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Abstract
We study (collapsible) higher-order pushdown systems — theoretically robust and well-

studied models of higher-order programs — along with their natural subclass called (collapsible)
higher-order basic process algebras. We provide a comprehensive analysis of the model check-
ing complexity of a range of both branching-time and linear-time temporal logics. We obtain
tight bounds on data, expression, and combined-complexity for both (collapsible) higher-order
pushdown systems and (collapsible) higher-order basic process algebra. At order-k, results range
from polynomial to (k + 1)-exponential time.
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1 Introduction

Recently, there has been a burgeoning interest in collapsible higher-order pushdown sys-
tems (CPDSs), both as generators of structures and as models of higher-order computa-
tion. Whereas an order-1 pushdown system augments a finite-state automaton with an
unbounded stack memory, a higher-order pushdown system (HOPDS) provides a nested
“stack-of-stacks” structure. CPDSs allow a further backtracking operation called collapse.

Higher-order pushdown automata (HOPDA) were introduced by Maslov [24]. Higher-
order pushdown systems (HOPDS) are HOPDA viewed as generators of infinite trees or
graphs. Recently these models have been generalised to collapsible pushdown systems
(CPDS) [17, 19]. In terms of expressivity, order-k CPDSs generate the same class of ranked
trees as deterministic order-k recursion schemes [17]. The analogous result holds for safe re-
cursion schemes and HOPDSs [18]. These systems provide a natural model for higher-order
programs with (unbounded) recursive function calls and are therefore useful in software ver-
ification. Further results show an intimate connection with the Caucal hierarchy [10, 11].
For verification, reachability properties — which ask whether a given set of control states
can be reached from the initial configuration — are complete for (k − 1)-ExpTime [5, see ap-
pendix], whilst µ-calculus properties are k-ExpTime-complete [7, 26, 17]. Despite these high
complexities, Kobayashi has verified resource usage properties of higher-order programs [20]
using a novel approach based on intersection types [21, 23].

Hitherto, there has been little work addressing the precise complexity of model checking
higher-order programs with respect to the common temporal logics. In most cases, there
is currently a single or double exponential gap in the best known upper and lower bounds
(derived usually from µ-calculus and reachability respectively). One main contribution of
this paper is a nearly complete picture of the model checking complexities against temporal
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(Collapsible) HOPDS (Collapsible) HOBPA
Data Expression Data Expression

& Combined & Combined
µLTL / LTL (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(F, X) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
LTL(U) (k − 1)-ExpTime k-ExpTime P-time k-ExpTime
CTL k-ExpTime k-ExpTime P-time k-ExpTime
CTL+ k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
CTL* k-ExpTime (k + 1)-ExpTime P-time (k + 1)-ExpTime
EF (k − 1)-ExpSpace-hard (k − 1)-ExpSpace-hard P-time (k − 1)-ExpSpace-hard

Figure 1 The complexity of model checking order-k higher-order systems. Unless stated, all
results are complete.

logics. In particular, we consider data complexity (formulas are fixed), expression complex-
ity (systems are fixed), and combined complexity (both formulas and systems are input
parameters). Table 1 (left column) summarises our results. In all cases, our lower bounds
hold without the collapse operation, whilst our upper bounds allow collapse.

Basic process algebras (BPAs) are a natural and well-studied subclass of order-1 PDSs (cf.
[6]), which are suitable abstractions for modelling the control-flow of sequential programs (cf.
[2, 14]). We propose higher-order extensions of BPAs, called (collapsible) higher-order basic
process algebras (HOBPAs), that form a natural subclass of (collapsible) HOPDSs. This
differs from the single-state HOPDSs introduced by Bouajjani and Meyer [3]. As graph
generators, (collapsible) HOBPAs are almost as powerful as (collapsible) HOPDSs in the
following sense: (1) like CPDS, there exists a collapsible order-2 BPA whose graph has an
undecidable monadic second-order logic (MSO) theory, and (2) the class of graphs generated
by order-k BPAs coincide with those generated by order-k PDSs up to MSO interpretations.
In this paper, we provide an almost complete picture for the model checking complexities of
standard temporal logics over (collapsible) HOBPAs. See Table 1 (right column). We show
that the restriction to HOBPA does not, in most cases, simplify the model checking problem;
a notable exception is for data complexity, where the problem becomes polynomial time.
Again, our lower bounds hold without collapse, whilst our upper bounds allow collapse.

Similar analyses appear across a number of papers for the special case of order-1 push-
down systems [1, 6, 30, 31, 4]. In all cases we generalise the resulting picture in a natural
manner. That is, a 1-ExpTime-complete complexity becomes k-ExpTime-complete, and
so on. Our upper bound results concern the data complexity of Collapsible HOBPAs and
the data and combined complexities for LTL over CPDSs. Previous work studied reacha-
bility, LTL and the alternation-free µ-calculus [16, 27, 13] over HOPDS without collapse.
However, we believe the LTL algorithm contains an error, and provide a new algorithm.
Furthermore, the alternation-free µ-calculus algorithm in [16] is not optimal. Our remain-
ing results concern lower bounds. We begin with two techniques from in the literature:
(1) Engelfriet’s characterization of complexity classes k-ExpTime by extensions of HOPDAs
(e.g. with space-bounded worktape) [13], and (2) Cachat and Walukiewicz’s more “direct”
approach via encodings of large numbers using HOPDSs [8]. We employ Technique (1) to
prove the lower bounds for LTL (and its fragments), CTL, CTL+, and CTL*. This does
not mean that the proofs of the results are immediate: it was left as an open problem in
[8] whether the two techniques can be used to derive these lower bounds. Since Technique
(1) seems only suited to deriving k-ExpTime lower bounds (for some k), we give two varia-
tions of Technique (2) to derive (k − 1)-ExpSpace lower bounds for EF model checking over
HOPDSs and HOBPAs (the latter proof is substantially more involved). The lower bound
proofs in this paper suggest that Technique (1) yields simpler proofs, while Technique (2)
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offers more flexibility.
The preliminaries are given in §2. We begin in §3 with the results for fixed formulas over

collapsible HOBPA. In §4 we discuss branching-time logics, and linear-time in §5. Finally,
we conclude this paper with future work in §6. Due to the length and intricate nature of
the proofs, we relegate the full details into the full version.

2 Preliminaries

We define (collapsible) higher-order pushdown systems and basic process algebra and give
a result of Engelfriet used in some proofs. Note, after defining higher-order and collapsible
stores, we only define higher-order systems. For the collapsible version, simply replace the
higher-order store with a collapsible one, expanding the stack operations accordingly. Also,
the definitions generalise from non-deterministic to alternating in the standard way.

Higher-Order Collapsible Pushdown Stores
We begin by defining a higher-order pushdown store. Collapse links will be introduced
afterwards. Intuitively, a higher-order store is a stack of lower order stacks.

I Definition 1 (k-Stores). Let CΣ
0 be a finite alphabet Σ with [, ] /∈ Σ. For k ≥ 1, the set of

k-stores CΣ
k contains all [γ1 . . . γm] with m ≥ 1 and γi ∈ CΣ

k−1 for all 1 ≤ i ≤ m.

There are two operations defined over 1-stores (for all w ∈ Σ∗)

pushw[a1 . . . am] = [wa2 . . . am] and top1[a1 . . . am] = a1 .

We define pop1 = pushε. Let O1 = { pushw | w ∈ Σ∗ }. When k > 1, a push operation
creates a copy of the topmost stack, while a pop removes it. We assume w.l.o.g. that
Σ ∩ N = ∅, where N is the set of natural numbers. Finally, let [γ1 . . . γm] ∈ CΣ

k for some k.

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < k

pushk[γ1 . . . γm] = [γ1γ1γ2 . . . γm]
popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < k

popk[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < k

topk[γ1 . . . γm] = γ1

Note, when m = 1, popk is undefined. Let Ok = { pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 <
l ≤ k }. We designate ⊥ to be a bottom of stack symbol that is neither pushed nor popped.
Let [w]1 = [w] and [w]k = [[w]k−1].

For collapse, the order-1 push operation pushw is replaced with push
a
i1
1 ...aimm b

for 1 ≤
iz ≤ k and az, b ∈ Σ where 1 ≤ z ≤ m. A push

a
i1
1 ...aimm b

on some stack with top1 character
a is equivalent to pusha1...amb except each az is augmented with a pair (iz, 1). That is,
the top of stack character a(i,j) is replaced by a(i1,1)

1 . . . a
(im,1)
m b(i,j). The collapse operation

from a character a(i,j) is equivalent to j applications of popi. The second component j is
incremented at every pushi. Hence, (i, j) is a link to the order-(i − 1) stack beneath the
character when it was first pushed.

Consider [[[⊥] [⊥]]]. Applying pusha2⊥ gives
[[[
a(2,1) ⊥] [⊥]

]]
. The pair (2, 1) points to

[⊥]. A push2 leads to
[[[
a(2,2) ⊥] [a(2,1) ⊥] [⊥]

]]
. Note the second component is incremented

in the copy of a, and, thus, (2, 2) also points to [⊥]. A subtlety occurs after a push3. We
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obtain the stack below on the left, where the copies of a now refer to the copies of [⊥] within
the order-2 stack they occupy. After a collapse, we obtain the stack on the right.[ [[

a(2,2) ⊥] [a(2,1) ⊥] [⊥]
][[

a(2,2) ⊥] [a(2,1) ⊥] [⊥]
] ] [

[[⊥]][[
a(2,2) ⊥] [a(2,1) ⊥] [⊥]

] ]
Formally, we define order-k stores with links in terms of order-k stores over the infinite

alphabet Σ =
{
a(i,j) | i, j ∈ N

}
. The set of operations over an order-k store with links is

Ock =
{
push

a
i1
1 ...aimm b

| ∀1 ≤ z ≤ m.1 ≤ iz ≤ k ∧ az ∈ Σ
}

∪{ pushl, popl, collapse | 1 < l ≤ k } .

Note that this set of operations is slightly different from the original definition [17]. We show,
in the full version, that the definitions are equivalent. The semantics of the operations are
given below, in terms of the standard order-k pushdown operators, and an order-k stack
γ = [γ1 . . . γm]. Let γ<k> be the stack γ where each superscript (i, j) with i ≥ k is replaced
with (i, j + 1).

push
a
i1
1 ...aimm b

(γ) = push
a

(i1,1)
1 ...a

(im,1)
m b

(i′,j′)
m

(γ) where top1(γ) = b(i
′,j′)

collapse(γ) = popji (γ) where top1(γ) = b(i,j)

pushk[γ1 . . . γm] = [γ<k>1 γ1 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] where l < k

Higher-Order Pushdown Systems
A HOPDS is a finite-state system with a higher-order store. The finite-state component
is the control state. At each step, the applicable transitions are determined by the control
state and the top1 character of the stack. Each transition updates the control state and the
stack.

I Definition 2. An order-k PDS is a tuple (P,R,Σ, p0,⊥) where P is a finite set of control
states, R ⊆ P ×Σ×Ok ×P is a finite set of rules, Σ is a finite stack alphabet, p0 ∈ P is an
initial control state and ⊥∈ Σ is a bottom of stack symbol.

A configuration of a higher-order PDS is a pair 〈p, γ〉 where p ∈ P and γ is a k-store.
We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ R, top1(γ) = a and γ′ = o(γ).
The initial configuration is 〈p0, [⊥]k〉.

Higher-Order Basic Process Algebra
An order-1 BPA is an order-1 PDS with a single control state. By applying the same restric-
tion, Bouajjani and Meyer have obtained one definition of higher-order BPA [3]. However,
consider 〈p, [[a ⊥]]〉 and the rule (omitting the control) (a, push2). We obtain 〈p, [[a ⊥] [a ⊥]]〉
and the same rule can be applied, ad infinitum. However, at order-1 we may use (a, pushbc)
to rewrite the top character before adding a new top character. Hence, at order-j, it is natu-
ral to be able to rewrite the top order-(j−1) stack, before adding a new one. Consequently,
we introduce (a, pushj , b) = pusha; pushj ; pushb for all 2 ≤ j ≤ k. E.g., such rules can sim-
ulate push2; push3; pop2. Let O′k = { pushw | w ∈ Σ∗ } ∪ { (a, pushj , b), popj | 1 < j ≤ k }.
I Definition 3. An order-k BPA is a tuple (R,Σ,⊥) where R ⊆ Σ × O′k is a finite set of
rules, Σ is a finite stack alphabet, and ⊥∈ Σ is the bottom of stack symbol.
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We mention two results on the expressive power of HOBPAs as graph generators. Famil-
iarity with monadic second-order logic (MSO) is assumed (cf. [28]). As graph generators,
(collapsible) HOBPAs are as powerful as (collapsible) HOPDAs up to monadic second-order
logic (MSO) interpretation in the following sense. First, it is known that there exists an
order-2 CPDA generating a graph with an undecidable MSO theory [17]. In contrast, over
HOPDAs, MSO is decidable. This CPDA is not a collapsible HOBPA. On the other hand,
using the ideas from [17], it is not difficult to come up with an order-2 collapsible HOBPA
generating a graph with an undecidable MSO theory.

I Proposition 1. There exists a fixed collapsible order-2 BPA which generates a graph with
an undecidable MSO theory.

We sketch the proof of this proposition in the full version. Secondly, we discuss the expressive
power of HOBPAs without collapse. Carayol and Wöhrle [9, 10] gave a fixed graph ∆k

2 , for
each integer k > 0, such that the class of graphs that are MSO-interpretable in the graphs
generated by order-k PDSs coincide with the class of graphs that are MSO-interpretable in
∆k

2 . It is easy to check that ∆k
2 can be generated by a fixed order-k BPAs (e.g. see [9]),

which implies the following proposition.

I Proposition 2. The class of graphs that are MSO-interpretable in the graphs generated by
order-k BPAs coincide with the class of graphs MSO-interpretable in the graphs generated
by order-k PDSs.

Higher-Order Pushdown Automata with an Auxiliary Work Tape

For the lower bound proofs we use HOPDA with a space-bounded work tape. That is, in
addition to the control state and the stack, the machine has a bounded, two-way work tape.
This tape operates identically to the tape in a Turing machine.

I Definition 4. An order-k PDA with an s(n)-space work tape is a tuple (P,R,Σ,Γ ∪
{ε} ,∆, p0,⊥,2,F) where P is a finite set of control states, R ⊆ (P × Γ ∪ {ε} × Σ ×∆) ×
Ok × (∆× {l, r} × P ) is a finite set of rules, Σ is a finite stack alphabet, Γ is a finite input
alphabet, ∆ is a finite tape alphabet, p0 ∈ P is an initial control state, ⊥∈ Σ is the bottom
of stack symbol, 2 ∈ ∆ denotes a blank tape cell and F ⊆ P is a set of accepting control
states.

Given an input word of length n, a configuration of a HOPDA with s(n) bounded work
tape is a tuple 〈p, γ, t, j〉 where p ∈ P , γ is a k-store, t (the tape contents) is a word in ∆s(n)

and 1 ≤ j ≤ s(n) indicates the position of the read/write head on the tape.
A rule (p, α, a, x, o, y, d, p′) ∈ R can be applied when the current control state is p, the

input character is α, the top-of-stack character is a, and the tape contents at position j are
x. The control state is then updated to p′, the command o is applied to the stack, and y is
written to the tape. The tape head moves accordingly for d = l (left) or d = r (right).

More formally, we have a transition 〈p, γ, t, j〉 α
↪−→ 〈p′, γ′, t′, j′〉 iff we have

(p, α, a, x, o, y, l, p′) ∈ R, j > 1, top1(γ) = a, t(j) = x, γ′ = o(γ), t′(j) = y, t′(h) = t(h) for
all h 6= j and j′ = j−1 or we have (p, α, a, x, o, y, r, p′) ∈ R, j < s(n), top1(γ) = a, t(j) = x,
γ′ = o(γ), t′(j) = y, t′(h) = t(h) for all h 6= j and j′ = j − 1. For α 6= ε, we write c α

↪−→ε c
′

whenever there is a sequence of ε-transitions from c to some c1, an α-transition from c1 to
c2 and a sequence of ε-transitions to c′. A word α1, . . . , αn is accepted by the automaton iff
cn = 〈p, γ〉 and p ∈ F and c0

α1
↪−→ε · · · αn

↪−→ε cn where c0 = 〈p0, [⊥]k,2s(n), 1〉.
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Temporal Logics
We will assume familiarity with the temporal logics discussed, remarking only that µLTL is
LTL extended with fixed point operators. Full definitions can be found in the literature [12,
29]. We assume, for all logics, the valuations of atomic propositions depend only on the
control state and current top-of-stack character, referred to as a head. That is, Λ : P ×Σ→
2Prop is an assignment of satisfied atomic propositions from the set Prop to each head in
P × Σ. We say a system satisfies a formula if it holds at the initial state of the system.

Engelfriet’s Results
We use the following theorem of Engelfriet [13] in some proofs. Let NSPACE(s(n))-P k de-
note the class of languages accepted by a non-deterministic order-k PDA with an s(n)-space-
bounded work tape, where n is the length of the input word. Similarly, ASPACE(s(n))-P k
denotes the class of languages accepted by an alternating order-k PDA with an s(n)-space-
bounded work tape. Finally

⋃
d>0 DTIME(expk(ds(n))) is the class of languages accepted

by a time-bounded Turing machine, where exp0(x) = x and expk(x) = 2expk−1(x).

I Theorem 5 ([13], Thm. 2.5). For any k ≥ 1 and s(n) ≥ log(n), we have NSPACE(s(n))-
P k = ASPACE(s(n))-P k−1 =

⋃
d>0 DTIME(expk(ds(n))).

That is, a non-deterministic order-k PDA with a polynomially-bounded work tape ex-
ists for every k-ExpTime language, and an alternating order-k PDA with a polynomially-
bounded work tape exists for every (k + 1)-ExpTime language.

3 Model Checking Collapsible HOBPA Against Fixed Formulas

We begin with a P-time algorithm for model checking collapsible HOBPA against fixed
formulas. Hardness follows from the P-time-hardness of context-free language emptiness [15].

I Theorem 6. For any logic that can be translated into µ-calculus, model checking collapsible
HOBPA against a fixed formula is in P-time.

Proof. As argued in the full version, any collapsible HOBPA can be simulated by a CPDS
with a fixed number of control states. Therefrom, and since the formula is fixed, we construct
a CPDS parity game with a fixed number of control states. At order-k, the winner of these
games can be determined in k-ExpTime in the number of control states, and polynomial in
the alphabet [17]. Hence, the algorithm runs in P-time. J

4 Branching Time

We begin by observing, for CPDS, the upper bounds for CTL, CTL+ and CTL* can be
obtained by translating into µ-calculus, which has a k-ExpTime model checking problem.
For CTL, the translation is polynomial. For CTL+ and CTL* it is exponential, giving
(k + 1)-ExpTime, and k-ExpTime when the formula is fixed. For the lower bound results,
we discuss EF, CTL and then CTL+.

I Theorem 7. For a fixed formula, and a given order-k CPDS, model checking CTL, CTL+
and CTL* is in k-ExpTime. For a non-fixed system and non-fixed formula, CTL is k-
ExpTime, and CTL+ and CTL* are in (k + 1)-ExpTime.
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4.1 Lower Bounds for EF
In most cases, we are able to derive optimal lower bounds using Theorem 5. However,
Theorem 5 is not immediately applicable for (e.g.) (k − 1)-ExpSpace problems. In the
case of EF-logic, the model checking problem over order-1 PDSs and BPAs is PSpace-
complete [25, 31]. We now give (k − 1)-ExpSpace lower bounds for data complexity of
order-k PDSs and the expression complexity of order-k BPAs (and thus of order-k PDSs)
using the technique of [8] of encoding large numbers. We conjecture that these lower bounds
are tight (currently, the best upper bound is k-ExpTime, which is inherited from µ-calculus).

I Theorem 8. Model checking EF over order-k PDS without collapse is (k − 1)-ExpSpace-
hard, even for a fixed formula.

Proof. (sketch) We reduce membership for a given (k − 1)-ExpSpace Turing machine M
using expk−1(p(n)) space on an input word of length n, for some polynomial function p. Fix
a number m ∈ Z>0, which we will later define as p(n) once n is set. The proof combines the
technique of [1] for proving that EF-logic over PDS is PSpace-hard and the technique of [8]
for encoding and checking large numbers (i.e. k-towers of exponentials) using operations in
Ok.

We shall start by briefly recalling the encoding techniques of large numbers from [8]. For
each i ∈ Z>0, we define Σi := {ai, bi} and Σ≤i :=

⋃i
j=1 Σi. We now define the notion of

i-counters by induction. A 1-counter (of length m) is a word σm−1 . . . σ0 ∈ (Σ1)m. Such a
word naturally represents the number

∑m−1
i=0 σi2i where a1 represents 0 and b1 represents

1. Assuming that the notion of i-counter has been defined, an (i + 1)-counter is simply a
word σrlr . . . σ0l0 over Σ≤i+1, where r = expi(m) − 1, σj ∈ Σi+1, and lj is an i-counter
representing the number j. This (i + 1)-counter represents the number

∑r
j=0 σj2j , where

(as before) ai+1 and bi+1 are used to (respectively) represent 0 and 1.
Cachat and Walukiewicz [8] showed that a polynomial-size order-k pushdown game arena

P with a reachability objective could be defined (depending only on m) with the following
control states and properties: counterk — from configuration (counterk, γ) of P, Player
0 wins iff γ ends with a k-counter; firstk (resp. lastk) — from configuration (firstk, γ)
(resp. (lastk, γ), Player 0 wins iff γ ends with a k-counter representing 0 (resp. expk−1(m));
equalk — from (equalk, γ), Player 0 wins iff γ ends with two k-counters representing equal
values; succk — from (succk, γ), Player 0 wins iff γ ends with two k-counters representing
successive values. We observe that the game element of P can easily be translated into fixed
EF formulas (i.e. not depending onm) satisfying the same properties, the main reason being
that the game arena P has a fixed number of rounds.

The rest of the proof uses the idea of [1]. Using an EF operator, we will first guess
a word in Σ≤k+1 representing an accepting computation of M on the given input word
w = α1 . . . αn. We then need to check that the guess is valid. That is, it represents a
sequence of configurations, the initial configuration is the right form, the final configuration
is reached, and consecutive configurations respect the transition relation. All these can be
done by means of a fixed formula, thanks to the result above for encoding large numbers. J

I Theorem 9. For a fixed order-k HOBPA without collapse, model checking EF is (k − 1)-
ExpSpace-hard.

Proof. (sketch) The proof uses some general ideas from the previous proof, but, without
control states to encode tests for large numbers, we need an entirely different construction.
We briefly explain the order-2 case. Our HOBPA P will guess an accepting run of a fixed
exponential space Turing machineM accepting an ExpSpace-complete language, obtaining a
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stack of the form [w]2. For the checking stage, our HOBPA P now tries to find some location
inside the stack that is invalid. In doing so, we need to ensure that all of the information
on top of this location is not destroyed. To this end, we will build a stair-like structure
from [w]2 by performing operations of the form [push1(a′); push2; push1(prime)] or of the
form [push1(a′′); push2; push1(dprime)] when seeing a topmost stack symbol a. Here, prime
and dprime are simply intermediate symbols to help signify the action that was previous
executed, i.e., we could simply only allow pop1 operation when prime or dprime is seen as
topmost symbol. The double prime marking is used to “remember” the starting point of
(sub)configuration that we suspect is invalid. That is, we will have to make sure that it is
put precisely once. At some point, P simply applies rules of the form push1(a′) when a is
seen without applying push2, which marks the end point of a (sub)configuration that we
suspect is invalid. We then only allow rules pop2 when primed or double primed symbols
are seen. To make sure that we see precisely one separator symbol (i.e. a3 ∈ Σ3), we can
use an EF formula saying facts about the location of the double primed symbol a′′3 . Such a
stair-like structure will allow us to define EF formulas that play the roles of counteri, firsti,
lasti, equali, and succi and their associated EF formulas in the previous proof. J

4.2 Lower Bounds for CTL
Data Complexity We know, for a fixed formula, model checking CTL, CTL+ and CTL*
against HOPDSs is in k-ExpTime. Here, we show the lower bound.

I Theorem 10. For a fixed formula, model checking CTL over a given order-k HOPDS
without collapse is k-ExpTime-hard.

Proof. (sketch) From Theorem 5 we take a language that is k-ExpTime-hard and fix an
equivalent order-(k− 1) alternating HOPDA with a polynomially space-bounded work tape
P. The reduction is inspired by Bozzelli [4].

We use an order-k stack to navigate a computation tree of the HOPDA. To simulate the
work tape, at each step, after an operation on the order-(k − 1) stack, a sequence of tape
symbols are pushed on to the top order-1 stack. Then, the system can do a check branch to
ensure the guessed tape is consistent with the previous, or continue simulating the execution.
To continue, an order-k push saves the current state (for backtracking), the work tape is
erased, the next rule is announced, and a pushk remembers the rule. This process repeats.
Consider the example order-3 stack below.  [tw1]

[w2]
. . .

 [
[r . . .]
. . .

]  [t′w′1]
[w′2]
. . .

 · · ·


This stack is at a configuration with the tape given by the word t and order-2 stack
[[w1] [w2] . . .], which can backtrack to a configuration with tape t′ and order-2 stack
[[w′1] [w′2] . . .]. The rule r connects the configurations. When an accepting configuration
is seen, or the children of the current node have been fully explored, we backtrack using
popk, and check untested universal branches. The automaton accepts when the (marked)
initial stack is reached. That is, all paths have been explored, and found to be accepting.

The check branches have further branches for each of the polynomially many positions
of the work tape. Each branch uses the control state to find the correct position, and then,
using the control state, compares it with the corresponding positions in the previous work
tape, which is recovered via popk operations.
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The CTL formula E ((op ∧AX(check → AFgood))Ufin) asserts a path encoding an
accepting tree exists, and checking branches all accept. The proposition op indicates the
current path is simulating a tree, and check indicates a checking branch. Finally, good
indicates that the check has been passed, and fin denotes the (successful) completion of the
run. J

Expression Complexity The following theorem takes care of all cases.

I Theorem 11. For a fixed order-k HOBPA without collapse, model checking CTL is k-
ExpTime-hard.

Proof. (sketch) The proof is in stages. First, we adapt Theorem 10, unfixing the formula to
fix the HOPDS. A HOBPA is obtained using a more complex formula. There are two main
assertions we move from the HOPDS to the formula. First, the check branch becomes a
straight-line sequence of pops and the formula uses sequences of EX to compare positions.
Secondly, the word position being read has to be guessed and added to the work tape
information, then checked by the formula. Hence, we have the result for a fixed HOPDS.

To obtain a HOBPA the main difficulty is that control states were used to separate the
check, backtrack and simulation phases of the model. Here we use the (a, pushj , b) rules
so that, when pushing, the automaton can read a character a, and mark it a in the next
applied rule. Hence the system knows when it is moving up or down the stack, and when
it has simulated a stack action. Also the automaton announces the intended phases. For
example, the check branch announces “check”, removes the work tape, announces “popk”,
pops, announces “check” again and removes the work tape. The formula can then use EXj

to look into the first tape, and E(tapeU(popk ∧ EX(check ∧ EXjϕ))) to look j steps into
the next tape, where tape indicates that a tape character is seen. J

4.3 Lower Bounds for CTL+

For data complexity, the CTL lower bound transfers to CTL+ and CTL*. For the expression
complexity, the following theorem suffices.

I Theorem 12. For a fixed order-k HOBPA without collapse, model checking CTL+ is
(k + 1)-ExpTime-hard.

Proof. (sketch) First we adapt the proof of Theorem 10 to show, CTL* is (k + 1)-ExpTime-
hard. We then replace the CTL* formula with a CTL+ formula. Then we show how to fix
the system, and restrict ourselves to HOBPA.

For a non-fixed formula and system, our CTL* proof adapts Bozzelli’s order-1 proof [4].
Fix a language that is hard for (k + 1)-ExpTime and an equivalent order-(k−1) alternating
HOPDA with an exponentially space-bounded work tape. The system proceeds as before,
but guesses the length of the work tape and uses a word binn(0)c0binn(1)c1 · · · binn(2n −
1)c2n−1 to represent it, where binn(i) is the n-digit binary representation of i, and cj are cell
contents. The check phase has one branch to check the cell counters are sequential, and the
others, instead of just popping down the stack, mark a position in each tape. The formula
asserts, when markings are sensible, the tape contents are locally consistent. This can, in
fact, be encoded in CTL+ by taking advantage of straight-line parts of the execution and
adding extra markings. Obtaining a fixed HOBPA is similar to the CTL case, with some
extra tricks. E.g., to ensure each marker is placed once and in the correct order. J
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5 Linear Time

We consider the linear time logics. We first deal with the upper bound for linear time
µ-calculus (µLTL) — and hence LTL — before considering the lower bounds in turn.

5.1 Upper Bounds for µLTL
Since the linear time µ-calculus (µLTL) does not translate polynomially into µ-calculus, we
show the k-ExpTime upper bound of model checking µLTL against CPDS separately. Note
that µLTL trivially subsumes all other linear time logics considered in this paper.

I Theorem 13. Model checking µLTL against order-k CPDSs is in k-ExpTime for a non-
fixed formula, and (k − 1)-ExpTime for a fixed formula.

Proof. (sketch) We can translate any µLTL formula ϕ into a Büchi automaton B at an
exponential cost [29]. From a given CPDS P we construct a product CPDS PB = P × B
which has a Büchi acceptance condition such that PB accepts iff P does not satisfy ϕ.

An order-k Büchi CPDS is a CPDS parity game with two colours and only one player.
Hence, non-emptiness can be reduced to determining the winner in a parity game, which
takes k-ExpTime in the size of the CPDS [17]. Since the Büchi CPDS is exponential in
the size of ϕ, this complexity is too high. The algorithm for an order-k parity game is by
a reduction to an order-(k − 1) game of exponential size. Because the Büchi CPDS has
one player, we can avoid the exponential blow up, constructing an order-(k − 1) game of
polynomial size. This can be solved in (k − 1)-ExpTime in the size of the Büchi CPDS,
giving an algorithm in k-ExpTime for a non-fixed formula, and (k − 1)-ExpTime for a fixed
formula. J

5.2 Lower Bounds for LTL
We first give a matching lower bound for data complexity (fixed formula) of LTL, which
already hold for its fragments LTL(F,X) and LTL(U). Since we have previously shown that
order-k HOBPA can be analysed in P-time for fixed formulas, it remains to consider HOPDS.

I Theorem 14. Model checking HOPDS without collapse against fixed LTL(F, X) and
LTL(U) formulas is (k − 1)-ExpTime-hard.

Proof. The non-emptiness problem for HOPDS is (k − 1)-ExpTime-complete [13]. This
problem easily reduces to checking the fixed formula G(¬f), where f holds at all accepting
states. Since this formula is both in LTL(F, X) and LTL(U), we are done. J

Next we study the expression complexity (fixed system). This is our main result of this
section: already for a fixed order-k HOBPA, both LTL(F, X) and LTL(U) are k-ExpTime-
hard.

I Theorem 15. Model checking LTL(F, X) and LTL(U) against a fixed HOBPA without
collapse is k-ExpTime-hard.

Proof. (sketch) We take a k-ExpTime-hard language L, and, by Theorem 5, its equivalent
HOPDS with s(n)-bounded space work tape P, for some polynomial s(n). We shall construct
a fixed HOBPA P ′ such that the language L is polynomial-time reducible to the LTL(F,X)
model checking problem over P ′. We can similarly derive the desired lower bound for LTL(U)
by “weakly” simulating the next operators with the until operator in the standard way.
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We shall now give an intuition of the construction of P ′. Our HOBPA P ′ is an “over-
approximation” of P in the sense that P ′ can do whatever actions P can do but also more.
We will then use LTL(F,X) formulas to enforce correct simulations. This is of course due
to the fact that P ′ lacks control states and work tape, and its definition should not depend
on the input word to P. We shall now elaborate more on how this can be implemented.
Given a word w = α1 . . . αn ∈ Γ∗, we would like to determine if there is an accepting run
of P on w, i.e., a sequence of configurations of the form 〈p, γ, t, j〉 starting with a starting
configuration and ending with a final configuration. Here, p is a control state of P, γ is a
k-store, t ∈ ∆s(n) is a tape content, and 1 ≤ j ≤ s(n) is the position of the tape head. We
will represent each such configuration as the topmost symbols of a contiguous sequence of
configurations of P ′. For example, suppose that the current configuration of P is 〈p, γ, t, j〉
where top1(γ) = a. The HOBPA P ′ will start by having (p, a) as its topmost stack symbol.
It will then keep modifing its topmost symbol to reflect the tape content t and the position j.
This is done by guessing each individual tape cell content from left to right. At some point,
P ′ will nondetermistically choose some rule of P to fire. We simulate this by first executing
the stack operation and then guess some new state, which we put on top of the stack (this
guess is needed because pop operations will destroy control state information). It will then
continue by guessing next tape content in the same manner. This process can be repeated
indefinitely, unless P ′ decides to go to a final (i.e. sink) state, in which P ′ will just loop
forever. Given an input word w = α1 . . . αn ∈ Γ∗, we may force a correct simulation of P on
w by P ′ using an LTL(F,X) formula. That is, we give a formula ϕw such that w ∈ L(P) iff
P ′, c0 6|= ϕw, where c0 is an appropriate initial configuration of P ′ reflecting the initial state
of P. This can be done by first ensuring that each configuration of P in the simulation as a
contiguous sequence of configurations of P ′ is valid. In particular, the guessed tape content
(reflected by the topmost symbols in this sequence of configurations of P ′) must be of length
s(n) and has precisely one tape head, which can be easily expressed in LTL(F,X) using a
single operator G and nestings of next operators of depth s(n) (approximately). Recall that
s(n) is a polynomial function. Using the same technique, we also express that two represen-
tations of consecutive configurations of P in the simulation respect the transition relation
of P. Similarly, we enforce the initial configuration in the simulation and that some final
configuration of P is reached. J

6 Future Work

There are several avenues of future work. E.g., we have no matching upper bound for
the complexity of EF model checking. Walukiewicz has shown the problem to be PSpace-
complete at order-1 [31]. However, his techniques do not easily extend to HOPDS owing to
the subtleties of higher-order stacks. We may also study simpler logics such as LTL(F).
Acknowledgments. We thank Olivier Serre for interesting discussions and the anonymous
referees for their helpful remarks. This work was partly supported by EPSRC (EP/F036361
and EP/E005039), and was done while the second author was a student at the School of
Informatics, University of Edinburgh.
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A Definition of Collapsible Pushdown Systems

We define order-k stores with links in terms of order-k stores over the infinite alphabet
Σ =

{
a(i,j) | i, j ∈ N

}
. We define the original set of stack operations [17]. We then define

the rule push
a
i1
1 ...aimm b

used in this paper.
The set of operations over an order-k store with links is

Ock =
{
pushia, rewa, pop1 | 1 ≤ i ≤ k ∧ a ∈ Σ

}
∪{ pushl, popl, collapse | 1 < l ≤ k } .

The semantics of the operations are given below, in terms of the standard order-k pushdown
operators, and an order-k stack γ = [γ1 . . . γm]. Let γ<k> be the stack γ where each
superscript (i, j) with i ≥ k is replaced with (i, j + 1).

pop1(γ) = pushε(γ)
rewa = pusha(i,j) where top1(γ) = b(i,j)

pushia(γ) = push
a(i,1)b

(i′,j′)
m

(γ) where top1(γ) = b(i
′,j′)

collapse(γ) = popji (γ) where top1(γ) = b(i,j)

pushk[γ1 . . . γm] = [γ<k>1 γ1 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] where l < k

I Definition 16. An order-k CPDS is a tuple (P,R,Σ, p0,⊥) where P is a finite set of
control states, R ⊆ P × Σ × Ock × P is a finite set of rules, Σ is a finite stack alphabet,
p0 ∈ P is an initial control state and ⊥∈ Σ is a bottom of stack symbol.

A configuration of a CPDS is a pair 〈p, γ〉 where p ∈ P and γ is a k-store with links. We
have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ R, top1(γ) is a or a(i,j) for some
i, j and γ′ = o(γ). The initial configuration is 〈p0, [⊥]k〉.

In this paper we use a slight variation of CPDSs, where

Ock =
{
push

a
i1
1 ...aimm b

| ∀1 ≤ z ≤ m.1 ≤ iz ≤ k ∧ az ∈ Σ
}

∪{ pushl, popl, collapse | 1 < l ≤ k } .
This is to emphasize the connection to HOPDS. We have

push
a
i1
1 ...aimm b

= rewb; pushimam ; . . . ; pushi1a1

This can easily be simulated by adding (a polynomial number of) intermediate states.
Finally, we observe that a collapsible HOBPA can be simulated by a CPDS of the original

definition with a fixed number of states and a polynomially expanded alphabet. To do so
we expand the alphabet to two kinds of tuples

HOPush(a, j, b) and CPush(a, ai11 , . . . , aimm )

for all prefixes ai11 , . . . , aimm of some collapsible push rule. For both tuples, a is the top1
character of the stack being simulated. We write 〈a〉 to denote any character of this form,
or simply of the form a.

The first tuple HOPush(a, j, b) indicates the current top1 character is a, a pushj
is to be performed, then the top1 character is to be replaced by b. We replace
each rule (a, (b, pushj , c)) with the rules (qnorm, 〈a〉, pushHOPush(b,j,c), qpush) for all j′ ∈
{1, . . . , k} and a ∈ Σ, followed by the rule (qpush, HOPush(b, j, c), pushj , qpushed) and
(qpushed, HOPush(b, j, c), pushc, qnorm).
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The second type of tuples CPush(a, ai11 , . . . , aimm ) are used to simulate collapsible push
rules. That is, we still need to perform pushi1a1

; . . . ; pushimam . Each rule (a, push
a
i1
1 ...aimm b

) is
replaced by (qnorm, 〈a〉, rewCPush(b,ai11 ,...,aimm ),qcpush . Then we add the rule

(qcpush, CPush(b, ai11 , . . . aimm ), pushi1
CPush(am,ai11 ,...,a

i(m−1)
(m−1) )

, qcpush)

whenever m > 0 for all prefixes of collapsible push rules. Finally we have the rule

(qcpush, CPush(b), rew(b), qnorm) .

The remaining rules (a, o) are simply replaced by rules of the form (qnorm, 〈a〉, o, qnorm).

B Proofs for Branching Time

B.1 Proof of Theorem 8

Theorem 8. Model checking EF over order-k PDS without collapse is (k − 1)-ExpSpace-
hard, even for a fixed formula.

We will now elaborate our construction of the fixed EF formulas and the order-k PDSs
in more details. Following [8], we could construct in polynomial-time an order-k PDS P
over the stack alphabet Σ≤k+1 with the following pairs (s, ψ) of control states of P and EF
formulas:

(counterk, Counterk) such that (P, 〈counterk, γ〉) |= Counterk iff top2(γ) ends with a
k-counter.
(firstk, F irstk) such that (P, 〈firstk, γ〉) |= Firstk iff top2(γ) ends with a k-counter
representing the number 0.
(lastk, Lastk) such that (P, 〈lastk, γ〉) |= Lastk iff top2(γ) ends with a k-counter repre-
senting the number expk−1(m)− 1.
(equalk, Equalk) such that (P, 〈equalk, γ〉) |= Equalk iff top2(γ) ends with two k-counters
that have the same value (separated by one letter from Γk+1).
(equal2k, Equal2k) such that (P, 〈equal2k, γ〉) |= Equal2k iff the two topmost order-1 stacks
in γ ends with k-counters that have the same value.
(succk, Succk) such that (P, 〈succk, γ〉) |= Succk iff top2(γ) ends with two k-counters
that are of successive values (the top one is the successor of the lower one).

The EF formulas defined here depend neither on the input word w nor on the Turing machine
M . In fact, [8] defines order-k pushdown game arenas instead of EF formulas. However, one
can easily check that the description translates directly to pairs of EF formulas and HOPDS
as they have a fixed number of rounds (more precisely, the structure of the arena is a tree
with no self-loops).

We now describe how to finish the proof. Suppose that M uses expk−1(p(n)) space and
t states. Set m = (log2(t) + 1) × p(n). A configuration of M can be thought of as a word
from {0, 1}∗ of length (log2(t) + 1)× (expk−1(p(n))− 1), where each tape cell of M is now
represented using log(t) + 1 bits as: (1) we need one bit to tell whether head is on top
of the current cell, (2) we need one bit to store whether the current tape cell has 0 or 1
(wlog we can assume that the tape alphabet of M is {0, 1}), and (3) assuming that the
head is on top of the current tape cell, we need log2(t) − 1 bits to describe which state M
is in. In this way, we can represent a configuration of M as a k-counter. Note that the ith
cell in a configuration of M corresponds to the contiguous sequence of bits in the number
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represented by this k-counter starting from bit position i × (log2(t) + 1) to bit position
(i + 1) × (log2(t) + 1) − 1 (starting from least significant bits). Therefore, a computation
sequence of M can be represented by a sequence of k-counters separated by a letter from
Γk+1. The initial state of the HOPDS is 〈qstart, [⊥]k〉.

We shall describe the proof with games with a fixed number of rounds that can be
easily translated to order-k PDS P and EF formulas φ. The players consist of Player 0
(representing EF , EX operators, and ∨) and Player 1 (representing AG, AX operators,
and ∧). At the beginning, Player 0 will arbitrarily push1 symbols from Γ≤k+1 which he
claims to represent an accepting computation sequence of M on w. [More precisely, this
translates to one state s in P, which performs only push1 and at some point might move
to another state s′ (from which s is no longer accessible), and a formula φ of the form
EF (s′ ∧ ψ) for some ψ that we will define shortly.] Player 1 now tries to disprove that the
guessed stack content represents an accepting computation. The current stack content looks
like [γ]k, where γ ∈ Γ+

≤k+1. Player 1 has several choices. First, he could doubt and try to
disprove that γ is a sequence of k-counters separated by a letter from Γk+1. This can be
easily done by repeated applications of pop1; each time a letter from Γk+1 is seen, Player 1
may use (counterk, Counterk). This can be implemented using a single AG operator using
Counterk as a subformula. Second, Player 1 could show that the last configuration is not
a final configuration. This could be easily done by checking whether a final state is found
in the last configuration (in between the delimiters from Γk+1). Note that since each cell
content is represented as a binary string of length log(t) + 1 (the bits are in Σk) we will
need a finite-state automaton part that keeps a log(t) + 1 modulo count of the number
of letters from Σk that have been seen thus far when performing pop1 (this can be done
in the standard way). Third, Player 1 could show that the first configuration is not an
initial state. For this, we will have to make sure that the first configuration in the sequence
of configurations guessed by Player 0 does not represent q0w2expk−1(p(n))−n, where q0 is
the initial state of M . This can be done as follows. We first compute the sequence v of
(log(t) + 1)n bits corresponding to q0w, using ak (resp. bk) to represent 0 (resp. 1) and
hardwire v into P. The system P then performs any number of pop1 operation (making sure
that each cell content seen thus far represents 2) and at some point nondeterministically
guessing the end (rightmost) position of the string that must represent q0w, after which
P will ensure that precisely v are seen at the beginning (we simply ignore all letters from
Σk−1 and only look at the letter from Σk, noting also that letters from Σk+1 signify the
end of the configuration). Fourth, Player 1 could show that some configurations are invalid
(e.g. by showing that there are two states in them). This can be done in a similar way
(by remembering the first time a state is seen in a configuration and making sure that no
more is seen until we see a letter from Σk+1). Fifth, Player 1 could show that there are two
consecutive configurations Cj and Cj+1 in γ such that Cj is not a predecessor of Cj+1. To
this end, Player 1 keeps performing pop1, stops, and picks a position in Cj+1. Player 1 will
then perform a push2 operation and obtain 〈[γ′][γ′]〉. Player 1 then keeps performing pop1
operations and we will make sure that exactly one letter from Σk+1 is seen. Once Player
1 picks a position in Cj , Player 0 can try to prove that the positions are incorrect. This
can be done by an application of (equal2k−1, Equal

2
k−1). Otherwise, P can remember the

corresponding (at most) four cells in Cj and Cj+1 (using a total of O(log(t)) bits, i.e., we
need 2O(log t) = O(t) extra memory in the control states of P) and check that the positions in
Cj+1 follows the corresponding positions in Cj (according to the transition function of M).
This can be using pop1 operations interleaved with exactly one application of pop2, while
remembering the content of eight cells inside the control states of P. This technique was
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first used in [1] to encode linear bounded Turing machine as an EF model checking problem
(for a fixed formula) over order-1 PDSs. Finally, we can see that the resulting EF-formula
is fixed and the size of the resulting HOPDS is polynomial in |w| and |M | (recall also that
M is fixed). This completes the proof.

B.2 Proof of Theorem 9

Theorem 9. For a fixed order-k HOBPA without collapse, model checking EF is (k − 1)-
ExpSpace-hard.

We use the notion of i-counters from the previous proof. Fix positive integers n and
k > 1. Fix a polynomial function p. For a finite set Q, a (k,Q)-counter is a word of the
form σrlr . . . σ0l0 where

each σi is a letter in Σk ∪Q,
each li is a (k − 1)-counter representing the number i, and
r = expk(p(n))− 1.

Note that the notions of k-counters and (k, ∅)-counters coincide. We shall now define an order
2-BPA P := P2,Q = (R,Σ, c0) that depends only on Q and show that EF model checking
over P is 1-ExpSpace-hard. We will later set Q to be the set of states of a fixed (k − 1)-
ExpSpace-complete Turing machine. We will then argue that the same construction can
be generalised to show (k − 1)-ExpSpace-hard expression complexity of EF model checking
over k-BPAs.

At the beginning, our 2-BPA must write a sequence of (2, Q)-counters that potentially
gives an accepting computation of a fixed 1-ExpSpace-complete Turing machine. Since
the definition should not depend on the input word of a fixed Turing machine, we define
the languages L2 := (Σ+

1 (Σ2 ∪ Q))+ and L′2 := (L2Σ3)+. Intuitively, L2 is the smallest
“overapproximation” of the notion of (2, Q)-counters that does not depend on n. Hence,
L′2 is an overapproximation of all sequences of (2, Q)-counters separated by a letter from
Σ3. Initially our 2-BPA will be able to guess a word in L′2, i.e., a potential sequence of
(2, Q)-counters separated by a letter in Σ3. The starting configuration c0 is [(guess, 3)]k
where (guess, 3) is a symbol in Σ. We add the following rules to R:

((guess, 3), push((guess, 2)σ3)) for each σ3 ∈ Σ3,
((guess, 2), push((guess, 1)σ2)) for each σ2 ∈ Σ2 ∪Q,
((guess, 1), push((guess, 1)σ1)) for each σ1 ∈ Σ1,
((guess, 1), push((guess, 2′)σ1)) for each σ1 ∈ Σ1,
((guess, 2′), push((guess, 3)), and
((guess, 2′), pop1) for each σ3 ∈ Σ3.

The last transition marks the end of the guessing stage as we will no longer see stack symbol
of the form (guess, i) afterwards. We now introduce several transitions that will allow us to
use EF formulas to check the correctness of the guess from the previous stage. For i = 1, 2, 3,
let Σ′i := {a′i, b′i} and Σ′′i := {a′′i , b′′i }. Also, let Q′ = {q′ : q ∈ Q} and Q′′ = {q′′ : q ∈ Q}.
Let Prime := Q′ ∪⋃3

i=1 Σ′i and DPrime := Q′′ ∪⋃3
i=1 Σ′′i . Add the following rules:

For i = 1, 2, 3, when σi ∈ Σi is seen, we can nondeterministically choose any of the
following four choices:
push1(σ′i)
push1(σ′′i )
(σ′i, push2, unmarkedi)
(σ′′i , push2,markedi)

When q ∈ Q is seen, we can nondeterministically choose any of the following four choices:
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push1(q′)
push1(q′′)
(q′, push2, unmarkedQ)
(q′′, push2,markedQ)

For i = 1, 2, 3, when we see either σ′i ∈ Σ′i ∪ Q′ or σ′′i ∈ Σ′′i ∪ Q′′, we can only perform
pop2.
For i = 1, 2, 3, when we see either markedi, unmarkedi, markedQ, or unmarkedQ, we
can only perform pop1.

To get an intuition, let us look at an example. Suppose that the current stack content is
[a3b1a1qb1b1a3]2. The following is a snapshot of a run:

a3 a3 marked3 a3 a3 a3
q q q q q q q′ markedQ q q′

a1 → a1 a1 → a1 a1 → a1 a1 a1 → a1 a1 a1
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1
a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

In this way, we obtain a stair-like structure from the stack content [w]2 from the initial
guessing stage. That is, we “unroll” the content of the topmost 1-store.The following are
simple properties that can be established about every reachable configuration c of P2,Q:
(P1) Every 1-store in c has at most one symbol from (Q′ ∪ Q′′) ∪ ⋃3

i=1(Σ′i ∪ Σ′′i ), i.e., on
the top of the store.

(P2) If c |= (Q′ ∪Q′′) ∪⋃3
i=1(Σ′i ∪ Σ′′i ) and c →∗ c′, then c′ |= (Q′ ∪Q′′) ∪⋃3

i=1(Σ′i ∪ Σ′′i )
too.

We now will define several EF formulas that play the roles of Counteri, Equali, etc. in
the previous proof. These formulas shall depend on the parameter n and the polynomial
p. First, we can easily define Counterp(n)

1 such that P2,Q, c |= Counter
p(n)
1 iff the topmost

p(n) + 2 symbols on the topmost 1-store of c is of the form σ2vγ2 for some σ2, γ2 ∈ Σ2 ∪Q
and some v ∈ (Σ1)p(n). This can be done using nested EX operators, conjunctions, atomic
propositions, and no EF operators, since we have to unroll the topmost 1-store up to p(n)+2
times. Similarly, we can define Firstp(n)

1 (resp. Lastp(n)
1 ) such that P2,Q |= First

p(n)
1 (resp.

P2,Q |= Last
p(n)
1 ) iff the topmost p(n) + 2 symbols on the topmost 1-store of c is σ2vσ

′
2 for

σ2, σ
′
2 ∈ Σ2 ∪Q and v = a

p(n)
1 (resp. v = b

p(n)
1 ).

We now define the formula Equalp(n)
1 such that P2,Q, c |= Equal

p(n)
1 iff the topmost 1-

store of c has a prefix of the form σ2vγ2vβ2such that σ2, γ2, β2 ∈ Σ2 ∪Q and v ∈ (Σ1)p(n).
That is, it has two equal 1-counters on the top. To define Equalp(n)

1 , we will first define a
formula ψ such that P2,Q, c |= ψ iff the topmost 1-store of c has prefix of the form σ2vγ2uβ2
such that σ2, γ2, β2 ∈ Σ2 ∪ Q and v, u ∈ (Σ1)p(n) but not necessarily v = u. This can
be defined in a similar way as Counterp(n)

1 . Assuming now that c satisfies ψ (i.e. that
the topmost 1-store of c is σ2vγ2uβ2 as above), we now define the formula ψ′ such that
P2,Q |= ψ′ iff u = v. The formula is

p(n)∧
i=1

(EX)2i
( ∨
σ1∈Σ1

(
σ1 ∧ (EX)2(p(n)+1)σ1

))

where (EX)i is simply a nesting of i EX operators. Notice that when a configuration
satisfies Σ1, Σ2, or Σ3 we may still continue unrolling. Notice also that we use 2i instead of
i because we have “intermediate” configurations (i.e. stacks whose topmost 1-store is of the
form [markedi...] or [unmarkedi...]) that are needed for the purpose of checking.
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Similar to the definition of Equalp(n)
1 , we can also define an EX formula Succp(n)

1 such
that P2,Q, c |= Succ

p(n)
1 iff the topmost 1-store of c has prefix of the form σ2vγ2uγ2 such

that σ2, γ2, β2 ∈ Σ2 ∪Q, v, u ∈ (Σ1)p(n), and the number represented by v is a successor of
the number represented by v′ (e.g. v = a1a1a1b1 and v′ = a1a1b1a1).

We now define a formula Counterp(n)
2 such that, for any reachable configuration c of P2,Q

(from c0), we have P2,Q, c |= Counter
p(n)
2 iff the two following conditions are satisfied:

(C1) the topmost 1-store of c has a prefix of the form σ3vγ3 where σ3, γ3 ∈ Σ3 and v is a
(2, Q)-counter.

(C2) each 1-store in c, except for the topmost, has some symbol from Prime (but not
DPrime) as a topmost symbol.

It is easy to check that a reachable configuration c satisfying top1(c) ∈ Σ3 must have a prefix
that is in the language top1(c).L2 in its topmost 1-store. The second condition is introduced
due to the fact that HOBPA lack control states, but that we will have to remember that
exactly one symbol in Σ3 is seen when we try to pinpoint parts of the hypothetical 2-counter
that might be invalid. On the other hand, using EF logic, we must somehow use the EF
operator here as in the worst case we may have to pop1 exponentially many symbols to
check the first condition. We start by defining a formula Unmarked checking the second
condition:

Unmarked :=
( 3⋃
i=1

Σi ∪Q
)
∧ EX[Prime]AGPrime.

where EX[S](φ) abbreviates EX(
(∨

a∈S a
)∧φ) for any subset S of atomic propositions. It is

easy to check that Unmarked defines the desired formula owing to properties (P1) and (P2).
We shall now define the formula Counterp(n)

2 checking the first condition, assuming that the
second condition is satisfied. This formula will be the formula Σ3∧EX[marked3]EX[Σ1](θ),
where θ is a conjunction of the following formulas:

Last1, which we already defined. This is because we expect to see a 1-counter with value
exp1(p(n))− 1 on the top of the topmost 1-store.
V alidCounter2, which we define as

AG
((
Counter

p(n)
1 ∧ Check2

)
→
((
First

p(n)
1 ∧BottomCounter1

)
∨ Succp(n)

1

))
.

This formula tries to make sure that the structure of the hypothetical 2-counter is valid.
Intuitively, the formula V alidCounter2 tries to guess two consecutive 1-counters inside
the hypothetical 2-counter that might not proceed in a successive fashion, unless it is
the bottomost 1-counter inside the hypothetical 2-counter which has to be the 1-counter
representing 0. To see this, first notice that we already forced the marking to be applied
(i.e. we have operator EX[marked3] before θ). To this end, we first make sure that top2
has a prefix that is a 1-counter. The subformula Check2 ensures that the operator AG
does not take it to another 2-counter (i.e. passing a symbol from Σ3):

Check2 := EX[Σ′2 ∪Q′](EFΣ′′3 ∧ ¬EF (Σ′′3 ∧ EXEFΣ′′3) ∧ ¬EF (Σ′3 ∧ EFΣ′′3)).

The formula simply says that precisely one 1-store below the topmost satisfies Σ′′3 and
this is above any 1-store satisfying Σ′3. Since we know that initially (i.e. in c) Unmarked
is satisfied, we can be sure that the 1-store satisfying Σ′′3 is the one which we applied the
marking meaning that the application of AG operator has not passed any symbol from
Σ3, i.e., we are still in the same hypothetical 2-counter. Here, BottomCounter1 is an EX
formula which makes sure that the guessed 1-counter is the bottomost 1-counter in this
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hypothetical 2-counter. This can be defined without EF as we only need to look forward
at most 2p(n)+2 steps using EX and so can be defined in the same way as Counterp(n)

1 .

We now define the formula Equalp(n)
2 such that, for a reachable configuration c, we have

P2,Q, c |= Equal
p(n)
2 iff the condition (C2) above is satisfied and that

(C1’) top2 has a prefix of the form σ3vγ3vβ3, where σ3, γ3, β3 ∈ Σ3 and v a 2-counter.
To define this formula, we first define the formula 2Counter2 which expresses that top2 has
a prefix of the form σ3vγ3uβ3, where v and u are (not necessarily the same) 2-counters.
This can be done in the same way as we defined Counterp(n)

2 , i.e., we need to place another
marking σ′′3 ∈ Σ′′3 immediately after the previous 2-counter. Assuming 2Counter2 is satisfied,
to violate Equalp(n)

2 , we will locate a position (i.e. 1-counter) inside v and show that the
corresponding position in u contains a different symbol. In order to pick a position, we will
use the technique of “marking” used for defining Counterp(n)

2 . Therefore, Equalp(n)
2 can be

defined as

EX[marked3]EX[Σ1]EF (θ′ ∧Rightposn ∧ Counterp(n)
1 ∧ ¬Lastp(n)

1 ).

Here, Rightposn makes sure that we are in the right position:

Check2 ∧ EX[Σ′2 ∪Q′]AG(¬(Σ′′2 ∨Q′′)).

This makes sure that we are still inside the current 2-counter v and that we did not mark
symbols in Σ2 ∪Q in the process (i.e. not replace them by symbols in Σ′′2 ∪Q′′). We shall
now mark the current top1 symbol and mark the corresponding position in u. Therefore, θ′
is the following formula

EX[{marked2,markedQ}]EF (θ′′ ∧Rightposn′ ∧ Counterp(n)
1 ∧ ¬Lastp(n)

1 ).

Here, Rightposn′ makes sure that we are in the right position, i.e., it’s a conjunction of the
following formulas:

That we are inside u (it is a modification of Check2):

EX[Σ′2 ∪Q′]
 EFΣ′′3 ∧ ¬EF (Σ′′3 ∧ EXEFΣ′′3)∧

EF (Σ′3 ∧ EFΣ′′3)∧
¬EF (Σ′3 ∧ EXEF (Σ′3 ∧ EFΣ′′3))

 .

The first three conjuncts ensure that we have passed the symbol γ3 ∈ Σ3. The last
conjunct ensures that we have not passed the conjunct β ∈ Σ3. The reasoning is similar
to how we define the formula Check2.
That there is only one 1-store below the topmost 1-store satisfying Σ′′2 ∪ Q′′, i.e., the
position that we marked in θ′:

EX[Σ′2 ∪Q′](EF (Σ′′2 ∨Q′′) ∧ ¬EF ((Σ′′2 ∨Q′′) ∧ EXEF (Σ′′2 ∨Q′′))).

Now, the formula θ′′ will mark the current position and check that the two marked positions
are the same and the corresponding content of the position (i.e. two symbols from Σ′′2 ∪Q′′)
are also the same:

EX[Σ′′2 ∪Q′′]
Equal′1 ∧ ∨

α′′∈Σ′′2∪Q′′
(α′′ ∧ EFα′′)

 .
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Here, the second conjunct tests that the contents are indeed the same. Here, Equal′1 is
an easy modification of Equalp(n)

1 which tests that the two positions marked (i.e. they are
1-counters) are the same.

Likewise, we can define a formula Succp(n)
2 such that, for a reachable configuration c, we

have P2,Q, c |= Succ
p(n)
2 iff the condition (C2) above is satisfied and that

(C3’) top2 has a prefix of the form σ3vγ3uβ3, where σ3, γ3, β3 ∈ Σ3 and v, u are two suc-
cessive 2-counters.

Now, we are ready to show that the expression complexity of EF is 1-ExpSpace-hard.
Let us take a fixed exponential space bounded, say exp1(p(n)), Turing machine T with states
Q. Our fixed 2-BPA is then P2,Q. Combining the technique that we use for establishing
lower bounds for data complexity of EF over HOPDS in the previous subsection and the
formulas Counterp(n)

i , Lastp(n)
i , Firstp(n)

i , Equalp(n)
i that we just defined, it is not hard to

reduce membership of T to model checking EF over P2,Q. There are three extra things that
we will have to ensure, which can be done easily:

The bottomost configuration guessed is an initial configuration. That is, it contains an
encoding of q0w followed by exp1(p(n))− n blank symbols.
The topmost configuration is an accepting configuration, i.e., it has a final state.
In between two consecutive symbols from Σ3 in the initial guess, there is a state symbol,
i.e., symbol from Q.

All these can be defined easily in EF using the marking technique that we used to define
Counter

p(n)
2 , i.e., we have to mark symbols from Σ3.

Extensions to order-k BPA
We shall briefly sketch this extension to order-3 (this can be easily extended to the gen-
eral case in the same manner). The guessing stage can be adapted easily to instead
write a sequence of potential (3, Q)-counters on the stack by performing only push1 op-
erations as before. The checking stage is also similar. The idea is to create a “stair-of-
stairs” structure for the purpose of checking. We shall elaborate more details on this.
We will now also use symbols from Σ4, Σ′4 := {a′4, b′4}, and Σ′′4 := {a′′4 , b′′4}. When we
see symbols from Σ1 ∪ Σ2, we have the same choices as in our previous construction.
On the other hand, when we see a symbol σΣ3 ∪ Σ4 ∪ Q, we can no longer perform
(σ′, push2, unmarkedi) and (σ′′, push2,markedi) operations, but instead we can use the
operations (σ′, push3, unmarkedi) and (σ′′, push3,markedi) (where i is one of 3, 4, Q as be-
fore). In this way, we are building a 3-store whose 2-stores (except the topmost) displays
the projection of a prefix of the guessed configuration [w]3 onto Σ3∪Σ4∪Q as top1 symbols.
Note that we use Σ3 for displaying tape contents of the Turing tape, Q as the states of the
Turing machine, and Σ4 as separators of two consecutive configurations. Also, note that
each 2-counter encoding the address of a cell position can be doubly exponentially large and
are displayed inside each 2-store (in the same way as the previous construction).

B.3 Proof of Theorem 10

Theorem 10. For a fixed formula, model checking CTL over a given order-k HOPDS without
collapse is k-ExpTime-hard.

Given an alternating order-(k−1) pushdown automaton P augmented with an s(n)-space
bounded two-way work tape, we show that the membership problem can be polynomially
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reduced to the satisfaction of a fixed CTL formula ϕ by an order-k pushdown system PwP .
Here, we take s(n) to be a polynomial.

The reduction is similar to that used by Bozzelli for CTL model checking of pushdown
systems [4] and borrows further ideas from Engelfriet [13].

The idea of the reduction is as follows: an order-k stack is used to navigate a computation
tree of the order-(k− 1) alternating HOPDA in a standard way. To simulate the work tape,
at each step, after simulating an operation on the order-(k − 1) stack, a sequence of s(n)
work tape symbols (with the head position marked) are pushed on to the top order-1 stack.
After this is done, the system can either check that the guessed work tape is consistent with
the previous tape, or continue the execution. To continue the execution, an order-k push
operation saves the current state (for backtracking), then the work tape is erased. This
process repeats. When an accepting configuration is seen, or the children of the current
node have been fully explored, the automaton backtracks, and checks untested universal
branches. The automaton accepts when the empty stack is reached. That is, all paths have
been explored, and found to be accepting.

The CTL formula asserts that a path encoding an accepting tree exists, and that after
guessing the work tape, the branches checking consistency all accept. The formula is

ϕ = E ((op ∧AX(check → AFgood))Ufin)

where op indicates the current path is simulating a tree, and check indicates a consistency
checking branch. The proposition good indicates that the check has been passed, and fin
denotes the (successful) completion of the run.

I Definition 17. Given a word w of length n and an alternating order-(k − 1) pushdown
automaton P augmented with an s(n)-space bounded two-way work tape, we define the
order-k pushdown system PwP . We assume without loss of generality that two rules can be
applied from each configuration, and which can be referred to as the first and second rules
respectively. We also assume the initial state is existential. Finally, let 2 denote an empty
work tape cell, and ⊥P denote the bottom of stack character for P.

We define PwP to have the following transitions. The set of states is defined implicitly.
The initial state is init. To initialise the automaton we have

(init,⊥, (pushfin; pushk; pushw), (continue, 0)) where w describes the initial work tape.
That is, w = E(2, p0)2s(n)−1# ⊥P .

Note that the pushw erases fin from the copy of the stack created by pushk.
The main loop of the simulation is given by the continue states, which have the follow-

ing rules. We store the current word position i on the stack (to aid backtracking) before
performing a pushk to continue the execution. The clear phase then removes the current
work tape from the stack, remembering the important details. We then simulate a move
which may update the stack. The branch phase is where the automaton can either check
the consistency of the guessed tape, or continue the execution.

((continue, i), done, pushdone, (back, i))
((continue, i), x, (pushix; pushk; pop1), (clear, i, x)) for x ∈ {E,A1, A2}.
((clear, i, x), a, pop1, (clear, i, x)) for all a ∈ ∆ and x ∈ {E,A1, A2}.
((clear, i, x)), (a, p), pop1, (clear, i, x, a, p)) for all a, b ∈ ∆ and p ∈ P and x ∈ {E,A1, A2}.
((clear, i, x, a, p), b, pop1, (clear, i, x, a, p)) for all a, b ∈ ∆ and p ∈ P and x ∈ {E,A1, A2}
((clear, i, x, a, p),#, pop1, (move, i, x, a, p)) for all a ∈ ∆ and p ∈ P and x ∈ {E,A1, A2}
and p is not accepting or i 6= |w|+ 1.
((clear, i, x, a, p),#, pop1, (back, i)) for all a ∈ ∆ and p ∈ P and x ∈ {E,A1, A2} and p
is accepting and i = |w|+ 1.
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((move, i, x, a, p), γ, (o; pushyw), (branch, r, i)) for all a ∈ ∆, p ∈ P , x ∈ {E,A1, A2},
γ ∈ Σ. Furthermore when x = E, r is any rule applicable at p, a, γ, w(i); when x = A1,
r is the first transition for p, a, γ, w(i); and when x = A2, r is the second transition for
p, a, γ, w(i). The operation o is the pushdown operation of r and y is E when r moves
to an existential state, and A1 when moving to a universal state. Finally, w is any work
tape configuration of length s(n) and with the read head containing state q reached by
r. Note that there are an exponential number of w, but we can easily gain all w with a
linear number of intermediate states and rules, each guessing the next character of w.
((branch, r, i), a, pusha, (continue, j)) where j = i if r is an ε-transition in the input, or
j = i+ 1 otherwise; and ((branch, r, i), a, pusha, (check, r)) for all r and a.

The back phase implements the backtracking, and requires the following rules.
((back, i), a, popk, (back1, i)).
((back1, i), fin, pushfin, fin).
((back1, i), j, pop1, (back2, j)).
((back2, i), E, pushdone, (continue, i)).
((back2, i), A1, pushA2 , (continue, i)).
((back2, i), A2, pushdone, (continue, i)).

Finally, the check phase has a branch for all 0 ≤ j ≤ s(n) which ensures the jth position
in the work tape is consistent with the previous work tape, given the rule r has been executed.
If there is no previous configuration, the work tape is automatically good.

((check, r), x, pop1, (check, r, j)) for all x ∈ {E,A1, A2} and 0 ≤ j ≤ s(n).
((check, r, j), a, (pop1)j , (check1, r, j)).
((check1, r, j), a, pop2, ((check2, r, j, a)).
((check2, r, j, a), fin, pushfin, good).
((check2, r, j, a), x, (pop1)j+1, (check3, r, j, a)) if a is not a pair (b, q), and also the rules
((check3, r, j, a), b, pushb, good) where b = a or b = (b′, q) where r reads b′ at state q and
writes a to the tape.
((check2, r, j, (a, q)), x, (pop1)j , (checkL, r, j, (a, q))) if r moves left, q is moved to by r,
and ((checkL, r, j, (a, q)), (b, q′), pop1, (check′L, r, j, (a, q))) where q is moved from by r and
b is read by r. Finally, we have the following rule ((check′L, r, j, (a, q)), a, pusha, good).
((check2, r, j, (a, q)), x, (pop1)j+1, (checkR, r, j, (a, q))) if r moves right, q is moved to by r,
and ((checkR, r, j, (a, q)), a, pop1, (check′R, r, j, (a, q))). Finally, we have additional rules
((check′R, r, j, (a, q)), (b, q′), push(b,q′), good) where b is read by r and q′ is moved from by
r.

The atomic proposition op is true during the init, continue, clear, move, branch and back
phases. The proposition check is true during the check phase, good true at state good and
fin at state fin.

I Property 1. A word w is accepted by P iff PwP satisfies the fixed formula ϕ. Furthermore,
PwP is polynomial in the size of w and P.
I Corollary 18. CTL model checking of order-k pushdown systems is k-ExpTime-hard, even
for a fixed formula ϕ.

Proof. Take any language L in
⋃
d>0 DTIME(expk(ds(n))) for some polynomial s(n). There

exists a Turing machine M such that M accepts a word w iff w ∈ L. From Theorem 5 we
know that there is an order-(k−1) alternating pushdown automaton PM with an s(n)-space
auxiliary work tape such that w ∈ L iff w is accepted by P. Then, by Property 1, we have,
by a polynomial reduction, that w ∈ L iff PwP satisfies ϕ. J
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B.4 Proof of Theorem 11

Theorem 11. For a fixed order-k HOBPA without collapse, model checking CTL is k-
ExpTime-hard.

We adapt the reduction for CTL to give a k-ExpTime expression complexity for CTL
over HOBPA.

I Definition 19. Given an alternating order-(k−1) pushdown automaton P augmented with
an linear-space bounded two-way work tape, we define the order-k pushdown system PP .
We assume without loss of generality that two rules can be applied from each configuration,
and which can be referred to as the first and second rules respectively. We also assume the
initial state is existential. Since there is only one control state, we write (a, o) instead of
(q, a, o, q) where o is a pushdown operation. Finally, let 2 denote an empty work tape cell,
and ⊥P denote the bottom of stack character for P.

Note, the format of the tape simulation information on the stack is a string, for example,
E0101ab(c, p)d# to indicate an existential position, and word position 0101 with cell contents
ab(c, p)d. The structure of the whole stack is an sequence of (k− 1) stacks. The top (k− 1)
stack represents the current configuration being simulated. The next (k − 1) stack simply
contains, on its top character, a representation of the rule r used to reach the configuration.
The (k − 1) stack underneath is the previous configuration, and so on.

We define PP to have the following transitions. The set of states is defined implicitly.
To initialise the automaton we have the following rules. Since we cannot use a control state,
these rules take care of adding work tape and simulation information to the stack in general.
We use the formula to assert a correct flow. For every character x, we also use x to indicate
that the character has been reached via a pop operation.

(⊥, (fin; pushk;⊥′)) and (⊥′, push#⊥P ).
(#, pushc#), (c, pushc′c) where c, c′ ∈ ∆ ∪ (∆× P ).
(c, pushic), (i, pushi′i) where i, i′ ∈ {0, 1} and c ∈ ∆ ∪ (∆× P ).
(i, pushxi) where i ∈ {0, 1} and x ∈ {E,A1,X}.
After writing the work tape we have E,A1 or X on the stack, we continue the execution

with a pushk or check the contents of the work tape. Alternatively, if we reach x for
x ∈ {E,A1, A2} then we are either checking the tape or backtracking, hence we announce
which before continuing appropriately.

(x, (x; pushk; continue)) where x ∈ {E,A1} and (A1, (A2; pushk; continue)).
(x, push(x,check)) where x ∈ {E,A1, A2,X}.
(x, pushcheck2) where x ∈ {E,A1, A2,X}.
(x, pushback) where x ∈ {E,A2,X

}
.

(back, popk) and (y, pop1) for y ∈ {continue, (x, check), check2}.
(x, pop1) for all x 6= #.
(#, pushmove), (#, pushpop).
(pop, popk), (r, popk) for all rules r.
(move, pop1).

To simulate a move we first announce on the stack which move will be executed. Then
we copy the stack to remember the move joining the configurations. Then we fire the rule
and continue the execution. Let op(r) be the stack operation of the rule r and top(r) be the
top of stack character after the rule has fired (which can be obtained from the rule alone),
if the rule is a push rule.
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(c, push(c,r)), ((c, r), (r; pushk; (c, r)′)).
((c, r)′, (c; op(r); (top(r), done)), ((c, done), push#)c) when op(r) is a push rule, and
((c, r)′, op(r)), (a, push#a) when op(r) is a pop rule and a is a stack character from the
simulated HOPDA.

We define propositions to be true when forming part of the top of stack character. For
example x will be true when x, x or (x, y) are on the top of the stack. We also use op to
indicate all states that are not check declarations.

The corresponding CTL formula is defined below.

I Definition 20. For any w, let n = |w|. We define

ϕw = E ((op ∧AX(check → ϕgood))Ufin)

where ϕgood is of the form

ϕgood = ϕfirst ∨ (ϕAE ∧ ϕfmt ∧ ϕi ∧ ϕr ∧ ϕtape)
where each component formula is defined below. Let Bin(i, bm)(j) be the jth bit of the
binary encoding of i. To ease readability we define EAtNext(ϕ,ϕ′) = E((¬ϕ)U(ϕ ∧ ϕ′)).
That is, at the next time ϕ is true, ϕ′ is also true. We also define ChkNext(ϕ) that looks
into the next work tape on a check branch and Rule(r) that is used to match the rule r
connecting the configurations. That is,

ChkNext(ϕ) = EAtNext
(
#, EX

(
pop ∧ EX3 (check2 ∧ ϕ)

))
Rule(r) = EAtNext (#, EX (pop ∧ EXr)) .

When there is just a single configuration on the stack, we use ϕfirst to ensure it is correct.
Note that, given a correct initialisation, ϕtape (defined below) ensures the tape format is
correct in following configurations.

ϕfirst =


E ∧∧bmj=1EX

j0 ∧ EXbm+1(2, p0)∧s(n)
j=1 EX

bm+j2∧
EXbm+s(n)+1# ∧ EXbm+s(n)+4fin

.

For the remaining positions ϕAE ensures the placement of E,A1, A2 and X is correct.
Let ϕtox for x ∈ {E,A1, A2,X} denote the disjunction of all rules of leading to a state of
type x.

ϕAE =
∨

x∈{E,A1,A2,X}
x ∧ EAtNext (#, EX (pop ∧ EXϕtox ))

The formula ϕfmt ensures the topk stack has yBin(i, bm)w# as the beginning of the first
two top1 stacks, where y ∈ {E,A1, A2} and w is a work tape of length s(n).

ϕ′fmt =
(∧bm

j=1EX
j(0 ∨ 1)

)
∧
(∧s(n)

j=1 EX
bm+j ∨

a,(p,a)(a ∨ (p, a))
)

ϕfmt = ϕ′fmt ∧ ChkNext(ϕ′fmt) .
The next formula ϕi ensures that the input position counter is consistent with the previous
counter. Note that this will ensure, when backtracking to a universal position, the second
branch will have the same counter as the first: both must be consistent with the ancestor’s
counter.

ϕi =
∧
r

Rule(r)⇒ EXϕri
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Furthermore, if r is an ε-transition, we define

ϕri =
∨n
j=0Num(j) ∧ ChkNext(EXNum(j))

Num(j) =
∧bm−1
j′=0 EXj′Bin(j, bm)(j′)

otherwise

ϕri =
n∨
j=1

(
Num(j)∧
ChkNext(EXNum(j − 1))

)
.

The formula ϕr asserts that the applied rule r matches the claimed input positions. Let
inp(r) denote the input character associated with a rule r.

ϕr =
∨
r Rule(r)⇒

∨
inp(r)=w(j) ChkNext(EXNum(j)) .

Finally, ϕtape ensures that the tape contents have been updated accurately. We use, for
shorthand, functions Nextr(σ1, σ2, σ3) = d that specifies the contents of the current (jth)
cell d with respect to the rule fired r and the contents of the previous configuration’s (j−1)th,
jth and (j + 1)th cells σ1, σ2 and σ3 respectively. Let #l and #r denote, for the benefit of
Nextr(σ1, σ2, σ3), the left and right boundaries of the tape respectively.

ϕtape =
∨
r Rule(r) ∧ EXbmϕrtape

ϕrtape = ϕrleft ∧ ϕrmiddle ∧ ϕrright
ϕrleft =

∨
σ1,σ2

(
Nextr(#l, σ1, σ2)∧
ChkNext(EXbm(σ2 ∧ EXσ2))

)
ϕrmiddle =

∧s(n)−1
j=1

∨
σ1,σ2,σ3

ϕrσ1,σ2,σ3

ϕrσ1,σ2,σ3
=

(
EXjNextr(σ1, σ2, σ3)∧
ChkNext(EXbm+j−1(σ1 ∧ EXσ2 ∧ EX2σ3))

)
ϕrright =

∨
σ1,σ2

(
EXs(n)Nextr(σ1, σ2,#r)∧
ChkNext(EXs(n)−1+bm(σ1 ∧ EXσ2))

)
.

I Property 2. A word w is accepted by P iff PP satisfies the formula ϕw. Furthermore, PP
and ϕw are polynomial in the size of w and P.
I Corollary 21. CTL model checking of fixed order-k HOBPA is k-ExpTime-hard.

Proof. Take any language L in
⋃
d>0 DTIME(expk(ds(n))) for some polynomial s(n). There

exists a Turing machine M such that M accepts a word w iff w ∈ L. From Theorem 5 we
know that there is an order-(k−1) alternating pushdown automaton PM with an s(n)-space
auxiliary work tape such that w ∈ L iff w is accepted by P. Then, by Property 2, we have,
by a polynomial reduction, that w ∈ L iff PP satisfies ϕw. J

C Proof of Theorem 12

Theorem 12. For a fixed order-k HOBPA without collapse, model checking CTL+ is
(k + 1)-ExpTime-hard.

We adapt the reduction for CTL to give an (n + 1)-EXPTIME expression complexity
for CTL+ over HOBPA. Will begin with an informal description of the proof for CTL* and
explain how to adapt it for CTL+.

The reduction we use to show CTL* is (k + 1)-ExpTime-hard over order-n pushdown
systems is similar to Bozzelli’s proof for the order-1 case. In fact, only a simple adjustment
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to the HOPDS construction for the k-ExpTime-hard result of CTL has to be made. The
main technical steps of the proof are in the definition of the required CTL* formula, which
was already given by Bozzelli.

We reduce from an order-(k − 1) alternating HOPDA with an exponential space work
tape. The order-k PDS we construct manages the alternation in the same manner as the
reduction for CTL. The only difference is in the generation of work tapes. For the CTL
reduction we could simply output a polynomial number of tape symbols, and check for
consistency using only a polynomial number of states. However, the same strategy for
an exponential space bounded tape would require an exponential number of states. The
trick is to output an arbitrary length tape, and use the power of CTL* to reject any tape
configurations that are not exponential.

In more detail, the HOPDS represents tape configurations as words of the form

binn(0)c0binn(1)c1 · · · binn(2n − 1)c2n−1

where binn(i) is the n-digit binary representation of i with the least significant bit first. It
is beyond the power, however, of a polynomially sized HOPDS to output only sequences
that count correctly from 0 to 2n − 1. Hence, the HOPDS generates, nondeterministically,
a word of the form

({0, 1}n (∆ ∪ (∆×Q)))∗ .

One can check whether a configuration of this form is of the correct length as follows: first
assert that the first n-digit binary number is 0n. Then check that every pair bicibi+1ci+1
has bi = bi+1 + 1. Finally, the last number must be all 1s.

The checking phase of the HOPDS now proceeds as follows. One branch simply pops
the configuration from the stack. This branch allows the CTL formula to check the length
of the configuration.

The remaining branches remove the tape configuration from the stack, but nondeter-
ministically mark one position with the proposition check1 (hence there are a number of
branches for this step). Next popks are performed to retrieve the previous work tape. Then
the HOPDS does the same as before: pops the tape from the stack, nondeterministically
marking a position with check2. The CTL* formula can test consistency by checking whether
the two positions correspond to the same position in the work tape. If so, the markers check1
and check2 can be used to test the contents of the cell (and it’s neighbours) to ensure a valid
update has taken place.

To refine the construction to show CTL+ is (k + 1)-ExpTime-hard over order-k push-
down systems, the key restriction of CTL+ that has to be overcome is that the CTL*
formulas may contain nested path operators within a single path quantification. We over-
come this adding extra marking information to the HOPDS. For example, we avoid the need
to count (n + 2) steps ahead when comparing one cell position with the next by adding a
check2pre and a check2post marker into the HOPDS. That is, before marking the check2
position, the automaton will place a check2pre on the preceding tape character. Then, after
placing check2, check2post will be placed on the next tape character.

In the case of HOBPA, it is not possible for the system to enforce the expected placing of
the propositions check2pre, check2 and check2post. That is, we can use the until operator
to ensure that the propositions appear in order ((¬check2Ucheck2pre)) but cannot enforce
that they appear in adjacent cells.

The trick is to encode cell numberings as sequences of tuples (b1j , b2j ) such that the encoded
numbers differ by one. That is b2 + 1 = b1. We can then ensure that the three propositions
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are on adjacent cells in the same way we ensured check1 and check2 are on corresponding
cells. Recall that all binary numbers are encoded with the least significant digit first.

The cost of this encoding is that our work tape will contain 2n−2 cells, but this is clearly
not a problem for the complexity result.

I Definition 22. Given an alternating order-(k − 1) pushdown automaton P augmented
with an 2n-space bounded two-way work tape, we define the order-k pushdown system PP .
We assume without loss of generality that two rules can be applied from each configuration,
and which can be referred to as the first and second rules respectively. We also assume the
initial state is existential. Since there is only one control state, we write (a, o) instead of
(q, a, o, q) where o is a pushdown operation. Finally, let 2 denote an empty work tape cell,
and ⊥P denote the bottom of stack character for P.

Note, the format of the simulation information on the stack is, for example,

E~0~1~0~1(0, 0)(0, 1)(0, 0)a(0, 1)(0, 1)(0, 0)b . . .#

to indicate an existential position, and word position ~0~1~0~1 with cell contents ab . . ..
We define PP to have the following transitions. The set of states is defined implicitly.

The initial state is init. To initialise the automaton we have the following rules. Since
we cannot use a control state, these rules take care of adding work tape and simulation
information to the stack in general. We use the formula to assert a correct flow.

(⊥, (fin; pushk;⊥′)) and (⊥′, push#)⊥P ).
(#, pushc#), (c, pushic), where i ∈ {0, 1}2 and c ∈ ∆ ∪ (∆× P ).
(i, pushi′i) where i ∈ {0, 1}2 and i′ ∈ {0, 1}2 ∪ {0̂, 1̂}2.
(i, pushci) where i ∈ {0̂, 1̂}2 and c ∈ ∆ ∪ (∆× P ).
(c, pushic), (i, pushi′i) where i, i′ ∈ {~0,~1} and c ∈ ∆ ∪ (∆× P ).
(i, pushxi) where i ∈ {~0,~1} and x ∈ {E,A1,X}.
After writing the work tape we have E,A1 or X on the stack, we continue the execution

with a pushk or check the contents of the work tape. Alternatively, if we reach x for
x ∈ {E,A1, A2} then we are either checking the tape or backtracking, hence announce
which before continuing appropriately.

(x, (x; pushk; continue)) where x ∈ {E,A1,X} and (A1, (A2; pushk; continue)).
(x, push(x,check)) for x ∈ {E,A1, A2,X, E,A1, A2

}
.

(x, pushback) for x ∈ {E,A2,X}.
((x, check), push(x,checkfmt)), ((x, check), pushcheckcells) for x ∈ {E,A1, A2,X}.
(y, pop1) for y ∈ {continue, (x, checkfmt), checkcells}.
(back, popk).
(x, pop1) for all x 6= #.
(#, pushmove), (#, pushpop).
(pop, popk) and (r, popk) for all rules r.
(move, pop1).

To simulate a move we first announce on the stack which move will be executed. Then we
copy the stack to remember the move joining the configurations. Then we fire the rule and
continue the execution. Let op(r) be the stack operation of the rule r and top(r) be the top
of stack character after the rule has fired (which can be obtained from the rule alone), if the
rule is a push rule.

(c, push(c,r)), ((c, r), (r; pushk; (c, r)′)).
((c, r)′, (c; op(r); (top(r), done)), ((c, done), push#)c) when op(r) is a push rule, and
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((c, r)′, op(r)), (a, push#a) when op(r) is a pop rule and a is a stack character from the
simulated HOPDA.

If we announced that we intend the perform a check of the tape contents, then we must
mark positions in the tape with check1, check2, check2pre and check2post. Hence, these
options must be available when popping down the tape.

(x, push(x,c)) for x ∈ {0̂, 1̂} and c ∈ {check1, check2, check2pre, check2post}.
((x, c), pop1) for i ∈ {1, 2}, c ∈ {check1, check2, check2pre, check2post} and x ∈

{
0̂, 1̂
}
.

We define propositions to be true when forming part of the top of stack character. For
example x will be true when x, x or (x, y) are on the top of the stack. We also define i1 and
i2 for i ∈ {0, 1, 0̂, 1̂} to allow us to identify the components of a tuple (i1, i2).

The corresponding CTL+ formula is defined below. Recall bm is the number of digits
required to encode the length of w in binary.

I Definition 23. For any w, let n = |w|. We define

ϕw = E ((op ∧AX(check → ϕgood))Ufin)

where

ϕgood = ϕfirst ∨ (ϕfmt ∧ ϕcells) .

When there is just a single configuration on the stack, we use ϕfirst to ensure it is correct.
Let EAtNext(ϕ,ϕ′) = E(¬ϕUϕ ∧ ϕ′). Note that the formula is written as if there is a
single path. This is not the case because the automaton may choose to mark a cell position.
However, due to the strict formatting required by the formula, these paths will fail. The
path that does not mark any cells should accept. Let ϕcell2 accept either 2 or characters
that are not part of the tape (i.e. the cell numberings).

ϕfirst =


AX

checklen ⇒
 E ∧∧bmj=1EX

j~0 ∧
EXbm+n+1(2 ∧ EXE(ϕcells¬2 U#))∧
ϕ′fmt


∧

EAtNext(#, EX2fin)

where ϕ′fmt is defined below, and asserts the tape is of the correct format.
We now define ϕfmt which checks that the format of the tape is correct, that the correct

rule has been fired, &c., but does not check the cell contents. Let EXj
ϕϕ
′ abbreviate EX(ϕ∧

EX(ϕ∧ . . . EX(ϕ∧ϕ′))) and ¬c abbreviate the negation of any check propositions. Finally,
we define for convenience,

ChkNextFmt(ϕ) = EAtNext(#, EX(pop ∧ EX4(checkfmt ∧ ϕ)))
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and the required formula is

ϕfmt = AX
(
checkfmt ⇒ ϕ′fmt ∧ ChkNextFmt(ϕ′fmt) ∧ ϕi ∧ ϕr ∧ ϕAE

)
ϕ′fmt = ϕifmt ∧ ϕtapefmt ∧ ϕlenfmt

ϕifmt =
∧bm
j=1EX

j
¬c(~0 ∨~1)

ϕtapefmt = EXbm¬c E
((
b⇒ ϕnumfmt

)
U#

)
ϕnumfmt =

∧n
j=1EX

j
¬c(0 ∨ 1)

ϕlenfmt = EXbmEG



(
(b ∧ f)→ EX1

¬c(0, 1) ∧∧n−1
j=2 (EX)j¬c(0, 0)

)
∧(

(b ∧ l)→ EX1
¬c(1, 0) ∧∧n−1

j=3 EX
j
¬c(1, 1)

)
∧

(b ∧ ¬f)→
∧2
l=1
∨n−1
j

 EXj
¬c(0l ∧ EXn+2

¬c 1l)∧∧
i>j EX

i
¬c(1l ∧ EXn+2

¬c 0l)∧∧
i<j EX

i
¬c(1c ⇐⇒ EXn+2

¬c 1l)





and ϕAE ensures the placement of E,A1, A2 and X is correct. Let ϕtox for x ∈ {E,A1, A2,X}
denote the disjunction of all rules of leading to a state of type x.

ϕAE =
∨

x∈{E,A1,A2,X}
x ∧ EAtNext (#, EX (pop ∧ EXϕtox ))

and ϕi checks that the word positions are updated correctly.

ϕi =
∧
r Rule(r)⇒ EXϕri

Num(j) =
∧bm
j′=0EX

j′Bin(j, bm)(j′)

and, if r is an ε-transition, then

ϕri =
n∨
j=0

Num(j) ∧ ChkNextFmt(EXNum(j))

and otherwise
n∨
j=1

Num(j) ∧ ChkNextFmt(EXNum(j − 1))

The next formula ϕr ensures that the fired rule is applicable at the current word position.
Let inp(r) denote the input character associated with a rule r.

ϕr =
∨
r Rule(r)⇒

∨
inp(r)=w(j) ChkNextFmt(EXNum(j)) .

Finally ϕcells takes advantage of the fact that there is no branching while popping binary
blocks to avoid nesting temporal operators.

ϕcells = AX(checkcells → ϕ′cells)
ϕ′cells = EAtNext(#, EX3fin) ∨AG((check1 ∧ b)→ E(θ1 ∧ θ2))

where θ1 asserts that the checks are placed correctly, and θ2 tests the consistency of the
tape. As well as asserting that the propositions are in the right position, θ1 must also assert
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that there is only one copy of each check proposition. We require check2pre and check2post
to hold at the beginning of the binary blocks.

θ1 = θpospre ∧ θpos2 ∧ θpospost ∧ θonepre ∧ θone2 ∧ θonepost

θpos2 =
∧n−1
j=0

(
EXj

¬c12 ⇒ F (check2 ∧ EXj
¬c12)∧

EXj
¬c02 ⇒ F (check2 ∧ EXj

¬c02)

)
θpospre =

∧n−1
j=0

( (
F (check2pre ∧ EXj

¬c12)⇒ F (check2 ∧ EXj
¬c11)

)∧(
F (check2pre ∧ EXj

¬c02)⇒ F (check2 ∧ EXj
¬c01)

) )
θpospost =

∧n−1
j=0

( (
F (check2 ∧ EXj

¬c12)⇒ F (check2post ∧ EXj
¬c11)

)∧(
F (check2 ∧ EXj

¬c02)⇒ F (check2post ∧ EXj
¬c01)

) )
θonepre =

∧j=0
n−1 ¬

(
F (check2pre ∧ EXj

¬c01) ∧ F (check2pre ∧ EXj
¬c11)

)
θone2 =

∧j=0
n−1 ¬

(
F (check2 ∧ EXj

¬c01) ∧ F (check2 ∧ EXj
¬c11)

)
θonepost =

∧j=0
n−1 ¬

(
F (check2post ∧ EXj

¬c01) ∧ F (check2post ∧ EXj
¬c11)

)
To define θ2, we use, for shorthand, functions Nextr(σ1, σ2, σ3) = d that specifies the

contents of the current (jth) cell d with respect to the rule fired r and the contents of the
previous configuration’s (j − 1)th, jth and (j + 1)th cells σ1, σ2 and σ3 respectively. Let #l

and #r denote, for the benefit of Nextr(σ1, σ2, σ3), the left and right boundaries of the tape
respectively.

θ2 =
∨
r

Rule(#, r) ∧ ((f → θrf ) ∧ ((¬f ∧ ¬l)→ θri ) ∧ (l→ θrl )
)

where

θrf =
∨
σ1,σ2

(
F (check2 ∧ EXnσ1)∧
F (check2post ∧ EXnσ2)

)
→ Nextr(#l, σ1, σ2)

θri =
∨
σ1,σ2,σ3

 F (check2pre ∧ EXnσ1)∧
F (check2 ∧ EXnσ2)∧
F (check2post ∧ EXnσ3)

→ Nextr(σ1, σ2, σ3)

θrl =
∨
σ1,σ2

(
F (check2pre ∧ EXnσ1)∧
F (check2 ∧ EXnσ2)

)
→ Nextr(σ1, σ2,#r) .

I Property 3. A word w is accepted by P iff PP satisfies the formula ϕw. Furthermore, PP
and ϕw are polynomial in the size of w and P.
I Corollary 24. CTL model checking of fixed order-k HOBPA is (k + 1)-ExpTime-hard.

Proof. Take any language L in
⋃
d>0 DTIME(expk+1(ds(n))) for some polynomial s(n).

There exists a Turing machineM such thatM accepts a word w iff w ∈ L. From Theorem 5
we know that there is an order-(k − 1) alternating pushdown automaton PM with an 2n-
space auxiliary work tape such that w ∈ L iff w is accepted by P. Then, by Property 3, we
have, by a polynomial reduction, that w ∈ L iff PP satisfies ϕw. J

D Proofs For Linear Time

D.1 Proof of Theorem 13

Theorem 13.Model checking µLTL against order-k CPDSs is in k-ExpTime for a non-fixed
formula, and (k − 1)-ExpTime for a fixed formula.
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It is well known that any formula of µLTL has a Büchi automaton representation. We
form the product of the CPDS and the Büchi automaton corresponding to the negation
of the µLTL formula ϕ. This gives us a Büchi CPDS; that is, a CPDS with a set F of
accepting control states. Thus, model checking reduces to the non-emptiness problem for
Büchi CPDSs.

The non-emptiness problem for Büchi CPDSs is a special case of determining the winner
in a parity game played over a CPDS. In particular, it is a single-player game with a fixed
number (two) of colours. It is known that an order-k game can be reduced to an order-
(k−1) game with an exponential blow-up [17]. This leads to a recursive algorithm resulting
in a finite-state parity game of k-exponential size, and since known finite-state algorithms
are polynomial in the number of states (and exponential in the number of colours), the
algorithm runs in k-ExpTime.

We demonstrate, in this simple case, the single-player order-k game can be reduced to
a two-player order-(k − 1) game with only a polynomial blow-up. This order-(k − 1) game
is then solved as above, giving, an overall algorithm in (k − 1)-ExpTime in the size of the
Büchi CPDS. That is, (k − 1)-ExpTime for a fixed formula, and k-ExpTime for a non-fixed
formula.

We begin by recalling some definitions.

I Definition 25. Let P = (P,R,Σ, p0,⊥) be an order-k CPDS. Then G = (P, PE , PA,Ω) is
an order-k CPDS parity game, where PE ] PA = P is a partitioning of the control states
and Ω : P → Col is a function assigning to each control state a colour in the set Col ⊂ N of
colours.

A play Λ of a parity game between two players, Éloïse and Abelard, proceeds as follows.
Play begins with the initial configuration 〈p0, [⊥]k〉. If the control state of the current
configuration is is PE , then Éloïse chooses an applicable rule in R. Otherwise Abelard
chooses a rule. If a player cannot move, they lose the game. The cycle repeats until a player
loses, or, in the case of an infinite play, the winner is determined by the colouring function
Ω. If the minimal colour occurring infinitely often is even, Éloïse wins the game. Otherwise
Abelard wins.

An important part of the reduction is the notion of collapse rank-aware.

I Definition 26 ([17]). Consider a partial play Λ in G ending in a configuration 〈p, γ〉
such that top1(γ) has an k-link. Hence there is in Λ at least one configuration of the form
〈p′, collapse(γ)〉 for some p′ ∈ P . Then the closest to 〈p, γ〉 is called the collapse ancestor of
〈p, γ〉. The collapse rank of 〈p, γ〉 is the minimal colour of a state occurring in Λ between the
collapse ancestor of 〈p, γ〉 and 〈p, γ〉. Note that these notions are not defined if top1(γ) has a
j-link for some j < k: indeed it may happen that no configuration of the form 〈p, collapse(γ)〉
was visited in Λ, and therefore the collapse ancestor notion can not be adapted.

I Definition 27 ([17]). An k-CPDS equipped with a colouring function is collapse rank-
aware iff there exists a function ColRnk : Σ→ N such that, when defined, the collapse rank
of every configuration 〈p, γ〉 is equal to ColRnk(top1(γ)). On other words, the collapse rank
is stored in the top1-element of the stack.

Beginning with a Büchi CPDS, we must first make the CPDS collapse rank-aware. This
can be done using the following known results. Note that, since both the size of Col and k
are fixed, the transformation to a collapse rank-aware CPDS costs only a constant blow up.

I Lemma 28 ([17], Lemma 14, Remark 6.6). For any order-k CPDS P and parity game G
played over it, one can construct a collapse rank-aware order-k CPDS P ′ and order-k parity
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game G′ such that Éloïse wins in G iff she wins in G′. Moreover, P ′ has O(|P ||Col|O(k))
control states and a stack alphabet of size O(|Σ||Col|O(k)).

We are now ready to give the main reduction.

I Lemma 29. Given an order-k Büchi CPDS P, one can construct an order-(k− 1) CPDS
parity game G of size polynomial in the size of P such that P has an accepting run iff Éloïse
wins the game G.
Proof. We will describe G somewhat informally. The formal definition should be clear from
the description. Control states of the game are of the form (p, pr, f) for control states p and
pr and the boolean flag f . We also allow pr = null. Intuitively, p is the current control
state of the configuration being simulated, pr is a promise to reach the control state pr when
a popk, and f is an obligation to visit a final state before the popk. Similarly, the stack
characters are either simply characters a, or, when simulating a character with a k-link, of
the form (a, pr, f), which play the same role as (p, pr, f) does, but in the case of a collapse
over a k-link.

We describe how each rule application is simulated. Except when stated, Éloïse makes
all moves. Consider the rule (p, a, o, p′). In cases:

When o is a pushdown command that is not pushk, popk, pushka, or collapse when the
top1 character contains a k-link, the simulation is direct: o is simply applied and we
reach the control state (p′, pr, f ′) where f ′ is true iff f is true and p was not final.
When o is popk, play proceeds to a winning (sink) state for Éloïse if p′ = pr and f is
false. Otherwise we reach a winning state for Abelard. The stack is not changed.
When o is collapse and the top1 character is (p, pr, f), play proceeds to a winning (sink)
state for Éloïse if p′ = pr and ColRnk(p, pr, f) indicates a final state has been seen if f
is true. Otherwise we reach a winning state for Abelard. The stack is not changed.
When o is pushk, Éloïse declares a pair p′r and f ′, indicating that, when the order-(k−1)
stack to be created is finally popped (if it is popped), then play will reach the state p′r,
and f ′ indicates whether a final state will have been seen on the way. Abelard can accept
the declaration and move play to (p′r, pr, f ′′) without changing the stack, where f ′′ is
true only if f is true and f ′ is not. Alternatively, Abelard may question the declaration
and move play to (p′, p′r, f ′) (without changing the stack).
When o is pushka we proceed as follows. We apply push1

(a,pr,f) and move to (p′, pr, f).
The idea is that Éloïse’s commitments are saved to the stack in place of the k-link. If
following the collapse link is simulated, it must be in line with her previous declarations.

The final states are all control states where the first component p is final in the original
game. It is also the case that, when Abelard accepts a declaration by Éloïse that she can
pass through a final state, we ensure that, in the simulation, an intermediate final state is
passed through. The initial state is (p, null, false) and stack bottom is ⊥.

Observe that, since there are no order-k stack operations in the simulation, the resulting
game is order-(k − 1).

To see why the simulation is correct, first consider an accepting run of the Büchi CPDS.
At each pushk, then either the current stack contents appear again on the run, in which
case Éloïse simply declares the control state at this return, and whether a final state was
encountered en-route. Otherwise, she declares null and play proceeds to simulate the pushk.
Since the stack contents below the new top stack are never encountered again, they can be
safely forgotten.

In the other direction, take a winning strategy for Éloïse. This strategy can be linearised,
constructing a run as follows: at each pushk, play has two branches. On the first, Abelard
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questions Éloïse’s declaration, on the second, he accepts it. We recursively compute the run
from the first branch and append to it the run from the second branch. This leads to an
infinite run with a infinite number of final states seen. J

D.2 Proof of Theorem 15

Theorem 15. Model checking LTL(F, X) and LTL(U) against a fixed HOBPA without
collapse is k-ExpTime-hard.

We give proofs for the two logics in turn.

D.2.1 Lower Bound for LTL(F, X)
Given a fixed k-EXPTIME complete language L, Theorem 5 implies that there exists a fixed
order-k pushdown automaton P = (P,R,Σ,Γ ∪ {ε} ,∆, p0,⊥,F) augmented with an s(n)-
space bounded two-way work tape that accepts precisely the language L from 〈p0, [⊥]k〉. We
now construct an order-k BPA P ′ = (R′,Σ, c′0) and later show that there is a reduction of
the membership problem for L(P) to LTL model checking over P ′, which shall imply that
expression complexity of order-k BPA is k-ExpTime-hard.

Let ∆′ = ∆× {h, h̄} (h stands whether head is in this position or not). For an alphabet
Ω, we let Ω? = Ω ∪ {?} assuming that ? /∈ Ω. Similarly, we let Ω# be Ω ∪ {#} assuming
that # /∈ Ω. Let W = R ∪ {sink}. Let Σ′ = (P? ×W? × Σ) ∪ Σ ∪ (Σ × ∆′). The initial
configuration c′0 is 〈[(p0, ?,⊥)]k〉. We now add the following rules to R′:
1. for each p ∈ P , a ∈ Σ, and r ∈ R where r is of the form ((p, ∗, a, ∗), o, ∗)1, add

((p, ?, a), push(p, r, a)).

and add

((p, r, a), fa(o)).

where fa : Ok → Ok is defined as fa(o′) = o′, if o′ ∈ O1 or of the form popj , and
fa(o′) = (pusha; pushj ; pusha), if o′ = pushj for some j > 1.

2. for each a ∈ Σ and x ∈ ∆′, add (a, push((a, x))).
3. for each x, y ∈ ∆′ and a ∈ Σ, add ((a, x), push((a, y))).
4. for each x ∈ ∆′ and p ∈ P , add ((a, x), push((p, ?, a))).
5. we add “sink” transitions: ((p, ?, a), push(p, sink, a)) and ((p, sink, a), push(p, sink, a))

for any p ∈ F and a ∈ Σ.
Intuitively, each run of P ′ will have valuations of the form

[(P × {?} × Σ) · (P ×R× Σ) · Σ · (Σ×∆′)+]∗ · (F × {sink} × Σ)∗ (∗)

or of the form

[(P × {?} × Σ) · (P ×R× Σ) · Σ · (Σ×∆′)+]ω. (∗∗)

We will now enforce the correct form via LTL formulas.

1 Here, we use the wildcard ∗ to match a symbol or a tuple of symbols.
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Given a word w = α1 . . . αn ∈ Γ∗, we now construct an LTL formula ϕw using only F
and X temporal operators such that w ∈ L(P) iff P ′, c′0 6|= ¬φw. We first define a formula
ψ that makes sure that precisely the word w is consumed during a guessed run:

ψ = ψ1 ∧ ψ2 ∧ ψ3.

Let V be precisely the subset of P × R × Σ, where the rule component is of the following
form ((∗, α, ∗, ∗), ∗, ∗), for some α ∈ Γ; in other words, these are rules which “consume” an
input letter. The formula ψ1 states that at least n letters are consumed in the run; let

ψ0
1 := True

ψi+1
1 := XF (V ∧ ψi1)
ψ1 := ψn1 .

The formula ψ2 states that at most n letters are consumed in the run:

ψ2 := ¬ψn+1
1 .

To define ψ3, let Vα be subset of V where the rule component is the form ((∗, α, ∗, ∗), ∗, ∗).
The formula ψ3 states that the ith letter consumed in the run is wi:

ψ0
3 := True

ψi+1
3 := XF (Vαn−i+1 ∧ ψi3)
ψ3 := ψn3 .

We now ensure that after each occurrence of (P ×R × Σ) in the run (as in (*) and (**)),
we see precisely a stack symbol in Σ, followed by precisely s(n) symbols from Σ×∆′, which
are in turn followed by a symbol (p, ?, a) of the “right” form. Notice that this would mean
that we may partition each run as a contiguous sequence of blocks of size m := 3 + s(n)
according to (*) and (**). More formally, define θ as follows:

θ :=
∨

(p,r,a)∈P×R×Σ

G((p, r, a)→ P × {?} × Σ.

If r is not of the form ((p, ∗, a, ∗), ∗, ∗), then we define θ(p,r,a) = False. Otherwise, letting
r = ((p, ∗, a, ∗), o, (∗, ∗, p′)), we define θ(p,r,a) as follows:

θ(p,r,a) := (p, r, a) ∧
s(n)∧
i=1

Xi+1Σ×∆′
 ∧Xs(n)+2(p′, ?, a).

Each block of size s(n) (note: Σ is always followed by such a block) encoding the tape
content needs to have exactly one head:

Onehead := G

Σ→
s(n)∨
i=1

Headi ∧ ∧
1≤j≤s(n),j 6=i

¬Headj
 ,

where Headj := XjΣ × (∆ × {h}). Furthermore, two consecutive blocks encoding tape
contents, each of size s(n), must follow in the correct way:

Tapefollow :=
∧

(p,r,a)∈P×R×Σ

G((p, r, a)→ XX(
s(n)∧
i=1

Followi,r)).
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Here, Followi,r means that the ith cell of the subsequent tape content follows from the
ith cell of the current tape content using rule r. This formula can be easily defined by
noticing that the ith cell of the subsequent tape content can be uniquely defined from
cells i − 1, i, i + 1 of the current tape content and rule r. More formally, suppose that
r = ((∗, ∗, ∗, x), ∗, (y, d, ∗)). We define the formula for the case when d = l and 1 < i < s(n)
(the remaining cases being similar). In this case, the formula Followi,r can be defined as a
conjunction of four formulas:

First formula assumes that head is not in cells i− 1, i, i+ 1:∧
x′,y′,z′∈∆

(
Xi−1(x′, h̄) ∧Xi(y′, h̄) ∧Xi+1(z′, h̄)

)→ Xi+m(y′, h̄).

in which case the ith cell of the subsequent tape content is the same as the ith content
of the current tape content.
Second formula assumes that head is in cell i− 1. This case can be defined in the same
way as the previous case (ith cell remains the same).
Third formula assumes that head is in cell i:(

Xi(x, h)→ Xi+m(y, h̄)
) ∧ ∧

z∈∆\{x}

(
Xi(z, h)→ False

)
.

This formula forces that the tape symbol read by the head is x, in which case the ith
symbol of the subsequent block becomes (y, h̄), i.e., x is rewritten to y and the head is
no longer in the ith cell.
Fourth formula assumes that the head is in cell i+ 1:∧

z∈∆

(
Xi(z, h̄) ∧Xi+1(x, h)

)→ Xi+m(z, h).

That is, the head moves from i+ 1st cell to ith cell.
The first tape content needs to be initialized to (⊥, h)(⊥, h̄)s(n)−1, i.e., all blank symbols
and the head on the leftmost cell:

Tapeinit := X3(⊥, h) ∧
s(n)−1∧
i=2

X2+i(⊥, h̄).

Finally, we need to define the formula Sink stating that the run needs to eventually end up
in a “sink” state;

Sink := F (P × {sink} × Σ).

The formula ϕw can now be defined as

ϕw := ψ ∧ θ ∧Onehead ∧ Tapefollow ∧ Tapeinit ∧ Sink.

It is easy to see that the formula ϕw ensures the existence of a correct run of P on input w.
That is, we have P ′, c′0 6|= ϕw iff w ∈ L(P). This gives us the following theorem.

I Theorem 30. The expression complexity of LTL(F,X) over order-k BPA is k-ExpTime-
hard
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D.2.2 Lower Bound for LTL(U)
As in the previous subsection, we shall give a sketch on how to show the same expression
complexity for the fragment LTL(U). The basic idea is quite simple: weakly simulate X
operators with U operators, while making sure (in the system) that each position in each
run alternately satisfy/unsatisfy some new atomic proposition p′. We may start with the
order-k BPA P ′ that we defined in the previous subsection and replace rule (3) above by
the following rule (3’): for x, y ∈ ∆′ and a ∈ Σ, add the rules ((a, x), push(a, !)) and
((a, !), push(a, y)) to R′.

We shall now show how to modify some of these subformulas that we previously defined
(the idea works in general). We can redefine ψi+1

1 as (¬VU(VUψi1)); the reason we do this
being that V cannot hold true in two consecutive points in each run of P ′. Let us now
consider how to modify θ(p,r,a). Notice that due to new rule (3’), Σ×∆′ and Σ× {!} must
alternate. This allows us to replace nestings of X operators by nestings of U operators, e.g.,
X2Σ×∆′ becomes

((p, r, a)U(Σ×∆′U(Σ× {!}UΣ×∆′))).

In fact, it is easy to check that all uses of X operators can be replaced by U in this way.
We therefore have the following theorem.

I Theorem 31. The expression complexity of LTL(U) over order-k BPA is k-ExpTime-hard.

E MSO over Collapsible HOBPA

A order-k collapsible HOBPA defines an MSO structure (CΣ
k , R, (a)a∈Σ), where CΣ

k is the
set of all order-k stores with links, R(c1, c2) holds if there is a transition from configuration
c1 to c2 and a(c) holds for a ∈ Σ if top1(c) = a.

We show that MSO over this structure is undecidable. We give an order-2 collapsible
HOBPA P such that the infinite half-grid is MSO-interpretable in the configuration graph
of P.
Theorem 1. There exists a fixed collapsible order-2 BPA which generates a graph with an
undecidable MSO theory.

Proof. Let P be the order-2 collapsible HOBPA with the following commands

(⊥, pushx⊥) (x, (x, push2, x
′)) (x′, pusha2x′)

(a, (a, push2, b)) (a, pushcol) (a, pushpop) (a, pushc)
(b, pusha2b)
(c, pushcol) (c, pushpop)
(pop, pushε)
(col, collapse)

The configuration graph is shown in Figure 3. Note that transitions to · · · may represent
more than one transition.

An MSO interpretation consists of a formula defining which nodes appear in the inter-
pretation, and formulas defining the predicates of the interpretation. We will define an MSO
interpretation that restricts the graph to only the configurations shown in Figure 3 (except
the pop and x configurations at the bottom of each hanging branch). We will then define
two MSO relations A(x, y) and B(x, y) denoting an A- or B-edge from node x to node y.
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Figure 2 The infinite half-grid.

With the given domain restriction and interpretation of A and B, we obtain the infinite
half-grid in Figure 2. Since decidability is preserved by MSO interpretation, we obtain the
undecidability of MSO over collapsible HOBPA.

The domain restriction allows any node appearing on a path satisfying the following
regular expression rdom. The paths are paths of stack symbols. A path in the graph satisfies
this expression if the projection to its top1 elements does. This expression can be translated
to MSO using standard techniques. We define

rdom = ⊥ x x′ (a b)∗ c (col ∪ ((pop a)∗ col)) .

Similarly, we define A and B in terms of regular expressions. For X ∈ {A,B}, X(x, y) holds
if there is a path (which may take some edges backwards) from x to y satisfying the regular
expression rX . We write ab to mean that the transition from the node satisfying a to the
node satisfying b is a backwards edge. We define

rA = r1A ∩ r2A
r1A = (a pop)∗ c a b a c (pop a)∗
r2A = (c ∪ a) col ((⊥ x x′) ∪ (a b)) a col (c ∪ a) .

In this definition r1A takes configurations with top1 character a or c in a hanging branch to
any configuration with top1 character a or c in the next branch along. The expression r2A
uses the collapse operations to make sure that the only available node in the next hanging
branch is at the same depth. Finally,

rB = (c ∪ a) pop a
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and, to finish the definition of B(x, y), we add the further constraint that the node x is
reachable from the initial configuration via a path of the form ⊥ x x′ a (b a)∗ c (pop a)∗.
The above interpretation gives the infinite half-grid, shown in Figure 2. J


	Introduction
	Preliminaries
	Model Checking Collapsible HOBPA Against Fixed Formulas
	Branching Time
	Lower Bounds for EF
	Lower Bounds for CTL
	Lower Bounds for CTL+

	Linear Time
	Upper Bounds for LTL
	Lower Bounds for LTL

	Future Work
	Definition of Collapsible Pushdown Systems
	Proofs for Branching Time
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Proof of Theorem 12
	Proofs For Linear Time
	Proof of Theorem 13
	Proof of Theorem 15
	Lower Bound for LTL(F, X)
	Lower Bound for LTL(U)


	MSO over Collapsible HOBPA

