
Symbolic Backwards-Reachability Analysis for

Higher-Order Pushdown Systems?

M. Hague C.-H. L. Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK, OX1 3QD

Abstract. Higher-order pushdown systems (PDSs) generalise pushdown
systems through the use of higher-order stacks, that is, a nested “stack
of stacks” structure. We further generalise higher-order PDSs to higher-
order Alternating PDSs (APDSs) and consider the backwards reachabil-
ity problem over these systems. We prove that given an order-n APDS,
the set of configurations from which a given regular set of configura-
tions is reachable is itself regular and computable in n-EXPTIME. We
show that the result has several useful applications in the verification
of higher-order PDSs such as LTL model checking, alternation-free µ-
calculus model checking, and the computation of winning regions of
reachability games.

1 Introduction

Pushdown automata are an extension of finite state automata. In addition to
a finite set of control states, a pushdown automaton has a stack that can be
manipulated with the usual push and pop operations. Higher-order pushdown
automata (PDA) generalise pushdown automata through the use of higher-order
stacks. Whereas a stack in the sense of a pushdown automaton is an order-one
stack — that is, a stack of characters — an order-two stack is a stack of order-
one stacks. Similarly, an order-three stack is a stack of order-two stacks, and so
on.

Higher-order PDA were originally introduced by Maslov [18] in the 1970s
as generators of (a hierarchy of) finite word languages. Higher-order pushdown
systems (PDSs) are higher-order PDA viewed as generators of infinite trees or
graphs. These systems provide a natural infinite-state model for higher-order
programs with recursive function calls and are therefore useful in software verifi-
cation. Several notable advances in recent years have sparked off a resurgence of
interest in higher-order PDA/PDSs in the Verification community. E.g. Knapik
et al. [24] have shown that the ranked trees generated by deterministic order-n
PDSs are exactly those that are generated by order-n recursion schemes satisfy-
ing the safety constraint; Carayol and Wöhrle [5] have shown that the ε-closure
of the configuration graphs of higher-order PDSs exactly constitute Caucal’s

? The full version [13] of this work is downloadable from the first author’s web page.



graph hierarchy [10]. Remarkably these infinite trees and graphs have decidable
monadic second-order (MSO) theories [11, 5, 24].

These MSO decidability results, though powerful, only allow us to check that
a property holds from a given configuration. We may wish to compute the set
of configurations that satisfy a given property, especially since there may be an
infinite number of such configurations. In this paper, we consider a closely-related
problem:

Backwards Reachability : Given a set of configurations CInit, compute the
set Pre∗(CInit) of configurations that can, via any number of transitions,
reach a configuration in CInit.

This is an important verification problem in its own right, since safety properties
(i.e. undesirable program states – such as deadlock – are never reached) feature
largely in practice.

The backwards reachability problem was solved for order-one PDSs by Boua-
jjani et al. [2]. In particular, they gave a method for computing the (regular)
set of configurations Pre∗(CInit) that could reach a given regular set of configu-
rations CInit. Regular sets of configurations are represented symbolically in the
form of a finite multi-automaton. That is, a finite automaton that accepts fi-
nite words (representing stacks) with an initial state for each control state of the
PDS. A configuration is accepted if the stack (viewed as a word) is accepted from
the appropriate initial state. The set Pre∗(CInit) is computed by the repeated
addition of a number of transitions – determined by the transition relation of
the PDS – to the automaton accepting CInit, until a fixed point is reached. A
fixed point is guaranteed since no states are added and the alphabet is finite:
eventually the automaton will become saturated.

The approach was extended by Bouajjani and Meyer [1] to the case of higher-
order context-free processes, which are higher-order PDSs with a single control
state. A key innovation in their work was the introduction of a new class of (finite-
state) automata called nested store automata, which captures an intuitive notion
of regular sets of n-stores. An order-one nested store automaton is simply a finite
automaton over words. An order-n nested store automaton is a finite automaton
whose transitions are labelled by order-(n− 1) nested store automata.

Our paper is concerned with the non-trivial problem1 of extending the back-
wards reachability result of Bouajjani and Meyer to the general case of higher-
order PDSs (by taking into account a set of control states). In fact, we consider
(and solve) the backwards reachability problem for the more general case of
higher-order alternating pushdown systems (APDSs). Though slightly unwieldy,
an advantage of the alternating framework is that it conveniently lends itself
to a number of higher-order PDS verification problems. Following the work of
Cachat [22], we show that the winning region of a reachability game played
over a higher-order PDS can be computed by a reduction to the backwards
reachability problem of an appropriate APDS. We also generalise results due to

1 “This does not seem to be technically trivial, and näıve extensions of our construction
lead to procedures which are not guaranteed to terminate.” [1, p. 145]



Bouajjani et al. [2] to give a method for computing the set of configurations of a
higher-order PDS that satisfy a given formula of the alternation-free µ-calculus
or a linear-time temporal logic.

Related Work. Prompted by the fact that the set of configurations reachable
from a given configuration of a higher-order PDS is not regular in the sense
of Bouajjani and Meyer (the stack contents cannot be represented by a finite
automaton over words), Carayol [4] has proposed an alternative definition of
regularity for higher-order stacks, which we shall call C-regularity. Our notion
of regularity coincides with that of Bouajjani and Meyer, which we shall call
BM-regularity.

A set of order-n stacks is said to be C-regular if it is constructible from the
empty n-stack by a regular sequence of order-n stack operations. Carayol shows
that C-regularity coincides with MSO definability over the canonical structure
∆n

2 associated with order-n stacks. This implies, for instance, that the winning
region of a parity game over an order-n pushdown graph is also C-regular, as it
can be defined as an MSO formula [22].

In this paper we solve the backwards reachability problem for higher-order
PDSs and apply the solution to reachability games and model-checking. In this
sense we give a weaker kind of result that uses a different notion of regularity.
Because C-regularity does not imply BM-regularity2, our result is not subsumed
by the work of Carayol. However, a detailed comparison of the two approaches
may provide a fruitful direction for further research.

The definition of higher-order PDSs may be extended to higher-order push-
down games. In the order-one case, the problem of determining whether a con-
figuration is winning for Eloise with a parity winning condition was solved by
Walukiewicz in 1996 [14]. The order-one backwards reachability algorithm of
Bouajjani et al. was adapted by Cachat to compute the winning regions of order-
one reachability and Büchi games [22]. Results for pushdown games have been
extended to a number of winning conditions [23, 3, 12, 20, 9] including parity
conditions [22, 19]. In the higher-order case with a parity winning condition, a
method for deciding whether a configuration is winning has been provided by
Cachat [22].

Higher-order recursion schemes (HORSs) represent a further area of related
work. MSO decidability for trees generated by arbitrary (i.e. not necessarily
safe) HORSs has been shown by one of us [21]. A variant kind of higher-order
PDSs called collapsible pushdown automata (extending panic automata [25] or
pushdown automata with links [16] to all finite orders) has recently been shown
to be equi-expressive with HORSs for generating ranked trees [8]. These new
automata are conjectured to enrich the class of higher-order systems and provide
many new avenues of research.

2 For example (pusha)∗; push2 defines all stacks of the form [[an][an]].



2 Preliminaries

In the sequel we will introduce several kinds of alternating automata. For con-
venience, we will use a non-standard definition of alternating automata that is
equivalent to the standard definitions of Brzozowski and Leiss [15] and Chandra,
Kozen and Stockmeyer [6]. Similar definitions have been used for the analysis
of pushdown systems by Bouajjani et al. [2] and Cachat [22]. The alternating
transition relation ∆ ⊆ Q× Γ × 2Q — where Γ is a kind of alphabet and Q is
a state-set — is given in disjunctive normal form. That is, the image ∆(q, γ) of
q ∈ Q and γ ∈ Γ is a set {Q1, . . . , Qm} with Qi ∈ 2Q for i ∈ {1, . . . , m}. When
the automaton is viewed as a game, Eloise — the existential player — chooses a
set Q ∈ ∆(q, γ); Abelard — the universal player — then chooses a state q ∈ Q.

2.1 (Alternating) Higher-Order Pushdown Systems

We begin by defining higher-order stores and their operations. We will then
define higher-order PDSs and APDSs in full.

The set CΣ
1 of 1-stores over an alphabet Σ is the set of words of the form

[a1, . . . , am] with m ≥ 0 and ai ∈ Σ for all i ∈ {1, . . . , m}, [ /∈ Σ and ] /∈ Σ. For
n > 1, CΣ

n = [w1, . . . , wm] with m ≥ 1 and wi ∈ CΣ
n−1 for all i ∈ {1, . . . , m}.

There are three types of operations applicable to n-stores: push, pop and top.
These are defined inductively. Over a 1-store, we have (for all w ∈ Σ∗),

pushw[a1 . . . am] = [wa2 . . . am]
top1[a1 . . . am] = a1

We may define the abbreviation pop1 = pushε. When n > 1, we have

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < n
pushn[γ1 . . . γm] = [γ1γ1γ2 . . . γm]

popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < n
popn[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < n
topn[γ1 . . . γm] = γ1

Note that we assume wlog Σ ∩ N = ∅, where N is the set of natural num-
bers. Further, observe that when m = 1, popn is undefined. We define On =
{ pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 < l ≤ n }.

Definition 1. An order-n pushdown system (PDS) is a tuple (P ,D, Σ) where
P is a finite set of control states pj , D ⊆ P × Σ × On × P is a finite set of
commands d, and Σ is a finite alphabet.

A configuration of an order-n PDS is a pair 〈p, γ〉 where p ∈ P and γ is
an n-store. We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D,
top1(γ) = a and γ′ = o(γ).



Definition 2. An order-n alternating pushdown system (APDS) is a tuple (P ,D, Σ)
where P is a finite set of control states pj , D ⊆ P ×Σ × 2On×P is a finite set of
commands d, and Σ is a finite alphabet.

A configuration of an order-n APDS is a pair 〈p, γ〉 where p ∈ P and γ is an
n-store. We have a transition 〈p, γ〉 ↪→ C iff we have (p, a, OP ) ∈ D, top1(γ) = a,
and

C = { 〈p′, γ′〉 | (o, p′) ∈ OP ∧ γ′ = o(γ) }
∪ { 〈p, O〉 | if (o, p′) ∈ OP and o(γ) is not defined }

The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 ↪→ C

C ′ ∪ 〈p, γ〉 ↪→ C ′ ∪ C
〈p, γ〉 /∈ C ′

In both the alternating and the non-alternating cases, we define
∗

↪→ to be the
transitive closure of ↪→. For a set of configurations CInit we define Pre∗(CInit) as

the set of configurations 〈p, γ〉 such that 〈p, γ〉
∗

↪→ c and c ∈ CInit or 〈p, γ〉
∗

↪→ C
and C ⊆ CInit respectively.

Observe that since no transitions are possible from an “undefined” configu-
ration 〈p, O〉 we can reduce the reachability problem for higher-order PDSs to
the reachability problem over higher-order APDSs in a straightforward manner.

In the sequel, to ease the presentation, we assume n > 1. The case n = 1 was
investigated by Bouajjani et al. [2].

2.2 n-Store Multi-Automata

To represent sets of configurations we will use n-store multi-automata. These are
alternating automata whose transitions are labelled by (n − 1)-store automata,
which are also alternating. A set of configurations is said to be regular if it is
accepted by an n-store multi-automaton.

Definition 3.

1. A 1-store automaton is a tuple (Q, Σ, ∆, q0,Qf ) where Q is a finite set of
states, Σ is a finite alphabet, q0 is the initial state and Qf ⊆ Q is a set of
final states. ∆ ⊆ Q× Σ × 2Q is a finite transition relation.

2. Let B
Σ
n−1 be the (infinite) set of all (n−1)-store automata over the alphabet

Σ. An n-store automaton over the alphabet Σ is a tuple (Q, Σ, ∆, q0,Qf )
where Q is a finite set of states, q0 /∈ Qf is the initial state, Qf ⊆ Q is a set
of final states, and ∆ ⊆ Q× B

Σ
n−1 × 2Q is a finite transition relation.

3. An n-store multi-automaton over the alphabet Σ is a tuple

(Q, Σ, ∆, {q1, . . . , qz},Qf )

where Q is a finite set of states, Σ is a finite alphabet, qi /∈ Qf for i ∈
{1, . . . , z} are separate initial states and Qf ⊆ Q is a set of final states, and

∆ ⊆ (Q× B
Σ
n−1 × 2Q) ∪ ({q1, . . . , qz} × {O} × {qε

f})

is a finite transition relation where qε
f ∈ Qf has no outgoing transitions.



To indicate a transition (q, B, {q1, . . . , qm}) ∈ ∆, we write,

q
B
−→ {q1, . . . , qm}

Paths of the automata from a state q take the form,

q
eB0−→ {q1

1, . . . , q
1
m1

}
eB1−→ . . .

eBm−→ {qm
1 , . . . , qm

ml
}

where transitions between configurations {qx
1 , . . . , qx

mx
}

eBx−→ {qx+1
1 , . . . , qx+1

mx+1
}

are such that we have qx
y

By

−→ Qy for all y ∈ {1, . . . , mx} and
⋃

y∈{1,...,mx}
Qy =

{qx+1
1 , . . . , qx+1

mx+1
} and

⋃
y∈{1,...,mx}

{By} = B̃x. Observe that B̃0 is necessarily a
singleton set.

We will, by abuse of notation, abbreviate a run over the word w to

q
w

−→ {q1, . . . , qm}

Further, when a run occurs in an automaton forming part of a sequence indexed
by i (for example, A0, A1, . . .), we may write −→i to indicate which automaton
the run belongs to.

A 1-store [a1 . . . am] is accepted by a 1-store automaton A (that is [a1 . . . am] ∈

L(A)) iff we have a run q0
a1...am−→ Q in A with Q ⊆ Qf . For a given n-store au-

tomaton A = (Q, Σ, ∆, q0,Qf ) we define

L(A) = { [γ1 . . . γm] | q0

eB0−→ . . .
eBm−→ Q ∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }

where γ ∈ L(B̃) iff γ ∈ L(B) for all B ∈ B̃.
For an n-store multi-automaton A = (Q, Σ, ∆, {q1, . . . , qz},Qf ) we define

L(Aqj

) = { [γ1 . . . γm] | qj
eB0−→ . . .

eBm−→ Q

∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }

∪ { O | qj O

−→ qε
f }

L(A) = { 〈pj , γ〉 | j ∈ {1, . . . , z} ∧ γ ∈ L(Aqj

) }

Finally, we define the automata Ba
l and Xa

l for all 1 ≤ l ≤ n and a ∈ Σ
and the notation qθ. Ba

l is the l-store automaton that accepts any l-store γ such
that top1(γ) = a. Xa

l is the (n− 1)-store automaton accepting all (n− 1)-stores
such that top1(γ) = a and topl+1(γ) = [[w′]] for some w′. That is, popl(γ) is
undefined. If θ represents a store automaton, the state qθ refers to the initial
state of the automaton represented by θ.

3 Backwards Reachability

Theorem 1. Given an n-store multi-automaton A0 accepting the set of config-
urations CInit of an order-n APDS, we can construct in n-EXPTIME (in the
size of A0) an n-store multi-automaton A∗ accepting the set Pre∗(CInit). Thus,
Pre∗(CInit) is regular.



q1

qf

q2

B1

B2

B3

B4

d1 = (p1, a, push2, p
1)

d2 = (p1, a, pushε, p
1),

d3 = (p2, a, pushw, p1)
d4 = (p2, a, pop2, p

1)

q1

qf

q2

eG1
(q1,◦) = {{(a, pushε, B1)}}

eG1
(q1,qf ) = {{Ba

1 , B1, B3}}

eG1
(q2,◦) = {{(a, pushw, B1)}}

eG1
(q2,q1) = {{Ba

1 }}

q1

qf

q2

eG2
(q1,◦) =

n
{(a, pushε, B1)}, {(a, pushε, eG1

(q1,◦))}
o

eG2
(q1,qf ) =

(
{Ba

1 , B1, B3}, {(a, pushε, eG1
(q1,qf ))},

{Ba
1 , eG1

(q1,qf ), B4}, {B
a
1 , eG1

(q1,◦), B3}

)

eG2
(q2,◦) =

n
{(a, pushw, B1)}, {(a, pushw, eG1

(q1,◦))}
o

eG2
(q2,q1) = {{Ba

1 }}

eG2
(q2,qf ) =

n
{(a, pushw, eG1

(q1,qf ))}
o

Fig. 1. The automata A0, A1 and A2.

Due to space constraints, we restrict our attention in the sequel to the order-2
case. We give a brief description of the order-n construction in Section 3.5. For
a formal treatment of the general case, we refer the reader to the full version of
this paper [13].

Fix an order-2 APDS. We begin by showing how to generate an infinite
sequence of automata A0, A1, . . ., where A0 is such that L(A0) = CInit. This
sequence is increasing in the sense that L(Ai) ⊆ L(Ai+1) for all i, and sound
and complete with respect to Pre∗(CInit); that is

⋃
i≥0 L(Ai) = Pre∗(CInit). To

conclude the algorithm, we construct a single automaton A∗ such that L(A∗) =⋃
i≥0 L(Ai).

We assume wlog that all initial states in A0 have no incoming transitions
and there exist in A0 a state q∗f from which all valid 2-stores are accepted and a
state qε

f ∈ Qf that has no outgoing transitions.

3.1 Example

We give an intuitive explanation of the algorithm by means of an example. Fix
the 2-state order-2 PDS and 2-store multi-automaton A0 shown in Figure 1 with
some B1, B2, B3 and B4.

We proceed via a number of iterations, generating the automata A0, A1, . . ..
We construct Ai+1 from Ai to reflect an additional inverse application of the com-
mands d1, . . . , d4. Rather than manipulating order-1 store automata labelling the



edges of A0 directly, we introduce new transitions (at most one between each

pair of states q1 and q2) and label these edges with the set G̃1
(q1,q2)

. This set is
a recipe for the construction of an order-1 store automaton that will ultimately
label the edge. The resulting A1 is given in Figure 1 along with the contents of
the sets.

To process the command d1 we need to add all configurations of the form
〈p1, [γ1 . . . γm]〉 with top1(γ1) = a to the set of configurations accepted by A1 for
each configuration 〈p1, [γ1γ1 . . . γm]〉 accepted by A0. This results in the transi-

tion from q1 to qf . The contents of G̃1
(q1,qf ) indicate that this edge must accept

the product of Ba
1 , B1 and B3.

The commands d2 and d3 update the top2 stack of any configuration accepted
from q1 or q2 respectively. In both cases this updated stack must be accepted
from q1 in A0. Hence, the contents of G̃1

(q1,◦) and G̃1
(q2,◦) specify that the au-

tomaton B1 must be manipulated to produce the automaton that will label these
new transitions. Finally, d4 requires an additional top2 stack with a as its top1

element to be added to any stack accepted from q1. Thus, we introduce the
transition from q2 to q1.

To construct A2 from A1 we repeat the above procedure, taking into ac-
count the additional transitions in A1. Observe that we do not add additional
transitions between pairs of states that already have a transition labelled by a
set. Instead, each labelling set may contain several element sets. The resulting
automaton is given in Figure 1.

If we were to repeat this procedure to construct A3 we would notice that
a kind of fixed point has been reached. In particular, the transition structure
of A3 will match that of A2 and each G̃3

(q,q′) will match G̃2
(q,q′) in everything

but the indices of the labels G̃1
( , ) appearing in the element sets. We may write

G̃3
(q,q′) = G̃2

(q,q′)[2/1] where the notation [2/1] indicates a substitution of the
element indices.

To complete the construction of A1 (and A2) we need to construct the au-

tomata G1
(q,q′) (and G2

(q,q′)) represented by the labels G̃1
(q,q′) (and G̃2

(q,q′)) for

the appropriate q, q′. Because these new automata will be constructed from the
automata labelling the edges of A0 (and A1) we construct them simultaneously,
constructing a single (1-store multi-)automaton G1 (resp. G2) with an initial
state g1

(q,q′) for each G1
(q,q′). The automaton G1 is constructed through the addi-

tion of states and transitions to the disjoint union of B1, . . . , B4, B
a
1 . Similarly,

G2 is built through the addition of states and transitions to G1. This procedure
is illustrated in Figure 2. For the sake of clarity, many states and transitions
have been omitted. All transitions are labelled a.

In Figure 2, the innermost frame gives the disjoint union of the automata
B1, B3 and Ba

1 . The middle frame shows an excerpt of G1. The transition from
g1
(q1,◦) is derived from the pushε command applied to B1, which behaves as a

pop command. We can then construct G1
(q1 ,◦) directly from G1 taking g1

(q1,◦) as
the initial state.



g2
(q1,◦) g1

(q1,◦) qB1

g2
(q1,qf ) qB3

qBa
1

Fig. 2. The automata G0, G1 and G2.

· · · · · · “=”

Fig. 3. Collapsing a repetitive chain of new states.

The outermost frame gives a partial representation of the automaton G2.
The transition shown from g2

(q1,◦) derives from the pushε command applied to

G1
(q1,◦). Omitted from the diagram is an a-transition from g2

(q1,◦) to qB1 resulting

from the pushε command applied to B1. The branching transition from g2
(q1,qf )

derives from the set {Ba
1 , G̃1

(q1,qf ), B3} in G̃2
(q1,◦). That is, we use the power of

alternation to construct the product of the automata Ba
1 ,G1

(q1,qf ) and B3.

We have now constructed the automata A1 and A2. We could then repeat this
procedure to generate A3, A4, . . ., resulting in an infinite sequence of automata
that is sound and complete with respect to Pre∗(L(A0)).

To construct A∗ we observe that since a fixed point was reached at A2, the
update to each Gi to create Gi+1 will use similar recipes and hence become
repetitive. This will lead to an infinite chain with an unvarying pattern of edges.
This chain can be collapsed as shown in Figure 3.

In particular, we are no longer required to add new states to G2 to construct
Gi for i > 2. Instead, we fix the update instructions G̃2

(q,q′)[2/1] for all q, q′ and

manipulate G2 as we manipulated the order-2 structure of A0 to create A1 and
A2. We write Ĝi to distinguish these automata from the automata Gi generated
without fixing the state-set.

Because Σ and the state-set are finite (and remain unchanged), this proce-
dure will reach another fixed point Ĝ∗ when the transition relation is saturated
and Ĝi = Ĝi+1. The automaton A∗ has the transition structure that became fixed
at A2 labelled with automata derived from the fixed point Ĝ∗. This automaton
will be sound and complete with respect to Pre∗(L(A0)).



3.2 Preliminaries

To aid in the construction of an automaton representing Pre∗(CInit), we intro-
duce a new kind of transition to the 2-store automata. These new transitions are
introduced during the processing of the APDS commands. Furthermore, they
are labelled with place-holders that will eventually be converted into 1-store
automata.

Between any state q1 and set of states Q2 we add at most one transition. We
associate this transition with an identifier G̃(q1 ,Q2). To describe our algorithm

we will define sequences of automata, indexed by i. The identifier G̃i
(q1,Q2) is

associated with a set that acts as a recipe for updating the 1-store automaton
described by G̃i−1

(q1,Q2)
or creating a new automaton if G̃i−1

(q1,Q2)
does not exist.

Ultimately, the constructed 1-store automaton will label the new transition.
The sets are in a kind of disjunctive normal form. A set {S1, . . . , Sm} rep-

resents an automaton that accepts the union of the languages accepted by the
automata described by S1, . . . , Sm. Each set S ∈ {S1, . . . , Sm} corresponds to a
possible effect of a command d at order-1 of the automaton. The automaton de-
scribed by S accepts the intersection of languages described by its elements. An
element that is an automaton B refers directly to the automaton B. Similarly,
an identifier G̃i

(q1,Q2)
refers to its corresponding automaton. Finally, an element

of the form (a, pushw, θ) refers to an automaton capturing the effect of applying
the inverse of the pushw command to the stacks accepted by the automaton
represented by θ; moreover, the top1 character of the stacks accepted by the new
automaton will be a. It is a consequence of construction that for any S added
during the algorithm, if (a, pushw, θ) ∈ S and (a′, pushw′ , θ′) ∈ S then a = a′.

Formally, to each G̃i
(q1,Q2)

we attach a subset of

2B ∪ G̃i−1 ∪ (Σ ×O1 × (B ∪ G̃i−1))

where B is the union of the set of all 1-store automata occurring in A0 and
all automata of the form Ba

1 or Xa
1 . Further, we denote the set of all order-1

identifiers G̃i
(q,Q) in Ai as G̃i. The sets B and O1 are finite by definition. If the

state-set at order-1 is fixed, there is a finite bound on the size of the set G̃i for
any i.

Given G̃i, we build the automata for all G̃i
(q1,Q2)

∈ G̃i simultaneously. That

is, we create a single automaton Gi associated with the set G̃i. This automaton
has a state gi

(q1,Q2)
for each G̃i

(q1,Q2)
∈ G̃i. The automaton Gi

(q1,Q2)
labelling the

transition q1 −→i Q2 is the automaton Gi with gi
(q1,Q2)

as its initial state.

The automaton Gi is built inductively. We set G0 to be the disjoint union
of all automata in B. We define Gi+1 = TeGi+1(Gi) where TeGj (Gi) is given in
Definition 4. In Section 3.4 it will be seen that j is not always (i + 1).

Definition 4. Given an automaton Gi = (Qi, Σ, ∆i, ,Qf ) and a set of identi-

fiers G̃j
1 , we define,

Gi+1 = TeGj (G
i) = (Qi+1, Σ, ∆i+1, ,Qf )



where Qi+1 = Qi ∪ { gj
(q1,Q2)

| G̃j
(q1 ,Q2)

∈ G̃j }, ∆i+1 = ∆old ∪ ∆new ∪ ∆i, and,

∆old = { gj
(q1,Q2)

a
−→ Q | (gj−1

(q1,Q2)

a
−→ Q) ∈ ∆i }

∆new =
{

gj
(q1,Q2)

b
−→ Q | G̃j

(q1,Q2)
∈ G̃j and b ∈ Σ and (1)

}

where (1) requires {α1, . . . , αr} ∈ G̃j
(q1,Q2)

, Q = Q1 ∪ . . . ∪ Qr and for each

t ∈ {1, . . . , r} we have,

– If αt = θ, then (qθ b
−→ Qt) ∈ ∆i.

– If αt = (a, pushw, θ), then b = a and qθ w
−→ Qt is a run of Gi.

3.3 Constructing the Sequence A0, A1, . . .

For a given order-n APDS with commands D we define Ai+1 = TD(Ai) where
the operation TD follows.

Definition 5. Given an automaton Ai = (Q, Σ, ∆i, {q1, . . . , qz},Qf ) and a set
of commands D, we define,

Ai+1 = TD(Ai) = (Q, Σ, ∆i+1, {q1, . . . , qz},Qf )

where ∆i+1 is given below.

We begin by defining the set of labels G̃i+1. This set contains labels on
transitions present in Ai, and labels on transitions derived from D. That is,

G̃i+1 =

{
G̃i+1

(q,Q) | (q
eGi

(q,Q)
−→ Q) ∈ ∆i

}
∪

{
G̃i+1

(qj ,Q) | (2)
}

The contents of the sets G̃i+1
(q,Q) ∈ G̃i+1 are defined G̃i+1

(qj ,Q) = { S | (2) } where

(2) requires (pj , a, {(o1, p
k1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ . . . ∪ Qm, S =

S1 ∪ . . . ∪ Sm and for each t ∈ {1, . . . , m} we have,

– If ot = push2, then St = {Ba
1} ∪ θ̃1 ∪ θ̃2 and there exists a path qkt

eθ1−→i

Q′
eθ2−→i Qt in Ai.

– If ot = pop2, then St = {Ba
1} and Qt = {qkt}. Or, if qj O

−→i {q
ε
f} exists in

Ai, we may have St = {Ba
1} and Qt = {qε

f}.

– If ot = pushw then St = {(a, pushw, θ)} and there exists a transition qkt
θ

−→i

Qt in Ai.

Finally, we give the transition relation ∆i+1.

∆i+1 =

{
q

B
−→ Q | (q

B
−→ Q) ∈ ∆i

and B ∈ B

}
∪

{
q

eGi+1
(q,Q)
−→ Q | G̃i+1

(q,Q) ∈ G̃i+1

}

We can construct an automaton whose transitions are 1-store automata by re-
placing each set G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1 with initial

state gi+1
(q,Q), where Gi+1 = TeGi+1(Gi). Note that Gi is assumed by induction.



By repeated applications of TD we construct the sequence A0, A1, . . . which is
sound and complete with respect to Pre∗(CInit).

Property 1. For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i ) for some
i iff 〈pj , γ〉 ∈ Pre∗(CInit).

3.4 Constructing the Automaton A∗

We need to construct a finite representation of the sequence A0, A1, . . . in a
finite amount of time. To do this we will construct an automaton A∗ such that
L(A∗) =

⋃
i≥0 L(Ai). We begin by introducing some notation and a notion of

subset modulo i for the sets G̃i
(q1,Q2)

.

Definition 6. Given θ ∈ B ∪ G̃i for some i, let

θ[j/i] =

{
θ if θ ∈ B

Gj
(q1,Q2)

if θ = Gi
(q1,Q2) ∈ G̃i

For a set S we define S[j/i] such that, θ ∈ S iff we have θ[j/i] ∈ S[j/i], and
(a, pushw, θ) ∈ S iff we have (a, pushw, θ[j/i]) ∈ S[j/i].We extend the notation
[j/i] point-wise to nested sets of sets structures. Finally, we define,

1. G̃i
(q1,Q2) . G̃j

(q1,Q2) iff for each S ∈ G̃i
(q1,Q2) we have S[j−1/i−1] ∈ G̃j

(q1,Q2).

2. G̃i . G̃j iff for all G̃i
(q1,Q2)

∈ G̃i we have G̃j
(q1,Q2)

∈ G̃j and G̃i
(q1,Q2) .

G̃j
(q1,Q2).

Writing A ' B to mean A . B and B . A, we now show that the sets
labelling the transitions of A0, A1, . . . reach a fixed point. Once a fixed point
G̃i ' G̃i1 has been reached, we can stop adding new states during the construction
of Gi1 ,Gi1+1, . . ..

Property 2. There exists i1 > 0 such that G̃i ' G̃i1 for all i ≥ i1.

Proof. (Sketch) Since the order-1 state-set in Ai remains constant and we add
at most one transition between any state q1 and set of states Q2, there is some
i1 where no more transitions are added at order-2. That G̃i ' G̃i1 for all i ≥ i1
follows since the contents of G̃i

(q1,Q2) and G̃i1
(q1,Q2) are derived from the same

transition structure.

Lemma 1. Suppose we have a sequence of automata G0,G1, . . . and associated
sets G̃0, G̃1, . . .. Further, suppose there exists an i1 such that for all i ≥ i1 we
have G̃i ' G̃i1 . We can define a sequence of automata Ĝi1 , Ĝi1+1, . . . such that
the state-set in Ĝi remains constant. The following are equivalent for all w,

1. The run gi1
(q1,Q2)

w
−→i Q with Q ⊆ Qf exists in Ĝi for some i.

2. The run gi′

(q1,Q2)

w
−→i′ Q′ with Q′ ⊆ Qf exists in Gi′ for some i′.



We use Ĝi+1 = TeGi1 [i1/i1−1](Ĝ
i) to construct the sequence Ĝi1 , Ĝi1+1, . . ..

Intuitively, since the transitions from the states introduced to define G i for i ≥ i1
are derived from similar sets, we can compress the subsequent repetition into a
single set of new states as shown in Figure 3. Since the state-set of this new
sequence does not change and the alphabet Σ is finite, the transition structure
will become saturated.

Property 3. For a sequence of automata G0,G1, . . . such that the state-set of Gi

remains constant there exists i0 > 0 such that Gi = Gi0 for all i ≥ i0.

Thus, we have the following algorithm for constructing A∗:

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ai1 is reached.
2. Iterate Gi+1 = TeG

i1
l

[i1/i1−1]
(Gi) to generate the fixed point Gi0 from Gi1 .

3. Construct A∗ by labelling the transitions of Ai1 with automata derived
from Gi0 .

Property 4. There exists an automaton A∗ which is sound and complete with
respect to A0, A1, . . . and hence computes the set Pre∗(CInit).

3.5 The General Case

We may generalise our algorithm to order-n for all n by extending Definition 4 to
l-store automata using similar techniques to those used in Definition 5. Termina-
tion is reached through a cascading of fixed points. As we fixed the state-set at
order-1 in the order-2 case, we may fix the state-set at order-(n−1) in the order-n
case. We may then generalise Property 2 and Lemma 1 to find a sequence of fixed
points in, . . . , i0, from which A∗ can be constructed. For a complete description
of this procedure, we refer the reader to the long version of this paper [13].

We claim our algorithm runs in n-EXPTIME. Intuitively, when the state-set
Q is fixed at order-1 of the store automaton, we add at most O(2|Q|) transi-
tions (since we never remove states, it is this final stage that dominates the
complexity). At orders l > 1 we add at most O(2|Q|) new transitions, which
exponentially increases the state-set at order-(l− 1). Hence, the algorithm runs
in n-EXPTIME.

4 Applications

We give a brief description of a number of applications of our result:

– Reachability Games. Given an order-n pushdown reachability game with a
regular set of goal configurations R, we can calculate the winning region
(which is regular) for the existential player in n-EXPTIME.

– Linear-Time Model Checking. Given an order-n PDS (P ,D, Σ) and a formula
φ of an ω-regular logic, we can calculate in (n + 2)-EXPTIME the set of
configurations C such that every run from each c ∈ C satisfies φ.

– The Alternation-Free µ-Calculus. Given an order-n PDS (P ,D, Σ) and a
formula φ of the alternation-free µ-calculus, we can compute the regular set
of configurations satisfying φ in ((|φ| · n) + 1)-EXPTIME.



5 Conclusion

Given an automaton representation of a regular set of higher-order APDS config-
urations CInit, we have shown that the set Pre∗(CInit) is regular and computable
via automata-theoretic methods. This builds upon previous work on pushdown
systems [2] and higher-order context-free processes [1]. The main innovation of
this generalisation is the careful management of a complex automaton construc-
tion. This allows us to identify a sequence of cascading fixed points, resulting in
a terminating algorithm.

Our result has many applications. We have shown that it can be used to
provide a solution to the model checking problem for linear-time temporal logics
and the alternation-free µ-calculus. In particular we compute the set of config-
urations of a higher-order PDS satisfying a given constraint. We also show that
the winning regions can be computed for a reachability game played over an
higher-order PDS.

There are several possible extensions to this work. Firstly, we intend to com-
plete the complexity analysis with corresponding hardness results. Although this
result is widely accepted to follow from the work of Engelfriet [7], we intend to
give an alternative proof in the long version of this paper. Secondly, we plan
to investigate the applications of this work to higher-order pushdown games
with more general winning conditions. In his PhD thesis, Cachat adapts the
reachability algorithm of Bouajjani et al. [2] to calculate the winning regions in
Büchi games over pushdown processes [22]. It is likely that our work will permit
similar extensions. Finally, we intend to generalise this work to higher-order col-
lapsible pushdown automata, which can be used to study higher-order recursion
schemes [25, 8]. This may provide the first steps into the study of games over
these structures.

Acknowledgments. We thank Olivier Serre and Arnaud Carayol for helpful dis-
cussions and the anonymous referees for their detailed comments.

References

1. A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order
Context-Free Processes. In Proc. FSTTCS’04, 2004. LNCS 3328.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. CONCUR ’97, pp. 135–150, 1997.

3. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbounded-
ness and regular conditions. In Proc. FSTTCS’03, pages 88–99, 2003.

4. A. Carayol. Regular sets of higher-order pushdown stacks. In Proc. MFCS, pages
168–179, 2005.

5. A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In Proc. FSTTCS, pages 112–123, 2003.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

7. J. Engelfriet. Iterated push-down automata and complexity classes. In
Proc. STOC, pages 365–373, 1983.



8. M. Hague, A. S. Murawski, O. Serre and C.-H. L. Ong. Collapsible pushdown
automata and recursion schemes, 2006. Preprint, 13 pages.

9. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
Proc. FSTTCS’04, pages 408–420. 2004. LNCS 3328.

10. D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS’02,
pages 165–176, 2002. LNCS 2420.

11. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theor. Comput. Sci., 37:51–75, 1985.

12. H. Gimbert. Parity and exploration games on infinite graphs. In Proc. CSL’04,
pages 56–70, 2004. LNCS 3210.

13. M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-
order pushdown systems. Preprint, 54 pages, www.comlab.ox.ac.uk/oucl/work/
matthew.hague/FoSSaCS07-long.pdf, 2006.

14. I. Walukiewicz. Pushdown processes: Games and model checking. In Proc. CAV
’96, pages 62–74. 1996.

15. J. A. Brzozowski and E. L. Leiss. On equations for regular languages, finite au-
tomata, and sequential networks. Theor. Comput. Sci., 10:19–35, 1980.

16. K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level
2 for string languages. In Proc. FoSSaCS, pages 490–504, 2005.

17. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, pages 238–266, 1995.

18. A. N. Maslov. Multilevel stack automata. Problems of Information Transmission,
15:1170–1174, 1976.

19. O. Serre. Note on winning positions on pushdown games with ω-regular conditions.
Information Processing Letters, 85:285–291, 2003.

20. O. Serre. Games with winning conditions of high Borel complexity. In
Proc. ICALP’04, pages 1150–1162. Springer-Verlag, 2004. LNCS 3142.

21. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In Proc. LICS ’06, pages 81–90. IEEE Computer Society, 2006.

22. T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH
Aachen, 2003.

23. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In Proc. CSL’02, pages 322–336. Springer-Verlag, 2002. LNCS 2471.

24. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy.
In Proc. FoSSaCS ’02, pages 205–222, London, UK, 2002. Springer-Verlag.

25. T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and
panic automata. In Proc. ICALP ’05, pages 1450–1461, 2005.

26. M. Y. Vardi. A temporal fixpoint calculus. In Proc. POPL ’88, pages 250–259,
New York, NY, USA, 1988. ACM Press.

27. W. Thomas. Automata on infinite objects. Handbook of theoretical computer
science (vol. B): formal models and semantics, pages 133–191, 1990.


