we show thatadiz Second-Order (MSO) theories of
collapsible pushdown graphs are undecidable. Hence sitl@ppushdown graphs are, to our knowledge,
the first example of a natural class of finitely-presentabéglys that have undecidable MSO theories while
enjoying decidable modal mu-calculus theories.

Keywords Higher-order (collapsible) pushdown automata, highréleorecursion schemes, ranked and or-
dered trees, solution of parity games over configuratiopliga
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1 Introduction

Higher-order pushdown automat®DA) were first introduced by Maslov [17, 18] as accepting devices f
word languages. As varies over the natural numbers, the languages accepted byropdshdown automata
form an infinite hierarchy. lop. cit. Maslov gave an equivalent definition of the hierarchy in termiigler-
order indexed grammarsret another characterization of Maslow’s hierarchy was given byiband Goerdt
[8, 9]: they studiechigher-order recursion schemdisat satisfy the constraint aferived typesand showed
that the word languages generated by ordetich schemes coincide with those accepted by oideDA.
Maslow’s hierarchy offers an attractive classification of the semi-dbet@danguages: orders 0, 1 and 2 are
respectively the regular, context-free and indexed languages,hhitilgy is known about languages at higher
orders.

Higher-order PDA as a generating device for (possibly infinite) labebetted trees was first studied by
Knapik, Niwihski and Urzyczyn [15]. As in the case of word languages, an infimgi@tchy of trees is defined,
according to the order of the generating PDA; lower orders of the loieyaare well-known classes of trees:
orders 0, 1 and 2 are respectively the regular [22], algebraic [@hgperalgebraic trees [14]. Knapét al.
considered another method of generating such trees, namely, by bigleertdeterministic) recursion schemes
that satisfy the constraint sfafety A major result in that work is the equi-expressivity of the two methods as
tree generators. Open since the early 1980s, a question of fundamgmbaiance in higher-type recursion is
to find the class of automata that characterizes the expressivity of togtherrecursion schemesThe results
of Damm and Goerdt, and of Knapét al. may be viewed as attempts to answer the question; they have both
had to impose syntactic constraints (of derived types and safety reshgctivhich seem awkward and rather
unnatural) on recursion schemes in order to establish their results. Ah@m@espondence with (general)
recursion schemes has never been proved before.

A partial answer was recently obtained by Knapik, Nigki, Urzyczyn and Walukiewicz. In an ICALP’05
paper [16], they proved that order-2 homogeneously-typed (buhecessarily safe) recursion schemes are
equi-expressive with a variant class of order-2 pushdown autombg¢a panic automata In this paper, we
give a complete answer to the question. We introduce a new kind of higtierqpushdown automata (which
generalizepushdown automata with lin®], or equivalently panic automata, to all finite orders), called
collapsible pushdown automat@PDA), in which every symbol in the stack has a link to a (necessarily lower
ordered) stack situated somewhere below it. In addition to the higher-stalgk operationgush; and pop;,
CPDA have an important operation calledllapse, whose effect is to “collapse” a stackto the prefix as
indicated by the link from theéop,-symbol ofs. The main result of this paper (Theorem 5 and Theorem 9) is
that for everyn > 0, orders recursion schemes and ordezPDA are equi-expressive as generators of trees.

Our equi-expressivity result has a number of far-reaching comesegs. It allows us to translate decision
problems on trees generated by recursion schemes to equivalentnpsafiieCPDA andrice versa Chief
among them is the Modal Mu-Calculus Model-Checking Problem (equitiglé&tternating Parity Tree Au-
tomaton Acceptance Problem, or equivalently Monadic Second-OrdeDjN®del-Checking Problem). We
observe that all these problems reduce to the problem of solving a panity giyed on &ollapsible push-
down graphi.e. the configuration graph of a corresponding collapsible pushdostersy(CPDS). Recently
one of us has shown [20] that the above decision problems for treesaged by order: recursion schemes
aren-EXPTIME complete. Thanks to our Equi-Expressivity Theorems, it faflolat the samelEXPTIME
complete) decidability result holds for the corresponding CPDS probleimshvgubsumes many known re-
sults [26, 3, 16]. Moreover our approach yields techniques thaadreally different from standard methods for
solving model-checking problems on infinite graphs generated by finite meachilie stress that this transfer

'Higher-order recursion schemes are essentially simply-typed lanaclsis with general recursion and uninterpreted first-order
function symbols
2As constraints on recursion schemestived typesindsafetyare actually equivalent; see [10] for a proof.

3



of techniques goes both ways. Indeed another innovation of our warka#-contained (and without recourse
to game semantics) proof of the solvability of parity games on collapsible pwshd@phs by generalizing
standardtechniques in the field. By appealing to our Equi-Expressivity Theoreragybtain new proofs for
the decidability (and optimal complexity) of model-checking problems of treesrg¢ed by recursion schemes
as studied in [20].

In contrast to higher-order pushdown graphs (which do have d@eiddSO theories [5]), we show that
MSO theories of collapsible pushdown graphs are undecidable. Hetlapsible pushdown graphs are, to
our knowledge, the first example of a natural class of finitely-presentagbphs that have undecidable MSO
theories while enjoying decidable modal mu-calculus theories.

2 Collapsible pushdown automata (CPDA)

We first introduceghigher-order) collapsible pushdown automasssuming that the reader is familiar with the
notion of higher-order pushdown automata as presented by Keapik in their FOSSACS 2002 paper [15].
An orders CPDA, orn-CPDA for short, is just an ordet-pushdown automata (PDA) in which every nan-
symbol in the order: stack has éink to a (necessarily lower-ordered) stack situated below it.

2.1 Stacks with links

Fix a stack alphabdt and a distinguishelottom-of-stack symbdl € T". An order-0 stacklor simplyO-stach

is just a stack symbol. Aorder<(n + 1) stack(or simply (n + 1)-stack s is a non-null sequence (written
[ s1---s;]) of n-stacks such that every nahI'-symbola that occurs irs has a link to a stack of some order
(say, wherd) < k < n) situated below it ins; we call the link a(k + 1)-link. Theorder of a stacks is written
ord(s).

As usual, the bottom-of-stack symholcannot be popped from or pushed onto a stack. Thus we require
anorder-1 stacko be a non-null sequenge; - - - ¢;] of elements of” such that foralll <i <[, a; = L iff
i = 1. We definel, theemptyk-stack as follows: Lo = L and Ly, =[ Lg] .

We first define the operationsp, andtop,; with i > 1: top, s returns the togi — 1)-stack ofs, andpop; s
returnss with its top (¢ — 1)-stack removed. Precisely let=[ s; - - - 5;11] be a stack with < i < ord(s):

Si1 if i = ord(s)
top; [ s1---s111] = .
— top; si+1 if i < ord(s)
[s1---5] if i = ord(s)andl > 1
pop; [ s1---si1] = "
—_— [ s1---s1pop;si+1] if ¢ < ord(s)

S

By abuse of notation, we sébp,,4;)+1 s = s. Note thatpop; s is undefined iftop; , s is a one-element
i-stack. For exampleop, [[ L ab]] is undefined.

There are two kinds opush operations. First the first-ordemsh. Let a be a nond stack symbol and
1 < k < ord(s), we define a new stack operati@nshi“k that, when applied te, first attaches a link from
a to the(k — 1)-stackimmediatelybelow the top(k — 1)-stack ofs, then pushesa (with its link) onto the top



1-stack ofs. Formally forl < k < ord(s) anda € (I'\ { L }), we define

[s1---5 push?k S1a1] if &< ord(s)
a,k .
pushy™ [ 81+ s141] = [ s1---8541a] if k=ord(s) =1
s
[ s1--- 5 push? sp41] if k= ord(s) >2andl > 1

where

e a' denotes the symbal with a link to the 0-stack; |

e a denotes the symbal with a link to the(k — 1)-stacks;; and we define

. [t1---t, pushd t,y1] if ord(t) >1
pushy [t1---tr41] =
t [t1---try1a] otherwise i.eord(t) =1

The higher-ordepush;, wherej > 2, simply duplicates the tofyj — 1)-stack ofs. Precisely, lets =
[ s1---5141] beastackwitl2 < j < ord(s):

[ s1---sp018141] if j = ord(s)
push; [ s1---s141] =
—_—

S [ s1--- s push;siii] if j < ord(s)

Note that in casg = ord(s) above, the link structure of_  is preserved by the copy that is pushed on top by
push;.

Finally there is an important operation calledllapse. We say that then-stack s, is a prefix of ann-
stacks, written sy < s, just in casesy can be obtained frora by a sequence of (possibly higher-ordgop
operations. Take an-stacks whosetop,-element has a link to (a particular copy éfstacku somewhere in
s, such thatop,_, | so is (that copy ofju for somesy < s. Thencollapse s is defined to b&y.

2.2 A formal definition of CPDA stack operations

One way to give a formal semantics of the stack operations is to work witlbppate numeric representations

of the links. Knapiket al. have shown how this can be done in the order-2 case — called panic autemata

[16]. Here we introduce a different encoding of stacks with links thake/or all orders. The idea is simple:

take an order: stack s and suppose there is a link from (a particular occurrence gflcta in s to some

(7 — 1)-stack. First denote by the unique prefix ok whosetop,-element is the occurrence @f Then there

exists a uniqué such thatollapse s’ = pop; ;-3 pop; s. Ins, we represent the occurrencenokith its link
~—_——

k

k

In the formal definition, aymbol-with-linkof an ordern CPDA is writtenaU*) wherea € T, 1 < ji<n
andk > 1, such thatif j = 1 thenk = 1. Further, purely for convenience, we require that i L then
j=k=1.

Thus 1-links are invariant — they always point to the preceding synizbha stack operation will change that.
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The setOp,, of ordern CPDA stack operationsomprises four types of operations:
1. pop, foreachl <k <n
2. pushj foreach2 < j <n

3. push(" for eachl < k < nand each € (I'\ { L }), and

4. collapse.

We define them in terms of the standard stack operations of an or@®A (namely, pop,’s, top;'s and
push;’s) as follows, wherd < i < ord(s) and2 < j < ord(s):

push?’i s = pushl{<i'l> s
collapses = p0p£ s wheretop, s = ale:f)
. (1) if 7= ord
[ 818141 5[4.1] if j = ord(s)

push; [ sy s141]
S [ s1---sipush;siqi] if j < ord(s)

where©V) is the operation of replacing every superscript occurring iof the form(yj, k;) (for somek;) by
(j, k; +1). The meaning opop; is the standard one.

Example 2.1 Take the 3-stack = [[[ La]] [[ L[ La]]] . (To save writing, we omit the superscript
(1,1).) We have

pusht?s = [[[ Lallll L[ Lab>D]]
push{*(pushi®s) = [ Lall[[ LI Lab®D ]
pushy(push{®(pushi®s)) = [ Lall[[ LI Lab®D D] Lab®? B0
pushy(pushy®(pushi®s)) = [ Lall[[ L[ Lab®V GO L] Lab®D G2
and we have

collapse(push2(pushi’?’(pushll”2 s))) = collapse(pushg(puslﬁ’?’(pushl{’2 s)) = [l[ Lalll

2.3 Tree-generating CPDA

Collapsible pushdown automatae a generalization (to all finite orders) piishdown automata with links
[2, 1], which are essentially the samepasiic automatd16]. There are various versions of CPDA, depending
on whether the automaton is used as an accepting or generating devie®i(@olanguage, or a labelled tree
or graph, in which case there is an accompanying input alphabet ofpmopajate kind) or to describe a com-
putational process. Here we consider the version for generatilafpelled trees, for a given ranked alphabet
3. (When it is used to generate graphs — see Section 6, we shall referdevite as collapsible pushdown
systems



Definition 2.2 A tree generatingrder-n collapsible pushdown automato(rm-CPDA) is given by a 5-tuple
A= (XT,Q,d,q0) whereX is a ranked alphabel, is a stack alphabeg) is a finite set of control stateg,
is the initial state, and is the transition function

§:QxT — (Q@xO0p, + {(fiqr, s qar() : FEL, G €QY})

(We require) to respect the standard convention thatannot be pushed onto or popped from the stack.)

Configurationsof ann-CPDA are pairs of the fornig, s) whereq € @ ands is ann-stack overl’; we
call (g0, L,,) theinitial configuration A generalized configuratiofranged over byy,~;, etc.) is either a
configuration or a triple of the forrf; 1, - -, gar(s); 5). We define aone-step labelled transition relatioof
A over generalized configuration by clauses, one for each of the thme¢ kf labell, P andO:

/70 .
l. (g, 5) (q> ) (¢, s"), if for somed € Op,,, we havei(q, top, s) = (¢, ) ands’ = 6(s)

(f59)
>q (

P. (Q7 S) faqla 7qar(f);8)’ if 5(‘]7 topy S) = (f’qb 7Qa7‘(f))

fi
O. (fsqi,  »dar(f): 5) 0w (i, 8), foreachl <i < ar(f).

The labelled transition relation deterministian the sense that for any generalized configurati@md for any

¢ ¢ ¢
label?, if v > ~; andy > o theny; = v,. We writey; > s justifvy; > ~5 for some label. Note that the
unlabelled> is not deterministic in general, but it is when restricted to configurations (iseéas).

A computation pattof A is a finite or infinite transition sequence of the form

t 2 2
p= Y>mM>72>

where~y is the initial configuration. Every computation path is uniquely determined bygbecetedabel
sequencenamely,ly ¢1 {5 - - -. Observe that such label sequences satisfy the regular expréssiBrO)« +
(I* PO)* I* if the sequence is infinite, and™* P O)* I*(¢ + P + P O) if the sequence is finite. ThE-
projectionof p is the subsequendg, ¢, ¢,, - -- of labels of the shapgf, ) (in which casear(f) > 1) or of
the shapd f;¢) (in which casear(f) = 0, and the label occurs at the end of tigrojection). We say the
CPDA A generates thE-labelled tree just in case théranch languageof ¢ coincides with theZ-projection
of computation paths ofl.

Remark 2.3 Order-2 collapsible pushdown automata (2-CPDA) are a slight variaptisifidown automata
with linksin [2, 1]. They are essentially the samepasic automatan the sense of Knapikt al. [16], which
use numeric indices to represent links.

3 Recursion schemes

Typesare generated by the grammér:= o | A — A. Every typeA # o can be written uniquely ad; —
-+ — A, — o (by convention arrows associate to the right) which we shall abbrevidté;to- - , A,, o), for

somen > 1 which is called itsarity; the base type has arity 0. We define therder of a type by:ord(o) = 0

andord(A — B) = max(ord(A)+1, ord(B)). LetX be aranked alphabete. each:-symbol f has an arity

4| for internal or hidden Player-move,for Player-move, an® for Opponent-move.
The branch languageof ¢t : Dom(t) — X consists of infinite wordg f1,d1)(fa,d2) - - - just if for 0 < i < n, we have
t(dy---di) = fig1; and of finite wordg f1,d1) - - - (fn, dn)ajustiffor 0 < i < n, we havel(d: - - - d;) = fit1 andi(dy - - - dn) = a.
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ar(f) > 0 which determines its type — - - - — o — o. Further we shall assume that each sympal ¥ is
ar(f)

assigned a finite s&ir(f) = {1,---, ar(f) } of directions and we defin®ir(2) = [J;cy, Dir(f). Let D be

a set of directions; @-treeis just a prefix-closed subset &f*, the free monoid ofD. A X-labelled treeis a
functiont : Dom(t) — X such thaDom(t) is aDir(X)-tree, and for every node € Dom(t), theX-symbol
t(«) has arityk if and only if o has exactlyk children and the set of its children{sx1,--- ,ak }ie.tis a
ranked(and ordered) tree. We writé>°(X) for the set of (finite and infinite}-labelled ranked and ordered
trees.

3.1 The tree generated by a (deterministic) recursion scheme

Let = be a set of typed symbols. The setagiplicative terms of typel generated fronE, written 74 (Z), is
defined by induction over the following rules: fif: Ais anelementoE thenf € T4(=); if s € Ty p(E) and

t € T4(Z) thenst € Tp(E). For simplicity we write7 (=) to meanZ,(=), the set of ground terms. In case

is a ranked alphabet (and so evangymbol has an order-0 or order-1 type determined by its arity) we identify
terms in7 (Z) with the finite trees iry >°(=).

For each typed, we assume an infinite séfar 4 of variables of typeA, such thatVar 4 and Varp are
disjoint wheneverA # B; and we write Var for the union of Var 4 as A ranges over types. We use let-
tersz,y, v, 1, x, £ etc. to range over variables. We write: A to mean “the expressios has typeA”. A
(deterministicyecursion schemes a 4-tupleG = (X, N, R, S ) where

e Y is a ranked alphabet ¢érminals(including a distinguished symbadl : o)
e N is afinite set of typedion-terminalswe use upper-case lettefs H, etc. to range over non-terminals
e S € N is adistinguishedtart symbobf typeo

e R is a finite set of rewrite rules, one for each non-termifial (A, -- - , Ay, 0), of the form
Fé---& — e

where eacly; is a variable of typed;, ande is an applicative term if (X UN U {&,---,&, }). Note
that the expressions on either side of the arrow are terms of ground type.

Theorder of a recursion scheme is defined to be the highest order of (the typis wdn-terminals.

Value tree [ G ] of a recursion scheme?

In this paper we use recursion schemes as generatdislatielled trees. Informally thealue tre€ of (or
the treegeneratedby) a recursion schem@, [G ], is a possibly infinite applicative term (of ground type),
constructed from the terminals h, that is obtained by unfolding the rewrite rules@fad infinitum replacing
formal by actual parameters each time, starting from the start syfbol

To define[ G'], we first introduce a mag)* : 7(X UN) — T(X) that takes an applicative term
and replaces each non-terminal, together with its arguments,. Bive define(-)* by structural recursion as

SWe would like to refer to theZ-labelled tree generated by a recursion scheme agalts tree, because the name is a good
counterpoint tacomputation tree We have in mind here the distinction betwesriue and computationemphasized by Moggi [19].
The idea is that the value tree is obtained from the computation tree by d@{padsnite) process of evaluation.



follows: we let f range ovelB:-symbols, and” over non-terminals ioh”

o= f
Ft = 1
()t — {L if s =1
(stt') otherwise.

Clearly if s € T(X UN) is of ground type ther’ € T(X) is of ground type. Henceforth we shall identify
ground-type terms iff (3) with finite trees in7>°(X).

Next we define a one-step reduction relatier; which is a binary relation over terms (3 U N).
Informally s —¢ s’ just if s’ is obtained froms by replacing some occurrence of a non-termifiaby the
right-hand side of its rewrite rule in which all formal parameters are in tystaced by their respective actual
parameters, subject to the proviso that fhenust occur at the head of a subterm of ground type. Formally
is defined by induction over the following rules:

e (Substitutiof. F'ty ---t, —¢ e[t1/&1, -, tn /&) WhereFE, - - - &, — eis arewrite rule of5.

e (Contex. If t —¢ t' then(st) —¢ (st') and(ts) —¢ (t's).

The relation|  between terms and trees is then defined as follows: We say that wheres € 7 (X UN)
andt € 7°°(X) just if

e there is a finite reduction sequenee= ty —¢ --- —¢ t, = t, andt is a finite tree, none of whose
node is labelled.; or

e there is an infinite reduction sequence- ty —¢ t1 —¢ ta--- such that = lim(t; : i € w), andt
may be a finite tree (in which case, somé’sfnodes are labelled) or an infinite tree.

Recall that7>°(X) is a complete partial order with respect to the approximation ordé€riag defined by:
t C ¢’ justif Dom(t) C Dom(t’) and for allw € Dom(t), we havel(w) = L ort(w) = t'(w) (i.e.t’ is obtained
from ¢ by replacing some._-labelled nodes by:-labelled trees). We can finally define thelabelled ranked
tree[ G|, called thevalue treeof (or the treggenerateddy) G, as follows:

[G] = sup{teT>(X):S gt}

The supremum is well-defined because the set in question is directed, iwlidonsequence of the Church-
Rosser property off viewed as a rewrite system. We wriecTreg X for the class of value treds= | where
G ranges over ordet-recursion schemes.



Example 3.1 Let G be the order-2 (unsaferecursion scheme with rewrite rules:

S — Ha
Hz — F(gz)
Fo — ¢(p(Fh)

wherez : o andy : (o0,0), and the arities of the terminals i, a are2, 1,0 respectively, and the type of a
variable is written as its superscript. The value tf€€] is the X-labelled tree representing the infinite term

ga(ga(h(h(h---)))):
g
N
N

|
h

|
The only infinitepathin the tree is the node-sequernce2 - 22 - 221 - 2211 - - - .

3.2 Graph representing a recursion scheme

We write [n] as a shorthand fof 1,--- ,n} and[n]o for {0,--- ,n}. Fix a ranked alphabét. Typically?
Dir(f) = [ar(f)] (but we always haveDir(f)| = ar(f) for eachX-symbol f). We defineDir(X) =
Uyses Dir(f).

We recall the long transform of a recursion scheme as introduced infF&44& recursion schem@&. Rules
of the new recursion schendg (which, we shall see, can be regarded as order 0) are obtainedHos@ ofG
by applying the following four operations in turn, which we dalhg transform For each-rule:

1. Expand the RHS to itg-long form |.e. we hereditarily;-expand every subterm — even if it is of ground
type — provided it occurs in aoperand positior(i.e. it is the second argument of some occurrence of
the application operator). Note that each applicative tekm7 (X UN U { &, -+ ,& }) can be written
uniquely asj s; - - - s, Wheref is either a variable (i.e. songg) or a non-terminal or a terminal. Suppose
T818m: (A1, -+, Ap,0). First we define

Tts1 - Sm ! = ABATs1 T8, T Ty,

wherep is a listp; - - - ¢, Of (fresh) pairwise-distinct variables (which is a null listiff= 0) of types
Aq,--- , A, respectively, none of which occurs freejis; - --"s,,". Take anye = ts7---s,, Of
ground type. They-long form of e is defined to bg "s; - - - "s,, .

"Thesafetyconstraint (on lambda terms) may be regarded as a reformulation otistraint on lambda terms imposed by Damm’s
derived typesfirst introduced in his major study on the semantics of Algol-like langu§8esTo definesafety we first need to
introducehomogeneous type§ he base type is homogeneous function typed; — (A2 — --- — (A, — o) - - - ) ishomogeneous
just if eachA; is homogeneous, angrd(A1) > ord(Az2) > --- > ord(A,). We say that a term (or a rewrite rule or a recursion
scheme) ishomogeneously typgdst if all types that occur in it are homogeneous. Knagilal. [15] define safety as follows: A
homogeneously-typed term of order> 0 is said to baunsafeif it contains an occurrence of a parameter of order strictly lessthan
otherwise the term isafe An occurrence of an unsafe tetnas a subexpression of a tethis safeif it occurs in an operand position
(i.e. itis in the context- - (ts) - - - ), otherwise the occurrence ismsafe A recursion scheme isafeif no unsafe term has an unsafe
occurrence in the right-hand side of any rewrite rule. Note that it folloammfthe definition that all recursion schemes of order at most
1 are safe.

8The only exception is the symb@l 4 of the auxiliary alphabet ¢, where we hav®ir(Q4) = [ar(Q4) — 1]o.
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For example thg-long form ofg a : ois g (X.a); we shall see that the “dummy lambda-abstractiox
(that binds anull list of variable) plays a usefubte in the syntactic representation of the game semantics
of a recursion scheme.

2. Insert long-apply symbol@ 4: Replace each ground-type subterm of the shagpe - - - e,,, whereD
(Ay,---,A,,0) is a non-terminal ana > 1 (i.e. D has order at least 1), b4 De; - - - e, where
A= ((Ay, -+ ,An,0), A1, -+, Ay, 0). Inthe following, we shall often omit the type tagfrom @ 4.

3. Curry the rewrite rule I.e. we transform the rul& ¢, --- ¢, — €’ to
F — Xpp - op.€.
In casen = 0, note that the curried rule has the fofim — X.¢'.
4. Rename bound variables afres$o that any two variables that are bound by different lambdas have

different names.

For every recursion schentg, the system of transformed rules@defines an order-0 recursion scheme
— called thdong transformof G — with respect to an enlarged ranked alphabet which is¥ augmented by
certain variables and lambdas (of the fokgiwhich is a short hand fak¢; - - - €, wheren > 0) but regarded
as terminals The alphabel is a finite subset of the set

YU Var U {@Q4: AcATypes U {XE:EC Var)
—_—

Non-lambdas Lambdas

where ATypesis the set of types of the shapeA,, -, A,,0), A1, -+, An,0) with n > 1. We rank the
symbols inA¢ as follows:

e variable symbol : (Ay,---, A,,0) in Var has arityn
e long-apply symbolka 4 whereA = ((Ay,--- , An,0), A1, -+, Ayp,0) has arityn + 1

e lambda symbol¢ has arity 1, for every list of variablgsC Var.

Further, forf € A¢g, we define
Dir(f) = { [ar(@a) =1, it f =@,
[ar(f)] otherwise

For technical reasons (to be clarified shortly), the leftmost child gidabelled nodex is in direction O (i.e. it
is a’s 0-child); for all other nodes, the leftmost child is in direction 1. Flea-terminalsof G are exactly those
of G, except that each is assigned a new type, namelye can now define theomputation tree\(G) to be
the value tred G | of the order-0 recursion scherté It follows that\(G) is a regular tree.

A A-labelled deterministic digraplfor DDG, for short) is a quadruple
K = (V, ECVXV, 1:V—A wveV)

where the underlying digraphV, E') is vertex-labelled by the functioh: V' — A (whereA is a ranked
alphabet), and edge-labelled byr(A) in that £ = (J;cp;,(a) £i, such that

9To my knowledge, Colin Stirling was the first to use a tree representatiomnddda terms in which “dummy lambdas” are
employed; see his CSL 2005 paper [23]. Motivated by propertyléhgayames in Verification, he has introduced a game that is
played over such trees as a characterization of higher-order mafeiding
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(i) for eachi € Dir(A), we haveE; C V' x V is a partial function

(i) for eachv € V, and each € Dir(I(v)), we haveE;(v) is defined i.e{v" : (v,v") € E; } is a singleton
set.

In the following we shall assume th#t is finite. It is easy to see that every finitelabelled tree can be
presented as a DDG, and the unfolding df-dabelled DDG is a\-labelled tree.

Fix a higher-order recursion scheraeand an associated long transfo6m We define theHORS graph

Gr(G) to be theA;-labelled DDG determined bg
GI’(G) = <V, ECV XV, A:V —Ag, 1}0€V>

thatq is obtained by the following procedure:

1. First we define the ranked alphabét = A U N where each symbol i (i.e. a non-terminal of5)

is given arity O.
2. For eaclG-rule (say)F — Ay -+ - ¢n.¢, the corresponding/-labelled DDG
DF = (VF, EFQVF X VF, ZF : VF—>AE, TtF>

given by theAzg-IabeIIed tree that is determined by the right-hand side of the rule, nakgly,- - ¢, .e.
Note that we havér(rtr) = A1 - - - o, With reference to the rul& given above.

3. Set the digraplD to be the disjoint union of the underlying digraph®f-, as F' ranges oveN. We
then define the underlying digraph Gf(G) to beD quotiented by the equivalence clasges one for
eachF in N=; where we define

& = (U lH1<{F}>> U {rtr}

HEN@
l.e. in Gr(G) all vertices inr are identified, for eacli’ € M. Henceforth, as a vertex @r(G), we
shall refer to the equivalence claSg by the representativet .

The edge-labels o&r(G) are inherited from the edge-labels of the component DDGs(we define
E;(rtp) = Ef (rtp) for eachF € N). The vertex-labels are defined by

Aa(v) lp(rtp) if v = Ep for someF € N
cglv) =
lg(v) otherwise, supposeis a vertex inVy

The rootvy of Gr(G) is rtg, whereS is the start symbol of7.

In the following, we shall only concern ourselves with the connected coemaf Gr(G) that contains the
root node (and assume th@at(G) is that connected component). It is easy to see that unfol@g) gives
the computation treg(G).

Example 3.2 We revisit the recursion scheme of Example 3.1 and consider the grapmitetd by it. First
the long transform:

S = Ga S = AQG(Aa)
G : Gz = F(gz) — G G = AzQF(Ay.g(Az)(Ay))
Fo = p(e(Fh)) F = XA (AQF (Az.h(A.2))))

The graphGr(G) is then given in Figure 1.
12
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Figure 1: The graph determined by an order-2 recursion scheme.
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Notations and features of HORS graphs

Fix a HORS graplGr(G) = (V, E, A\g, v ). We shall call a node d&r(G) primejust if it is the 0-child® of a
@-labelled node. By construction, a prime node is labelled by a lambda. We diefgiepthof a node to be the
length of the shortest path from the root to the node (so that the rooteipdls d). Letu be a node. We define
pred(u) = {uv € V: (v/,u) € E } i.e. the set opredecessorsf u. For every node: labelled by a variable;
(say), itsbinder, written binder(u), is the node that is labelledp, wheregp is a list of variables that contains
©;. (Since bound variables are renamed to prevent any clash in the atiostrof G, every variable node in
Gr(G) has a unique binder.) We say thats thei-parameterof binder(u) just if ¢, is theith-item of the list
. Thespanof the variable node is defined to be the depth éinder(u) minus the depth of..

We note the following features of HORS graphs:

(i) Except the root and possibly some prime nodes, every ndues a unique predecessor.

(i) For every non-root node, there is somg such that foreverypredecessow of u, u is the j-child of v;
hence (and in this case) we can say that a j-child. Indeed a node is a 0-child if and only if it is prime.

(iii) For every nodeu, there is a unique shortest path fréimder(u) to «, and this path does not contain any
prime node.

For convenience, and whenever it is safe to do so, we shall confuseea with its Ag-label A (u).

4 From CPDA to recursion schemes

In this section we prove that for every > 0, and everyn-CPDA A, there is an orden- recursion scheme

G 4 such that4 and G 4 define the samé&-labelled tree. We begin by introducing a method to represent
higher-order stacks and configurations by applicative terms condrfrot® non-terminals of the same order;
the correctness of the representation is then established in Theoreme3Th&hrem is quite general: it is
independent of the transition relation of the automaton, nor does it matteravliethautomaton is for defining

a tree or a graph. In case the automatbis for generating &-labelled treet (say), we show in Section 4.3
how an ordem deterministic recursion scherig, can be constructed that defines the same trep@:q.| = t.

The correctness of the transfoii, (Theorem 5) is then obtained as a corollary of Theorem 3.

Our construction simplifies the translation (order-2) in [16] and geneglize all finite orders. For
convenience let the state-set.dfbe [m] wherem > 1. Let 0 be the base type. Inductively, far > 0, we
define the type

n+l = n"—n

wheren™ =n x ---xn. Thusn+1=n"— (n—1)" — .- = 0™ — 0.
—_———

m times

4.1 Term representation of stacks and configurations

Fix an ordern CPDA A. We shall first introduce a general scheme for representing stadlkafigurations of
A by applicative terms generated from the non-terminals fiém The key result in this section is a correctness
theorem (Theorem 3) for the representation scheme.

9The leftmost child of a@-labelled node is the latter’s 0-child (i.e. the child is at the end of a 0-labetigé)ethe leftmost child of
any other node is a 1-child.
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Recall that every non- symbol in ann-stack has a link to some stack (of order necessarily lessrthan
that lies below it in the stack. If the stack pointed to is of orgler 1 wherel < j < n, the link is said to be a
j-link. A 1-link from a symbolalwayspoints to the symbdmmediatelybelow it; no stack operation will alter
it. Henceforth we shall use the formal definition of higher-order staadsording to which a symbol with link
takes the formu"%). For technical convenience, we require thiat & = 1 in casea = L. E.g. the initial
configuration is(qo, L,,) with top; L, = L1,

For each stack symbal eachl < e < n and each state < p < m, we introduce a non-terminal
Fyfin—e)" —=m-1)" - —=0"—=0

(Note that the type ofF,>° is non-homogeneous in the sense of Knagiikal. [15].) In addition, for each
0 < i < n— 1, we introduce a non-termindl; : i; and we fix a start symbd¥ : 0. The set\ 4 of non-
terminalsis defined as follows:

Nag={Facl1<p<ml<e<n}U{Q:0<i<n-1}U{S:0}

wheresS : 0 is the distinguished start symbol. L&t (NV4) be the set ohpplicative termgor simply termg
of type j generated from the elements.®f;. In the following we shall use the following shorthand. L&)
be a term with an occurrence gfwe write (P(4) | i) to mean then-tuple ( P(1),--- , P(m)). E.g.(F;"“| i)
means( F,", .-+, Fm©) 1 ((n— €)™ — n)™.

Aterm M : n — j where0 < j < n is said to behead normalif its head symbol is a non-terminal of
the formF,"“ i.e. M has the shap&,"“ L M,,_; - - - M,,_;, for somea, e andp and for some vectors of terms
L,M,_,---,M,_; of the appropriate types; we shall c&lf*° thehead non-terminalof M. Let0 < j < n,

1 < p < m and lets be aj-stack, a pair of the fornfp, s) is called aj-configuration (thus a configuration is
ann-configuration). The idea is that we use head-normal terms oftypej — which has the general shape
FpLMy_y---M,_; : n— j—torepresenj-configurations; equivalently we use-tuples of the form

(FPCL My My i)« (n—j)"
to represenj-stacks.
Suppose the head-normal ground-type term
fg’efm---ﬁo : 0

represents the configuratigp, s). Then the O-configuratiofp, top; s) — where thetop,-element ofs, say,a
with a link to thee-stack represented by the-tuple L : (n — ¢)™ — is represented b§,“ L : n. Further for
eachl < j <nandl <p < m, we have:

e The(j — 1)-configuration(p, top; s) is represented by "“ L My, 1 -+~ M,,_;_1) : n — (j — 1).
e The configuratior(p, pop, s) is represented b/, , M,,_;_1--- M : 0.

e The configuratior(p, collapse s) is represented by, M, _._1 - -- My : 0.

Take a head-normal ground-type teﬁFﬁ’ean_l -+ My : 0. For eachl < j < n, we shall call then-tuple

M,_; : (n— j)™its (n — j)-factor; by abuse of language, we shall c@ll: (n — €)™ its n-factor. Let

1 < j < n; we say that ground-type termig and N are(n — j)-similar, written A/ ~,,_; N, just if they have
the same head non-terminal, and for edch k& < n, providedk # j, M andN have the samé: — k)-factors.

It follows from the definition that i\ and N are(n — j)-similar and have the sante — j)-factor, then they
are (syntactically) identical terms.
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Labelled rewrite rules and the labelled transition relation

Definition 4.1 (i) We first consider labelled rewrite rules of the general form

e ——  — (@0 _
Fp  @Wn—1 - Wo  — Egp)
where foLeacm <j<n-1,we have\lTj = W¥;q,---, ¥, is a vector of variables, with each;; : j;
similarly ® = &4, --- , ®,, is a vector of variables, with each; : n — e. The shape oE, 4) depends on the

pair (¢, 0), as shown in Table 1 below, whe2e< j < n andl < e,k < n in the following: In the following,

Cases of(q, 0) Corresponding =, ¢

(¢, push®™) Fo G (FO BTy | 1) Tns - Tp

(¢, push;) Fo @1V () (F @ Wy )Wy (jy1y - Yo

((L popk) ‘I’nfk,q lIjnflcfl T \1170

(Q7 CO”') (I)q \Iln—e—l to \IJO

Table 1: Definition of=, 4

whenever we usé, instead of(p, #), to label a rewrite rule

_ 0
Fp@Wp g Wy —»

it is understood that the stapds preserved.

[1]

(p,9)

(i) The labelled rewrite rules induce a family ofutermostlabelled one-step transition relatloﬁ%—z -

TON ) x T°(N4), indexed by the labély, #), whereq ranges over states aidanges over stack operations.

Informally we defineM @f) M’ justif M’ is obtained from\/ by replacing thdnead(equivalently, outermost)

non-terminalf’ by the right-hand side of the corresponding rewrite rule in which all fopaahmeters are in

turn replaced by their respective actual parameters. Foréﬂgﬁys defined by the following rule schemes: for

. (g9
ael,1<p,qg<m,1<e<n,0d e Op,,and for each rewrite rulé‘;"e@ W, 1---¥yg —> E(qﬂ), we have

the rule scheme

- 0 _ B .
FOT M, 1My 40 2,0 [T/, My 1 /Ty 1, Mo/

whereL, M,,_1,--- , M range over vectors of terms respecting the typ&f.

Note that each binary relatio(ﬁﬂ is a partial function. Letx = 6, ; - - - ; §; be a (composite) sequence of

stack operations. We write> C T°(N4) x T9(NV4) to be the sequential composition of the partial function

O, o %L (in this order). As-% is a partial function, whenever there is Aff such thatV -~ M’, we

shall often use the postfix notatidd —— to denote (the necessarily uniquey.

It is straightforward to check that for any head-normal ground-typa &, we have

M if j =k
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Lemma 1 Suppose, for afixetl< j < n, M and N are (n — j)-similar ground-type terms.
. pop; pop; . . . pop; pop;
(i) If j;1 > jthenM —% and N —2 are identical terms; ifj; < j thenM — and N —= are (n — j)-
similar.

coll. coll.

(i) Let 7, be the head non-terminal aff and N withe > 2. If e > j thenM — and N — are identical
terms; and ife < j thenAM<2% and N%% are (n. — j)-similar.

Proof Straightforward consequences of the definitions of the transition relation. O

h.
For example take a head normal ground-type tédrwith 2 < j < n; we haveM and MY are
(n — j)-similar.

4.2 Correctness of the representation

The position of a given stack symbol in anstacks can be described by a sequencepaf operations that
are needed to “collapse” the stack up to the point where that position be¢betep,-element. For example,
the position ofb in the 2-stack (the top of stack is at the right-hand dhd) aa][ Laba][ Laa]l][ La]]

is pops 5 pop,. In general such sequences are not unique, though they can inalized to one in which
the respective orders of thep operations form a non-increasing sequence. (Equivalently A segusmor-
malized if it is inequivalent to any sequence of shorter length.) We shallbcatirmalized sequence for a
given stacks an s-probe Informally we say that a ground-type terhd representsa configuration(p, s) if
for every s-probea if the top,-element of s is a'7*), then the head non-terminal 8f - is F,”/; further

k
(M) — (M-25) % and it represents the configuratign collapse(a s)).

Definition 4.2 Let s be ann-stack. A sequence of stack operations of the shape

suchthat > 0, andj; > --- > j; > 1, and eaclk; > 1, is said to be ar-probejust in casex s is defined.

(i) We say that a ground-type terid representshe configuratiorip, s) if for every s-probe«, we haveM
a-matchegp, s).

(i) We say thatM a-matchesthe configuratior(p, s) just if for some;j andk, we havetop, (o s) = aU-*)
and there existe-tuplesL,,_;, N,_1, - - - , N of the required types such that

M - F39 Ly i N1 -+ Noj

further ifa # L then

ke
(M) = (-2) el

op¥
and(M&)m representshe configuratior(p, collapse(a s)).

Henceforth whenever we assert that a termatches a configuratidp, s), it has the force that is ans-probe.

Note that]-“][f’1 Q1 Qo1 ---Qy—j : n — j represents thg-configuration(p, L,—;). We havetop; 1L, =
1@ andid is the only_L,,-probe.
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Lemma2 (i) If M representgp, s) then for every-probea, we have M ) representsp, a s).

(i) Let a be ans-probe. If(M =) representsp, a s) thenM a-matchegp, s).

Proof Straightforward consequences of the definitions. O

Having pinned down the notion of a term representing a configurationpweshow that the representation
is preserved by the stack operations. This confirms that our notion i&fs@ptation is the right one.

Theorem 3 (Correctness)Let M be a ground-type ternip, s) be a configuration, ané be a stack operation.
If M representgp, s) and M- s defined, thed - represents the configuratidm, 0 s).

Proof SupposeM = F,“UV,_1---V, represents the configuratigp, s). We aim to prove thats -2
representsp, 0s) for each of the four cases of the operatiba Op,,.

Case 1:0 = push’{’j‘) whereb is a non-L symbol andl < j, < n.

We havell —% 7290 v (Fee TV, |i) Vg -+ Vo. Leta = pop! 5 -+ 3 pop’i' be an(f s)-probe.

1

e Supposé = 0 i.e.« is the identity operationd. We need to show thz@JMi>) id-matchegp, fs). Now
top; (05) = bUoY); assuming) # L, we check that

popj,
—

0 0 coll. _— —
(M—) = M—)— = Vajop Va—jo-1--Vo.

It remains to show the(tMi>)pﬂJ represents the configuratiop, collapse(id (0 5))) = (p, pop;, (0s)),
which is equivalent to

M representsp, s) if jo=1
(Mpﬂ’) representgp, pop,, s) if jo > 1

. RYjo. j
Both cases follow from the assumption tHatrepresentgp, s): the former becausgh’ —5*)-2%, =

M, and the latter because of Lemma 2.

e Supposé > 1 andj; > 2. We have(ML) a-matcheqp, 0s) iff M a-matcheqp, s), which follows
from the assumption.

e Supposg; = 1. It follows thatl = 1 anda = pop®* wherek; > 1. Sete/ = pop'* ~* (we shall assume

that pop? = id). Plainly (ML) a-matches(p, 0s) iff M «o'-matches(p, s), which is an immediate
consequence of the assumption.

Case 2:0 = pushj where2 < j <n.

We haveM -2 fg’eUVn,l---<ff’eUVn,1~--Vn,j |i)--- Vo Leta = pop?l1 S pop?

(0 s)-probe. There are two subcases:

ll be an

a. The probex reaches intgop; (0 s) = S;i.e.l > 1andj; > j.

b. The probex is confined totop, (6 s); i.e. eitherl > 1 andj; < j, orl = 0.
18



Case 2aSince
pops, . . .
6 \PoPj, M— ifj<j
(M) = |
M it j =7
and correspondingly
(p, popj, s) 1fj <ji

» POPj, 0s = . .
(p, pop;, (05)) {(p,s) -,

we have(ML) a-matcheqp, 6 s) as required.

Case 2b Let b be the set ofd s)-probes of this case. We define a partial oreleover b-probes byn; < ao
just if there is a non-empty sequencepop-operations such that(as (0 s)) = a1 (6 s); in other wordsy (6 s)

is a prefix ofas (0 s). We shall show, by an induction argument, thML)i> representsp, a (6 s)) for ev-
ery b-probecq; note that this implie:sML) a-matchegp, 0 s) as required. The base case is trivial. Suppose
for all b-probesa < ag, we have(ML)L representgp, a (6 s)). We aim to show tha((ML)ﬂ rep-
resentsp, ag (6 s)). Take anyw (6 s)-probe; we want to show that(ML)ﬂ) B-matchedp, ap(8 s)).

Now «y ; 5 is equivalent to &6 s)-probe of either case a or case b. The former case has already dedéen d

with. In the latter case, eithery ; 3 < ag or 8 = id. If ag; 8 < «g, then by the induction hypothe-
0 g

sis ((M—>)e)i) representsp, 5(ag(6 s))), which implies that(ML)& B-matches(p, ap(6 s)) as

desired. It remains to provéML)ﬂ) id-matcheqp, ap(0 s)). Suppose theop,-element ofag (6 s) is
b(¢"f). Sincetop; (0 s) = top; S, thetop,-element o S is b9 where

g = froife #
fl—1 ife=y

(Note that in case’ = j, by definition ofpush; we havef’ > 2.) SinceM representsp, s) by assumption,

@0

it follows that the head non-terminal af — is }‘5’6/. Now M- and M are (n — j)-similar. Sincexy is
a0 @0

ab-probe, by applying Lemma 1 repeatedly, we h{sWéL)—> andM — are(n — j)-similar. Hence the
head non-terminal o(fML)% is alsof£7€'. It remains to prove that, assumings 1, we have

fl
ag \POP,1 « coll.
(M-5)20)=8 = (M-5)2%) < )
and /
0« ag PP
((M—)—=) —> representsp, collapse(ap(f s))). 2

But since thetop, -element of (6 s) is b/, we have

(p, popls (a0(05))) = (p, collapse(an(6 5)));
further, by the induction hypothesis (in cage< ;) or the assumption o/ representindp, s) (in casee’ > j)
O, f,/ /
as appropriate, we ha\(éML)&)pﬁ representsp, pOpZ, (ap( s))); hence (2) holds. It now remains to
prove (1). We consider the three cases’ah turn:

i. Case ofe’ < j: SinceM andv -2 are(n — j)-similar, by applying Lemma 1 repeatedly, we have

! !
((Mi»)ﬂ»)plil o (M&)pﬁfi
n—j

(M-Ly2oy el (2ol
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f/
. ’ gl pop:,
SinceM -2% representép, ag s) andag S hastop, -elemend €'/, we have( M 2%)—4 = (M-22) k.

Thus
0] f// Qo \ co
(M) 20)2 ey (M) 25,
Butobservetha([(ML)ﬂ) : and((M-25)-22) %% have the samén — j)-factor. Hence
op?,
(M) 2oy ((p-2s) 2o,y
as required.

ii. Case ok’ = j: By definition of push;, we havetop, (ag s) = b¢"f'~V andf’ > 2. SinceM represents
(p, s) by assumption, we haw® ay-matchegp, s). It follows that

!
—1
pOPf/

(M2%)"=5 = (M), (3)
Now, as a consequence of Lemma 1, for some ved®ors,,_1, - - - , N,_;11 of terms of the appropriate

types, we have

(ML) =0, ]—',Z,”e/FNn_l'--Nn—jJrl (FUVpor Vo | Vj1 -+ Vo @)
M =% fg’elﬁNn—l'“Nn—jH Voo i Vejm1+ Vo
and hence we have
(MLoyels by 2o,y el (5)
In view of (3) and (5), in order to prove (1), it suffices to prove
po; Pf -t /] POPf/
(M=) == = (M—)"%)—. (6)
But it follows from (4) that
(M) 2oy For UVt Vo Vajor -+ Vo
ao pop?,

and so, sincg”’ > 2, we have((M ) 2%)" =% = (M -2)-2%) %% as required.

iii. Case of’ > j: By applying Lemma 1 repeatedly, we have

! /

! !
(ML) 2oy 20,y
(-2l — (20 ell
. ppf/ ag  coll. o p‘)pf/, ag  coll.
Since(M %) —5 = (M2%)25 wehave((M—>)—>)—e>:((M—>) )— as required.

Case 3:0 = pop;, wherel < k < n.

This is an immediate consequence of Lemma 2.
Case 4.0 = collapse.

Supposetop; S = al®®) anda # L so thatds = popts; we haveM - U,V,_._1---Vo. By

) O] 7 O] k
assumption, we hav&/ id-matchegp, s). It follows that(M’—d>) p—pe» Up Vi—e—1 -+ - Vo, further(M d )p—p%,
which equalsMi>, represents the configuratigp, collapse(ids)) = (p,0 s), as required. O
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4.3 The recursion schemé&; 4, determined by a CPDA A

Definition 4.3 Fix a tree-generating orderCPDA A = (3, T, Q, 0, qo ) with @ = [m] for somem > 1, and
go = 1. The ordern recursion scheme determined by, written G 4, is defined by the following rewrite rules.
There are two kinds of rewrite rules, corresponding to the labaislP:

I. Foreach(p,a,q,6) € 6 andl < e < n, we have the rule:

- — (a0  _
fp’ ) \I’n,1 . \I’O — ‘:‘(qﬂ)
whereZ, ¢) is as given in Table 1.
P. Foreachp,a, (f;q1, * ,4ar(p))) € 6 and1l < e < n, we have the rule:
a.e ® 0y NTR (f,ﬁ) a.e ® Ay ST a,e FE T NN
]:p, ¢V, ¥y — f (}"ql» dW, 1---Wg) --- (}"q(;r(f) W, _1--- V).

Finally there is thestart rule S — ]—"f7lQn_1 Qn1-- Q. We write— C TOSUN) x TO(X UN) for
the one-step reduction relatidrbetween ground-type applicative terms goound termsfor short), defined to
be the substitutive and contextual closure of the rewrite rules. We wxité as the reflexive, transitive closure

of —.

A ground termR is called aredexif for some termR’ we haveR — R’ is asubstitutiveinstance of a
rewrite rule of label (say), and the redex is said to Betypeor |-typeaccording to the type of; by abuse

of notation, we shall writeR —Zv R’. A ground term is eithehead non-termina(i.e. the head symbol is a
non-terminal) ohead terminali.e. of the shap¢g Ny - -- N, (5)). A head non-terminal ground term is either
atomic (i.e.S or Q) or it is head normali.e. the head symbol is of the fort,*“, in which case, the ground
term is anl-type orP-type redex).

It follows from the definition that for every one-step reductith— M’, there are a unique redékwith

¢
R — R’ and a uniqueactive conteXf £ such thatV/ = E[R] and M’ = E[R']. To indicate theactive
redex(and its occurrence in the term), we shall sometimes witas(F, R), and write the one-step reduction

as(F,R) LN (E, R"), which we shall callP-type or |-type according to the type of the labél We shall
call expressions of the shap&, R) anactive term in general the ground-type teri may be a redex or a
head-terminal term.

Path reduction sequences

Path reduction sequencese finite or infinite sequences of one-step reductions starting from thiestabol

S. In essence, they constitute a reduction strategy for computing paths ire¢hgemerated by the recursion
schemeGG 4. Given a path inffG 4] as specified by a word in the branch language (gfg2) (g, 1) a) the
path reduction strategy (that computes it) begins rewriting ffbin a sequence ahacro stepseach macro
step computes an element (i.eXasymbol and a direction) of the word. Take the wa@pd2) (g,1) a. The
path reduction sequence begins fréhby rewriting the leftmost redex until it reaches a head terminal term
f N1 - Ng(s), upon whichN; is selected, corresponding to the pgfr2); the next macro step then starts

MWhen defining— and the tree generated by the recursion schémewe simply ignore the labeléthat annotate the rewrite

I
rules—.
12An active contexis just an ground-type applicative term that contains a ground-typedihtevhich a term may be inserted.
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from N3 by rewriting the leftmost redex until it reaches a head terminal tg#n- - - Py, ), whereuponP; is
selected, corresponding (g, 1); the (terminal) macro step then starts frétby rewriting the leftmost redex
until it reaches:, which is a terminal node of the tree.

A path reduction sequende a finite or infinite sequence ahacro steps Formally amacro stepis a
finite or infinite sequence of one-step reductions (of active terms) merimto (up to) three stages, starting
from a given active tern{E, R,); if it terminates, the macro step returns an active t¢fh N) such that
(E,Ry) —* (E', N). The three stages are as follows:

1. Afinite (possibly empty) or infinite sequencelefypeone-step reductions

(B, Ry) %) (B, Ry) 2% (B, Ry) ““% (B, Ry) - -

for some active contextt’. The sequence terminates (&t, R, 1)) iff for somer > 0, we haveR,, is
not anl-type redex (i.eR,; is aP-type redex). If thé-type reduction sequence does not terminate, the
macro step is said to hgartial.

2. A P-typeone-step reductiof®, R, 1) U3 (E, f N1+ Ngpry) Whereg = qi - - - qor(s)-

3. A O-type one-step reduction: Theead-terminalactive term(E, f N1 --- N,.(y)) is transformed to
(E', N;) for somel < i < ar(f), where

E = E[leNl—l H Ni+l"'Nar(f)]

if ar(f) > 1 (in which case, by abuse of notation, we write, f N1 -+ Ny.(y)) ) (E', N;), even

thoughE[f N1 --- N,.(p)] andE’'[N;] are identical terms); otherwise (i.£is nullary), there is no trans-
formation, and the macro step in question is the terminal step of the path redsextjoance.

Thus a typical macro step is a sequence of one-step reductions that weaphédollowing shape:

(B, Ry) 2 2 (B Ry) L2 (B, f Ny Nuvg) 2 (B, V)

with E' = E[f N1--- Nj—1 [-] Nix1- - Ngy(p)] @ndr > 0. There are two other possibilities, namety ) =
0 (in which case the macro step in question is the final step), or the macro stegonast of an infinité-type
reduction (in which case it is a partial step).

Proposition 4 The path reduction sequences compute all maximal traces didabelled tree generated by
G 4.

Proof Take a macro step starting from a given decomposed (éinR); stages 1 and 2 are completely de-
termined; and stage 3 is specified by@itype label(f,), in casear(f) > 1, with 1 < i < ar(f). Thus a
(maximal) path reduction sequence starting frérman be specified by

¢ an infinite sequence @-type labels, or
e afinite sequence d@-type labels (ending in an partial macro step), or

¢ afinite sequence d-type labels ending in a terminal macro step (specified by a nuilasymbol).
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We are now in a position to state the second major result of the section.

Theorem 5 (Equi-Expressivity 1) Let A be a tree-generating CPDA, and I&f4 be the recursion scheme
determined byd. Then the CPDA and the recursion scheme generate the Saaieelled tree.

Proof Because of Proposition 4, it suffices to prove

. - o . ¢ ‘ ¢
Claim: For any (finite or infinite) computation path gf of the form~ > Y1 > Y2 S

there is a unique path reduction sequeice— (Eq, Ry) —% (E1,R1) % (Es, Ry) —2

- with Ey = [-] such that for every > 0, if R; is head-normal, thef®; representsy;. The
converse also holds.

To see why the claim is true, suppaBe= F,"“U V,,_1 - - - Vy and R, represents; = (p, s). We consider

76 .
the various types of the labé] in turn. First, thanks to Theorem 3, we hayes) (q>) Yit1 Iff R; @) Ritq;
and if either side of the preceding bi- |mpI|cat|on holds, then, represents;; 1, and we havey;, = E;.

Secondly, it follows from Definition 4.3 thaytl (f a1, s qar(f)s S) = Vit Iff

f;’eﬁ‘/n—l .. .70 (;qz f (;E;;eﬁv‘nil .. 70) (fgaf(f) U Vi1 - .vo);

R; Rit1

further if either side of the preceding bi-implication holds, anariff) > 1, then for somd < j < ar(f), we
I el e ;
have(f;qi,- -, qar(f); 5) (>]) (¢j,8) = Yiqe @nd R o = Fg;° U Vy_q - - -V representsy; o, with E; 5 =

Eipa[f (Fg U Va1 Vo) -+ [-] - (Fg. s, U Va1 - -- V)] @s required; and this concludes the proof. (]

5 From recursion schemes to CPDA

The previous section demonstrates that higher-order recursion sslagenat least as expressive as CPDAs. In
this section we shall sketch a proof of the converse. Hence, CPDAseandsion schemes are in fact equi-
expressive. A number of related results can be found in the literaturantaxact correspondence with general
recursion schemes has never been proved before. Notably, intoréstablish a correspondence between
recursion schemes and HOPDAs, Damm and Goerdt (for word lang(i@dg@]) as well as Knapik, Niviiski
and Urzyczyn (for labelled trees [15]), have had to impose constrairttsecsshape of the former (calleérived
typesandsafetyrespectively) and their translation techniques relied on the restrictiongucalcway.

Our translation from recursion schemes to CPDA is novel: we transforarlatrary order recursion
scheme? to an orderm collapsible pushdown automatofy; that computes thieaversalsover the computation
tree \(G) (in the sense of Ong [20, 21]). The game-semantic interpretatiGhisfaninnocent strategyin the
sense of Hyland and Ong [13]), which coincides with¥a&ie tree] G | of G, so that paths in the value tree are
plays of the strategy. Traversals over the computation tree are jusbfajgte representations afhcoverings
[13] of paths in the value tree.

5.1 CPDA(G) - the CPDA determined by a recursion schemé

Fix an ordern recursion schemé& and the HORS graph
Gr(G) = (V,ECV XV, Ag:V —Ag, vgeV)
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determined by it. Note that is not assumed to be homogeneously typed, and hence, not necesgariis

shall construct an order-collapsible pushdown automaton, writt€RDA(G), that computegraversalsover

the computation treg(G). Thus it is an automaton that computes the innocent strgt@dygiven by the value
tree of G. (Traversals and computation trees are introduced in Ong’s prep@in2i2.)

Remark 5.1 For convenience, in the definition of the transfo@RDA(G), we shall Writepushi”’1 aspushy,
effectively ignoring the 1-link (to the preceding stack symbol). This is hassénce 1-links are guaranteed
not to feature in any of collapse operations in of the transf6RDA(G).

Definition 5.2 The transformCPDA(G) is ann-CPDA that has the sét’ of nodes as the stack alphabet.
The initial configuration is the--stack[ ---[ Lvg] ---] i.e. push(® L,,, wherewy is the root ofGr(G). Let

u range over the stack symbols 6PDA(G). For ease of explanation, we define the transition has a
function that takes a node € V' to a sequence of stack operations, by a case analysis of the labelAfHpm
of u. The definition is presented in Figure 2. In the Figure (and hencefovéhhall writepush{ for pushcf’1
for simplicity.

If v's label is not a variable, the action is juspash}, wherev is an appropriate child of th
nodeu. Precisely:

1%

. FEo(u
(A) If the label is an@ thend(u) = push™™.

(S) Ifthe label is ax-symbol f thend(u) = push ™) wherel < i < ar(f) is the direction|
requested by the Environment, or Opponent.

Note thatiff is nullary, the automaton terminates (since Opponent has no move to nhake).

. FEq(u
(L) Ifthe label is a lambda thef(u) = push ™)

Suppose: is labelled by a variable which is thigparameter of the lambda noééder(u); and
supposéinder(u) is aj-child. Letp be the span of the variable node

(V1) Ifthe variable has orddr> 1, then

i(topl)vn_l“"l if J =0

1 E
5 | push,_yy15 popl T push,
(’U,) i(topy),n—Il+1

push,,_;.1; pop}; collapse; pushjlLJ otherwise

i(topy),k

wherepop! means the operatiopop, iteratedp times, andpushf is defined toj

be the operation — puShlEi(tOp1 sk o
(Vo) Otherwise (i.e. the variable has order 0)

5() pop]loJrl : pUShlEi(tOpl) ifj=0
U =
pop!; collapse; pushfi(t‘ml) otherwise.

Figure 2: Definition of the transforrf@PDA(G).

Let s ands’ range over configurations (i.e-stack contents) ocEPDA(G). We define a binary relation:
over configurations: we say that— s’ justif s = §(top; s)(s). We write —* for the reflexive, transitive

24



closure of—.

Remark 5.3 (i) The definition of CPDA(G) as presented is not formally an instance of a CPDA: the tran-
sition function maps stack symbols to composites of stack actions, based ea anaysis. However
it can be transformed to a proper CPDA, and in general the equivaRDAGas more than one control
states.

(i) The transformation is radically different from the compilation method of ikt al.[15, 16]. To date, it
is not known whether the approach in [16] is extendable to non-homogsiyagped recursion schemes
of order 2. More generally, it is not known whether the method is extdadabarbitrary recursion
schemes of all finite orders.

Question Are ordern CPDA equi-expressive (for generating trees) with ordes 1) PDA?

How doesCPDA(G) work?

The transformCPDA(G) computes traversals over the computation &k6€). Take a computation sequence
of traversal$®:
t1 > to > tyg > ---

starting from the singleton travergalconsisting of the root of the gragy(G) (so that for each, the traversal
t;11 extends; by one node). Let
S§1 — S92 — 83 — - -

be the corresponding computation sequenceRIDA(G) starting from the initial configuratios .
The two computation sequences are closely related in a lock-step faslistwé shall see that for each
i > 1, the top 1-stack of; (regarded as a sequence of nodes) is the P-vieyidf.

topysi = "t

Secondly we construct a kind of approximanttgf written ¢;, which is obtained front; by removing all
segmentsv sandwiched between matching pairs of the shape

$ w oA
where$ is either an order-1 variable or am-symbol, andi > 1. Note that by definition of traversal, the
segmentv necessarily has the shape

i

wherex is an order-0 variable symbol amlis a list of variables in whicl: occurs. We then transform each
n-stacks; to a sequence of nodeg which will be shown to coincide with.

Here traversals are justified sequences of nodes of the §hgih), as opposed to nodes of the computation X6@) which is
the unfolding ofGr(G). The latter is the notion defined in the preprint [21], but the differencé i®ignificance for the purpose we
have in mind.
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How to construct the sequence; from an n-stack s;?

We follow a simple recipe.

1. We “flatten” then-stacks; so that it has the form of a well-bracketed sequence such as the foll@iojng
of stack is the right-hand end)

2. The target of any pointer to a stack is deemed to be the rightmost symbedeefing the stack, i.e. itis
always an occurrence ¢f

3. The required subsequence — which we shall writg; asis obtained by a right-to-left scan of the well-
bracketed sequence above according to the following rules.
e When an occurrence ¢fis encountered, we simply continue the scan without recording
e We record any stack symbols that are being scanned.

e Whenever we encounter the source of a link, the scan jumps to its target¢arrence of] )
without recording any nodes sandwiched in-between. The source bhthis always recorded.

e The scan ends when the fifsis hit.

Note that the last condition is necessary to ensuredimsuitably defined for any prefix of a reachable
stack. This will be important in the proof of Proposition 7.

Here is a more formal definition.
Definition 5.4 Let s be ann-stack. The sequengeof stack symbols is defined as follows.

€ topys =1
5= (popys)u  top;s = u andu does not have a link

(collapse s)u  topys = u andu has a link

Examples

We illustrate the workings o€EPDA(G) by examples and point out the correspondence between runs of the
automaton and the traversals it computes.

Example 5.5 Take the following traversal over the computation treégh Example 3.2:

We give a run of the corresponding 2-CPDA that computes the abowersedvn Figure 3.

To save space, we only present the interesting configurations in whidlvghelement of the stack is a
variable node. In the picture, the top of a stack is at the right-hand eddjrds are represented by dotted
arrows. Set to be the prefix of the above traversal that ends in the node labelled\Wg have

t=@ Xz @ Xp © X Y Ay 9 A =z
which coincides with th@-stacks (see Figure 3) by following the recipe.
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[@Xx @A ll H
~ Lexai d (e A a n
—* [ @ X @ Xp sO]A‘[“@ Az @"Ay g9 X
= [@X@Ap ¢ Al
~ [exarx ¢ Al
- [@x @i ¢ A so]“[@“‘)\‘z‘_@xy]]
L [ex @i ¢ A (e x @ A 9 xl s
= [[@xz@Xx ¢ X ¢ [@ )]
- [@xz@Xx ¢ X ¢ [@ X d

Figure 3: Arun of a 2-CPDA

Example 5.6 Consider the order-3 HORS graph in Figure 5. For ease of referarecgive nodes numeric
names, which are indicated (within square-brackets) as supersciagtsthie traversal in Figure 4.

Z I~
0 6 13 14 3 4 9 10 11 12 5 6 15 16 17

Figure 4: An order-3 traversal

/ o \

Avlt Aoz
\Ij‘[z] f[‘lo]
)\x1x2[3]/ N Al Al - A
lI,‘[4} i 12l
Az - Al A[131/ ™ A
331‘ [6] 75 [8] o4
A5 - ™~ by

Rt

Figure 5: An example of an order-3 HORS graph.
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We present a run of the 3-CPDA that computes the travelisafigure 6 followed by Figure 7 and Figure 8
(for ease of reading, we represent nodes by their labels).

To see the correspondence with the travetsabte that configurations, andss in Figures 7 and 8 respec-
tively have the sameéop,-element which is node 6 (labelled by). They correspond respectively to the two
prefixes oft that end in node 6.

The traversat corresponding tas is the prefix oft that ends in the later occurrence of 6; we have
T = @AV U Apz f AP X P Arwa U Apz [ X ¢ Azhalh @1

The reader might wish to check that= s3. (Note that the justification pointers are uniquely reconstructible
from the underlying sequence of nodes and their respective labels.)

5.2 Correctness of the transform

In this section we first set out (in Proposition 7), given any ordegecursion schemé&, the way in which the
reachable configurations of the transfo@RDA(G)

can be said to compute traverals over the computation\{f@e (i.e. theA;-labelled tree obtained frof@r(G)
by unfolding)
tp >t > o0 >ty >

in a lock-step fashion. It then follows (from the Correspondence fi@maon [21]) thatCPDA(G) computes
(all paths in) thex-labelled treq] G ]| generated by.

Lemma 6 Lets be a reachable configuration of anCPDA, and let: be an occurrence of a stack symbol in
s. Suppose has a link to ani-stacke. Then for every < j < n, thei-stacko is contained in the samgstack
in whichw occurs.

Proof Since the property is preserved by everCPDA instruction, the Lemma follows by induction on the
number of instructions it takes to obtairirom the initial configuration. O

For example, the following 3-stack is not reachabléas a link to the 1-stadkc] , but the source (i.&)
and the target (i.€. ¢] ) of the link arenotin the same 2-stack

([ cITIl all bl11]

Definition 5.7 Let G be an order recursion scheme, latbe a reachable configuration GPDA(G), and let
t be a traversal ovex(G). We shall say that computeg if and only if the following conditions hold.

(a) topy(s) ="t

(b) s =t.

(c) Supposéopy(s) = [v1,--- ,vn]. Letwvy,--- v, be the respective occurrenceswf- - - , vy, in ¢ that
contribute td" ¢ . Thenpop}™*(s) computes ., foranyl < < n.

(d) Using the same notation as in (c), supposkas a link to ari-stacko. Let s, be the prefix of such that
o is its topl-stack, i.e.s; = collapse(pop| ™" s). Thens, computes .
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Figure 6: A run of a 3-CPDA (Part 1 of 3).
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Figure 7: A run of a 3-CPDA (Part 2 of 3).

30

|
|

52



[ Q@AY O Azze O Adfah a]]
[ @AV ¥ Azizp ¥]- [@  Xpz f X ] 53

Laxe ¥ [@ Az f A ¢ A*e ]

[[@)\\IJ\II]//[@)\@zf)\@)\QD)\]]]
_ R
[[@A‘P‘I’][@NPZJ”A<P>\<PAZ]]}

IaQ@xv v X

Figure 8: A run of a 3-CPDA (Part 3 of 3).

Note that the definition is not circular, sinte,; (1 < i < n)andi_,, (1 < < n) are strictly shorter that In
what follows we shall blur the distinction betweenand its occurrence;, as it will be clear from the context
which occurrence is meant.

Proposition 7 Let G be an orderr recursion scheme and letbe a reachable configuration @PDA(G).

(i) Letu be anode ofA(G). Thenu has a link ins if and only if it is aj-child (; > 0) labelled by a lambda
of type A which has ordei > 1. Further, ifu has a link, it points to arin — [)-stack.

(i) There exists a traversalover \(G) such thats computes.

Proof We prove the Proposition by induction on the numberefstepss is from the initial configuration.
Clearly, the above assertions are valid wkes the initial configuration.

For the inductive cases, suppase- s’. Assuming that (i) holds fo, (ii) holds for s and¢, we shall prove
that (i) holds fors’ and (ii) holds fors’ andt’, wheret’ is a suitable one-node extension:of\Ve shall do so by
a case analysis of the label 6fp, (s) = u.

First suppose:'s label is not a variable. Thest = push{s, for an appropriate node. In particular, no
new link is created. For (i), observe that, becauselabel is not a variable, it follows from the structure of
A(G) that if v was aj-child (j > 0) labelled by a lambda of typd, thenu would have to be a-symbol and,
consequentlyA would have orde®. Thus, (i) still holds, because no new links have been created.

For (ii), lett’ = tv, wherev has a pointer to a suitable node (there is only one way in which a pointer from
v can be inserted so as to makénto a traversal). Then we have> t'. We shall show that' computeg’.

For (a) we need to check thatp,s’ = "t'™". We havetop,s’ = (top,s)v and, in all three cases correspond-
ing to the rulegA), (S), (L), "t'" = "tw holds. Thus, by induction hypothesis, we gap,s’ = "t'". For

(b) we note that’ = sv andt’ = tv. So, by induction hypothesis, = t’. (c) follows immediately from the
induction hypothesis and, because no new links have been creatembss(djl
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Next suppose’s label is an ordef-variable, which is thé-parameter obinder(u) (note that then we have
i > 1) and supposéinder(u) is aj-child. Thens’ = §(u)s whered(u) is given in Definition 5.2. There are
four cases; in the following we shall use the notations from the Definition.

1. Casd > 1 andj = 0. Suppose:’s label is the ordef-variabley,;.

By the induction hypothesis of (ii)y must be the last node of It then follows from the definition of a traversal
thatt has the following shape:

/0\ p T, N
t = up Ul U
@ Ap Pi

(in the figure, the label of a node is the symbol just below it). Since the P-oferaversal is a path in the
HORS graph! ¢ has the shape - ug u; - - -« and the segmerit has lengthp + 1, wherep is the span of the

0
variable node..

Consider the operatiofi(u) = pushn_H_l;pop}f—H;pushfi(tOpl)’n_l+1. By the induction hypothesis of

(ii), the top 1-stack of - call it o - is the P-view oft. Since the top 1-stack qfush,, ;s is a copy ofo,
applyingpop’l’Jrl to push,, ;.15 returns a stack that has tlkelabelled node. as thetop,-element. The node
that ispush,ed onto the top of the stack at this point is thehild of uq, which we callv. Further, it has a link
to the top(n — [)-stack of the prefix of s'.

It follows from the structure of\(G) thatv must be labelled by\y) (say) of the same type as the lagsl
of u, i.e. its type is also of orddr> 1. Thus, since > 1, (i) follows as required.

For (ii) sett’ = tv, wherev has a pointer (labelled bi) to the occurrence o indicated in the figure
above. Thert' is a traversal and we have> ¢'. We shall show that’ computeg’.

(a) We need to showop,s’ = "t'7. By definition ofs’, we havetop,s’ = (topys)<y,v, i.€. topys’ is the
prefix of the 1-stackop,s - regarded as a sequence - up to and including the occurrengedetcribed
above, extended by. By induction hypothesis (a) we havep,s = "t". Thus

topys’ = Tt <y = Tty v ="t
as required (the second equation holds becayswpears int™).
(b) We haves’ = sv and? = #v. Sinces = £ by induction hypothesis (b), we hage= ¢'.

(c) Because the top 1-stack dfis (a copy of) a prefix ofop,s extended withv, we can simply appeal to
the induction hypothesis (c).

(d) For the same reason as above, (d) holds for all linksjns’ except (possibly) the single new link. Let
o’ be the(n — [)-stack pointed at from. Then we have’, = s. Because = t__, ands computes;, (d)
also holds for the new link.

2. Casd > 1 andj > 0. Suppose the label af is the ordertvariabley;, which is theith item of the listz.

By induction hypothesis (ii) and definition of a travergahas the following shape:



Further, the variable) has the same type agp, which (say) is of ordet’. It follows that!’ > [ and, conse-
quently,l’ > 1. By induction hypotheses (i) and (iij,has the following shape

§ = [ eeeeeees [ oo [ rugeeu] 1---]
top 1-stack ofs

top (n — 1)-stack ofs

whereinu; has a link to somén — [’)-stacko. Sincel’ > [, the (n — I’)-stackeo is embedded in the top
(n — [)-stack ofs (Lemma 6), as indicated by the figure above. Note that, by induction hypstiie3, s,
computes ., . In particular thetop,-element ofr must beu,.

Now, to see the structure sf, consider the operatiai{u). Letw = top,,_;,s. The operatiopush,,_;, s
pushes a copy ab on top ofs. The rest ob(u), namely,

pop!; collapse; pushfi(wpl)’"*lﬂ,

affects only the top (duplicate) copy of Applying pop! to push,,_;, s returns a stack that has as thetop -

element; the:ollapse-operation then reduces it to a stack that has a edifgay) ofo as its top(n — I')-stack,
i.e. itstop,-element isuy. The node that ipush,ed onto the top of the stack at the end of ftte)-operation
(to yield &) is thei-child of ug, which we shall calb. Observe that the structure dG) implies thatv must
then be labelled by (say) whose type is the same as thatsgfi.e. its order ig. Sinceuw is linked to the
(n — 1)-stackw, (i) is satisfied.

For (ii) lett = tv, wherev has an-pointer to the distinguished occurrenceugf ¢’ is then a traversal such
thatt > t’. We need to show that computeg’.

(@) Observe thatt'" = "ty upv = "t<y,, 'v. Sinces, computes ., , so doess,. Hence,top,s’ =

Ttew, v ="1".
<ui

(b) Observe that’ = sv and# = fv. Thus, by induction hypothesis, = #'.

(c) Sinces’, computeg,,, (c) holds.

(d) We only need to verify (d) for the new link (all other links satisfy (dyheses’, computes ;). Recall
thatv points at the stack. Sinces,, = s andt’_, = ¢, (d) holds becausecomputes.

3. Case = 0 andj = 0. Suppose:'s label is the ordef; variablez.

By induction hypothesis (ii) and the definition of a travergahust have the following shape:

1/0\ Ve T, N
t = “e e uO ul cee U
@ Ay T

Asin1.,"¢" has the shape - ug u; - - - © and the segmerithas lengttp + 1, wherep is the span of the variable

0
nodeu.

Consider the operatiofi(u) = pop’f“;pushf’i(to”l). Applying pop’frl to s returns a stack that has the
@-labelled node as thetop,-element. The node that jgish,ed onto the top of the stack at this point is the
i-child of ug, which we callv. It follows from the structure oA(G) thatv must be labelled by, i.e. its type
has ordef. Thus, since has no link, (i) follows as required.

For (ii) sett’ = tv, wherev has a pointer (labelled by to the occurrence afy indicated above. Thetlis
a traversal and we have> ¢’. We shall show that’ computeg’.
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(a) We need to showiop,s’ = "t'7. By definition of s, we havetopys’ = (top,ys)<y,v. By induction
hypothesis (ii), we haveop,s = "t. Thus

/ /
topys’ =Tt <y = Tty v ="1"

as required (the second equation holds becaysppears int").

(b) We haves' = (pop?™s)v and#’ = i<,,v. By induction hypothesis (iic)pop?'s computeg<,,, in

particularpop? s = i<,,. Thus, (b) holds.
(c) We simply appeal to the induction hypothesis (iic).
(d) Note that no new links have been created in this case, so it sufficppéalao the induction hypothesis
(iid).
4. Case = 0 andj > 0. Suppose the label of is the ordem variablez, which is theith item of the listp.

By induction hypothesis (ii) and definition of a travergahas the following shape:

Further, the variabl@ has the same type asp, which (say) is of ordet'. It follows that!’ > I. By induction
hypotheses (i) and (iix has the following shape
S _= [ ...... g[ulu]]

top 1-stack

whereinu, has a link to somén — I’)-stacko. Note that, by induction hypothesis (iid), computes_,,,. In
particular thetop, -element ofo must beuy.

Now, to understand what looks like, consider the operatiditu) = pop!; collapse; pushfi(“’pl). Apply-
ing pop! to s returns a stack that has as thetop,-element; thecollapse-operation then reduces it to a stack
that hass as its top(n — I')-stack, i.e. itstop,-element isug. The node that is thepush,ed onto the top of
the stack at the end of th¥wu)-operation (to yields') is thei-child of ug, which we shall calb. Observe that
the structure oA\ (G) implies thatv must then be labelled by. Sincev does not have a link, (i) is satisfied.

For (ii) lett’ = tv, wherev has an-pointer to the distinguished occurrenceugf ¢’ is then a traversal such
thatt > ¢’. We need to show that computes’.
(a) Observe thdtt'" = "t.,, 'v. Sinces, computeg.,,,, we havetopys’ = Tty v ="t

(b) Observe that’ = s,v andt’ = ¢_,,v. Again, sinces, computest,,, we haves, = ,, and (b)
follows.

(c) Becauss, computes.,,,, (c) holds.

(d) Again, it suffices to appeal to the fact thgtcomputes.,,,, because no new links have been created.

O
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Note that in the above proaf was constructed frond in a lock-step fashion. Moreover, observe that, when
the last node of a traversal is nobasymbol, traversals (as well as the corresponding rur@®A(G)) can

be extended in a unique way. Similarly, when the last node of a traversal-syabol f, both traversals and
the corresponding runs @PDA(G) can be extended iar( f) matching ways. Consequently, we have:

Corollary 8 Suppose computes. Thens andt are “bisimilar” with regard to — and > respectively:

(i) If s — s’ then there exists such thatt > ¢’ ands’ computeg’.

(i) If ¢ > ¢’ then there exists’ such thats — s’ ands’ computeg’.

Theorem 9 (Equi-Expressivity 2) For every ordera recursion schemé&’, CPDA(G) computes all paths in
the value tred G | generated by-.

6 Games over collapsible pushdown graphs

We are interested in solving parity games over collapsible pushdown graptve want to know whether one
can decide, for any position in such a gameElfise has a winning strategy from it, and if so, determine its
complexity. Anorder-n collapsible pushdown systeth(n-CPDS) is given by a quadruplé = (T', Q, A, qo)
wherelI is the stack alphabety is a finite state-setA C @ x I' x @ x Op, is the transition relation,
and ¢ is the initial state. Configurationsof an n-CPDS are pairs of the forrfy, s) whereq € @ ands

. , " : : 4
is ann-stack overl’. We define a one-step labelled transition relation of the CRDSvritten > where

!

0
¢ € @ x Op,, which is a family of binary relations over configurations, as folloWg:s) (q>) (¢, s") just
if we have(q, top; s,¢’,0) € A ands’ = 6(s). The initial configuration igqo, L,,). We can now define the
configuration graphof A: vertices are just the (reachable) configurations, and the edge ratatlmnrelation

¢ . , .
> restricted to the reachable configurations.

Example 6.1 Take the 2-CPD%S with state-set{ 0,1,2}, stack alphabefa,b, 1 } and transition relation
given by

(07 ) 17 t)’ (1? ] 07 CL), (]" ] 27 b)? (2’ 1-7 2’ 1)’ (27 T’ 07 0)
where— means any symbot, means any non- symbol, and, a, b, 0 and1 are shorthand for the stack opera-
tionspushs, pusha’z, pushb’Q, collapse andpop, respectively. We present its configuration graph (with edges
labelled by stack operations only) as follows:
—0m  —>om al

orl =100 dl o]l —>0M[ all aal]l_—>10[ a]l adal ad]]
b

200 o]l ab]] 5 200 all aall aab]

1
200 o]l ad]l aal]
1

200 o]l o]l
1

2[00 «J0] 200 o]l adll o]
1

200 o]l adlll]

We use collapsible pushdovaysten{as opposed tautomato) whenever the device is used to generate a graph.
5This is inspired by an example in [6].
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LetG = (V, E') denote the configuration graph.df let Qg UQ A be a partition of andlet? : Q — C C N

be a colouring function. Altogether they define a partitighu Va of V whereby a vertex belongs g iff

its control state belongs @x, and a colouring functiof? : V. — C where a vertex is assigned the colour
of its control state. The structuge= (G, Vg, Va ) is ann-CPDS game grapland the pailG = (G, ) is an
n-CPDS parity game A play in G from the initial vertexvy = (qo, L) is defined as follow: the player that
controlsyg (Elo'l'se ifvg € Vg or Abelard otherwise) moves a token fragto some neighbour;, (we assume
here thatz has no dead-end), then the player that controls the token moves it to doeigh of v; and so on.

A play is therefore an infinite patiyo; - - - and is won byEloise iff lim inf( Q(v;) : ¢ > 0) is even. Finallypg

is winning for a player if he has a winning strategy from it. See [25, 28f@7inore details.

In this section we consider the following problem:
(P,) Given ann-CPDS parity game decide ffloise has a winning strategy from the initial configuration.

From the well-known techniques of [11], it follows that (i) Problel | is polynomially equivalent to Problems
(P2) and (P3) in the following; and (ii) ProblemR,) is equivalent to ProblenR,) — the reduction fromR;)
to (P,) is polynomial, but non-elementary one in the other direction :

(P2) Given anmn-CPDS graphz, and a mu-calculus formula, doesp hold at the initial configuration ofr?
(P3) Given an alternating parity tree automaton an@PDS graphG, does it accept the unravelling 6f?

(P4) Given an MSO formula and am-CPDS graphz, doesy holds at the root of the unravelling 6f?

An useful fact is that the unravelling of anCPDS graph is actually generated byra&PDA (one mainly
has to note that putting labels on the edges makes4BEDS grapldeterministicand hence its unravelling as
desired).

Lemma 10 Let A = (T',Q, A, g0 ) be somen-CPDS and let be its configuration graph. Then letbe
the tree obtained by unravelling and by labeling every node by control state ang; stack element of the
corresponding configuration i&'. Thent is generated by an-CPDA of polynomial size in the one 4f

Proof Consider the following:-CPDA A" = (X, T, Q’, 4, qo ) where we set:

o Trans ={(¢,0) | Ip € Q, a € I's.t.(p,a,q,0) € A} is the set of all transitions that can be applied in
A.

e Q' =QUTrans

e ¥ = @ x I'is the set of shapes (here are do not care of the link) and the arfity of € > is |{(¢, 0) |
(¢,a,q',0) € A}|.

e For everyg Q! and every: © T, 5(Q7 (1) = ((q7 a)? (Q1791)a Tty (qka ek)) Where{(‘]la 01)7 Ty (qka ek)} =
{(que) ‘ <Q7a7q/70) E A}

e Forevery(q,0) € Trans, and everys € ', 6((q, 0),a) = (¢,0).

Then one easily checks thdt generates. O
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An important consequence of the Equi-Expressivity Theorem is the filgpw

Theorem 11 Lett be a tree generated by an orderrecursion scheme. Consider the following problems:

(P%) Givent and a modal mu-calculus formula, doesp hold at the root of?
(P%) Givent and an alternating parity tree automaton, does the automaton a¢@ept

(P)) Givent and an MSO formula, doesy hold at the root of?
Then problen{P;) is polynomially equivalent to proble(®;) for everyi = 2,3, 4.

Since the modal Mu-calculus model checking problem for trees genebstédigher-order) recursion
schemes is decidable [20], we obtain the following as an immediate consequenc

Theorem 12 Problems(P;) — (P,) are decidable with complexity-EXPTIME complete.

Hence the Equi-Expressivity Theorem is a powerful tool to transfeiddéility properties from recur-
sion schemes to CPDS. Another remarkable consequence is that it gisis tew techniques for model-
checking or solving games played on infinite structure generated by autoiaparticular it leads to new
proofs/optimal algorithms for the special cases that were considereidyusty [26, 3, 16]. Conversely, as the
Equi-Expressivity Theorem works in both directions, one can note thaltiéion of problen{P) would give a
new proof of the decidability of probleni®;)—(P;), and would give a new approach to problems on recursion
schemes.

Actually, the techniques of [26, 16] can be generalized to seh@PDS parity games without referring to
[20]. Further it gives effective winning strategies for the winning ptgy¢hich was not the case in [16] where
the special case = 2 was considered).

Theorem 13 Solving ann-CPDS parity game is-EXPTIME complete and it can be achieved without appeal-
ing to a translation to recursion schemes and to the decidability result in [R0¢reover, one can build an
n-CPDA with output that realizes a winning strategy for the winning player.

The next section is devoted to the proof of Theorem 13

6.1 Solving games over collapsible pushdown games: a dirqmioof

We an orderm collapsible pushdown systefh= (I', Q, A), a partitionQg UQ a of Q and a colouring function
Q:Q — C C N. We denote by = (V, E) the transition graph oP, by G = (G, Vg, Va) the game graph
associated with the previous partition@f and byG = (G, 2) the parity game ofP induced by the previous
colouring function.

In this section, we give a proof of Theorem 1%. we explain how to solve the parity gantedefined
from P. Here, we only focus on deciding the winner from a configuration of &mnf(p;,, L), that is a
configuration with an empty stack. Then it is easy to solve the game from anfigetion. Indeed if one
wants to decide for some configuratign o) € V, it suffices to construct a nem+CPDS that mimic$ excepts
that from its initial configuration it starts by reaching configuratipno) and only when this has happens the
simulation of P starts. Thereforép, o) is winning for the same player i& and in the (naturally defined) new
n-CPDS game. Note that this reduction is linear in the size of Boéimd in the length ofp, o).
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The section is organized as follows. We start by giving a general mverf the proof. Then we prove
a technical result (Lemma 14) which allows to restrict our attention to a spetiafis ofn-CPDS (collapse
rank-aware CPDS). For this class, we provide a reduction of-&PDS game to afn — 1)-CPDS games,
which allows to conclude using an inductive argument.

Overview of the proof and preliminaries

We follow the general approach of [26] and [16]. In [26], in ordestdve a pushdown parity game, one builds
a simulation game that is played on a finite game graph and is equipped with a pedjian. Then one
proves that a configuration in the pushdown game is winning'Efo'ise iff a corresponding configuration is
winning for her in the simulation game. Moreover from a winning strategy in ithhelation game, one can
built a winning strategy in the pushdown game. The increase of memory r@sihe use of a stack. In
[16] the authors consider parity gamesBEPDS® and mostly adapt the construction of [26]. To handle the
collapse actions, they need to make the CR&x aware Assume that the play is in some configuration
where collapse may be applied. Applying collapse leads to some configuratiamnd the stack content il
has already appeared befere the play. Thecollapse ancestoof v is the latest configuration in the play with
this stack content. A CPDS is rank aware (to be defined formally) if the tog sjewbol contains theollapse
rank which is the minimal rank of a state occurring between the collapse ancestm afirrent configuration
and the current configuration. Now solvin@#&PDS game when th2CPDS is rank aware, can be done by
adaptingthe reduction in [26] (now the simulation game is no longer played on a finitdhdrapcan still be
solved). Let us mention an important point here. In [16], the authongegrthe following: if one player win
the2-CPDS game then he wins the simulation game. Hence this proves the equévaldioth games but do
not provide a way to build a strategy in theCPDS game.

Here, we extend the result of [16] t6CPDS parity game for any. Moreover, from our proof, we can
effectively build winning strategies in theeCPDS game. The proof works by induction on Note that the
special case whene = 1 is the one of parity pushdown game studied in [26].

What follows do not rely on a specific representation of the links and fibrereve do not make it more
precise.

We start with some definitions adapted from the one introduced in [16].

Definition 6.2 Consider a partial play in G ending in a configuratiofy, s) such thatop; (s) has an-link.
Hence there is in\ at least one configuration of the forfy/, collapse(s)) for someq’ € Q. Then the closest
to (g, s) is called thecollapse ancestoof (¢, s). Thecollapse rankof (g, s) is the minimal colour of a state
occurring inA between the panic ancestor(ef s) and(q, s). Note that these notions are not definetbi; (s)
has ank-link for somek < n: indeed it may happen that no configuration of the fdghcollapse(s)) was
visited in A, and therefore the collapse ancestor notion can not be adapted.

Definition 6.3 An n-CPDS equipped with a colouring functiondsllapse rank-awaréf there exists a func-
tion ColRk : I' — N such that, when defined, the collapse rank of every configurdtios) is equal to
ColRk(topi(s)). In other words, the collapse rank is stored inthe, -element of the stack.

We also introduce a notion of ancestor.

Definition 6.4 Consider a playA = wv1v2--- in G and consider that we attach to eveérstack (for any
1 <k < (n—1))anidentifier (which is an integer) as follows: ipash; operation is applied at configuration

15They use the terminologyanic automatanstead of collapsible pushdown automata.

38



v IN A, the top(k — 1)-stack of configuration,,, 1 is assigned identifiet:, and all identifiers for thg-stacks
for j < (k—1) in this new top(k — 1)-stack are copied from the former top— 1)-stack. Now, fo2 < k <n
the k-ancestorof some configuration in A is the configuratiom,, wherem is the identifier ofv’s top (k — 1)-
stack, and théevel rank fork is the minimal colour of a state occurring sbetween théx — 1)-ancestor ob
andv.

Example 6.5 In the following (order3) example, we assume that the colouwgfs i, and the identifiej of a
stack[ ---] is denoted by ---] ;. Starting fromv; = [[[] o] o] , consider the following sequence of stack
actions:

M ol ol -
M ob ol -
P oaD] 1] 4] -
pushs M ol a®Y]11ol of a®Y]1] 5] -
pushs M0 ol a®Y1aloll of a®Y]1[a®V]4]s] = wvs

Then the2-ancestor ofs is v4 and hence the level rank farof vs is 4. The3-ancestor obs is v3 and the level
rank for3 of v5 is therefore3. The2 ancestor ot is v; and therefore the level rank farof vy is 1.

We show, as in [16, Lemma 6.3], that we can restrict our attention to CPDSsgahexe the underlying
CPDS is collapse rank-aware.

Lemma 14 For anyn-CPDSP and any parity gam& on it, one can construct a collapse rank-awarCPDS
P’ and an associated parity gani& such thatEloise has a winning strategy i& from some configuration
(pin, Ly iff she has a winning strategy i&’ from the same configuration.

Proof

The proof is an non-trivial adaptation of the one of [16, Lemma 6.3] to theige setting ofn-CPDS
(instead oR2-CPDS).

Fix ann-CPDSP = (I', @, A), a partitionQg U Qa of @ and a colouring functiof? : Q@ — C C
N. Denote byG the induced parity game. We define a collapse rank-aware (to be proveRDSP’ =
I, Q', A"y such that) ¢ Q" andI” =T x C x C{%-n} x ¢{2--n} A configuration(q, s) of P’ with its
top1(s) = (a, me, T, Toq) having a(k + 1)-link will satisfy the following.

e m. is the minimal colour seen since tleancestor of the:-stack pointed to by thék + 1)-link. In
particular, when the link is an-link, equivalently when the collapse rank is defined, will be the
collapse rank: indeed thg: — 1)-stack pointed by the-link is such that its:-ancestor is exactly the
collapse ancestor of the current configuration and hencis the smallest colour seen since the collapse
ancestor. By abuse of notation, we designate in the segueak thecollapse rank

e 7 isthelevel rank that is, for anyi = 2,--- | n, 7(7) is the level rank fos.

e 7,4 is such thatr,q(k) = h whereh = 7/(k) with top: (popi(s)) = (a',m], 7', 7.,,) if exists and
otherwise may be anj. In other wordr,4(k) gives the level rank fok for the (k — 1)-stack just
above the current one. Note thg}, is introduced here only for technical reasons and is actually easy to
maintain (one has to care only when pushing).
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The transition relation oP’ mimics the one of” and updates the ranks as explained below.

In order to save space and to make the construction more understandahide, not describe formally
A’ but explain howP’ is supposed to behave. It should be clear thatan be formally described to fit this
informal description (and that some extra control states are needeth.al¢o that the following description
contains also the inductive proof of its validity, namely that + andr,;; are as stated above.

AssumeP’ is in some configuratiofg, s) with top1(s) = (a, me, 7, 7,4). The following behaviours are
those allowed in such a configuration.

1. Forevery(q,a,q,popr) € Awith1 < k < n, letpopi(s) = s’ and lettop,(s') = (a’,m,, 7", 7.;,).
ThenP’ can go to the configuratioty’, s”) wheres” is obtained froms’ by replacingtop;(s’) by
(o', min(m/, 7(k),q")), 7", 7.,,), with

) — {min(T’(i),T(k‘),Q(q’)) if i <k

min(7(4),2(q")) if i >k

Indeed the play since this move was ending by a sequénce;)(q2, s2) - - - (¢, s) (here the dots are
for intermediate configurations that have no importance for the currgatreant) wheregs, s2) is the
k-ancestor of g, s) and was reached frofig;, s1) by applying apush; move, andopy(s1) = topi(s’),
which in particular means thé#;, s;) and(¢/, s’) have the saméancestors foi < k and thatop; (s1)
andtop; (s’) are equal and point to two respectiVe— 1)-stacks (for somé) that both have the sante
ancestor. Hence, the collapse rankgh s’) being the smallest colour since theancestor of the pointed
(h—1)-stack it is equal to the minimum of the collapse rankdn s;) (namelym..) with Q(¢’) and with
the minimal colour visited iffg, s2) - - - (¢, s), which is (as(¢2, s2) is thek-ancestor of g, s)) equal to
7(k). Hence the collapse rankisin(m., 7(k), (¢")).
Now the level rank if{¢’, s") for somei < k being the smallest colour seen since#ancestor of¢’, s),
and thisi-ancestor being the same as(in, s1), the level rank is the minimum of the level rank for
in (q1,s1) (namely7’(4)) with ©2(¢") and with the minimal colour visited i(g2, s2) - - - (¢, s) (namely
7(k)). Hence itis equal tenin(7'(2), 7(k), Q2(¢")).
Thei-ancestor of ¢, s’) for some; > k equals the-ancestor ofq, s), and hence the level rank fohas
to be simply updated from the one (g, s) (namely7 (7)) by taking the minimum witi2(¢).
Finally the7/, , information needs not to be updated.

2. Forevery(q, a,q',push;) € Awith 2 < j < n, letpush;(s) = s' and thertop:(s') = (a, me, T, To1d)-
ThenP’ can go to the configuratiofy’, s”) wheres” is obtained froms’ when replacingop; (s’) by
(@, min(me, Q(q")), 7', 7},;) with 7/(7) = min(7(7), Q(¢")) if i # j and7'(j) = Q(¢'), and7),,(i) =
To1a(1) if i # j andr),,(5) = 7(j).

Indeed, in the new configuration, theancestor of théh — 1)-stack pointed byop; (s’) (for someh) is

the same as the-ancestor of théh — 1)-stack pointed byop; (s) and hence the collapse rank simply
needs to be updated by taking the minimum of the former one (namgjywith the current colour
(namelyQ(q")).

Now, thei-ancestors for any # j in (¢q,s) and (¢, s’) are the same and therefore the level rank for
i simply needs to be updated by taking the minimum of the former one (nani@lywith the current
colour (namely2(¢)).

The j-ancestor of ¢/, ') is (¢, s), and hence the level rank fgiin (¢, s') equals2(¢’).

Finally, one hasop: (popi(s)) = topi(popi(s")) for everyi # j and therefore’, (i) = 7,4(7) gives the
correct value, and asp; (pop;(s')) = (a, me, 7, To4), ONE Must set’, () = 7(j).

(bvm,cv’r/?‘r(/;ld)

3. Forevery(q,a,q,pusht ;) € Awith 1 <k < n,andb € (I'\ {L}), thenP" apply push
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wherem,, = min(7,4(k), 7(k), 2(¢")), 7' (i) = min(7(3),2(¢")) for everyi and7,,(i) = 74(i) for
everyi.

In order to define the correct value for, one needs to consider the minimal colour sincektlacestor

of the (k — 1)-stack pointed by the neilink. The play since the last move was ending by a sequence of
the form(qy,s1) - - - (g2, 52) (g3, 53) - - - (g, s) (here the dots are for intermediate configurations that have
no importance for the current argument) wheége, s;) is the k-ancestor of thék — 1) stack pointed

by the new link,(gs, s3) is thek-ancestor of g, s) and therefore the move frofge, s2) is apush one.
Moreover it is easily checked thatpy(s2) = topr(popi(s)) and therefordop (s2) = topi(popk(s)).
Hence,r,4(k) is the level rank folk in (g2, s2). Now note that the smallest colour visited sir{ge, s3)

is by definition the level rank fok in (¢, s) (namelyr(k)) and therefore the correct value for. is

the minimum of the minimum betweey;, s;) and (g2, s2) with the minimum betweertqgs, s3) and
(q,s) and Q(¢’), that ism! = min(r,4(k),7(k),Q(¢")). Note that herer,4(k) makes sense as if
topi (popr(s)) is not defined it would means thadpy, (s) would be empty and thqmsh’i ;. Is not allowed
(there is nak — 1)-stack to target). 7

Then thei-ancestors for all in (¢, s) and(q/, s’) are the same and therefore the level rankifsimply
needs to be updated by taking the minimum of the former one (nanté}y with the current colour
(namelyQ(¢')).

Finally, one hagop:(pop;(s)) = topi(pop;(s’)) for everyi and therefore”’, (i) = 7,4(i) gives the
correct value.

4. Forevery(q,a,q, collapse) € A, letcollapse(s) = s' and lettop; (s") = (a/, m., 7/, 7514). ThenP’ can
go to the configuratiorly’, s”) wheres” is obtained froms’ by replacingtop; (s’) by
(o', min(m/,, me, Q(¢")), 7", 7.,,) with 77 (i) = min(7' (i), m, Q(¢")) for everyi.

Indeed the play since the last move (nameljlapse) was ending by a sequence of the form

(q1,81) - (q2,82)(qs3,83) - - - (g, s) (here the dots are for intermediate configurations that have no im-
portance for the current argument) whée, s,) is the k-ancestor of thék — 1)-stack pointed by the
k-link in the top symbol of(q, s), (g2, s2) is such thatopy,(s2) = topi(s’) and(qs, s3) is reached from
(g2, s2) by apush; move. Consider the ancestor for(¢/, s’): it is the same than the one {2, s2)

and therefore the minimum colour seen sincesthacestor is the minimum colour of the one seen since
the i-ancestor in(gs, s2) (namely7’(7)) of the minimum colour visited sincgys, s3) and of Q(¢’). As

m. is the minimum colour sincéy;, s1) and as theé-ancestor of¢’, s') must appear beforgy, s1) the
previous minimum is the same asn(7/(¢), m., (¢)).

Using exactly the same arguments, one deduces that the collapse fenk'inequalanin(m”,, m., Q(¢’)).
Finally ther/, , information needs not to be updated.

From the previous description (and the included inductive proof) welade thatP’ is collapse rank-
aware.

Now, in order to conclude the proof of Lemma 14, one considers the panite@’” on P” defined using
the same partition as the frof (the control state of)’ \ @ inducing configurations with exactly one successor
can be controlled by any player), and extendingp Q' by assigning the maximal colour to statesih\ @
(hence not modifying the winner). For this game, it should then be cleawthhtive the desired property]

Remark 6.6 Note that building a collapse rank-awateCPDS from a non-aware one increases the stack al-
phabet byC?"+1 and the state set by” (recall that we need extra states, that where hidden in the previous
description, mainly to store)
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Main reduction

In order to solve CPDS parity games, we give a reduction that built from@RDS parity gamé anequiva-
lent (n — 1)-CPDS parity gamé&:. By equivalent we mean the following.

1. A configuration(pin, L) is winning forElaise inG iff (Plys Ln—1) is winning forEloise inG, wherep/,
depends omi, (and can be easily constructed);

2. From a winning strategy fdEloise from(pin, Ly,) in G, one can deduce a strategy for herGrfrom
(pi/nv J—nfl);

3. From a winning strategy fdEloise from(pi,, Ln—1) In G, one careffectively construct a strategy for
her inG from (pin, L);

Note the last two points implies the first one, and our proof will actually estatiieste two points. Also
note that we get a similar statement for Abelard, by considering the gamediéfjrthe colouring functiof’
where we sef)’(v) = Q(v) + 1 for every state vertex in the game graph.

Also note that the last point is effective. Hence, applying inductively dueiction will give an effective
construction of strategies for both players inrelCPDS game. This was not the case in the prooRf@PDS
game in [16].

The reduction we present belowe the description o@) can be though as a generalization of those
presented in [26] and in [16]. The proof generalizes the one in [2&]pantially (for the easy implication) the
one in [16].

From now on we fix a collapse rank-awateCPDSP = (I',Q,A), a partitionQg U Qa of Q and a

colouring function(2 : @ — C = {0,...,d}. The mapping computing the collapse rank is dendtedRk.
By G, we denote the implied parity game, and we fix an initial configuratign L ,,).

For a configurationn = (g, s) of P, we define itsstack heightsh(v) to be length ofs seen as an-stack.
More preciselysh(v) is such that = [s1 - - - 544()]-

For an infinite playA = wvguv; - - -, let Steps, be the set of indices of positions where no configuration of
strictly smaller stack height is visited later in the play. More forma$ligps, = {i € N | Vj > i sh(v;) >
sh(v;)}. Note thatSteps , is always infinite and hence induces a decomposition of the/plajo finite pieces.

For all pair(z, j) € Steps,, with i # j and such that there is rlo€ Steps, such that < k& < j, we define
meol(i,7) = min{Q(vg) | ¢ < k < j}and
S if sh(vj) = sh(v;) + 1
B if sh(vj) = sh(v;)

kind(i,5) = {

In the factorization induced b§teps ,, a factorv; - - - v; will be called abumpif kind(i, j) = B, and will
be called &tair if kind(i, j) = S. Abumpw; - - - v; wherej =i + 1 is called atrivial bump.

For any playA with Steps, = {no < n1 < ---}, one defines the sequendescol?);>o € CN where
mcoll* = mcol(ni, ni11) and(kind?))i>o € {B, S} wherekind} = kind(n;,ni1).

The sequencéncol’);>q fully characterizes the parity condition.

Proposition 15 For a play A the following equivalences holdk is winning forEloise ifflim inf((mcol)i>0)
is even.

42



The main ideato solv& is to build an(n—1)-CPDS parity gamé played on a game gra@defined by an
exponentially largefn — 1)-CPDS with the same set of colours. This new gamngulateghe pushdown game,
in the sense that the sequences of visited colours during a correct simyi&tioare exactly the sequences
(mcolf\)izo for plays A in the original game. Moreover, a play in which a player does not corrsitiylate
then-CPDS game is loosing for that player.

Before providing a description of the game graﬁihet us consider the following informal description of
this simulation game.

In this simulation game, the players only recall @n— 1)-stack with some extra information. Such an
(n — 1)-stack aims at simulate a configuration@nwhose top(n — 1) is that stack.

The most interesting case is when, simulating a configuratiatith a control state) and a top(n — 1)-
stacks, the player owning wants to apply a transitiopush,, and change the control state ¢o For every
strategy ofEloise, there is a (possibly empty) set of possible finite continuations of the @awihend with
returning to a configuration with the same stack content as the andfithis happens, it means that eventually
a configuration with stack height equaldb(v) is reached. Hence, in the simulation galleise, is required to
declare a vectoR = (Ro, ..., Rq) of (d+1) subsets iR%, whereR; is the set of all states the game can be in
when coming back to a configuration with stack heightv) along these plays where in addition the smallest
visited colour while the stack height is greater thav) is .

Then Abelard has two options. He can continue the game by simulatipg g transition and update the
control state (we call this pursuemove). Otherwise, he can pick a getand a state € R;, and continue the
simulation from that state (we call this gjump move). If he does a pursue move, the players now remember
the vectorR claimed byEloise; if, later on, aop,, transition is simulated, a special configuration is reached
whereElaise wins if and only if the resulting state is i), wherek is the smallest colour seen since the stack
height was greater tha(v) (this information is encoded in the control state, reset after each pursteeand
updated after each jump move. If Abelard does a jump move to assilat®;, the currently stored value far
is updated tanin(, 7, 2(r)), which is the smallest colour seen since the current stack level wasdach

Now we discuss the other kinds of transitions, includingapse, that can be simulated.

e pushy, popy, or push{ ;. for somek < n and some: € I': the simulation is an exact one and hends
modifies and the control state is updates.

e collapse if the top; symbol has &-link for somek < n: the simulation is an exact one and hence
modifiess and updates the control state.

e push{ ,: in this case as we only recall & — 1)-stack there is no meaning of putting adink. Hence
instead we apply a rutmshﬁm, whereR is the last vector declared Btoise (it is stored in the control
state and easily retrieved). The idea behind this is that, if one simulatg&@se from this new stack
content, then the play is returning to the previous stack height, and headsserio check whether the
vectorﬁ, thatEloise claimed to describe the possible behaviours on returning to the pretdaolisevel,
was correct with respect to this collapse (see below). We equip this symithad 1-link but actually we
will never allow to apply collapse from it so one could consider that we ddvaee a link at all here (but
we did not formally allow this in our definition of CPDS).

e collapse if the top; symbol simulates one with anlink, equivalently is of the fornfa, Z_?f): in this case
we check whether the new control stateeached when applyingliapse belongs toR ¢, rr (. (recall
that then-CPDSP is collapse rank aware and th@bl Rk computes this rank i®). If it is the case,
Eloise wins, otherwise Abelard does.
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V(g,0) € Alp,a) s.t. _,
top1(s) = aor (a, S) andé = pushy, or popy, Orpush iwbel k<n; .
ortopi(s) = a andf = collapse Y (q, push? n) € A(p,a) with topy(s) = a or (a, S)

(¢.0(s), R, min(k, Q(q))) (q, pushy R)(5), 7, min(x, 2(q)))

If 3 (r popn € Alp ,aLs.t. r¢ R,
If 3 (r,popn) € A(p,a) st.r € Ry andtop;(s) = a or (a, S)

andtop; (s) = a or (a, ?)
or ”5

If 3 (r, (o[lapée €/ A(p,a) s.t.r & Scoirk(a)

If 3 (r, collapse) 2A(p a)s.t.re S(vole(u) andtop: (s )
andtop;(s) = (a, S)
Y (q, pushy,) € A(p,a )H
(.5 R andtop;(s) = aor (a, S)
VT € P(Q)™H!
(p.s, R.rq
/ 1
=1 - . .
(g8, T,q)) (t,s, R,min(k,i,$(t)))
VteT;

Figure 9: Local structure af.

Therefore the main vertices of the simulation game graph are configurafitmesform (p, s, ﬁ, k) where
sis an(n — 1)-stack on the alphab&tu (T' x P(Q)4*!) and they are controlled by the player that contyols
Intermediate configurations are used to handle the previously describem@diate steps. The local structure
is given in Figure 9 (circled vertices are those controllecEbyise). Two special vertice and ff are used
to simulatepop,, moves anccollapse moves from configurations with am-link on theirtop; symbol. Here
verticestt and ff are designed so that the player that controls it looses a game that reaches vertex: for
this, tt is assigned an even colour whifgis assigned an odd colour, and both vertices have a loop on them and
no other outgoing edge.

The simulation game graph is equipped with a colouring function on the verticesrethe edges: vertices
of the form(p, s, ]—f, k) have colour)(p), and an edge leaving from a vertéx s, I—wf, K, q, 7) has a colour
in {0,...,d} only if it simulates a bump (the colour isiff the bump has coloui). It is easily seen that
intermediate vertices can be introduced to have only colours on verticesecis@ description of the graph is
given in the detailed proof of the following main result. The simulation parity gardensteds.

Theorem 16 Aconflguratlor(pm, )|SW|nn|ngforEIO|se|nG ifand only if(pin, Ln—1,(9,...,9),2pin))
is winning forEloise inG. Moreover the gam& is an(n — 1)-CPDS parity game.

Proof of Theorem 16

We start with a precise description @fand with some extra definitions. Then we give a full proof of Theorem
16



The game graph§ Let us first precisely describe the game graﬁah As what follows is only a formal
definition of the graph represented in Figure 9, one could skip this or oefg in case the figure is not clear
enough.

e The main vertices of are those of the fornip, s, ]_%>, k), Wwherep € @, sis any(n — 1)-stack (with
_>
links) on the stack alphab&tu (T' x P(Q)%*!), R = (Ry, ..., Rq) € P(Q)¥ ' andx € {0,...,d}. A
—
vertex(p, s, R, ) is reached when simulating a partial playn G such that:

— The last vertex i\ has control statg and its top(n — 1)-stacks’ is such thatr(s')=v(s) where
7(s") denotes the stack obtained frofrby replacing every.-link by a 1-link and v (s) is the stack

obtained froms by replacing every symbdty, ?) by v (and by preserving the link structure). This
roughly means that ands’ are very slightly different representations of a same stack.

— Eloise claimed that she has a strategy to contiftia such a way that if is eventually popped
(by apop,, action), the control state reached after poppinigelongs toR,,,, wherem denotes the
minimal colour visited since the current stack height (ofthgtack) was reached.

— The colourk is the smallest one since the current stack height was reached fromrastaaielevel.

— Moreover, iftop;(s) is of the form(a, ?) then thetop, symbol of the last vertex itk has ann-
linked and ifcollapse is applied in the next move in thenEloise claimed that the control state of
the configuration that is reached belongstownherek is the collapse rank.e. £ = Col Rk(a).

A vertex(p, s, Tf, r) is controlled byEloise if and only ifp € Qg.

e \erticestt and ff are there to ensure the correctness of the vedibencoded in the main vertices and
of the vectorsS encoded in the stack for symbols of the fofm ?). Vertextt is controlled by Abelard,
whereas vertex of the fornf belongs toEloise. There is a loop on each of these vertices and it is the
only edge from it. We assign an odd colour ffoand an even colour t: hence the player controlling
such a vertex is loosing.

There is a transition from some vertgx s, 1—%, k) tott, if and only if one of the two cases happens:
— topi(s) = a or (a, ?) and there is a transition rule, pop,) € A(p,a) such that- € R, (this
—
means thatR is correct with respect to this transition rule).
— topi(s) = (a,?) and there is a transition rule, collapse) € A(p,a) such that € Scoiri(a)

(this means thalS is correct with respect to this transition rule).

Symmetrically, there is a transition from a ver{ex s, ]_f, ) to vertexff if and only one of the two cases
happens:

— topi(s) = a or (a, ?) and there is a transition rule, pop,,) € A(p, ) such thatr ¢ R, (this
—
means thatR is not correct with respect to this transition rule).
— topi(s) = (a,?) and there is a transition rul@, collapse) € A(p,a) such thatr ¢ Scirk(a)
(this means thalS is not correct with respect to this transition rule).

¢ To simulate a transition rule that does not remove the topimost 1)-stack, one only has to update the
control state, the componentand apply the corresponding transformation on the stack. More precisely

— there is a transition tgg, 6(s), ﬁ,min(mQ(q))) if (¢,0) € A(p,a), topi(s) = a or (a,?) and
0 = pushy., popy, or push’ , for someb € T and some; < n.
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— there is a transition t@g, collapse(s), ]—f,min(ﬁ, Q(q))) if (g, collapse) € A(p,a) andtop;(s) =
a (this means that there iskalink for somek < n and hence the simulated collapse do not remove
the top(n — 1)-stack).

— there is a transition t(lq,pushgl:’lR)(s), ﬁ,min(ﬁ, Q(q))) if (q,pushlf’n) € A(p,a) andtop;(s) =

aor(a, ?), for someb € T'. In this case, as we only haye — 1)-stacks inG, we replace the-link
— ,
by a (dumb)i-link and annotate the symbbby the last vectotR claimed byEloise (if one wants

to simulate collapse far then the control state reached should be in a set describBdbacause
the stack level reached is the one just behind the current one).

e To simulate a transition rulg, push,,) € A(p, a), the player that control, s, ﬁ, k) goesin(p, s, ]_%), K, Q).
This vertex is controlled bfloise who has to give a vectdF = (To, ..., Ty) € P(Q)*! that de-
scribes the control states that can be reached if the play eventually catlesdbthe stack height
just left by performing thepush,, action. To describe this vector, she goes to the corresponding ver-
tex (p,s,]_%>,/<;, q,?).

The vertex(p, s, ]_%), K, q, ?) is controlled by Abelard who chooses either to simulate a bump or a stair.
In the first case, he additionally has to pick the minimal colour in this bump. To sienalaump with
—
minimal colouri, he goes to a verte, s, R, min(k, i, €2(t))), for somet € T;, through an edge coloured
by i.
To simulate a stair, Abelard goes to the vertexs, ?, Q(q)).

The last component (that stores the smallest colour seen since thetlgusignulated stack level was
reached) has to be updated in each of these cases. After simulating a bummgnoal colouri, the
minimal colour ismin(k, 7, $(s)). After simulating a stair, the colour has to be initialized (since a new
stack height is simulated). Its value, is thereftXg), which is the unique colour since the (new) stack
level was reached.

The only vertices that are coloured are those of the figrm, J_%g, ) and the colour of such a vertex(iXp).
Some edges are also coloured. See Figure 9 for details.

Remark 6.7 In the definition of parity games we were requiring to have a total colouringtion working
only on vertices. For this, one can add extra intermediate states and irgradhgov colour larger thanto fit
the definition without changing the issue of that game.

Finally the following fact is easily checked.
Property 17 The game grap@~ is generated by & — 1)-CPDS.

Proof It isimmediate. The only point to note is that the verti¢esnd ff can be simulated using a control state
where the CPDS is looping. O

Factorization of a play in G Recall that ing some edges are coloured. Hence, to represent a play, we have
to encode this information on edge colouring. A play will be representedsas|@ence of vertices together
with colours in{0, ..., d} that correspond to colours appearing on edges.

For any play inG, aroundis a factor between two visits through vertices of the f@gns, ]_%>, k). We have
the following possible forms for a round:
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e The round is of the fornfp, s, ]_%, k)(q,0(s), ]_%), min(k, 2(q))) and corresponds therefore to the simula-
tion of a trivial bump.

e Theround is of the forn(p, s, I_i, k)(p, s, ]_%f, K, q)(p, s, J_%f, Ky, ?)z’(t, s, ]_%), min(x, 4, $2(t))) and corre-
sponds therefore to the simulation of a rplesh,, followed by a sequence of moves that ends by coming
back to the former stack level. Moreover the minimal colour in this sequent®eés isi.

e The round is of the forn(p,s,ﬁ,m)(p,s,l_%),m, q)(p,s,]_%),/i,q, ?)i(q,s,?jﬁ(q)) and corresponds
therefore to the simulation of a ruteish,, leading to a new stack height below which the play will never
go. We designate it hasstair.

For any playA = vovivy - -+ in G, we consider the subset of indices corresponding to vertices of thre for
—_
(p,s, R, k). More precisely:

— —
Roundsy = {n € N| v, = (p,s, R,k), forsomep,s, R,x}
Therefore, the seRounds, induces a natural factorization afinto rounds.

Definition 6.8 (Rounds factorization) For a (possibly partial) playx = vgvivs - - -, we callrounds factoriza-
tion of \, the (possibly finite) sequence;);>o of rounds) defined as follows. LeRoundsy = {no < ni <
ng < ---}, thenforalld <i < |Roundsy|, \j = vp, -+~ Unyy -

Therefore, for every > 0, the first vertex im\; 1 equals the last one iky. MoreoverA = \{OA2GOA3G: - -,
where)\; ® \;4+1 denotes the concatenationgfwith A;; without its first vertex.

Finally, thecolour of a round is the smallest colour {0, . . ., d} appearing in the round.

In order to prove both implications of Theorem 16, we build from a winniratsty forEloise in one game
a winning strategy for her in the other game. The main argument to prove ¢haéthstrategy is winning is to
prove a correspondence between the factorizations of plays in bottsgame

Direct implication Assume that the configuratidm;,,, L) is winning forEloise inG, and let® be a corre-
sponding strategy for her.

Using @, we define a strategy for Eloise inG from (Piny Ln—1,(9,...,2),Q(pin)). Strategy® stores
a partial play inG, that is an element iv* (whereV denotes the set of vertices @j. This memory will be
denoted by\. At the beginning\ is initialized to the vertexp;,, L,,). We first describe, and then we explain
how A is updated. Both the strategyand the update of, are described for a round.

Choice of the move. Assume that the play is in some vertgx s, Tf, k) for p € Q. The move given by
 depends o (A):

o If ®(A) = (7, popn), thenEloise goes td: (Proposition 18 will prove that this move is always possible).

o If ®(A) = (r,collapse) andtop;(s) is of the form(a,?), thenElaise goes tat (Proposition 18 will
prove that this move is always possible).

o If ®(A) = (q,0), for somed = pushy, popy. Or pushlik with b € T"andk < n, or 6 = collapse and
top1(s) € T, thenElaise goes tdq, 6(s), R, min(x, (q))).
b - bR, N T
e If ®(A) = (¢,pushi ), thenEloise goes t(ﬁq,pfushL1 (s), R, min(k,Q(q)))-
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o If ®(A) = (g, pushy,), thenElaise goes tdp, s, ]_%), K, q).

In this last case, or in the case where QA and Abelard goes t(, s, ]_?j, K,q), we also have to explain
how Eloise behaves fronip, s, Ti),n, q). She has to provide a vectd ¢ P(Q)%*! that describes which
states can be reached if the play eventually comes back to the previouleigitk depending on the minimal
colour visited in the meantime. In order to defiﬁé she considers the set of all possible continuation of
A - (q,pushy(0)) (Where(p, o) denotes the last vertex df) where she respects her stratey For each
such play, she checks whether some configuration of the fera?) with sh(c’) = sh(o) is visited after
A - (q,pushy(0)), that is if the new togn — 1)-stack is eventually removed (note that it could be due either
to apop,, action either to aollapse). If it is the case, she considers the first such configurdtion’) and the
smallest coloui visited betweeriq, push,, (o)) (included) and s, ¢’) (excluded). For every € {0,...d}, T;
is exactly the set of statesse Q such that the preceding case happens. Finally, wé set (To, ..., T4) and
Eloise moves tdp, s, R Ky, T).

Update of A. The memoryA is updated after each visit to a vertex of the fdpms, ]_%>, k). We have three
cases depending on the kind of the round:

e The round is a trivial bump and therefore a transitigrd) wheref is of the formpushy, popx, pushl{ .
pushl{m or collapse was simulated. Letp, o) be the last vertex in\, then the updated memory is

A-(q,0(0)).

e The round is a bump. Therefore a bump of colowherei is the colour of the round) starting with
some transitior{q, push,,) and ending in a state € S; was simulated. Letp, o) be the last vertex in
A. Then the memory becomeésextended by(q, push, (o)) followed by a sequence of moves, where
Eloise respect®, that ends by some configuratien o’) with sh(c) = sh(o’) while havingi as smallest
colour. By definition ofS; such a sequence of moves always exists.

e The round is a stair and therefore we have simulated the transéitipnsh,,). If (p, o) denotes the last
vertex inA, then the updated memory As: (g, push,(o)).

Therefore, with any partial play in G in which Eloise respects her strategy is associated a partial play
A in G. An immediate induction shows th&toise respect® in A. The same arguments works for an infinite
play A, and the corresponding playis therefore infinite, starts frorfp;,, L,) and Eloise respect® in that
play. Therefore she wins if.

The following proposition is a direct consequence of howas defined.

Proposition 18 Let \ be a partial play inG that starts from(pin, Ln-1,(9,...,9),Q2(pin)), €nds in a vertex
— -

of the form(p, s, R, k), and whereEloise respect®. Let A be the play associated tobuilt by the strategyy.

Then the following holds:

1. A ends in a vertex of the foriip, o) wherer (top,, (o)) = v(s).’

2. k is the smallest visited colour i since the last configuration with a stack height strictly smaller than
sh(o).

3. Assume that is extended, thaloise keeps respectiriyand that the next move aftép, o) is to apply
a transition(r, pop,,). Thenr € R,..

Recall thatr(c’) denotes the stack obtained frarhby replacing every:-link by a 1-link andv(s) is the stack obtained from
by replacing every symbdly, S') by v (and by preserving the link structure).
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4. Assume that is extended, thaEloise keeps respecting, that the next move aft€p, o) is to apply a
transition (r, collapse) and thattop; (o) has ann-link. Thentop(s) = (a, S') andr € Scogi(a)-

Remark 6.9 Proposition 18 implies that the strategys well defined when it provides a movettoMoreover,
one can deduce that,Hloise respects, ff is never reached.

For infinite plays that do not reach using the definitions of and¢, we easily deduce the following
proposition.

Proposition 19 Let A be an infinite play inG that starts from(pin, Ln—1,(9,...,9), Qpin)), and where
Eloise respects. We additionally suppose thatnever reaches the verté#x Let A be the associated play built
by the strategy. Let(\;)i>o be the round factorization of. Then, for every > 1 the following hold:

1. \; is a bump if and only ikind® = B.

2. \; has colourmcol?.

Proposition 19 implies that for any infinite playin G starting from(p;,, Ln—1, (9, ..., 9),Q(pin)) Where
Eloise respects, if A never reachessthen the minimum colour infinitely often visited inis lim inf ((mcol2);>0)
for the corresponding plag in G. Hence, using Proposition 15 we conclude th& winning if and only ifA
is winning. AsA is winning forEloise, it follows that\ is also winning for her. Hence is a winning strategy
for Eloise, as any play where she respects it either reatlfand therefore satisfies the parity condition) or
satisfies the parity condition (by proposition 15 and 19).

Converse implication For the converse implication, one could adapt the proof of the direct implic&tio
show that if Abelard has a winning strategy(@he also has one ife. The construction is the same as for
Eloise except that now Abelard has to decide whether to do a pursue movpimpamove. For this he
computes his own Vectar’ (asEIoTse was doing in the previous construction) and checks for consisteticy w
the one F)) claimed byEIoTse: if they are consistenité. there is some € 7; N T for somez) he does a jump
move for thist, otherwise he does a pursue move. One can check that this strategyiisgafimmhim in G.

Here we give a different proof, that builts a winning strateg§tifrom one inG. This is more involved than
the proof sketched just above, but it has the major interest to providteantivee construction for strategies in
CPDS parity games.

Assume now thaE’Io'l'se has a winning strategyin G from (pin, Ln_1, (2, ..., ), Q(pin)). Usinge, we
build a strategyp for Eloise inG for plays starting fromipi,,, L).

Strategy® uses, as memory, ) stackll, to store the complete description of a play@n Recall here
that a play inG is represented as a sequence of vertices together with colo{is.in d}.

Therefore the stack alphabet Ofis the set of vertices of together with{0, ..., d}. In the following,
top(1I) will denote the top stack symbol &f while StCont(1I) will be the word obtained by readirig from
bottom to top (without considering the bottom-of-stack symbolldpf In any play where she respects
StCont(II) will be a play inG that starts from(p;,,, L,—1,(9,...,2),Q(pin)) and whereEloise respects her
winning strategyy. Moreover, for any play\ whereEloise respect®, we will always have thatop(II) =
(p, s, ﬁ, x) if and only if the current configuratiofp, o) is such thatr(top,(c)) = v(s). Finally, if Eloise
keeps respecting, and if the next move is to a configuration with a stack height smaller ¢h&n), then its
control state will be inz,; if the configuration is reached by applyingap,, action, and will be inSc; (a)

where(a, ?) = top1(s). Initially, IT only contains(pin, L,—1, (<, ..., 2), 2(pin)).
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In order to describ@, we assume that we are in some configuratjiamw) and thatop(II) = (p, s, ]_%), K).
We first describe howloise plays ifp € Qg, and then we explain how tHé is updated.

e Choice of the move Assume thap € Qg and thatEloise has to play from some vertéx o). For this,
she considers the value gfon StCont(IT).
If it is a move tott, she plays an actiofr, pop,,) for some state € R, if exists or she playr, collapse)
—_
for somer € Scipi(a) Wheretop: (s) = (a, S'). Lemma 20 will prove that such a move always exists.

If the move given byy is to go to some vertexq,e(s),ﬁ,min(;—e,Q(q))) with 6 = pushy, popy, or
push?vk for somek < n andb € T, she plays the transitiofg, 6).

If the move given byy is to go to some verteﬁq,pushl{:f(s), Z_f,min(m, Q(q))), then she applies the
transition(q, pushf ).

If the move given byp is to go to some vertefp, s, ]_i, K, q), thenEloise applies the transitidig, push,, ).

e Update of II. Assume that the last move, played Bipise or Abelard, was to go frortp, o) to some
configuration(r, o) with sh(c’) < sh(o) (i.e. the move was either pop,, or acollapse involving an
n-link).

— If the move is apop,, one, thenEloise pops inll until she finds some configuration of the form
—>

(v, 9, }?, ', p", R") that is not preceded by a colour{f, . .., d}. This configuration is therefore
in the stair that simulates the step where the stack levet) is reached. Eve updatékby pushing

x in II followed by (r, &/, E;, min(&’, k, Q(r))).
— If the move is acollapse one, then letl = sh(s) — sh(s’) (d denotes the decrease of the stack

height). TherEloise pops ifI until she finds some configuration of the fofpl, </, ]?, K, p", ]?)
that is not preceded by a colour {,...,d}. If d = 1 she stops otherwise she keeps popping
until she finds another such configuration (and so on until she fduseth configurations). Let

(', ¢, }_2;, K, p", J?) be thed-th such configuration (this configuration is therefore in the stair that
simulates the step where the stack levie{o’) was left). Eve updateH by pushingColRk(a),
—

where (a,?) = topi(s) in II followed by (r, s', R', min(x’, Col Rk(a),Q(r))). Note that we
actually haveR” = s,
Assume that the last move, played Ey)'l'se or Abelard, was to go frorfp, o) to some configuration
(q,0") with sh(c) = sh(c’): hence the simulated move(ig, ) for somef = pushy, popi, pushlik or
pushl{,n for somek < n andb € I'. ThenEloise updatesl by pushing(q,H(s),ﬁ,min(m,@(q))) if

0 # push'{m and(q,push(f’lR)(s), ]_f, min(x, 2(q))) otherwise.

Finally, assume that the last move, playedgise or Abelard, was to go froffp, o) to some configura-
tion (¢, o’) with sh(o’) = sh(o)+1, let(p, s, I—"f, K, q, ?) = @(StCont(11)- (p, s, ]—%>, K,q)). Intuitively,

'S describes which statéSoise can ensure to reach if a configuration with stack heifjft) is eventu-
ally reached (while not visiting a configuration of lower stack heigBtdise update$I by successively

pushing(p, s, &, %,q), (p, 5, B, %,q, S), and(g, 5, S, 0(q)).
The following lemma gives the meaning of the information stored.in

Lemma 20 Let A be a partial play inG, whereEloise respect®, that starts fromp;,,, L,,) and that ends in
a configuration(p, o). We have the following facts:
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1. top(Il) = (p, s, ]_%, k) with Re P(Q)H1,0 < 0 < dandn(top,_1(c)) = v(s).

2. StCont(I1) is a partial play inG that starts fron{pe,, L, (2, . .., @), Qpin)), that ends withp, s, ]_f, K)

s

and whereEloise respects.
3. k is the smallest colour visited since the stack height is greater or equalstian).

4. If Ais extended by some mofrepop,,), thenr € Ry.

5. If A is extended by some molrecollapse) and iftop; (o) has ann-link, thentop; (s) = (a, ?) and the
control state in the new configuration belongs%g,;rq)-

Proof The proof goes by induction oft. We first show that the fourth point is a consequence of the second
and third points. Assume that the next move aftero) is to apply an actiorir, pop,,). The second point
implies that(p, s, ]_%), k) IS winning forEloise inG. If p € Qg, by definition of®, there is some edge from that
vertex tott, which means that € Ry and allows us to conclude. }f € Qa, note that there is no edge from
(p, s, J_f, ) (winning position forEloise) to the loosing verte}. Hence we conclude the same way.

We now show that the fifth point is a consequence of the second and thirts p Assume that the next
move after(p, o) is to apply an actiorr, collapse) and that it involves am-link. The second point implies
that(p, s, ]—?:, x) is winning for Eloise inG. If p € Qg, by definition of®, there is some edge from that vertex
to #, which means that € Scqri(q) @nd allows us to conclude. if € Qa, note that there is no edge from

(p, s, Tf, ) (winning position forEloise) to the loosing verte}. Hence we conclude the same way.

Let us now prove the other points. For this, assume that the result iscoimvsome play\, and letA’ be
some extension of. We have several cases, depending on AbextendsA:

e A’ is obtained by applying a rule of typeishy., popy orpush’{ w forsomek < n, k' < nandb e T.
The result is trivial in that case.

e \’isobtained by applying evllapse rule involving ak-link for somek < n. The resultis also immediate
in this case.

e A\’ is obtained by applying aop, rule. Let(p,o) be the last configuration in, and let R be the
last vector intop(IT) when being in configuratiofp, o). By induction hypothesis, it follows that’ =
A - (r,0’) is such thatr € Ry. Considering howl is updated, and using the fourth point, we easily
deduce that the new strategy stdtks as desired.

e A’ is obtained by applying aollapse rule involving ann-link. Let (p, o) be the last configuration if,

and let(a, E’) betop; (II) when being in configuratiotp, o). By induction hypothesis, it follows that
A" = A - (s,0')is such thak € Scoprr(e). Considering how is updated, and using the fifth point, we
easily deduce that the new strategy stHcis as desired.

Now, the following result is an easy consequence of the previous lemma.

Lemma 21 Let A be a partial play inG starting from (pin, L,,) and whereEloise respectsh. Let A =
StCont(IT), wherell denotes the strategy stack in the last vertexiofLet (\;);—o,. » be the round fac-
torization of A. Then the following holds:

e )\; isabump if and only ikz‘ndiA is a bump.
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e )\ has colourmcol?.

Both lemmas 20 and 21 are for partial plays. A version for infinite plays walltdv to conclude. Let
A be an infinite play inG. We define an infinite version of by considering the limit of the stack contents
(StCont(Il;));>0 Wherell; is the strategy stack after thi¢h first moves inA. Itis easily seen that such a limit
exists, is infinite and corresponds to a play worétbty'l'se inG. Moreover the results of Lemma 21 apply.

Let A be a play inG with initial vertex (pin, Ln), and whereEloise respect®, and let\ be the associated
infinite play inG. In particular) is won byEloise. Thus, using Lemma 21 and Proposition 15, we conclude,
as in the direct implication, that is winning.

Complexity issues

The following Theorem gives the decidability and complexity bound of Téeot 3.
Theorem 22 Solving ann-CPDS parity game is an-EXPTIME complete problem.

Proof The proof is by induction om. Casen = 1 is the one of pushdown parity games [26]. Assume the
result holds fom — 1 and consider an-CPDS parity game give& by ann-CPDSP = (I', @, A) for some

n > 1. In afirst step one transfornisinto an equivalent game generated by a collapse rank-aw&DS. By
remark 6.6 this increases both the states set and the stack alphabettoy mf@d©" (C is the set of colors).
Then one solves the ganizand concludes. Solving can be achieved it — 1)-EXPTIME and the game

G is built from a CPDS with a states set of sp8(QIC1°™) and a stack alphabet of siz(|T|2/?lC|OM).
Hence solvings can be achieved in-EXPTIME.

Hardness follows from hardness for solving a parity game played ooradollapsible) higher order push-
down graph. A self content proof of this result was established by h{@achat and Igor Walukiewicz, but
was unfortunately not published.

Here we sketch another proof of this result that relies on the followingltreshecking emptiness of a
nondeterministic higher-order pushdown automaton of ordex an (n — 1)-EXPTIME complete problem
[12]. Trivially this result is still true if we assume that the input alphabet éaiced to a single letter. The
following result is also proved in [12]: checking emptiness of an alterndtiigiger-order pushdown automaton
of ordern is ann-EXPTIME complete problem. Nevertheless note that this last result daesiply directly
hardness for games on higher order pushdown graphs (becawes®eirabjt is mordalifficult to check emptiness
for an alternating device than to solve a reachability game on the corréaganass of grapHs$: the problems
are trivially equivalent only when considering infinite words on a singleretighabet).

Now consider an ordefr + 1) nondeterministic higher order pushdown automatonhose input alphabet
is reduced to a single letter. The language accepted is/non-empty if and only if there is a path from the
initial configuration ofA to a final configuration ofd in the transition grapli of .A. Equivalently the language
accepted byA is non-empty if and only iEloise wins the reachability gan@ over G where she controls
all vertices (and where the play starts from the initial configuratiotdand where final vertices are those
corresponding to final configurations df). Now consider the reduction used to prove Theorem 13 and apply
it to G: it leads to an equivalent reachability ga@dhat is now played on the transition graph of an order-
higher order pushdown automaton. In the new game graph, the main varcekthe form(p, s, ]—f, k): here
Ris actually a paif Ry, R;) (we consider a reachability condition) ards either0 or 1. The important fact is

18As an example: solving a reachability game on a finite graph is in P while itigekptiness for an alternating automata on finite
word (even if one considerslaletter alphabet) is PSPACE-complete
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that Ry and R, can be forced to be singletons: this follows from the fact that all vertic&sare controlled by
Eloise (and then from the proof's details). Therefore, one concludethinaize of the game graph associated
with G is polynomial in the size of4. Hence, one has shown the following: checking emptiness for an
order{n + 1) nondeterministic higher order pushdown automaton whose input alphakeuised to a single
letter can be polynomially reduced to solve a reachability game over the trargitiph of an order: higher
order pushdown automaton. In conclusion, this last problemEXPTIME hard (and actually.-EXPTIME-
complete). O

Strategies

We finally focus on winning strategies. From the proof of the converse imicaf Theorem 16 one can
infer that it is possible to construct effectively strategies for both playarparity CPDS game. Here, we give
a more precise statement by providing a precise information on the memomthieeslich a game. Recall that
for regular games on finite graph, it is well know sindécBi Landweber seminal paper that a finite automaton
with output suffices to represent winning strategies. For pushdovity game, Walukiewicz has shown in [26]
that pushdown automaton with output suffices to compute a winning stratdghiamesult was then extended
(without proof) by Thierry Cachat [3] who showed that higher-onoleshdown automata with output (of order
n) allow to compute winning strategy for higher order pushdown game (@&rerd Here we extend this last
result to CPDS parity games, which terminates the proof of Theorem 13.

Theorem 23 In ann-CPDS parity game one can build, for the player having a winning strategy &given
configuration with an empty stack, a (deterministieLPDA with output® realizing a winning strategy. More-
over the stack used by the strategy automaton has exactly the same sfflichisrthe one in the game.

Proof The following proof is not totally formal. Indeed, we believe that a totally fdrarad detailed proof
would be very hard to understand (and to write) and we expect the folipslietch to be rather convincing.

First note that in the proof of Lemma 14, if one hasa@PDA with output realizing a winning strategy in
the rank-aware game one also haswa@PDA with output realizing a winning strategy in the non-aware game.

Hence it suffices to consider the proof of the converse implication of fEmed 6 and infers that if the
winning strategyp in G is realized by arin — 1)-CPDA with output, the strategy in G can be realized by an
n-CPDA with output.

Recall that strategp was using a stacK to store plays ir;. Then it considers the value ofon that stack
content to decide which move to play. Hence, if strategsan be realized by afn — 1)-CPDA with output,
one can instead of representing a playlimepresent the sequence of memory values useg ltlge resulting
structure is am-stack (stack ofn — 1)-stack). Nevertheless there is still some work to do. Indeed the new
strategy stack (that we also dendig has not the same shape as the one in the game: this is mainly because
in the formerIl we where storing all bumps which may cause the stack to be much larger thanetle the
gameG. Nevertheless, we only need the information on the last vertex of a burdmemer need to retrieve
information on an intermediate vertex in previous bumps in the current staglk &tually the only important
information is the one concerning vertices corresponding to stack heighttBat no vertex later has a stack
height smaller oequalto this one. Hence after performing a bump we can forgot about the inframman the
initial vertex of the bump and only recall the one on the last vertex of the bllhmrefore, the resulting strategy
stack (again denoteld) has the same shape (exceptielinks) than the current stack in the game. Moreover

18An n-CPDA with output is defined as a CPDA except that the transition functienpats/ide a symbol (in a specific alphabet —
here one describing moves in the game) to be output for every transition

2Here we mean that if one replaces every symbol in the CPDA stack and Birtitegy stack by a fixed new symbol then the two
resulting stacks are the equal
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the update after aop,, move is now very easy, as one simply needs to perfopopg in II (recall that we
no longer keep information on intermediate nodes appearing on suecéssnps on a same stack level). It
remains to explain how the update can be handled toilapse involving ann-link. This is very simple: one
only has to attach-links in IT when simulating aush{ ,, action and follow this link if a collapse is applied
later. Note that now the stadk and the one in the game have the same shape. O

6.2 Extensions, consequences
Solving games with anv-regular winning condition

Theorem 13 can easily be generalized to the case where on considgrggular winning condition.

In order to define such a winning condition, we may assume that the collapsistelown graph comes
with an edge labeling. More precisely we start with an ordepllapsible pushdown system with input

A={Q, A ACQRxTxAxQxOpy,q € Q)

whereT is the stack alphabe@) is a finite set of control states] is an input alphabetA is the transition
relation andy is the initial state. We requird to respect the standard convention thatannot be pushed
onto or popped from the stack. Configurations are defined as for geeweighout input. Now the one-step
transition relation— is the union of the one-step transition relatich$ (wherea ranges overd) defined by
(q,8) —* (¢, §) iff for some# € Op,,, we have(q, top1s,a,q’,0) € A, ands’ = 6(s). Then the configuration
graph of A is defined as the graph whose vertices are the reachable configurdtidr{defined as previously)

and the edge relation is the relatien restricted to the reachable configurations. As for the unlabeled case,
we partition the control states into E-states and A-states, and this extendsIgdtua partition of the vertices

of the CPD graph. Finally, the winning condition is given bywamegular languagée) C A%, and a play is
winning for Elaise iff its underlying4-labeling belongs te.

In order to prove the decidability of games over collapsible pushdowrhgrayth anw-regular winning
condition we give a more general reduction result.

Proposition 24 Let G be a game over somé-labeled graphG = (V,E C V x A x V') with anw-regular
winning conditionQ2. Then one can define a parity garié over a graphG’ = (V' x S, E’) for some sef
containing a distinguished statg such that the following holds: for any vertexc V, Eloise wins fron in
G if and only if she wins fronfv, sg) in G'.

Moreover, from a winning strategy frow, so) in G/, one can effectively build a corresponding winning
strategy fromw in G that only requires a finite amount of extra memory.

Proof The main idea of the construction is to consider a deterministic parity automateptacg2 and to
plug itin G in order to compute on the fly the unique run of it on the labeling of the cuplagt

LetS = (S, A, 4, sg, p) be adeterministicparity automaton acceptir@: S is a finite set of control states,
Alis an input alphabet, : Q x A — (@ is a transition function and : Q — N is a priority function. We define
G' = (V x S, E') to be such that

E' = {((v1,51)(ve,82)) | Ja € As.t.(v1,a,v2) € Eandd(sy,a) = so}

Let VU V4 be the partition of the vertices i. Then one considers the partitidiy x SU V4 x S and defines
G’ to be the parity game defined 6# equipped with this partition together with the priority function assigning
to any vertex(v, s) the priority p(s).
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Assume thaEloise has a winning strategy @& from some verteXuv, so). Let¢’ : (V x S)* — (V x S)
be such a winning stratedy. Fromy' we define a winning strategy for Eloise inG. First note that a&! is
edge-labeled, a play is now an infinite sequence of the feyyug, v1)(v1, a1, v2)(ve, az,v3) - - - and hence a
strategy is a mapping froifV x Ax V)*into (V x Ax V). Let A = (v, ag, v1)(v1,a1,v2) - - - (Vp_1, ak_1, Vi)
be some partial play ending in a vertex controlled byEloise. Letsys; ---s; be the (unique) run of
on agpay - - -ag_1. Then it easily follows that' = (vg, so)(v1,s1) - (vk, sk) IS @ partial play inG’ and
hencey'(N) = (vgs1,sk+1) is well defined. As((vg, sk), (vg+1,5k+1)) € E’ then there is at least one
ar € A such that(vg,ar,ve+1) € E. Let us pick any suchu, and setp(\) = (vg,ak, vit1). The
strategyy is trivially well-defined, and we claim that it is wining. Indeed, consider dmite play A\ =
(vo, ap,v1)(v1,a1,v2) (v, ag,v3) -+ ING whereEloise respects. From howy was defined, we deduce that
if sps1s2--- is the unique run of onagajas - - -, then\ = (v, sg)(v1, s1)(ve, s2) - - - is a play inG’ where
Eloise respects her winning strategyand hence is winning for her. Therefore, it follows thgé; s, - - - is an
accepting run of onagaqas - - - and hence thatpaqas - - - € €2, equivalently that\ is winning forEloise.

Conversely, using the same construction for Abelard, one built from aimgnstrategy for him inG’ a
winning strategy irG.

One should note that the increase of memory from a winning strate@ytim a winning strategy iz can
be handled by a finite automaton, namély O

Hence we have the following corollary of Theorem 13.

Corollary 25 Given anyn-CPDA game equipped with anregular winning condition it is decidable whether
Eloise has a winning strategy from the initial configuration. Moreover one a@arsttuct ann-CPDS with
output that realizes a winning strategy for the player that wins from the initinfigaration.

Proof Applying Proposition 24, one gets amuivalentparity game. It is then easy to check that if one
starts with a collapsible pushdown graph, the resulting graph is still a collapsile (of same order) as the
transformation only operates on the control states. Then decidability folfowsthe one for parity collapsible
pushdown games. O

e-closure of CPD graphs

Theorem 13 can easily be generalized to the case where the game is pldled-olosure of the configuration
graph of am-CPDS graph.

Hence One considers an ordecollapsible pushdown automaton with input anttansition.A, that is an
ordern collapsible pushdown automaton with input alphadetontaining a special symbol denoted As
explain previously, it defines aA-labeled transition graptd = (V, E C V x A x V). Thee-closure ofG,
denoted=°*, is the grapi(V=*, E¢* C V&* x (A \ {e}) x V=*) where

e VVe* C V is the subset of vertices reachable from the initial configuration by a finijteesee of transi-
tions such that the last one is not labeled:by

e (v,a,v’) € E°*ifand only if v,v’ € V** and there is a path i from v to v’ labeled by a (possibly
empty) sequence eftransition followed by a transition labeled by

210ne could consider fap a memoryless strategy, but we prefer to consider the general aasiedsave may later argue that one can
build effective winning strategies far-regular collapsible pushdown games from winning strategies for pailgpsible pushdown
games that we may not choose memoryless.
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We consider a partition of the control states4into E-states and A-states, and assign a priority to each
control state. The game structure extends naturally to a partition of andréypfumction on the vertices of
G**. We aim at deciding the winner in the resulting game from the initial configuraton this we prove a
more general reduction result.

Proposition 26 LetG** be a parity game on the-closure of soméA U {¢})-labeled graphz = (V, E). Then
one can define a parity gant&’ over an unlabeled grapl’ = (V' = V.UV x {E, A}, E’) such that the
following holds: for any vertex € V, Eloise wins fromy in G** iff she wins fromv in G'.

Moreover, from a winning strategy fromin G’, one can effectively build a corresponding winning strategy
fromv in G=*.

Proof By definition, a transition irz** can be naturally decomposed as a sequenedrafsitions inG ended
by a none transition inG. The graphG’ aims at making this decomposition explicit: ¢4 when some player
(let us sayEloise) wants to mimic an-transition fromo to v (for somea, v, v'), then she moves from to
(v1, E) then to(vy, E) and so on until reaching a vert€x,, F') from which she finally moves to’. Such a
sequence of moves is possible providegs, v1), (v1,&,v2), ..., (vpg_1,&,v%)(vk, a,v’) is a valid sequence of
moves inG (note here that we may hake= 0 in which case this sequence is replaced by, v') and the
simulation is an exact one). Note that to make this work, one has to assignvevesx inV x E to Eloise. A
symmetrical simulation is defined for Abelard. O

Hence we have the following corollary of Theorem 13.

Corollary 27 Given any parity game over theclosure of a collapsible pushdown graph, it is decidable
whetherEloise has a winning strategy from the initial configuration. Moreover one casttuct ann-CPDS
with output that realizes a winning strategy for the player that wins from the irdtafiguration.

Proof Applying Proposition 26, one gets &quivalentparity game. It is then easy to check that if one starts
with thee-closure of a collapsible pushdown graph, the resulting graph is still gosible one (of same order)
as the transformation only operates on the control states. Then decidatillitys from the one for parity
collapsible pushdown games. O

Using the same techniques, one can get a result that generalizes bollal@ @5 and Corollary 27.

Corollary 28 Given game over the-closure of a collapsible pushdown graph equipped with.aregular
winning condition, it is decidable wheth&toise has a winning strategy from the initial configuration. More-
over one can construct am-CPDS with output that realizes a winning strategy for the player that wins from
the initial configuration.

CPDS graphsvsCaucal graphs

The class ot-closure of configuration graphs of CPDS admits decidable Mu-calcubasi#s, as parity games
are decidable from Corollary 27. Moreover this class contains the cfaSauzal graphs [5] as these graphs
are exactly those obtained by taking thelosure of the transition graphs of (non-collapsible) higher-order
pushdown graphs [4].

Now recall that Caucal graphs enjoy decidable MSO theories [5], amndftire one can consider the similar
problem for ¢-closure) configuration graphs of CPDS. The next result provestiibaMSO theories of those
graphs are not decidable in general, and this implies that the inclusion calCauaphs inside the class of
e-closure of configuration is a strict one.
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Theorem 29 (Undecidability) MSO theories of configuration graphs of CPDS are not in general débted
Hence the class af-closure of configuration of CPDS graphs strictly contains the Caucaplys.

Proof Consider the following MSO interpretatidnof the configuration graph of the 2-CPDS in Example 6.1.
In(zy) = oSy natoy
Ip(zy) = =—y

with C = T batbl* andR = 0ta0 V 10ta01. We observe that the (image of the) interpretation is the
following “infinite half-grid”

Note that for thed-edges, the constrailt requires that the target vertex should be in the next column to the
right, while R specifies the correct row. Since the interpretatiqgreserves MSO decidability, and its image
has an undecidable MSO theory (because the Halting Problem of Turingimeaaan be reduced to it), the
MSO theory of the above configuration graph must be undecidable. O

7 Conclusions and further directions

In this paper, we introduceollapsible pushdown automagend prove that they are equi-expressive with (gen-
eral) recursion schemes for generating trees. This is the first autoneatatic characterization of higher-order
recursions schemes. We argue that the equi-expressivity resultificsighbecause it acts as a bridge, enabling
inter-translation between model-checking problems about trees genbyatecursion scheme and solvability
of games on collapsible pushdown graphs. We show (Theorem 29)tleatoCPDS are strictly more expres-
sive then order: pushdown systems for generating graphs.

As for further directions:

1. The most pressing open problem is whether ord@PDA are equi-expressive with orderPDA for
generating treesThe conjecture is that the former are strictly more expressive. Spdlgifida conjec-
tured thatUrzyczyn tred2] is definable by a 2-CPDA but not by any 2-PDA.

2. Is there a finite way to represent the set of winning positions ef-@®PDS parity game (equivalently to
represent the set of vertices where a given modal mu-calculus forrolds)f

3. Is there ara la Caucal definition for the-closure of CPDS graphs? As trees generated-BPDA are
exactly those obtained by unravelling arCPDS graph, is there a class of transformatidrfsom trees
to graphs such that evefy. + 1)-CPDS graph is obtained by applying/atransformation to some tree
generated by an-CPDA. Note that & -transformation may in general not preserve MSO decidability,
but should preserve modal mu-calculus decidability of trees generatedi3DA.
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4. The algorithm that transforms recursion schemes to CPDA (brieflylsé@io Section 5) uses ideas in
game semantics. It would be an interesting (and we believe challenging) prablebtain a translation
that uses only first principles.
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