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Abstract. We introduce a natural extension of collapsible pushdown
systems called annotated pushdown systems that replaces collapse links
with stack annotations. We believe this new model has many advan-
tages. We present a saturation method for global backwards reachability
analysis of these models that can also be used to analyse collapsible
pushdown systems. Beginning with an automaton representing a set of
configurations, we build an automaton accepting all configurations that
can reach this set. We also improve upon previous saturation techniques
for higher-order pushdown systems by significantly reducing the size of
the automaton constructed and simplifying the algorithm and proofs.

1 Introduction

Via languages such as C++, Haskell, Javascript, Python, or Scala, modern day
programming increasingly embraces higher-order procedure calls. This is a chal-
lenge for software verification, which usually does not model recursion accurately,
or models only first-order calls (e.g. SLAM [2] and Moped [29]). Collapsible
pushdown systems (collapsible PDS) are an automaton model of (higher-order
recursion) schemes [11, 24], which allow reasoning about higher-order recursion.

Collapsible pushdown systems are a generalisation of higher-order pushdown
systems (higher-order PDS). Higher-order PDS provide a model of schemes sub-
ject to a technical constraint called safety [23, 19] and are closely related to the
Caucal hierarchy [9]. These systems extend the stack of a pushdown system to
allow a nested “stack-of-stacks” structure. Recently it has been shown by Parys
that safety is a genuine constraint on definable traces [26]. Hence, to model
higher-order recursion fully, we require collapsible PDS, which — using an idea
from panic automata [20] — add additional collapse links to the stack structure.
These links allow the automaton to return to the context in which a character
was added to the stack.

These formalisms are known to have good model-checking properties. For ex-
ample, it is decidable whether a given µ-calculus formula holds on the execution
graph of a scheme [24] (or collapsible PDS [14]). Although, the complexity of
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such analyses is high — for an order-n collapsible PDS, reachability checking is
complete for (n − 1)-EXPTIME, while µ-calculus is complete for n-EXPTIME
— the problem becomes PTIME if the arity of the recursion scheme, and the
number of alternations in the formula, is bounded. The same holds true for col-
lapsible PDS when the number of control states is bounded. Furthermore, when
translating from a scheme to a collapsible PDS, it is the arity that determines
the number of control states [14]. It has been shown by Kobayashi [21] that these
analyses can be performed in practice. For example, resource usage properties
of programs of orders up to five can be verified in a matter of seconds.

Kobayashi’s approach uses intersection types. In the order-1 case, an alter-
native approach called saturation has been successfully implemented by tools
such as Moped [29] and PDSolver [16]. Saturation techniques begin with a small
automaton — representing a set of configurations — and add new transitions
as they become necessary until a fixed point is reached. These algorithms, then,
naturally do not pay the worst case complexity immediately, and hence, repre-
sent ideal algorithms for efficient verification. Furthermore, they also provide a
solution to the global model checking problem: that is, determining the set of all
system states that satisfy a property. This is particularly useful when, for ex-
ample, composing analyses. Furthermore, when testing reachability from a given
initial state, we may terminate the analysis as soon as this state is found. That
is, we do not need to compute the whole fixed point.

Our first contribution is a new model of higher-order execution called anno-
tated pushdown systems (annotated PDS)3, which replace the collapse links of
a collapsible PDS with annotations containing the stack the link pointed to. In
addition to allowing a more straightforward definition of regularity and greatly
simplifying the proofs of the paper, this model provides a more natural handling
of collapse links, highlighting their connection with closures. In addition, con-
figuration graphs of this model are isomorphic to those of collapsible PDS when
restricted to configurations reachable from the initial configuration.

Our second contribution is a saturation method for backwards reachability
analysis of annotated pushdown systems that can also be applied as-is to col-
lapsible PDS. This is a global model-checking algorithm that is based on satu-
ration techniques for higher-order pushdown automata [5, 15, 30]. Our algorithm
handles alternating (or “two-player”) as well as non-alternating systems.

In addition to the extension to annotated pushdown systems, the algorithm
improves on Hague and Ong’s construction for higher-order PDS [15] since the
number of states introduced by the construction is no longer multiplied by the
number of iterations it takes to reach a fixed point, potentially leading to a
large reduction in the size of the automata constructed. In addition, both the
presentation and the proofs of correctness are much less involved.

Related Work In addition to the works mentioned above, solutions to global
model checking problems have been proposed by Broadbent et al. [6]. Addition-
ally, Salvati and Walukiewicz provide a global analysis technique for µ-calculus

3 Kartzow and Parys have independently introduced a similar model [18].



properties using a Krivine machine model of schemes [28]. However, there are
currently no versions of these algorithms available that do not pay immediately
the exponential blow up.

Extensions of schemes with pattern matching have also been considered by
Ong and Ramsay [25]. A recent algorithm by Kobayashi speeds up his techniques
using an over-approximating least fixed point computation to give an initial input
to a greatest fixed point computation [22]. Like saturation this is a ‘bottom-
up’ approach and it would be interesting to see whether there are connections.
Extensions of higher-order PDS to concurrent settings have also been considered
by Seth [31].

The saturation technique has proved popular in the literature. It was intro-
duced by Bouajjani et al. [4] and Finkel et al. [13] and based on a string rewriting
algorithm by Benois [3]. It has since been extended to Büchi games [7], parity
and µ-calculus conditions [16], and concurrent systems [32, 1], as well as weighted
pushdown systems [27]. In addition to various implementations, efficient versions
of these algorithms have also been developed [12, 33].

2 Preliminaries

2.1 Annotated Pushdown Systems

We define annotated stacks, their operations, and annotated pushdown systems.

Annotated stacks Let Σ be a set of stack symbols. We define a notion of
annotated higher-order stack. Intuitively, an annotated stack of order-n is an
order-n stack in which stack symbols have attached annotated stacks of order
at most n. For the rest of the formal definitions, we fix the maximal order to n,
and use k to range between n and 1. We simultaneously define for all 1 ≤ k ≤ n,
the set Stacksnk of stacks of order-k whose symbols are annotated by stacks of
order at most n. Note, we use subscripts to indicate the order of a stack.

Definition 1 (Annotated Stacks). The family of sets (Stacksnk )1≤k≤n is the
smallest family (for point-wise inclusion) such that:

– for all 2 ≤ k ≤ n, Stacksnk is the set of all (possibly empty) sequences
[w1 . . . wℓ]k with w1, . . . , wℓ ∈ Stacksnk−1.

– Stacksn1 is all sequences [a1
w1 . . . aℓ

wℓ ]1 with ℓ ≥ 0 and for all 1 ≤ i ≤ ℓ, ai
is a stack symbol in Σ and wi is an annotated stack in

⋃

1≤k≤n

Stacksnk .

Observe that the above definition uses a least fixed-point. This ensures that
all stacks are finite; in particular a stack cannot contain itself as an annotation.
When the maximal order n is clear, we simply write Stacksk instead of Stacksnk .
We also write order-k stack to designate an annotated stack in Stacksnk .

An order-n stack can be represented naturally as an edge-labelled tree over
the alphabet {[n−1, . . . , [1, ]1, . . . , ]n−1} ⊎Σ, with Σ-labelled edges having a sec-
ond target to the tree representing the annotation. For technical convenience, a



tree representing an order-k stack does not use [k or ]k symbols (these appear
uniquely at the beginning and end of the stack). An example order-3 stack is
given below, with only a few annotations shown. The annotations are order-3
and order-2 respectively.

• • • • • • • • • • • • • • • • •
[2 [1 a b ]1 ]2 [2 [1 c ]1 ]2 [1 d ]1

Given an order-n stack w = [w1 . . . wℓ]n, we define topn+1(w) = w and

topn([w1 . . . wℓ]n) = w1 when ℓ > 0
topn([]n) = []n−1 otherwise

topk([w1 . . . wℓ]n) = topk(w1) when k < n and ℓ > 0

noting that topk(w) is undefined if topk′(w) is empty for any k′ > k.
We write u :k v — where u is order-(k − 1) — to denote the stack obtained

by placing u on top of the topk stack of v. That is, if v = [v1 . . . vℓ]k then u :k
v = [uv1 . . . vℓ]k, and if v = [v1 . . . vℓ]k′ with k′ > k, u :k v = [u :k v1, . . . , vℓ]k′ .
This composition associates to the right. For example, the order-3 stack above
can be written [[[awb]1]2]3 and also u :3 v where u is the order-2 stack [[awb]1]2
and v is the empty order-3 stack []3. Then u :3 u :3 v is [[[awb]1]2[[a

wb]1]2]3.

Operations on Order-n Annotated Stacks The following operations can be
performed on an order-n stack. We say o ∈ On is of order-k when k is minimal
such that o ∈ Ok. For example, pushk is of order k.

On = {pop1, . . . , popn} ∪ {push2, . . . , pushn} ∪ {collapse2, . . . , collapsen} ∪
{

push1
a, . . . , push

n
a , rewa | a ∈ Σ

}

We define each stack operation for an order-n stack w. Annotations are created
by pushk

a, which add a character to the top of a given stack w annotated by
topk+1(popk(w)). This gives a access to the context in which it was created. In
Section 3.2 we give several examples of these operations.

1. We set popk(u :k v) = v.
2. We set pushk(u :k v) = u :k u :k v.

3. We set collapsek

(

au
′

:1 u :(k+1) v
)

= u′ :(k+1) v when u is order-k and

n > k ≥ 1; and collapsen(a
u :1 v) = u when u is order-n.

4. We set pushk
b (w) = bu :1 w where u = topk+1(popk(w)).

5. We set rewb(a
u :1 v) = bu :1 v.

Annotated Pushdown Systems We are now ready to define annotated PDS.

Definition 2 (Annotated Pushdown Systems). An order-n alternating an-
notated pushdown system (annotated PDS) is a tuple C = (P, Σ,R) where
P is a finite set of control states, Σ is a finite stack alphabet, and the set
R ⊆ (P ×Σ ×On × P) ∪

(

P × 2P
)

is a set of rules.



We write configurations of an annotated PDS as a pair 〈p, w〉 where p ∈ P
and w ∈ Stacksn. We write 〈p, w〉 −→ 〈p′, w′〉 to denote a transition from
a rule (p, a, o, p′) with top1(w) = a and w′ = o(w). Furthermore, we have a
transition 〈p, w〉 −→ { 〈p′, w〉 | p′ ∈ P } whenever we have a rule p → P . A
non-alternating annotated PDS has no rules of this second form. We write C to
denote a set of configurations.

Collapsible Pushdown Systems Annotated pushdown systems are based on
collapsible PDS. In this model, stacks do not contain order-k annotations, rather
they have order-k links to an order-k stack occurring lower down in the top-most
order-(k+1) stack. We define the model formally in the full version. We give an
example below, where links are marked with their order.

• • • • • • • • • • • • • • • •
[2 [1 a

3

b ]1 ]2 [2 [1 c

2

]1 [1 d

1

e ]1 ]2

The set On is the same as in the annotated version. Collapse links are created
by the pushk

a operation, which augments a with a link to popk of the stack being
pushed onto. A collapsek returns to the stack that is the target of the link.

Collapsible vs. Annotated To an order-n stack w with links, we associate
a canonical annotated stack [[w ]] where each link is replaced by the annotated
version of the link’s target. We inductively and simultaneously define [[w ]]k which
is the annotated stack representing topk(w).







[[ [ ]k :k+1 v ]]k = [ ]k
[[u :k′+1 v ]]k = [[u ]]k′ :k′+1 [[ v ]]k where 0 < k′ < k

[[ a∗ :1 v ]]k = a[[ collapsek′ (a∗:1v) ]]k′ :1 [[ v ]]k where ∗ is an order-k′ link

For example, the order-3 stack above becomes [[[aw1b]1]2[[c
w2 ]1[d

w3e]1]2]3 where
w1 = [[[cw2 ]1[d

w3e]1]2]3, w2 = [[dw3e]1]2 and w3 = [e]1.
Note that some annotated stacks such as [[aw]1]2 with w = [[b[]1 ]1]2 do not

correspond to any stacks with links. However for all order-n stacks with links w
and for any operation o of order at most n, we have [[ o(w) ]] = o([[w ]]).

Remark 1. The configuration graphs of annotated pushdown systems of order-n
are isomorphic to their collapsible counter-part when restricted to configura-
tions reachable from the initial configuration. This implies annotated pushdown
automata generate the same trees as higher-order recursion schemes, as in [6].

2.2 Regularity of Annotated Stacks

We will present an algorithm that operates on sets of configurations. For this
we use order-n stack automata, thus defining a notion of regular sets of stacks.
These have a nested structure based on a similar automata model by Bouajjani
and Meyer [5]. The handling of annotations is similar to automata introduced
by Broadbent et al. [6], except we read stacks top-down rather than bottom-up.



Definition 3 (Order-n Stack Automata). An order-n stack automaton

A = (Qn, . . . ,Q1, Σ,∆n, . . . , ∆1,Fn, . . . ,F1)

is a tuple where Σ is a finite stack alphabet, and

1. for all n ≥ k ≥ 2, we have Qk is a finite set of states, ∆k ⊆ Qk×Qk−1×2Qk

is a transition relation, and Fk ⊆ Qk is a set of accepting states, and
2. Q1 is a finite set of states, ∆1 ⊆

⋃

2≤k≤n

(

Q1 ×Σ × 2Qk × 2Q1

)

a transition

relation, and F1 ⊆ Q1 a set of accepting states.

Stack automata are alternating automata that read the stack in a nested
fashion. Order-k stacks are recognised from states in Qk. A transition (q, q′, Q) ∈
∆k from q to Q for some k > 1 can be fired when the topk−1 stack is accepted
from q′ ∈ Q(k−1). The remainder of the stack must be accepted from all states
in Q. At order-1, a transition (q, a,Qbr, Q) is a standard alternating a-transition
with the additional requirement that the stack annotating a is accepted from
all states in Qbr. A stack is accepted if a subset of Fk is reached at the end of
each order-k stack. In the full version, we formally define the runs of a stack
automaton. We write w ∈ Lq(A) whenever w is accepted from a state q.

A (partial) run is pictured below, using q3
q2
−→ Q3 ∈ ∆3, q2

q1
−→ Q2 ∈ ∆2 and

q1
a

−−→
Qbr

Q1 ∈ ∆1. The node labelled Qbr begins a run on the stack annotating a.

q3 q2 q1 Q1 · · · Q2 · · · Q3 · · · Qbr · · ·
[2 [1 a · · · ]1 · · · ]2 · · · · · ·

Remark 2. In the full version, we show several results on stack automata: mem-
bership testing is linear time; emptiness is PSPACE-complete; the sets of stacks
accepted by these automata form an effective Boolean algebra (note that com-
plementation causes a blow-up in the size of the automaton); and they accept the
same family of collapsible stacks as the automata used by Broadbent et al. [6].

3 Algorithm

Given an annotated PDS C and a stack automaton A0 with a state qp ∈ Qn

for each control state p in C, we define Pre∗C(A0) as the smallest set such that
Pre∗C(A0) ⊇

{

〈p, w〉
∣

∣ w ∈ Lqp(A0)
}

, and

Pre∗C(A0) ⊇

{

〈p, w〉

∣

∣

∣

∣

∃〈p, w〉 −→ 〈p′, w′〉 with 〈p′, w′〉 ∈ Pre∗C(A0) ∨
∃〈p, w〉 −→ C and C ⊆ Pre∗C(A0)

}

recalling that C denotes a set of configurations. We build a stack automaton
recognising Pre∗C(A0). We begin with A0 and iterate a saturation function de-
noted Γ — which adds new transitions to A0 — until a ‘fixed point’ has been
reached. That is, we iterate Ai+1 = Γ (Ai) until Ai+1 = Ai. As the number of
states is bounded, we eventually obtain this, giving us the following theorem.



Theorem 1. Given an alternating annotated pushdown system C and a stack
automaton A0, we can construct an automaton A accepting Pre∗C(A0).

The construction runs in n-EXPTIME for both alternating annotated PDS
and collapsible PDS — which is optimal — and can be improved to (n − 1)-
EXPTIME for non-alternating collapsible PDS when the initial automaton sat-
isfies a certain notion of non-alternation, again optimal. Correctness and com-
plexity are discussed in subsequent sections.

3.1 Notation and Conventions

Number of Transitions We assume for all q ∈ Qk and Q ⊆ Qk that there

is at most one transition of the form q
q′

−→ Q ∈ ∆k. This condition can easily

be ensured on A0 by replacing pairs of transitions q
q1
−→ Q and q

q2
−→ Q with a

single transition q
q′

−→ Q, where q′ accepts the union of the languages of stacks
accepted from q1 and q2. The construction maintains this condition.

Short-form Notation We introduce some short-form notation for runs. Con-
sider the example run in Section 2.2. In this case, we write q3

a
−−→
Qbr

(Q1, Q2, Q3),

q3
q1
−→ (Q2, Q3), and q3

q2
−→ (Q3). In general, we write

q
a

−−→
Qbr

(Q1, . . . , Qk) and q
q′

−→ (Qk′+1, . . . , Qk) .

In the first case, q ∈ Qk and there exist qk−1, . . . , q1 such that q
qk−1

−−−→ Qk ∈

∆k, qk−1
qk−2

−−−→ Qk−1 ∈ ∆k−1, . . . , q1
a

−−→
Qbr

Q1 ∈ ∆1. Thus, we capture nested

sequences of initial transitions from q. Since we assume at most one transition
between any state and set of states, the intermediate states qk−1, . . . , q1 are
uniquely determined by q, a,Qbr and Q1, . . . , Qk.

In the second case q ∈ Qk, q
′ ∈ Qk′ , and there exist qk−1, . . . , qk′+1 with

q
qk−1

−−−→ Qk ∈ ∆k, qk−1
qk−2

−−−→ Qk−1 ∈ ∆k−1, . . . , qk′+2

qk′+1

−−−→ Qk′+2 ∈ ∆k′+2 and

qk′+1
q′

−→ Qk′+1 ∈ ∆k′+1.

We lift the short-form transition notation to transitions from sets of states.
We assume that state-sets Qn, . . . ,Q1 are disjoint. Suppose Q = {q1, . . . , qℓ}

and for all 1 ≤ i ≤ ℓ we have qi
a

−−→
Qi

br

(

Qi
1, . . . , Q

i
k

)

. Then we have Q
a

−−→
Qbr

(Q1, . . . , Qk) where Qbr =
⋃

1≤i≤ℓ Q
i
br and for all k, Qk =

⋃

1≤i≤ℓ Q
i
k. Because

an annotation can only be of one order, we insist that Qbr ⊆ Qk for some k.

Finally, we remark that a transition to the empty set is distinct from having
no transition.

Initial States We say a state is initial if it is of the form qp ∈ Qn for some
control state p or if it is a state qk ∈ Qk for k < n such that there exists



a transition qk+1
qk−→ Qk+1 in ∆k+1. We make the assumption that all initial

states do not have any incoming transitions and that they are not final4

Adding Transitions Finally, when we add a transition qn
a

−−→
Qbr

(Q1, . . . , Qn)

to the automaton, then for each n ≥ k > 1, we add qk
qk−1

−−−→ Qk to ∆k (if
a transition between qk and Qk does not already exist, otherwise we use the
existing transition and state qk−1) and add q1

a
−−→
Qbr

Q1 to ∆1.

3.2 The Saturation Function

Given an annotated PDS C = (P, Σ,R), we define the saturation function.
Examples can be found below.

Definition 4 (The Saturation Function Γ ). Given an order-n stack au-
tomaton A we define A′ = Γ (A) such that A′ is A plus, for each (p, a, o, p′) ∈ R,

1. when o = popk, for each qp′

qk−→ (Qk+1, . . . , Qn) in A, add to A′

qp
a
−→
∅

(∅, . . . , ∅, {qk} , Qk+1, . . . , Qn) ,

2. when o = pushk, for each qp′

a
−−→
Qbr

(Q1, . . . , Qk, . . . , Qn) and Qk
a

−−→
Q′

br

(Q′
1, . . . , Q

′
k) in A, add to A′ the transition

qp
a

−−−−−−→
Qbr∪Q′

br

(

Q1 ∪Q′
1, . . . , Qk−1 ∪Q′

k−1, Q
′
k, Qk+1, . . . , Qn

)

,

3. when o = collapsek, when k = n, add qp
a

−−−−→
{qp′}

(∅, . . . , ∅), and when k < n,

for each transition qp′

qk−→ (Qk+1, . . . , Qn) in A, add to A′ the transition

qp
a

−−−→
{qk}

(∅, . . . , ∅, Qk+1, . . . , Qn) ,

4. when o = pushk
b for all transitions qp′

b
−−→
Qbr

(Q1, . . . , Qn) and Q1
a

−−→
Q′

br

Q′
1 in

A with Qbr ⊆ Qk, add to A′ the transition

qp
a

−−→
Q′

br

(Q′
1, Q2, . . . , Qk ∪Qbr, . . . , Qn) ,

5. when o = rewb for each transition qp′

b
−−→
Qbr

(Q1, . . . , Qn) in A, add to A′ the

transition qp
a

−−→
Qbr

(Q1, . . . , Qn).

Finally, for every rule p → P , let Q = { qp′ | p′ ∈ P }, then, for each Q
a

−−→
Qbr

(Q1, . . . , Qn), add a transition qp
a

−−→
Qbr

(Q1, . . . , Qn). For convenience, the state-

sets of A′ are defined implicitly from the states used in the transition relations.

4 Hence automata cannot accept empty stacks from initial states. This can be overcome
by introducing a bottom-of-stack symbol.



Examples All examples except one use the order-2 stack w′, labelled by a run
of a stack automaton, pictured below, where the sub-script indicates states in Q1

or Q2. Recall that the first transition of the run can be written qp′

a
−−→
Q2

br

(

Q1
1, Q

1
2

)

.

qp′ q1 Q1
1 Q1

2 Q3
1 Q4

1 Q2
2 Q1

br · · · Q2
br · · ·

[1 a ]1 [1 a ]1 [1 [1

Example of (p, a, pop2, p
′) Consider the stack w pictured below with pop2(w) =

w′. By the construction, we add a transition qp
a
−→
∅

(∅, {qp′}) giving the run below

labelling w, where q′1 is the state labelling the new transition qp′

q′1−→ {qp′}.

qp q′1 ∅ ∅ qp′ q1 Q1
1 Q1

2 · · · Q1
br · · ·

[1 a c ]1 [1 a ]1 [1 [1

Example of (p, a, push2, p
′) Consider the stack w below with push2(w) = w′.

Take Q1
2

a
−−→
Q1

br

(

Q4
1, Q

2
2

)

from the node labelled Q1
2 in the run over w′. By the

construction, we add qp
a

−−−−−−→
Q1

br
∪Q2

br

(

Q1
1 ∪Q4

1, Q
2
2

)

and obtain a run over w

qp q′1 Q1
1 ∪Q4

1 Q2
2 Q1

br ∪Q2
br · · · .

[1 a ]1 [1

where q′1 is the state used by the new transition. This run combines the runs
over the top two order-1 stacks of w′, ensuring any stack accepted could appear
twice on top of a stack already accepted. That is, push2(w) = w′ is in Pre∗C(A0).

Example of (p, a, collapse2, p
′) Consider the stack w below with collapse2(w) =

w′. By the construction, we add a transition qp
a

−−−−→
{qp′}

(∅, ∅); hence, we have the

run below, where q′1 is the state labelling the new transition qp′

q′1−→ {∅}.

qp q′1 ∅ ∅ ∅ ∅ ∅ qp′ q1 Q1
1 Q1

2 · · · Q1
br · · ·

[1 a ]1 [1 c ]1 [1 a ]1 [1 [1

Example of
(

p, a, push2
b , p

′
)

The stack of our running example cannot be con-
structed via a push2

b operation. Hence, we use the following stack and run for
w′

qp′ q1 Q1
1 Q2

1 Q1
2 Q3

1 Q4
1 Q2

2 Qbr Q5
1 Q6

1 Q3
2

[1 b a ]1 [1 a ]1 [1 a ]1

with qp′

b
−−→
Qbr

(

Q1
1, Q

1
2

)

and Q1
1

a
−→
∅

Q2
1. The algorithm adds qp

a
−→
∅

(

Q2
1, Q

1
2 ∪Qbr

)

.

This gives us a run on the stack w such that push2
b(w) = w′, where q′1 is the

order-1 state labelling the new order-2 transition.



qp′ q′1 Q2
1 Q1

2 ∪Qbr Q3
1 ∪Q5

1 Q4
1 ∪Q6

1 Q2
2 ∪Q3

2

[1 a ]1 [1 a ]1

4 Correctness and Complexity

Theorem 2. For a given C and A0, let A = Ai where i is the least index such
that Ai+1 = Γ (Ai). We have w ∈ Lqp(A) iff 〈p, w〉 ∈ Pre∗C(A0).

The proof is in the full version. Completeness is by a straightforward induc-
tion over the “distance” to A0. Soundness is the key technical challenge. The
idea is to assign a “meaning” to each state of the automaton. For this, we define
what it means for an order-k stack w to satisfy a state q ∈ Qk, which is denoted
w |= q.

Definition 5 (w |= q). For any Q ⊆ Qk and any order-k stack w, we write
w |= Q if w |= q for all q ∈ Q, and we define w |= q by a case distinction on q.

1. q is an initial state in Qn. Then for any order-n stack w, we say that w |= q

if 〈q, w〉 ∈ Pre∗C(A0).

2. q is an initial state in Qk, labeling a transition qk+1
q
−→ Qk+1 ∈ ∆k+1. Then

for any order-k stack w, we say that w |= q if for all order-(k + 1) stacks v

s.t. v |= Qk+1, then w :(k+1) v |= qk+1.
3. q is a non-initial state in Qk. Then for any order-k stack w, we say that

w |= q if A0 accepts w from q.

We show the automaton constructed is sound with respect to this meaning.
That is, for all qk

a
−−→
Qbr

(Q1, . . . , Qk), we can place au, for any u |= Qbr, on top of

any stack satisfying Q1, . . . , Qk and obtain a stack that satisfies qk. By induction
over the length of the stack, this property extends to complete stacks. That is,
a stack is accepted from a state only if it is in its meaning. Since states qp are
assigned their meaning in Pre∗C(A0), we obtain soundness of the construction.

The construction is also sound for collapsible stacks. That is, 〈p, w〉 belongs
to Pre∗C(A0) where C is a collapsible PDS and A0 accepts collapsible stacks iff
〈p, [[w ]]n〉 belongs to Pre∗C(A0) where C and A0 are interpreted over annotated
stacks. This is due to the commutativity of [[ o(w) ]] = o([[w ]]).

Proposition 1. The saturation construction for an alternating order-n anno-
tated PDS C and an order-n stack automaton A0 runs in n-EXPTIME, which
is optimal.

Proof. Let 2 ↑0 ℓ = ℓ and 2 ↑i+1 ℓ = 22↑iℓ. The number of states of A is bounded
by 2 ↑(n−1) ℓ where ℓ is the size of C and A0: each state in Qk was either in A0

or comes from a transition in ∆k+1. Since the automata are alternating, there
is an exponential blow up at each order except at order-n. Each iteration of the
algorithm adds at least one new transition. Only 2 ↑n ℓ transitions can be added.
Since the reachability problem for alternating higher-order pushdown systems is
complete for n-EXPTIME [15], our algorithm is optimal.



It is known that the complexity of reachability for non-alternating collapsible
PDS is in (n−1)-EXPTIME. The cause of the additional exponential blow up is
in the alternation of the stack automata. In the full version we show that, for a
suitable notion of non-alternating stack automata, our algorithm can be adapted
to run in (n− 1)-EXPTIME, when the collapsible PDS is also non-alternating.

Furthermore, the algorithm is PTIME for a fixed order and number of control
states. If we obtained C from a scheme, the number of control states is given by
the arity of the scheme [14]. Since the arity and order are expected to be small,
we are hopeful that our algorithm will perform well in practice.

5 Perspectives

There are several avenues of future work. First, we intend to generalise our
saturation technique to computing winning regions of parity conditions, based on
the order-1 case [17]. This will permit verification of more general specifications.
We also plan to design a prototype tool to test the algorithm in practice

An important direction is that of counter example generation. When check-
ing safety property, it is desirable to provide a trace witnessing a violation of the
property. This can be used to repair the bug and as part of a counter-example
guided abstraction refinement (CEGAR) loop enabling efficient verification algo-
rithms. However, finding shortest counter examples — due to its tight connection
with pumping lemmas — will present a challenging and interesting problem.

Saturation techniques have been extended to concurrent order-1 pushdown
systems [32, 1]; concurrency at higher-orders would be interesting.

It will also be interesting to study notions of regularity of annotated stacks.
In our notion of regularity, the forwards reachability set is not regular, due to the
copy operation pushk. This problem was addressed by Carayol for higher-order
stacks [8]; adapting these techniques to annotated PDS is a challenging problem.
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