
Parameterised Pushdown Systems with
Non-Atomic Writes
M. Hague

Oxford University, Department of Computer Science, and
Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est

Abstract
We consider the master/slave parameterised reachability problem for networks of pushdown

systems, where communication is via a global store using only non-atomic reads and writes. We
show that the control-state reachability problem is decidable. As part of the result, we provide a
constructive extension of a theorem by Ehrenfeucht and Rozenberg to produce an NFA equivalent
to certain kinds of CFG. Finally, we show that the non-parameterised version is undecidable.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Verification, Concurrency, Pushdown Systems, Reachability, Paramet-
erised Systems, Non-atomicity

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A parameterised reachability problem is one where the system is defined in terms of a given
input, usually a number n. We then ask whether there is some n such that the resulting
system can reach a given state. An early result shows that this problem is undecidable,
even when the system defined for each n is a finite state machine: one simply has to define
the nth system to simulate a Turing machine up to n steps [2]. Thus, the Turing machine
terminates iff there is some n such that the nth system reaches a halting state.

Such a result, however, is somewhat pathological. More natural parameterised problems
concentrate on the replication of components. For instance, we may have a leadership
election algorithm amongst several nodes. For this algorithm we would want to know, for
example, whether there is some n such that, when n nodes are present, the routine fails to
elect a leader. This problem walks the line between decidability and undecidability, even
with finite-state components: in a ring network, when nodes can communicate to their
left and right neighbours directly, Suzuki proves undecidability [32]; but, in less disciplined
topologies, the problem becomes decidable [16].

In particular, the above decidability result considers the following problem: given a
master process U and slave C, can the master in parallel with n slaves reach a given state.
Communication in this system is by anonymous pairwise synchronisation (that is, a receive
request can be satisfied by any thread providing the matching send, rather than a uniquely
identified neighbour). This problem reduces to Petri-nets, which can, for each state of C,
keep a count of the number of threads in that state. When communication is via a finite-
state global store, which all threads can read from and write to (atomically), it is easy to
see that decidability can be obtained by the same techniques.

These results concern finite-state machines. This is ideal for hardware or simple pro-
tocols. When the components are more sophisticated (such as threads created by a web-
server), a more natural and expressive (infinite-state) program model — allowing one to

© M. Hague;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Parameterised Pushdown Systems with Non-Atomic Writes

accurately simulate the control flow of first-order recursive programs [20] — is given by
pushdown systems (PDSs). Such systems have proved popular in the sequential setting
(e.g. [8, 14, 29, 27]), with several successful implementations [6, 7, 29]. Unfortunately, when
two PDSs can communicate, reachability quickly becomes undecidable [26].

In recent years, many researchers have tackled this problem, proposing many different
approximations, and restrictions on topology and communication behaviour (e.g. [23, 9, 10,
11, 30, 28, 18]). A pleasantly surprising (and simple) result in this direction was provided
by Kahlon [21]: the parameterised reachability problem for systems composed of n slaves C
communicating by anonymous synchronisation is decidable. This result relies heavily on the
inability of the system to restrict the number of active processes, or who they communicate
with. Indeed, in the presence of a master process U , or communication via a global store,
undecidability is easily obtained.

In this work we study the problem of adding the master process and global store. To
regain decidability, we only allow non-atomic accesses to the shared memory. We then
show — by extending a little-cited theorem of Ehrenfeucht and Rozenberg [13] — that we
can replace the occurrences of C with regular automata1. This requires the introduction of
different techniques than those classically used. Finally, a product construction gives us our
result. In addition, we show that, when n is fixed, the problem remains undecidable, for all
n. For clarity, we present the single-variable case here. In the appendix we show that the
techniques extend easily to the case of k shared variables.

After discussing further related work, we begin in Section 2 with the preliminaries. In
Section 3 we define the systems that we study. Our main result is given is Section 4 and
the accompanying undecidability proof appears in Section 5. In Section 6 we show how to
obtain a constructive version of Ehrenfeucht and Rozenberg’s theorem. Finally, we conclude
in Section 7. A version of this paper complete with appendix is available [17].

Related Work Many techniques attack parameterisation (e.g. network invariants and sym-
metry). Due to limited space, we only discuss PDSs here. In addition to results on para-
meterised PDSs, Kahlon shows decidability of concurrent PDSs communicating via nested-
locks [22]. In contrast, we cannot use locks to guarantee atomicity here.

A closely related model was studied by Bouajjani et al. in 2005. As we do, they allow
PDSs to communicate via a global store. They do not consider parameterised problems
directly, but they do allow the dynamic creation of threads. By dynamically creating an
arbitrary number of threads at the start of the execution, the parameterised problem can be
simulated. Similarly, parameterisation can simulate thread creation by activating hitherto
dormant threads. However, since Bouajjani et al. allow atomic read/write actions to occur,
the problem they consider is undecidable; hence, they consider context-bounded reachability.

Context-bounded reachability is a popular technique based on the observation that many
bugs can be identified within a small number of context switches [25]. This idea has been
extended to phase-bounded systems where only one stack may be decreasing in any one
phase [3, 31]. Finally, in another extension of context-bounded model-checking, Ganty et
al. consider bounded under-approximations where runs are restricted by intersecting with a
word of the form a∗1 . . . a

∗
n [15]. In contrast to this work, these techniques are only accurate

up to a given bound. That is, they are sound, but not complete. Recently, La Torre et al.
gave a sound algorithm for parameterised PDSs together with a technique that may detect

1 A reviewer points out that the upward-closure of a context free language has been proved regular by
Atig et al. [5] with the same complexity, which is sufficient for our purposes. However, a constructive
version of Ehrenfeucht and Rozenberg is a stronger result, and hence remains a contribution.

M. Hague 3

completeness in the absence of recursion [34].
Several models have been defined for which model-checking can be sound and complete.

For example, Bouajjani et al. also consider acyclic topologies [5, 11]. As well as restricting
the network structure, Sen and Viswanathan [30], La Torre et al. [33] and later Heußner et
al. [18], show how to obtain decidability by only allowing communications to occur when
the stack satisfies certain conditions.

One of the key properties that allow parameterized problems to become decidable is
that once a copy of the duplicated process has reached a given state, then any number of
additional copies may also be in that state. In effect, this means that any previously seen
state may be returned to at any time. This property has also been used by Delzanno et al.
to analyse recursive ping-pong protocols [12] using Monotonic Set-extended Prefix Rewriting.
However, unlike our setting, these systems do not have a master process.

Finally, recent work by Abdulla et al. considers parameterised problems with non-atomic
global conditions [1]. That is, global transitions may occur when the process satisfy a global
condition that is not evaluated atomically. However, the processes they consider are finite-
state in general. Although a procedure is proposed when unbounded integers are allowed,
this is not guaranteed to terminate.

2 Preliminaries

We recall the definitions of finite automata and pushdown systems and their language
counter-parts. We also state a required result by Ehrenfeucht and Rozenberg.

I Definition 1 (Non-Deterministic Finite Word Automata). We define a non-deterministic
finite word automaton (NFA) A as a tuple (Q,Γ,∆, q0,F) where Q is a finite set of states, Γ
is a finite alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and ∆ ⊆ Q×Γ×Q
is a finite set of transitions.

We will denote a transition (q, γ, q′) using the notation q γ−→ q′. We call a sequence q1
γ1−→

q2
γ2−→ · · · γz−1−−−→ qz a run of A. It is an accepting run if q1 = q0 and qz ∈ F . The language

L(A) of an NFA is the set of all words labelling an accepting run. Such a language is regular.

I Definition 2 (Pushdown Systems). A pushdown system (PDS) P is defined as a tuple
(Q,Σ,Γ,∆, q0,F) where Q is a finite set of control states, Σ is a finite stack alphabet with
a special bottom-of-stack symbol ⊥, Γ is a finite output alphabet, q0 ∈ Q is an initial state,
F ⊆ Q is a set of final states, and ∆ ⊆ (Q× Σ)× Γ× (Q× Σ∗) is a finite set of transition
rules.

We will denote a transition rule ((q, a), γ, (q′, w′)) using the notation (q, a)
γ
↪−→ (q′, w′). The

bottom-of-stack symbol is neither pushed nor popped. That is, for each rule (q, a)
γ
↪−→

(q′, w′) ∈ ∆ we have, when a 6=⊥, w does not contain ⊥, and, a =⊥ iff w′ = w ⊥ and w does
not contain ⊥. A configuration of P is a tuple (q, w), where q ∈ Q is the current control
state and w ∈ Σ∗ is the current stack contents. There exists a transition (q, aw) γ−→ (q′, w′w)
of P whenever (q, a)

γ
↪−→ (q′, w′) ∈ ∆. We call a sequence c0

γ1−→ c1
γ2−→ · · · γz−→ cz a run of

P. It is an accepting run if c0 = (q0,⊥) and cz = (q, w) with q ∈ F . The language L(P)
of a pushdown system is the set of all words labelling an accepting run. Such a language
is context-free. Note, in some cases, we omit the output alphabet Γ. In this case, the only
character is the empty character ε, with which all transitions are labelled. In general, we
will omit the empty character ε when it labels a transition.

4 Parameterised Pushdown Systems with Non-Atomic Writes

We use a theorem of Ehrenfeucht and Rozenberg [13]. With respect to a context-free
language L, a strong iterative pair is a tuple (x, y, z, u, t) of words such that for all i ≥ 0
we have xyizuit ∈ L, where y and u are non-empty words. A strong iterative pair is very
degenerate if, for all i, j ≥ 0 we have that xyizujt ∈ L.

I Theorem 3 ([13]). For a given context-free language L, if all strong iterative pairs are
very degenerate, then L is regular.

However, Ehrenfeucht and Rozenberg do not present a constructive algorithm for obtaining
a regular automaton accepting the same language as an appropriate context-free language.
Hence, we provide such an algorithm in Section 6.

3 Non-Atomic Pushdown Systems

Given an alphabet G, let r(G) = { r(g) | g ∈ G } and w(G) = { w(g) | g ∈ G }. These
alphabets represent read and write actions respectively of the value g.

I Definition 4 (Non-atomic Pushdown Systems). Over a finite alphabet G, a non-atomic
pushdown system (naPDS) is a tuple P = (Q,Σ,∆, q0,G) where Q is a finite set of control-
states, Σ is a finite stack alphabet with a bottom-of-stack symbol ⊥, q0 ∈ Q is a designated
initial control state and ∆ ⊆ (Q× Σ)× (r(G) ∪ w(G) ∪ { ε })× (Q× Σ∗).

That is, a non-atomic pushdown system is a PDS where the output alphabet is used to
signal the interaction with a global store, and there are no final states: we are interested in
the behaviour of the system, rather than the language it defines.

IDefinition 5 (Networks of naPDSs). A network of n non-atomic pushdown systems (NPDS)
is a tuple N = (P1, . . . ,Pn,G, g0) where, for all 1 ≤ i ≤ n, Pi =

(
Qi,Σi,∆i, q

i
0,G
)
is a

NPDS over G and g0 ∈ G is the initial value of the global store.

A configuration of an NPDS is a tuple (q1, w1, . . . , qn, wn, g) where g ∈ G and for each i,
qi ∈ Qi and wi ∈ Σ∗i . There is a transition (q1, w1, . . . , qn, wn, g) −→ (q′1, w′1, . . . , q′n, w′n, g′)
whenever, for some 1 ≤ i ≤ n and all 1 ≤ j ≤ n with i 6= j, we have q′j = qj , w′j = wj , and

(qi, wi) −→ (q′i, w′i) is a transition of Pi and g′ = g; or
(qi, wi)

r(g)−−→ (q′i, w′i) is a transition of Pi and g′ = g; or

(qi, wi)
w(g′)
−−−−→ (q′i, w′i) is a transition of Pi.

A path π of N is a sequence of configurations c1c2 . . . cm such that, for all 1 ≤ i < m,
ci −→ ci+1. A run of N is a path such that c1 =

(
q1

0 ,⊥, . . . , qn0 ,⊥, g0
)
.

4 The Parameterised Reachability Problem

We define and prove decidability of the parameterised reachability problem for naPDSs. We
finish with a few remarks on the extension to multiple variables, and on complexity issues.

I Definition 6 (Parameterised Reachability). For given naPDSs U and C over G, initial store
value g0 and control state q, the parameterised reachability problem asks whether there is

some n such that the NPDS Nn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration

containing the control state q.

In this section, we aim prove the following theorem.

M. Hague 5

I Theorem 7. The parameterised reachability problem for NPDSs is decidable.

Without loss of generality, we can assume q is a control-state of U (a C process can
write its control-state to the global store for U to read). The idea is to build an automaton
which describes for each g ∈ G the sequences g1 . . . gm ∈ G∗ that need to be read by some
C process to be able to write g to the global store. We argue using Theorem 3 that such
read languages are regular (and construct regular automata using Lemma 18). Broadly this
is because, between any two characters to be read, any number of characters may appear in
the store and then be overwritten before the process reads the required character. We then
combine the resulting languages with U to produce a context-free language that is empty iff
the control-state q is reachable.

4.1 Regular Read Languages
For each g ∈ G we will define a read-language Lw(g) which intuitively defines the language
of read actions that C must perform before being able to write g to the global store. Since
C may have to write other characters to the store before g, we use the symbol # as an
abstraction for these writes. The idea is that, for any run of the parameterised system, we
can construct another run where each copy of C is responsible for a single particular write
to the global store, and Lw(g) describes what C must do to be able to write g.

To this end, given a non-atomic pushdown system P we define for each g ∈ G the
pushdown system Pw(g) which is P augmented with a new unique control-state f , and a

transition (q, a) ↪−→ (f, a) whenever P has a rule (q, a)
w(g)
↪−−−→ (q′, w). Furthermore, replace all

(q, a)
w(g′)
↪−−−→ (q′, w) rules with (q, a)

#
↪−→ (q′, w) where # /∈ G. These latter rules signify that

the global store contents have been changed, and that a new value must be written before
reading can continue. This implicitly assumes that C does not try to read the last value it
has written. This can be justified since, whenever this occurs, because we are dealing with
the parameterised version of the problem, we can simply add another copy of C to produce
the required write.

We interpret f as the sole accepting control state of Pw(g) and thus L
(
Pw(g)

)
is the

language of reads (and writes) that must occur for g to be written. We then allow any
number of (ignored) read and # events2 to occur. That is, any word in the read language
contains a run of C with any number of additional actions that do not affect the reachability
property interspersed. Let R = { r(g′) | g′ ∈ G } ∪ { # }, we define the read language
Lw(g) ⊆ R∗ for w(g) as

Lw(g) =
{
R∗γ1R

∗ . . . R∗γzR
∗ ∣∣ γ1 . . . γz ∈ L

(
Pw(g)

) }
.

Note, in particular, that γ1 . . . γz ∈ R∗.

I Lemma 8. For all g ∈ G, Lw(g) is regular and an NFA A accepting Lw(g), of doubly-
exponential size, can be constructed in doubly-exponential time.

Proof. Take any strong iterative pair (x, y, z, t, u) of Lw(g). To satisfy the preconditions of
Theorem 3, we observe that xzu ∈ Lw(g) since we have a strong iterative pair. Then, from
the definition of Lw(g) we know xR∗zR∗u ⊆ Lw(g) and hence, for all i, j, xyiztju ⊆ Lw(g)
as required. Thus Lw(g) is regular. The construction of A comes from Lemma 18. J

2 Extra # events will not allow spurious runs, as they only add extra behaviours that may cause the
system to become stuck. This is because # is never read by a process.

6 Parameterised Pushdown Systems with Non-Atomic Writes

4.2 Simulating the System
We build a PDS that recognises a non-empty language iff the parameterised reachability
problem has a positive solution. The intuition behind the construction of Psys is that, if a
collection of C processes have been able to use the output of U to produce a write of some g
to the global store, then we may reproduce that group of processes to allow as many writes
g to occur as needed. Hence, in the construction below, once qi ∈ Fi has been reached,
gi can be written at any later time. The # character is used to prevent sequences such as
r(g)w(g′)r(g) occurring in read languages, where no process is able to provide the required
write w(g) that must occur after w(g′). Note that, if we did not use # in the read languages,
such sequences could occur because the w(g′) would effectively be ignored.

The construction itself is a product construct between U and the regular automata
accepting the read languages of C. The regular automata read from the global variable,
writing # when a # action should occur. Essentially, they mimic the behaviour of an
arbitrary number of C processes in their interaction — via the global store — with U and
each other. The value of the global store is held in the last component of the product.

I Definition 9 (Psys). Given an naPDS U =
(
QU ,Σ,∆U , qU0 ,G

)
with initial store value g0,

a control-state f ∈ QU , and, for each g ∈ G, a regular automaton

Aw(g) =
(
Qw(g), R,∆w(g),Fw(g), q

w(g)
0

)
,

we define the PDS Psys = (Q,Σ,∆, q0,F) where, if G = { g0, . . . , gm }, then
Q = QU ×Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
q0 =

(
qU0 , q

w(g0)
0 , . . . , q

w(gm)
0 , g0

)
,

F = { f } × Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
and ∆ is the smallest set containing all (q, a) ↪−→ (q′, w) where q = (qU , q0, . . . , qm, g) and,

q′ = (q′U , q0, . . . , qm, g) and (qU , a) ↪−→ (q′U , w) ∈ ∆U , or

q′ = (q′U , q0, . . . , qm, g) and (qU , a)
r(g)
↪−−→ (q′U , w) ∈ ∆U , or

q′ = (q′U , q0, . . . , qm, g
′) and (qU , a)

w(g′)
↪−−−→ (q′U , w) ∈ ∆U , or

q′ = (qU , q0, . . . , q
′
i, . . . , qm, g) and qi

r(g)−−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or
q′ = (qU , q0, . . . , q

′
i, . . . , qm,#) and qi

#−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or
q′ = (qU , q0, . . . , qm, gi), qi ∈ Fi and w = a.

The last transition in the above definition — which corresponds to some copy of C writing
gi to the global store — can be applied any number of times; each application corresponds
to a different copy of C, and, since we are considering the parameterised problem, we can
choose as many copies of C as are required.

I Lemma 10. The PDS Psys has a run to some control-state in F iff the parameterised
reachability problem for U , C, G, g0 and q has a positive solution.

The full proof of correctness is given in the appendix. To construct a run reaching q from
an accepting run of Psys we first observe that U is modelled directly. We then add a copy
of C for every individual write to the global component of Psys. These slaves are able to
read from/write to the global component finally enabling them to perform their designated
write. This is because (a part of) the changes to the global store is in the read language of
the required write.

In the other direction, we build an accepting run of Psys from a run of the parameterised
system reaching q. To this end, we observe again that we can simulate U directly. To

M. Hague 7

simulate the slaves, we take, for every character g ∈ G written to the store, the copy of C
responsible for its first write. From this we get runs of the Aw(g) that can be interleaved with
the simulation of U and each other to create the required accepting run, where additional
writes of each g are possible by virtue of Aw(g) having reached an accepting state (hence we
require no further simulation for these writes).

Example Let U perform the actions r(1)r(2)w(ok)r(f) and C run either w(1)r(ok)w(go) or
w(2)r(go)w(f). Let L1, . . . ,L4 denote the following read languages.

Lw(1) = Lw(2) = R∗ Lw(go) = R∗#R∗r(ok)R∗ Lw(f) = R∗#R∗r(go)R∗

Take two slaves C1 and C2 and the run (the subscript denotes the active process):

w(1)C1
r(1)Uw(2)C2

r(2)Uw(ok)Ur(ok)C1
w(go)C1

r(go)C2
w(f)C2

r(f)U .

This can be simulated by the following actions on the global component of Psys:

w(#)L3
w(1)L1

r(1)Uw(#)L4
w(2)L2

r(2)Uw(ok)Ur(ok)L3
w(go)L3

r(go)L4
w(f)L4

r(f)U .

Note, we have scheduled the w(#) actions immediately before the write they correspond to.

4.3 Complexity and Multiple Stores

We obtain for each g ∈ G an automaton Aw(g) of size O
(

22f(n)
)

in O
(

22f(n)
)

time for
some polynomial f (using Lemma 18) where n is the size of the problem description. The
pushdown system Psys, then, has O

(
22f′(n)

)
many control states for a polynomial f ′. It

is well known that reachability/emptiness for PDSs is polynomial in the size of the system
(e.g. Bouajjani et al. [8]), and hence the entire algorithm takes doubly-exponential time.
For the lower bound, one can reduce from SAT to obtain an NP-hardness result (as shown
in the appendix). Further work is needed to pinpoint the complexity precisely.

The algorithm presented above only applies to a single shared variable. A more natural
model has multiple shared variables. We may allow k variables with the addition of k global
components G1, . . . ,Gk. The main change required is the use of symbols #1, . . . ,#k rather
than simply # and to build Psys to be sensitive to which store is being written to (or erased
with some #i). This does not increase the complexity since n = |G1|+ · · ·+ |Gk| in the above
analysis and the cost of the k-product of variables does not exceed the cost of the product
of the Aw(g). We give the full details in the appendix. Note that, using the global stores,
we can easily encode a PSPACE Turing machine using U , without stack, and an empty C.
Hence the problem for multiple variables is at least PSPACE-hard.

5 Non-parameterized Reachability

We consider the reachability problem when the number of processes n is fixed. In the
case when 1 ≤ n ≤ 2, undecidability is clear: even with non-atomic read/writes, the two
processes can organise themselves to overcome non-atomicity. When n > 2, it becomes
harder to co-ordinate the copies of C. A simple trick recovers undecidability. More formally,
then:

I Definition 11 (Non-parameterized Reachability). For given n and naPDSs U and C over
G, initial store value g0 and control state q, the non-parameterised reachability problem asks

8 Parameterised Pushdown Systems with Non-Atomic Writes

whether the NPDS Nn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration containing

the control state q.

I Theorem 12. The non-parameterized reachability problem is undecidable when n ≥ 1.
When n > 1, the result holds even when U is null.

Proof. We reduce from the undecidability of the emptiness of the intersection of two context-
free languages. First fix some n ≥ 2 and two pushdown systems P1, P2 accepting the two
languages L1 and L2.

We define C to be the disjunction of C1, . . . , Cn. That is, C makes a non-deterministic
choice of which Ci to run (1 ≤ i ≤ n). Let 1, . . . , n, f, ! be characters not in the alphabet of
L1 and L2. The process C1 will execute, for each γ1 . . . γz ∈ L1, a sequence

w(1)r(n)w(γ1)r(!)w(γ2)r(!) . . . w(γz)r(!)w(f) .

It is straightforward to build C1 from P1. Similarly, the process C2 will execute, for each
a1 . . . am ∈ L2, a sequence

r(1)w(2)r(γ1)w(!)r(γ2)w(!) . . . r(γz)w(!)r(f)

and move to a fresh control-state qf . It is straightforward to build C2 from P2. The remaining
processes for 3 ≤ i ≤ n simply perform the sequence r(i− 1)w(i).

The control-state qf can be reached iff the intersection of L1 and L2 is non-empty. To
see this, first consider a word witnessing the non-emptiness of the intersection. There is
immediately a run of Nn reaching qf where each ith C process behaves as Ci.

In the other direction, take a run ofNn reaching qf . First, observe that for each 1 ≤ i ≤ n
there must be some copy of C running Ci. This is because, otherwise, there is some i not
written to the global store, and hence all i′ ≥ i, including n, are not written. Then C1 can
never write f and C2 can never move to qf . Finally, take the sequence a1 . . . am written by
C1 (and read by C2). This word witnesses non-emptiness as required.

In the case when n = 1, we simply have U run C1 and C run C2. J

6 Making Ehrenfeucht and Rozenberg Constructive

We show how to make Theorem 3 constructive. To prove regularity, Ehrenfeucht and Rozen-
berg assign to each word a set of types θ(w), and prove that, if θ(w) = θ(w′), then w ∼ w′

in the sense of Myhill and Nerode [19]. We first show how to decide θ(w) = θ(w′), and then
show how to build the automaton. For the sake of brevity, we will assume familiarity with
context-free grammars (CFGs) and their related concepts [19].

For our purposes, we consider a context-free grammar (in Chomsky normal form) G to
be a collection of rules of the form A→ BC or A→ a, where A,B and C are non-terminals
and a is a terminal in Γ. There is also a designated start non-terminal S. A word w is in
L(G) if there is a derivation-tree with root labelled by S such that an internal node labelled
by A has left- and right-children labelled by B and C when we have A→ BC in the grammar
and a leaf node is labelled by a when it has parent labelled by A (with one child) and A→ a

is in the grammar. Furthermore w is the yield of the tree; that is, w labels the leaves. Note,
all nodes must be labelled according to the scheme just described. One can also consider
the derivation of w in terms of rewrites from S, where the parent-child relationship in the
tree gives the requires rewriting steps.

M. Hague 9

6.1 Preliminaries
We first recall some relevant definitions from Ehrenfeucht and Rozenberg. We write #a(w)
to mean the number of occurrences of the character a in the word w.

I Definition 13 (Type of a Word). Let Γ be an alphabet and let x,w ∈ Γ∗, We say that w
is of type x, or that x is a type of w (denoted τ(x,w)) if
1. for every a ∈ Γ, #a(x) ≤ 1, and
2. there exists a homomorphism h such that

a. for every a ∈ Γ, h(a) ∈ a ∪ aΓ∗a, and
b. h(x) = w.

If x satisfies the above, we also say that x is a type in Γ∗.

Given a CFG G in Chomsky normal form, we assume a derivation tree T of G is a labelled
tree where all internal nodes are labelled with the non-terminal represented by the node, and
all leaf nodes are labelled by their corresponding characters in Γ. Given a derivation tree T ,
Ehrenfeucht and Rozenberg define a marked tree T with an expanded set of non-terminals
and terminals. Simultaneously, we will define the spine of a marked tree. Intuitively, we
take a path in the tree and mark it with the productions of G that have been used and the
directions taken.

Given an alphabet of terminals and non-terminals Σ and a derivation tree T , let Σ =
{ (A,B,C, k) | k ∈ { 1, 2 } ∧A→ BC ∈ G }∪{ (A, a) | A→ a ∈ G }. This is the marking
alphabet of G.

I Definition 14 (Spine of a Derivation Tree). Let T be a derivation tree in G and let
ρ = v0 . . . vs be a path in T where s ≥ 1, v0 is the root of T , vs is a leaf of T and
`(v0), . . . , `(vs) are the labels corresponding to nodes of ρ. Now for each node vj , 0 ≤ j ≤ s,
change its label to `(vj) as follows:
1. if A→ BC is the production used to rewrite the node j (hence `(vj) = A) and vj has a

direct descendant to the left of ρ, then `(vj) is changed to `(vj) = (A,B,C, 1),
2. if A→ BC is the production used to rewrite the node j and vj has a direct descendant

to the right of ρ, then `(vj) is changed to `(vj) = (A,B,C, 2),
3. if A → a is the production used to rewrite the node j then `(vj) is changed to `(vj) =

(A, a),
4. `(vs) = `(vs).

The resulting tree is called the marked ρ-version of T and denoted by T (ρ). The word
`(v0) . . . `(vs) is referred to as the spine of T (ρ) and denoted by Spine

(
T (ρ)

)
.

We write δ(w, z) whenever there exists some u such that the word wu has a derivation
tree T in G with a path ρ ending on the last character of w and with Spine

(
T (ρ)

)
= z.

Then, we have θ(w) = { x | δ(w, z) ∧ τ(x, z) }. Intuitively, this is the spine-type of w.
Finally, Ehrenfeucht and Rozenberg show that, whenever all strong iterative pairs of G

are very degenerate, then θ(w) = θ(w′) implies w ∼ w′. Since there are a finite number of
types x, we have regularity by Myhill and Nerode.

6.2 Building the Automaton
We show how to make the above result constructive. The first step is to decide θ(w) = θ(w′)
for given w and w′. To do this, from G and some type x, we build Gx which generates all
w such that δ(w, z) holds for some z of type x. Thus x ∈ θ(w) iff w ∈ L(Gx).

10 Parameterised Pushdown Systems with Non-Atomic Writes

First note that there is a simple (polynomial) regular automaton Ax recognising, for
x = a1 . . . as the language(

a1 ∪ a1Σ∗a1

)
. . .
(
as ∪ asΣ

∗
as

)
and z ∈ L(Ax) iff z is of type x. The idea is to build this automaton into the productions
of G to obtain Gx such that all characters to the left (inclusive) of the path chosen by Ax
are kept, while all those to the right are erased.

I Definition 15 (Gx). For a given word type x and CFG G, the grammar Gx has the
following production rules:

all productions in G,
Aq → Bq′Cε for each A→ BC ∈ G and q (A,B,C,1)−−−−−−→ q′ in Ax,
Aq → BCq′ for each A→ BC ∈ G and q (A,B,C,2)−−−−−−→ q′ in Ax,
Aq → a for each A→ a ∈ G and q (A,a)−−−→ q′ in Ax where q′ is a final state,
Aε → BεCε for each A→ BC ∈ G,
Aε → ε for each A→ a ∈ G.

The initial non-terminal is Sq0 where S is the initial non-terminal of G and q0 is the initial
state of Ax.

The correctness of Gx is straightforward and hence relegated to the appendix.

I Lemma 16. For all w, we have w ∈ L(Gx) iff x ∈ θ(w).

I Lemma 17 (Deciding θ(w) = θ(w′)). For given w and w′, we can decide θ(w) = θ(w′) in
O
(
2f(n)) time for some polynomial f where n is the size of G.

Proof. For a given alphabet Σ, there are
∑m
r=1 r! types where m =

∣∣Σ∣∣. Since m is polyno-
mial in n, there areO

(
2f(n)) word types. Hence, we simply check w ∈ L(Gx) and w′ ∈ L(Gx)

for each type x. This is polynomial for each x, giving O
(
2f(n)) in total. J

From this, we can construct, following Myhill and Nerode, the required automaton, using
a kind of fixed point construction beginning with an automaton containing the state qε from
which the equivalence class associated to the empty word will be accepted.

I Lemma 18. For a CFG G such that all strong iterative pairs are very degenerate, we can
build an NFA A of O

(
22f(n)

)
size in the same amount of time, where n is the size of G.

Proof. Let G be a CFG such that all strong iterative pairs are degenerate. We build an
NFA A such that L(G) = L(A) by the following worklist algorithm.

1. Let the worklist contain only ε (the empty word) and A have the initial state qε.
2. Take a word w from the worklist.
3. If w ∈ L(G), make qw a final state.
4. For each a ∈ Γ

a. if there is no state qw′ such that θ(wa) = θ(w′), add qwa to A and add wa to the
worklist,

b. take qw′ in A such that θ(wa) = θ(w′),
c. add the transition qw

a−→ qw′ to A.
5. If the worklist is not empty, go to point 2, else, return A.

Since this follows the Myhill-Nerode construction, using θ(w) = θ(w′) as a proxy for
w ∼ w′, we have that the algorithm terminates and is correct. Hence, with the observation
that there are O

(
22f(n)

)
different values of the sets θ(w), we have the lemma. J

M. Hague 11

7 Conclusions and Future Work

In this work, we have studied the parameterised master/slave reachability problem for push-
down systems with a global store. This provides an extension of work by Kahlon which did
not allow a master process, and communication was via anonymous synchronisation; how-
ever, this is obtained at the expense of atomic accesses to global variables. Our algorithm
introduces new techniques to pushdown system analysis.

An initial inspiration for this work was the study of weak-memory models, which do
not guarantee that — in a multi-threaded environment — memory accesses are sequentially
consistent. In general, if atomic read/writes are permitted, the verification problem is harder
(for example, Atig et al. relate the finite-state case to lossy channel machines [4]); hence,
we removed atomicity as a natural first step. It is not clear how to extend our algorithm to
accommodate weak-memory models and it remains an interesting avenue of future work.

Another concern is the complexity gap between the upper and lower bounds. We conjec-
ture that the upper bound can be improved, although we may require a new approach, since
the complexity comes from the construction of regular read languages. A related question is
whether we can improve the size of the automata Aw(g). Since a PDS of size n can recognise
the language

{
a2n }, we have a read language requiring an exponential number of a char-

acters; hence, the Aw(g) must be at least exponential. It is worth noting that Meyer and
Fischer give a language whose deterministic regular automaton is doubly-exponential in the
size of the corresponding deterministic PDS [24]. However, in the appendix, we provide an
example showing that this language is not very degenerate. If the PDS is not deterministic,
Meyer and Fischer prove there is no bound, in general, on the relationship in sizes.

Finally, we may also consider applications to recursive ping-pong protocols in the spirit
of Delzanno et al. [12].

Acknowledgments Nous remercions Jade Alglave pour plusieurs discussions qui ont amor-
cées ce travail. This work was funded by EPSRC grant EP/F036361/1. We also thank the
anonymous reviewers and Ahmed Bouajjani for their helpful remarks.

References
1 P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized systems

with non-atomic global conditions. In VMCAI, 2008
2 K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.

Information Processing Letters (IPL), 1986.
3 M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2etime-

complete. In Developments in Language Theory, 2008.
4 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem

for weak memory models. In POPL, 2010.
5 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks

of pushdown systems. In CONCUR, 2008.
6 T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In

SPIN, 2000.
7 T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static

analysis. In POPL, 2002.
8 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, 1997.
9 A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of multith-

readed software with asynchronous communication. In FSTTCS, 2005.

12 Parameterised Pushdown Systems with Non-Atomic Writes

10 A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Not., 38(1):62–73, 2003.

11 A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. CONCUR, 2005.

12 G. Delzanno, J. Esparza, and J. Srba. Monotonic set-extended prefix rewriting and veri-
fication of recursive ping-pong protocols. In ATVA, 2006.

13 A. Ehrenfeucht and G. Rozenberg. Strong iterative pairs and the regularity of context-free
languages. ITA, 19(1):43–56, 1985.

14 J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. In TACS, 2001.

15 P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. In CAV, 2010.
16 S. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the

ACM, 39:675–735, 1992.
17 M. Hague. Parameterised pushdown systems with non-atomic writes. arXiv:1109.6264v1

[cs.FL], 2011.
18 A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating

pushdown systems. In FOSSACS, 2010.
19 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-

putation. Addison-Wesley, 1979.
20 N. D. Jones and S. S. Muchnick. Even simple programs are hard to analyze. J. ACM,

24:338–350, April 1977.
21 V. Kahlon. Parameterization as abstraction: A tractable approach to the dataflow analysis

of concurrent programs. In LICS, 2008.
22 V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via locks.

In CAV, 2005.
23 R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-

tems. PhD thesis, TU-München, 1998.
24 A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and

formal systems. In FOCS, 1971.
25 S. Qadeer. The case for context-bounded verification of concurrent programs. In SPIN,

2008.
26 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. TO-

PLAS, 2000.
27 T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their ap-

plication to interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206–263,
2005.

28 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, 2005.

29 S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of Mu-
nich, 2002.

30 K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, 2006.

31 A. Seth. Global reachability in bounded phase multi-stack pushdown systems. In CAV,
2010.

32 I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett., 28:213–
214, July 1988.

33 S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS, 2008.

34 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, 2010.

	Introduction
	Preliminaries
	Non-Atomic Pushdown Systems
	The Parameterised Reachability Problem
	Regular Read Languages
	Simulating the System
	Complexity and Multiple Stores

	Non-parameterized Reachability
	Making Ehrenfeucht and Rozenberg Constructive
	Preliminaries
	Building the Automaton

	Conclusions and Future Work

