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Winning regions of higher-order pushdown games*

A. Carayol! M. Hague?

Abstract

In this paper we consider parity games defined by
higher-order pushdown automata. These automata gener-
alise pushdown automata by the use of higher-order stacks,
which are nested “stack of stacks” structures. Represent-
ing higher-order stacks as well-bracketed words in the usual
way, we show that the winning regions of these games are
regular sets of words. Moreover a finite automaton recog-
nising this region can be effectively computed.

A novelty of our work are abstract pushdown processes
which can be seen as (ordinary) pushdown automata but
with an infinite stack alphabet. We use the device to give a
uniform presentation of our results.

From our main result on winning regions of parity
games we derive a solution to the Modal Mu-Calculus
Global Model-Checking Problem for higher-order push-
down graphs as well as for ranked trees generated by
higher-order safe recursion schemes.

1 Introduction

Higher-order pushdown automata were introduced by
Maslov [31] as a generalisation of pushdown automata and
nested pushdown automata to extend the indexed languages
introduced by Aho [1]. Whereas an ordinary (i.e. order-
1) pushdown automaton works with a stack of symbols
(i.e. order-1 stack), a pushdown automaton of order 2 works
with a stack of (order-1) stacks. In addition to pushing
a symbol onto and popping a symbol from the top-most
order-1 stack, an order-2 pushdown automaton can dupli-
cate or remove the entire top-most (order-1) stack. Push-
down automata of higher orders are defined in a similar

*We direct readers to the (downloadable) long version [11] of this paper
in which all proofs are presented.
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way and have been extensively studied as language accep-
tors [15, 17].

Recently, the infinite structures defined by these au-
tomata have received a lot of attention. In [28], the fami-
lies of infinite terms defined by higher-order pushdown au-
tomata were shown to correspond to the solutions of safe
higher-order recursion schemes. Subsequently, in [14, 12],
the e-closure of their configuration graphs were shown to be
exactly those constructible from finite graphs using natural
graph transformations (see [35] for a survey).

A remarkable property of these graphs is that we can de-
cide the validity of any formula of monadic second-order
(MSO) logic. Unfortunately the decision procedure is non-
elementary (in the size of the formula) and this is already
so in the case of pushdown graphs. In order to obtain an
elementary decision procedure, we consider the p-calculus:
a weaker modal logic equi-expressive with MSO over trees
[26]. The two main algorithmic problems in this setting are
the (local) model-checking problem (i.e. to decide if a par-
ticular configuration satisfies a given p-calculus formula)
and the global model-checking problem (i.e. to compute a
finite description of the set of configurations satisfying a
given formula). To solve these problems, we consider the
associated two-player parity game, whose size is polyno-
mial in both the size of the automaton and of the formula
[16]. The two versions of the model-checking problem
above are respectively equivalent to deciding which player
wins from a given configuration and to giving a finite de-
scription of the winning region for each player.

For parity games defined by pushdown automata,
Walukiewicz has given an EXPTIME decision procedure
to compute the winner from a given configuration [37].
In [6, 32], the winning region is shown to be regular
when a configuration (g,w) is represented by the word
qw. Note that this result can easily be derived from the
results by Vardi [36]. For order-n pushdown automata, an
n-EXPTIME decision procedure for the local version of the
problem was given by Cachat [7] using techniques from
[36]. In this article, we shall consider the global version
of the problem i.e. the computation of a finite representa-
tion of the winning region, and we obtain, as a by-product,
a new proof of Cachat’s result.

To give a finite description of a set of higher-order stacks,
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we represent these stacks as well-bracketed words. Note
that the depth of the bracketing is bounded by the order
of the stack. By extension, we say that a set of higher-
order stacks is regular if the set of associated well-bracketed
words is regular. Our main result is that the winning re-
gions of parity games over higher-order pushdown graphs
are regular. Moreover we can construct in n-EXPTIME a
finite deterministic automaton accepting it.

To simplify the presentation, we consider a more gen-
eral notion of pushdown automata, called abstract push-
down automata, which work with a possibly infinite stack
alphabet. Standard pushdown automata are abstract push-
down automata with a finite stack alphabet; order-(k + 1)
pushdown automata are abstract pushdown automata whose
stack alphabet is the (infinite) set of order-k stacks. Our
main technical result concerns parity games over the con-
figuration graphs of abstract pushdown automata. From an
abstract pushdown parity game, we construct a reduced par-
ity game based on the stack alphabet (i.e. which does not
make use of a stack structure) and we show that a finite de-
scription of the winning region of the original game can be
derived from a finite description of the winning region of
the reduced game. Applied to higher-order pushdown au-
tomata, this result allows us to reduce the problem of com-
puting the winning region of an order-(k + 1) pushdown
parity game to that of computing the winning region of an
order-k£ pushdown parity game. We also show that start-
ing from a winning strategy in the reduced parity game one
can effectively build an abstract pushdown automaton that
realises a winning strategy in the original game and whose
stack is synchronised with the one used in the game. Ap-
plied to higher-order pushdown parity games, this result al-
lows us to prove that any such game always admits an effec-
tive winning strategy realised by a higher-order pushdown
automata of the same order and whose stack is synchronised
with the one used in the game.

As an application of these results, we solve the pu-
calculus global model-checking problem for higher-order
pushdown graphs, and for ranked trees generated by safe
higher-order recursion schemes.

Related work. In [4], Bouajjani and Meyer considered
simpler reachability games over higher-order pushdown au-
tomata with a single control state. They showed that the
winning regions in these games are regular. In [25], Hague
and Ong extended the result to arbitrary higher-order push-
down automata. The results presented here have been ob-
tained by Hague and Ong, and also (separately and indepen-
dently) by the other co-authors. The present article follows
the latter approach whereas the proof in [23] generalises the
saturation method developed in [25].

A similar result was obtained in [13] for a stronger no-
tion of regularity (introduced in [10, 20]) which coincides
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with MSO-definable sets of configurations. In contrast, the
simpler notion presented here can only capture properties
definable in p-calculus. In particular, owing to the higher-
order push operations, the set of configurations reachable
from a given configuration is not regular in the sense of the
present paper. (To our knowledge the results presented here
do not appear to be derivable from Carayol’s work [10].)

2 Definitions

An alphabet A is a (possibly infinite) set of letters. In
the sequel A* denotes the set of finite words over A and A“
the set of infinite words over A. The empty word is denoted
by €.

Infinite two-player games. Let G = (V, E) be a (pos-
sibly infinite) graph with vertex-set V' and edge-set & C
V x V. Let Vg U Va be a partition of V' between two
players, Eloise and Abelard. A game graph is a tuple
G = (Vg, Va, E). An infinite two-player game on a game
graph G is a pair G = (G, ), where Q C V¥ is a winning
condition.

Eloise and Abelard play in G by moving a token between
vertices. A play from some initial vertex vy proceeds as
follows: the player owning vy moves the token to a vertex vy
such that (vg, v1) € E. Then the player owning v; chooses
a successor v and so on. If at some point one of the players
cannot move, she/he loses the play. Otherwise, the play is
an infinite word A € V* and is won by Eloise if and only
if A € Q. Nevertheless, for all game graphs considered in
this article one can always assume without loss of generality
that they have no dead-ends. A partial play is any prefix of
a play.

A strategy for Eloise is a function assigning, to any par-
tial play ending in some vertex v € Vg, a vertex v’ such
that (v,v’) € E. Eloise respects a strategy ® during some
play A= VoU1V2 * - if Vit+1 = q)(UO e 'Ui), for all ¢ >0
such that v; € Vg. A strategy ® for Eloise is winning from
some position v € V if she wins every play that starts from
v and respects ®. Finally, a vertex v € V is winning for
Eloise if she has a winning strategy from v, and the win-
ning region for Eloise consists of all winning vertices for
her. Symmetrically, one defines the corresponding notions
for Abelard.

A game G is determined if, from any position, either
Eloise or Abelard has a winning strategy. Determinacy of
all games considered here follows from Martin’s Theorem
[30].

For more details and basic results on games, we refer the
reader to [34, 39, 22, 38].

Higher-order pushdown processes. An order-n push-
down process isatuple P = (Q, %, L, 0) where (@ is a finite



set of control states, X is a finite stack alphabet containing a
bottom-of-stack symbol L € ¥, and A is a transition func-
tion (to be defined below). Let Opy = {pop1, push{ | o €
Y\ {L}} (resp. Opy = {popk, pushy}) be the set of order-
1 (resp. order-k with 2 < k < n) stack operations. Then
A:Q x X — 29%0P<n where Op<; = U, <, <; Opi.

An order-0 stack over Y is an element of X, and for k >
0 an order-k stack over X is a finite sequence sy, - - , sy of
order-(k — 1) stacks. Moreover we require that an order-k
stack be non-empty whenever k& > 2. Let £ > 0 and take
an order-k stack s = si,---,s¢, we define the following
partial functions:

Sy if ¢ £20and k = 1,
top1(s) =

topi(se) ifk > 1.
(s) Sty 5 8e-1 if ¢ >1and k =1,
O i S = . .
o S1,° -+, S0—1,p0p;i(se) ifk > .
b ’..' 9 9 .fk: 1,
pushi(s) = 51,52 56,0 1
S1,892- -, Si—1,push;(se), ifk > 1.
ifk =1
pUShZ(S) _ 51,52, ;80,5 8¢ 1 Z‘,
81,82+ ,Se—1,push;i(se), ifk >1i.

A configuration of P is a pair (¢, s) where ¢ € () and s is
an order-n stack. At a configuration (g, s), P can apply any
transition (¢’, op) € A(g, top1(s)), leading to the configu-
ration (¢’, op(s)). The configuration graph of P is defined
to be the graph whose vertices are the configurations and
whose edges are given by the transitions of P.

In order to define a notion of regularity over higher-order
stacks, we associate to each order-k stack a well-bracketed
word of depth k as follows. Let s = s1,-- - , s¢ be an order-
k stack. We define 5 € (X U {[,]})* as

{[51...

A set S of order-k stacks is said to be regular if the lan-
guage S = {5 | s € S} is aregular subset of (X U {[,]})*.
By extension, a set C' of configurations of an order-k push-
down automaton is said to be regular if the set C' = {3sq |
(¢,s) € C} is aregular subset of (X U {[,]})*Q. For ex-
ample {[[aa]---[aa]] | n > 0} is a regular set of order-2

—_——

ifk>1
ifk=0(.e s€X)

- s¢]

S =

stacks, but {[[a---a] [a---a]] | n > 0} is not.

In particular, T;he set gf configurations reachable from
a given configuration is not in general regular. Con-
sider for example an order-2 pushdown automaton with
two states go and ¢; and two transitions A(qo,a)
{(q0, push?), (q1,pushs)}. The language of words rep-
resenting the configurations reachable from (qo, [[a]]) is
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the context-free language {[[a"]]qo | >

{lla"]la"]q1 [ n = 1}.

When considering higher-order pushdown automata as
acceptors of finite-word languages over a finite alphabet 3,
we attach to each transition a symbol in ¥ U {e} and fix
an initial state gy together with a set F of final states. We
use the symbol ¢ to label silent transitions. We call such
automata labelled higher-order pushdown automata.

A word w € X* is accepted by the automaton if there
exists a sequence of configurations ¢y —— ... —% ¢,
where ¢ is the initial configuration (qq, [*L]™), ¢, con-
tains a final state in F' C () and w is the word obtained
by removing all occurrences of ¢ in a; ...a,. (We say
that w is the word traced out by the configuration sequence

ai
cp — ... — Cp.)

n

Proposition 1. Take an (resp. deterministic) order-k push-
down automaton. The set of words traced out by configura-
tion sequences from the initial configuration cg to a configu-
ration ¢, where c ranges over a regular set of configurations,
is accepted by an (resp. deterministic) order-k pushdown
automaton.

Abstract Pushdown Processes. We situate the tech-
niques developed here in a general and abstract framework
of (order-1) pushdown processes whose stack alphabet is a
possibly infinite set.

An abstract pushdown process is a tuple P = (Q,T', A)
where () is a finite set of states, I' is a (possibly infinite)
set called an abstract pushdown alphabet and containing a
bottom-of-stack symbol denoted L € T, and

A Q x ' — QQX{Tew(’y)apop,push(,y) | veT'}

is the transition relation. We additionally require that for all
v # 1, A(g,~) does not contain any element of the form
(¢,push(L)) or (¢',rew(L)), and that A(g, L) does not
contain any element of the form (¢’, pop) or (¢, rew(v))
with v # L, i.e. the bottom-of-stack symbol can only occur
at the bottom of the stack, and is never popped or rewritten.

An abstract pushdown content is a word in St = L(T"\
{L})*. A configuration of P is a pair (¢, o) with ¢ € ) and
o € St. Note that the top stack symbol in some configura-
tion (g, o) is the rightmost symbol of o.

Remark 1. In general an abstract pushdown process is not
finitely describable, as the domain of A is infinite and no
further assumption is made on A.

Example 1. A pushdown process is an abstract pushdown
process whose stack alphabet is finite.

A abstract pushdown process P induces a possibly in-
finite graph, called an abstract pushdown graph, denoted
G = (V,E), whose vertices are the configurations of P



(i.e. pairs from ) x St), and edges are defined by the tran-
sition relation A, i.e., from a vertex (p, oy) one has edges
to:

e (g,07') whenever (¢, rew(y’)) € A(p, 7).
e (g,0) whenever (g, pop) € A(p,7).

e (q,077') whenever (¢, push(v')) € A(p,).

Example 2. Higher-order pushdown processes are special
cases of abstract pushdown processes. Let n > 1 and con-
sider an order-n pushdown process P = (Q,%, A). Set I’
to be the set of all order-(n — 1) stacks over ¥, and for every
p € Q and v € T with o = top; (7), we define A’ (p,y) by

e (q,pop) € A'(p,) iff (¢, pop,) € A(q,0);
o (q,push(v)) € A'(p,~) iff (q, push,) € A(q,0);

o (g;rew(op(y))) € Al(p,v) iff (¢,0p) € Alg,0)
where & < n and op is an order-k action.

It follows that the abstract pushdown process (@, I', A’) and
‘P have isomorphic transition graphs.

Abstract Pushdown Parity Game. Consider a partition
Qg U Qa of Q between Eloise and Abelard. It induces
a natural partition Vg U Va of V by setting Vg = Qg X
St and Vo = Qa x St. The resulting game graph G =
(Vi, VA, E) is called an abstract pushdown game graph.
Finally, an abstract pushdown game is a game played on
such a game graph.

Let p be a colouring function from @ to a finite set of
colours C' C N. This function is easily extended to a func-
tion from V' to C by setting p((¢,0)) = p(g). The parity
condition is the winning condition defined by:

Qpar = {v0v1 ce | lim mf((p(vt))lzo) is even}

For an abstract pushdown parity game, the main ques-
tions are the following:

1. For a given vertex, decide who wins from it.

2. For a given vertex, compute a winning strategy for the
winning player.

3. Compute a finite representation of the winning regions.

These three problems are polynomially equivalent to the
following problems respectively: model-checking for u-
calculus, controller synthesis against p-calculus specifica-
tions, and global model-checking for p-calculus.
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Automata with oracles. We now define a class of au-
tomata to accept the winning positions in an abstract push-
down game. An automaton with oracles is a tuple A =
(8,Q,T,6, 8in, 01+ - Oy, Acc) where S is a finite set of
control states, @) is a set of input states, ' is a (possibly
infinite) input alphabet, s, € S is the initial state, O; are
subsets of I (called oracles) and § : S x {0,1}™ — S is the
transition function. Finally Acc is a function from S to 2%.
Such an automaton is designed to accept in a deterministic
way configurations of an abstract pushdown process whose
abstract pushdown content alphabet is I" and whose control
states are ().

Let A= (S,Q,T,0, sin, O1--- Oy, Acc) be such an au-
tomaton. With every v € I' we associate a Boolean vector
() = (b1, - by) where

b 1 ifyeQ;
" 10 otherwise.
The automaton reads a configuration C =

(¢,v1v2---7ve) from left to rightt A run over C is
the sequence sg,---,sey+1 such that sg Sin and
Si+1 = 0(si,m(v;)) forevery i = 0, -, £. Finally the run
is accepting if and only if ¢ € Acc(sp41).

Remark 2. When the input alphabet is finite, it is easily
seen that automata with oracles behave as (standard) deter-
ministic finite automata.

In this article, we are going to use automata with ora-
cles to accept sets of configurations of higher-order push-
down automata. As seen in Example 2 for an order-(k + 1)
pushdown automaton, we take I" to be the set of all order-
k stacks. The sets of regular configurations of an order-
(k + 1) pushdown automaton are naturally captured by au-
tomata using, as oracles, regular sets of order-% stacks.

Proposition 2. Fix an order-(k + 1) pushdown au-
tomaton P and consider an automaton A with oracles
O1,...,0,, respectively accepted by deterministic word
automata A, ..., A,. Let C be the set of configurations
of P accepted by A. Then we can construct a deterministic
finite automaton, of size O(|A||A1] - - - | Anl), accepting the
set C.

3 Preliminary results

From now on, let us fix an abstract pushdown process
P = (Q,T,A) together with a partition Qg U Qa of Q
and a colouring function p using a finite set of colours C.
Denote respectively by G = (V, E) and G the associated
abstract pushdown game graph and abstract pushdown par-
ity game.

We can define an automaton with oracles that accepts
Eloise’s winning region of the game G. The oracles of this



automaton are defined using conditional games. For every
subset R of @) the game G(R) played over G is the con-
ditional game induced by R over G. A play A in G(R) is
winning for Eloise iff one of the following happens:

e In A no configuration with an empty stack (i.e. of the
form (g, L)) is visited, and A satisfies the parity con-
dition.

e In A a configuration with an empty stack is visited and
the control state in the first such configuration belongs
to R.

More formally, the winning condition in G(R) is
Qpar \VH(Q x{L}HV¥] U V(R x {L}HV*

For any state ¢, any stack letter v # 1, and any sub-
set R C @ it follows from Martin’s Determinacy theorem
that either Eloise or Abelard has a winning strategy from
(¢, L) in G(R). We denote by R(q,) the set of subsets
R for which Eloise wins in G(R) from (g, Lv):

R(q,7) = {R C Q| (g, L) is winning for Eloise in G(R)}

Proposition 3. Leto € (T\{L})*, ¢ € Qand~y € T\{L}.
Then Eloise has a winning strategy in G from (q, Lowy) if
and only if there exists some R € R(q,) such that (r, Lo)
is winning for Eloise in G for every r € R.

Proof (sketch). Assume Eloise has a winning strategy from
(¢, Lovy) in G and call it ¢. Define R to be the set of all
r € @ such that there is a play vg - - - vg(r, Lo)vgyr -
where Eloise respects o and each v; for 0 < ¢ < k is of
the form (p, Loo’) for some o’ # . Mimicking ¢, Eloise
wins in G(R) from (g,~y) and hence R € R(q,~). Finally,
for every 7 € R there is a partial play A, that starts from
(q, Loy), where Eloise respects ¢, and that ends in (r, Lo).
Hence (r, Lo) is also winning for Eloise in G.

Conversely, let us assume that there is some R € R(q,7)
such that (r, L) is winning for Eloise in G for every r € R.
For every r € R, let us denote by ¢,- a winning strategy for
Eloise from (r, Lo) in G. Let g be a winning strategy for
Eloise in G(R) from (g, Ly). In order to win in G from
(¢, Lowy), Eloise first mimics g and, if eventually some
configuration (r, Lo) is reached she follows, ¢, from that
point onward. O

Proposition 3 easily implies the following result.

Theorem 1. Let G be an abstract pushdown parity game
induced by an abstract pushdown process P = (Q,T', A).
Then the set of winning positions in G for Eloise (respec-
tively for Abelard) is accepted by an automaton with oracles
A=(5,Q,T,94,s;,01 Oy, Acc) such that

o S=20;
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o 5, =0

There is an oracle O, g for every p € Q and R C Q),
andy € Op p iff R € R(p,7) and v # L.

There is an oracle O1 and~v € O iff y= L

Using the oracles, 0 is designed such that:

— From state () on reading 1, A goes to {p |
(p, L) is winning for Eloise in G}.

— From state S on reading v, A goesto {p | S €
R(p.7)}-

o Acc is the identity function.

We will later use Theorem 1 in combination with Re-
mark 2 to prove that the set of winning positions in any
higher-order pushdown parity games is regular (see Theo-
rem 4).

4 Reducing the conditional games

The main purpose of this section is to build a new game
whose winning region embeds all the information needed to
determine the sets R(q, 7). Moreover the underlying game
graph no longer uses a stack.

For an infinite play A = vgvy - - -, let Steps, be the set
of indices of positions where no configuration of strictly
smaller stack height is visited later in the play. More for-
mally, Steps, = {i € N|Vj > ish(vj) > sh(v;)}, where
sh((¢, Ly1---vn)) = n + 1. Note that Steps, is always
infinite and hence induces a factorisation of the play A into
finite pieces.

In the factorisation induced by Steps,, a factor v; - - - v;
is called a bump if sh(v;) = sh(v;), called a Stair otherwise
(that is, if sh(v;) = sh(v;) + 1).

For any play A with Steps, = {ng < ny < ---},
we can define the sequence (mcol);>o € NY by setting
mcol? = min{p(vy) | n; < k < nyy1}. This sequence

fully characterises the parity condition.

Proposition 4. For a play A, A €
lim inf ((meol?);>0) is even.

Qpar lﬁc

In the sequel, we build a new parity game G over a new
game graph G = (V,E). This new game simulates the
abstract pushdown graph, in the sense that the sequence of
visited colours during a correct simulation of some play A
in G is exactly the sequence (mcol’*);>o. Moreover, a play
in which a player does not correctly simulate the abstract
pushdown game is losing for that player. We shall see that
the winning regions in G allow us to compute the sets {7y €
I'| R e R(q,7)}



Y (g,rew(B)) € A(p, a)
(¢.8, B min(6, p(q)))

If 3 (r, pop) € A(p, o)

st.r € Ry
e
‘ ‘p,aRf)qﬂS)‘ ‘

/ i
0.8, 5, p(q)

(s, 0, ﬁ, min(6, i, p(s)))
VseS;

If 3 (r, pop) € A(p, @)

_ st.r¢ R

Figure 1. Local structure of G.

Before providing a description of the game graph G, let
us consider the following informal description of this sim-
ulation game. We aim at simulating a play in the abstract
pushdown game from some initial vertex (p;,, L). In G we
keep track of only the control state and the top stack symbol
of the simulated configuration.

The interesting case is when it is in a control state p with
top stack symbol «, and the player owning p wants to push
a symbol (3 onto the stack and change the control state to g.
For every strategy of Eloise, there is a certain set of possible
(finite) continuations of the play that will end with popping
0 (or actually a symbol into which § was rewritten in the
meantime) from the stack. We require Eloise to declare a
vector § = (So,--.,Sq) of (d+ 1) subsets of @), where .S;
is the set of all states the game can be in after popping (pos-
sibly a rewriting of) 3 along those plays where in addition
the smallest visited colour while (possibly a rewriting of) 3
was on the stack is <.

Abelard has two choices. He can continue the game by
pushing [ onto the stack and updating the state (we call
this a pursue move). Otherwise, he can pick a set .S; and
a state s € S;, and continue the simulation from that state
s (we call this a jump move). If he does a pursue move,
then he remembers the vector ? claimed by Elo’ise; if later
on, a pop transition is simulated, the play stops and Eloise
wins if and only if the resulting state is in Sy where 6 is the
smallest colour seen in the current level (this information is
encoded in the control state, reset after each pursue move
and updated after each jump move). If Abelard does a jump

V (¢, push(B)) € A(p, @)
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move to a state s in S;, the currently stored value for 6 is
updated to min(0, 7, p(s)), which is the smallest colour seen
since the current stack level was reached.

There are extra moves to simulate rew rules where the
top stack element and the value of 6 are updated.

Therefore the main vertices of this new game graph are
of the form (p, a, ]_%, 0), which are controlled by the player
who controls p. Intermediate vertices are used to handle the
previously described intermediate steps. The local structure
is given in Figure 1 (circled vertices are those controlled by
Eloise). Two special vertices # and ff are used to simulate
pop moves. This game graph is equipped with a colouring
function on the vertices and on the edges: vertices of the
form (p, «, ﬁ, ) have colour p(p), an edge leaving from
a vertex (p,a,ﬁ,@,q,ﬁ, S) has colour ¢ where ¢ is the
colour of the simulated bump. Note that intermediate ver-
tices could be introduced in order to have only colours on
vertices. A precise description of the graph is given in the
full proof of the following main result.

Theorem 2. The following holds.

1. A configuration (p;y, L) is winning for Eloise in G if
and only if (pin, L, (0,...,0), p(pin)) is winning for
Eloise in G.

Foreveryqg € Q, v €T and R C Q, R € R(q,7)
if and only if (¢,7,(R,...,R),p(q)) is winning for
Eloise in G.

Proof (sketch). We concentrate here on the first point, as the
second is actually a part of the proof of the first one. For the
direct implication, assume that the configuration (p;,, L)
is winning for Eloise in G, and let ® be a corresponding
strategy for her. _

Using ®, we define a strategy ¢ for Eloise in G from
(pin, L, (0, ...,0), p(pin)). This strategy stores a partial
play A in G, that is an element in V* (where V' denotes the
set of vertices of G). At the beginning A is initialised to the
vertex (Pin, L).

By a round we mean a factor of a play between two visits
through vertices of the form (p, «, T%), 6). Both the strategy
o and the update of A, are described for a round. When
Eloise has to play from some vertex (p, o, I_%, 6) she con-
siders the value of ®(A). If it is a pop move then she goes to
tt (one proves that this move is always possible). If it equals
(g, rew()), she goes to (g, 3, ]_%>, min (6, p(q))). Finally, if
it is equal to (g, push(f)), she goes to (p, «, ]—%>, 0, 5).

From some vertex (p, v, ]—%, 0,q, 3), Eloise has to pro-
vide a vector S € P(Q)?*! that describes which states
can be reached if 3 (or one of its successors by top rewrit-
ing) is popped, depending on the smallest visited colour in
the meantime. In order to define ?, Eloise considers the set



of all possible continuations of A - (¢, ca3) (where (p, o)
denotes the last vertex of A) where she respects her strategy
®. For each such play, she checks whether some configura-
tion of the form (s, o«) is visited after A - (¢, ca3), that is
if the 3 is eventually popped. If it is the case, she considers
the first such configuration and the smallest colour ¢ seen in
the meantime. For every i € {0, ...d}, S;, is exactly the set
of states s € () such that the preceding case happens.

Let (p,o«) be the last vertex in A. The memory A is

updated after each visit to a vertex of the form (p, a, J_f, 0),
we have three cases depending on the kind of the round. If it
was simulating a (g, rew(3)) action then the updated mem-
ory is A - (g, Bo). If it was simulating a bump of colour ¢
starting with some action (g, push(3)) and ending in a state
s € S; then the memory becomes A extended by (¢, ca3)
followed by a sequence of moves, where Eloise respects ®,
that ends by popping ( and reaches (s, c«) while having 4
as smallest colour. Finally, if it was simulating a stair start-
ing with a (q, push(0)) action, then the updated memory is
A-(q,0a0).

Therefore, any partial play \ in G — in which Eloise re-
spects her strategy (o — is associated with a partial play A
in G. One shows that Eloise respects ® in A. The same ar-
guments work for an infinite play A, and the corresponding
play A is infinite, starts from (p;,,, ) and Eloise respects ®
in that play. Therefore it is a winning play. Relying on that
fact one concludes that ¢ is winning.

For the converse implication one can reason in a rather
similar way by constructing a winning strategy for Abelard
in G from one in G. O

From a more constructive proof of Theorem 2 one can
construct natural strategies in G from strategies in G.

Theorem 3. Assume Eloise has a winning strategy ¢ in G
that uses a memory ranging from some set M. Then one can
construct an abstract pushdown process T with output that
realises a winning strategy ® for Eloise in G. Moreover the
abstract pushdown alphabet used by T is V x M and, at
any moment in a play where Eloise respects ®, the abstract
pushdown content of T has exactly the same height as the
one in the current position of the game graph. Finally, if ¢
is effective the same holds for ®.

Remark 3. In the special case of pushdown games, since I'
is finite so is G. Hence in the previous statement, (¢ can be
chosen to be memoryless. Therefore one concludes that for
pushdown games one can construct a deterministic push-
down automaton that realises a winning strategy and whose
stack is synchronised with the one in the game [37].
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5 Uniform solution of higher-order push-
down parity games and strategies

In this section we prove that the winning regions in
higher-order pushdown games are regular. The first step is
to note the following property.

Property 1. Let G be a higher-order pushdown parity game
of order-n and let G be as in Theorem 2. Then G is a higher-
order pushdown parity game of order-(n — 1).

Proof. One simply needs to consider how the game graph
G is defined. It suffices to make the following observations
concerning the local structure given in Figure 1 when G is
played on the transition graph of a pushdown automaton of
order-n.

1. For every vertex of the form (p,c, I_%, 0),
— — — .
(p7a7R70’q)6) Or (p7a7R70’q)ﬁ7S)’ a ]s an
order-(n — 1) stack.

2. For every vertex of the form (p,a,ﬁ,ﬁ,q,ﬂ) or
— —
(p,a, R,0,q,08,5), it holds that « = 3.

This implies that any vertex in G can be seen as a pair
formed by a state in a finite set and an order-(n — 1) stack.
Then one concludes the proof by checking that the edge re-
lation is the one of an order-(n — 1) pushdown automaton
(for the transition to vertices # and ff one can introduce ver-
tices (t, «) and (ff, «) for any order-(n — 1) stack o). [

Remark 4. The number of states of the higher-order push-
down automaton describing G is exponential in the number
of states of the pushdown automaton describing G but both
games have the same number of colours.

Consider the order-1 case. As G is finite one can solve it
and therefore effectively construct the automaton with ora-
cles as in Theorem 1. As this automaton has a finite input
alphabet, using Remark 2, we deduce the following result.

Property 2. [7, 32] The set of winning position in a push-
down parity game is regular.

Now, one can iterate this reasoning: applying inductively
Property 1 together with Proposition 2 and Theorem 2 easily
leads to the desired result.

Theorem 4. The sets of winning positions in a higher-order
pushdown parity game are regular and can be effectively
computed. Computing these regions is an n-EXPTIME-
complete problem for an order-n pushdown parity game.

Starting with an order-n pushdown parity game, and ap-
plying n times the reduction of Proposition 1, one ends
up with a parity game using the same number of colours



over a finite game graph whose size, using Remark 4, is n
times exponential in the size of the original order-n push-
down automaton. As solving this latter game is exponential
only on the number of colours [22] the global procedure
is in n-EXPTIME. The lower bound follows from the fact
that deciding the winner in two-player reachability games
over order-n pushdown is already n-EXPTIME-hard. A
self-contained proof can be found in [9]. The next remark
sketches a much simpler proof of this result.

Remark 5. Note that using the reduction of Theorem 2,
we can deduce n-EXPTIME-hardness by reduction to the
(n — 1)-EXPTIME-hardness of the emptiness problem for
order-n pushdown automata [17]. Consider an order-(n+1)
pushdown automaton P over a one-letter input alphabet.
The emptiness problem for P is polynomially equivalent to
deciding the winner in the associated one-player reachabil-
ity game. In the case of a one-player game, the reduction of
Theorem 2 can be tailored to yield a reduced game G which
is a two-player game of polynomial size w.r.t to P. Hence
we establish that the emptiness problem for order-(n + 1)
pushdown automata can be polynomially reduced to decid-
ing the winner of two-player order-n game. This proves the
n-EXPTIME-hardness of the latter problem.

Remark 6. Theorem 4 generalises the result obtained by
Hague and Ong [25] for higher-order pushdown reachabil-
ity games.

Concerning strategies, we already noted in Remark 3
that a winning strategy can be realised by a pushdown au-
tomaton whose stack is synchronised with the one from the
game. Reasoning by induction and relying on Theorem 3,
one can obtain a similar result for the general case. More
precisely, if one defines the shape of an order-% stack to be
the stack of obtained by rewriting the stack symbols by a
fixed symbol o, we get the following result.

Theorem 5. Consider an order-k pushdown parity game.
Then one can construct, for any player, a deterministic
order-k pushdown automaton that realises a winning strat-
egy and whose stack has always the same shape as the one
in the game.

Proof (sketch). The order-1 case was noted in Remark 3.
For the general case, we reason by induction using Theorem
3 together with the base case (order-1).

Assume the result is proved at order-k and consider some
order-(k + 1) game G. Then using Property 1 we get that
Gisa game of order k. By induction hypothesis, there ex-
ists a strategy realised by a deterministic order-k pushdown
automaton whose stack has always the same shape as the
one in G. Now apply Theorem 3: it leads to a strategy in
G realised by an abstract pushdown process whose abstract
pushdown content is the product of the vertices in G to-
gether with the memory used to win in G, i.e. the product
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of two order-k stacks having the same shape. Hence, this
product can be though as a single order-k stack, and there-
fore the resulting strategy in G is realised by an automaton
using a stack of order-k stacks, in other terms by an order-
(k + 1) automaton. Finally, the fact that this latter automa-
ton always has the same shape as the current configuration
in the game, follows from the induction hypothesis and the
height property of the strategy of Theorem 3. O

Remark 7. Theorem 5 means that the memory needed to
win a higher-order pushdown parity game can actually be
implemented in the underlying higher-order pushdown au-
tomaton defining the game by enriching its stack alphabet.

6 Global p-calculus model-checking

Given a vertex (state) s in a state-transition graph /C
and a formula ¢, the model-checking problem asks whether
K, s |E ¢ holds (in words, whether the formula ¢ holds at s
in the structure ). The global model-checking problem is
the task of computing (if possible) a finite representation of
the set ||[K||, = {s | K, s = ¢} of vertices in /C that satisfy
a given formula .

In the following we tackle the global model checking
problem when ¢ is a formula of the modal p-calculus
[29, 2]. We consider two kinds of structures for K: con-
figuration graphs of higher-order pushdown automata, and
trees generated by higher-order safe recursion schemes.

Global model-checking of configuration
graphs of higher-order pushdown automata

The p-calculus global model-checking problem for fam-
ilies of graphs closed under Cartesian product with finite
graphs is well-known to be equivalent to the solvability of
parity games over the same class. Hence Theorem 4 im-
plies the following characterisation of u-calculus definable
sets over higher-order pushdown graphs:

Theorem 6. The p-calculus definable sets over configura-
tion graphs of higher-order pushdown automata are exactly
the regular sets of configurations.

Proof (sketch). Given a p-calculus formula ¢, a classical
construction [16] leads to a finite game graph G, whose
vertices are all possible subformulas of ¢, together with a
colouring function p. Then, for any structure XC and any ver-
tex v in K, the following holds: K, v k= ¢ iff Eloise wins
from (v, ¢) in the parity game induced by K x G,. The
underlying game graph of this game is the cartesian product
of K and G, the partition of its vertices as well as the as-
sociated colouring function being inherited from gw. Then,
it follows that ||K||, = {v | (v,¢) € Wg} where Wg
denotes the winning region for Eloise in the previous game.



The previous construction actually does not rely on &
being finite and can be used, for instance, to solve the p-
calculus model-checking problem against pushdown pro-
cesses [37]. In the special case where /C is the transi-
tion graph of some order-k pushdown automaton, the game
graph K x G, is also the transition graph of some order-
k pushdown automaton and the partition of its vertices as
well as its associated colouring function only depend on the
control states. Hence, the solution of the global y-calculus
model-checking problem for such a graph can be deduced
from the (regular) winning region of a higher-order par-
ity pushdown game by a simple operation preserving reg-
ularity. Hence p-calculus definable sets over configuration
graphs of higher-order pushdown automata are regular. [

Remark 8. The preceding Theorem generalises a re-
sult of Bouajjani and Meyer in [4] for a weaker logic
(i.e. the E(U, X)) fragment of C'TL) over weaker structures
(i.e. higher-order pushdown automata with a single control
state).

Global model-checking of trees generated
by higher-order safe recursion schemes

Fix a (ranked) alphabet Y. Types are generated from a
base type using the arrow constructor —. A higher-order
(deterministic) recursion scheme is a finite set of equations
of the form Fzy---z, = e, where F is a typed non-
terminal, each z; is a typed variable, and e is an applicative
term constructed from the non-terminals, terminals (which
are the >-symbols), and variables 1, - - - , x,,. The scheme
is said to be order-k if the highest order of the non-terminals
is k. We use recursion schemes here as generators of possi-
bly infinite term-trees. The ranked tree generated by a recur-
sion scheme is defined to be the (possibly infinite) term-tree
built up from the terminal symbols by applying the equa-
tions qua rewrite rules, replacing the formal parameters by
the actual parameters, starting from the initial non-terminal.
We refer the reader to [28] for a precise description of the
preceding, and for the meaning of safety which is a syntactic
constraint; here we rely on the following characterisation:

Theorem 7. [28] For each k > 0, the ranked trees gen-
erated by safe order-k recursion schemes coincide with the
e-closure of the unravelling of the configuration graphs of
deterministic order-k pushdown automata.

Consider a higher-order deterministic pushdown au-
tomaton labelled by ¥ U {e}. After unravelling its config-
uration graph from the initial configuration, the operation
of e-closure (see [33]) first adds an a-labelled edge from
c1 to co whenever there is a path from c; to ¢, that traces
out the word ae* and ¢y is not the source-vertex of an e-
labelled edge, and then removes the source-vertex of every
e-labelled edge. The resultant graph is a tree.
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A node in this tree is naturally represented by the word
over X labelling the path from the root to this node. Hence,
every p-calculus formula over such a tree induces a lan-
guage in X" i.e. the set of words labelling a path from the
root to a node satisfying the formula. These languages can
be characterised as follows:

Theorem 8. Let k > 0 and let T be the ranked tree gen-
erated by a given order-k safe recursion scheme. The u-
calculus definable sets of T-nodes are recognisable by a
deterministic order-k pushdown automaton.

Proof (sketch). Let C be the configuration graph of a deter-
ministic order-k ¥ U {e}-labelled pushdown automaton P,
and let U be the unravelling of C from the initial configura-
tion cg, such that the e-closure of U is isomorphic to 7. Let
o be a p-calculus formula. A node in U satisfies ¢ if and
only if it corresponds to a path ending in a vertex of C that
satisfies . By Theorem 6, the set F' of configurations of C
satisfying ¢ in C is regular. Moreover it is easy to see that
the set ' of configurations of C which are not the source-
vertex of a e-labelled edge in C is also regular. A node in 7°
at the end of a path from the root labelled by w satisfies ¢
in 7 if and only if w is accepted by the labelled pushdown
automaton P from the initial configuration to the regular set
E N F. By Proposition 1, the language consisting of such
w is accepted by an order-k£ pushdown automaton. O

7 Discussions

There are a number of further directions:

e Can the quite general class of stack data games to-
gether with Theorem 2 be used to prove the decidability of
games over new structures (e.g. allowing arithmetic on the
stack)?

e Regular stack properties allow assertions over the
stack contents. Since information regarding regular tests
may be encoded in the control states and stack of an abstract
pushdown process, the definable sets are again regular.
Properties of this kind have been shown to have applications
in inter-procedural data-flow analysis [18] and security [27]
for the case of order-1 pushdown systems. One such secu-
rity property, implemented in Java and .Net [21, 5], allows
the programmer to decorate code with permission checks.
These checks require that all callers on the stack have suf-
ficient privileges to proceed. Do regular stack properties
have similar applications for other structures encodable as
abstract pushdown processes?

o The notion of regularity used in this article can capture
the p-calculus definable sets of configurations. As men-
tioned previously, MSO-definable sets can be captured by a
stronger notion of regularity introduced in [10, 20]. Hence
a natural question is the decidability of the following prob-
lem: given a strong regular set (in the sense of [10, 20]),



decide whether it is regular (in the sense of this article).
Moreover, it is known from [20] that positional winning
strategies of higher-order pushdown parity game can be de-
scribed using strong regular sets (i.e. for each transition,
the set of configurations from which the strategy plays the
transition is a strong regular set) and a k-Exptime algorithm
was recently given in [13]. Is it possible to describe posi-
tional winning strategies using the weak notion of regularity
of this article?

e Order-k collapsible pushdown automata (CPDA) are
a generalisation of order-k£ pushdown automata in which
each symbol in the k-stack has a link to a stack below
it. As generators of ranked trees, they are equi-expressive
with (arbitrary) order-k recursion schemes [24]. A natural
question is to consider configuration graphs of CPDA, and
compute a finite representation of the y-calculus definable
vertex-sets thereof.

An alternative method for computing the winning re-
gions of a higher-order pushdown parity game develops
the order-1 saturation techniques introduced by Bouajjani et
al. [3] and Finkel et al. [19] and generalised to Biichi games
by Cachat [8]. This algorithm uses a characterisation of
a game’s winning regions as a series of greatest and least
fixed points. Following this characterisation, a small ini-
tial automaton, accepting higher-order stacks, is expanded
until the winning region has been computed. Because this
technique does not require an n-exponential reduction to a
finite state game, it is possible that the state-explosion prob-
lem may be avoided in some, low-order, cases.
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