Constructing combinatorial operads from monoids

Samuele Giraudo

Université Paris-Est Marne-la-Vallée

The 24th Conference on Formal Power Series and Algebraic Combinatorics
Nagoya, Japan

July 31, 2012
Contents

Non-symmetric set-operads
 Definitions
 Examples of operads

From monoids to operads
 The construction
 Properties of the construction

Applications of the construction
 Survey of the constructed operads
 The operad of Motzkin paths
 The diassociative and triassociative operads
Contents

Non-symmetric set-operads
 Definitions
 Examples of operads
Operads

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, 1)$ where:

- \mathcal{P} is a graded set of the form $\mathcal{P} := \{ n \geq 1 | \mathcal{P}(n) \}$
- \circ_i is a grafting application $\circ_i : \mathcal{P}(n) \times \mathcal{P}(m) \rightarrow \mathcal{P}(n + m - 1)$ defined for all $n, m \geq 1$ and $i \in [n]$
- 1 is an element of $\mathcal{P}(1)$, called unit.

This data has to satisfy some relations.
Operads

A (non-symmetric set-)operad is a triple \((\mathcal{P}, \circ_i, 1)\) where:

- \(\mathcal{P}\) is a graded set of the form

\[
\mathcal{P} := \bigcup_{n \geq 1} \mathcal{P}(n),
\]

- \(\circ_i\) is a grafting application

\[
\circ_i : \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n + m - 1),
\]

- 1 is an element of \(\mathcal{P}(1)\), called unit.

This data has to satisfy some relations.
Operads

A (non-symmetric set-)operad is a triple \((\mathcal{P}, \circ_i, 1)\) where:

- \(\mathcal{P}\) is a graded set of the form
 \[\mathcal{P} := \bigcup_{n \geq 1} \mathcal{P}(n), \]

- \(\circ_i\) is a grafting application
 \[\circ_i : \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n + m - 1), \]
 defined for all \(n, m \geq 1\) and \(i \in [n],\)
Operads

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, 1)$ where:

- \mathcal{P} is a graded set of the form
 \[\mathcal{P} := \bigcup_{n \geq 1} \mathcal{P}(n), \]

- \circ_i is a grafting application
 \[\circ_i : \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n + m - 1), \]
 defined for all $n, m \geq 1$ and $i \in [n],$

- 1 is an element of $\mathcal{P}(1),$ called unit.
Operads

A (non-symmetric set-)operad is a triple \((\mathcal{P}, \circ_i, 1)\) where:

\(\mathcal{P}\) is a graded set of the form

\[
\mathcal{P} := \bigcup_{n \geq 1} \mathcal{P}(n),
\]

\(\circ_i\) is a grafting application

\[
\circ_i : \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n + m - 1),
\]

defined for all \(n, m \geq 1\) and \(i \in [n]\),

\(1\) is an element of \(\mathcal{P}(1)\), called unit.

This data has to satisfy some relations.
Relations of operads

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

for all $i \in \mathbb{[}n\mathbb{]}$ and $j \in \mathbb{[}m\mathbb{]}$.

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y,$$

for all $1 \leq i < j \leq n$.

Unitarity relation:

$$1 \circ_1 x = x = x \circ_i 1,$$

for all $i \in \mathbb{[}n\mathbb{]}$.

Relations of operads

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

for all $i \in [n]$ and $j \in [m]$.

Commutativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = (x \circ_j z) \circ_i (y \circ_j z),$$

for all $1 \leq i < j \leq n$.

Unitarity relation:

$$1 \circ_1 x = x = x \circ_i 1,$$

for all $i \in [n]$.
Relations of operads

For all \(x \in \mathcal{P}(n), \ y \in \mathcal{P}(m), \) and \(z \in \mathcal{P}(k), \) following relations must be satisfied.

Associativity relation:

\[
(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),
\]

for all \(i \in [n] \) and \(j \in [m]. \)

Commutativity relation:

\[
(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y,
\]

for all \(1 \leq i < j \leq n. \)
Relations of operads

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_{i} y) \circ_{i+j-1} z = x \circ_{i} (y \circ_{j} z),$$

for all $i \in [n]$ and $j \in [m]$.

Commutativity relation:

$$(x \circ_{i} y) \circ_{j+m-1} z = (x \circ_{j} z) \circ_{i} y,$$

for all $1 \leq i < j \leq n$.

Unitarity relation:

$$1 \circ_{1} x = x = x \circ_{i} 1,$$

for all $i \in [n]$.
Trees and elements of operads

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

\[x \] \quad 1 \text{ output}

\[n \text{ inputs} \]
Trees and elements of operads

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

\[\vdots \]

n inputs

1 output

Operator of arity $n \rightsquigarrow$ planar rooted tree with n leaves:

\[\vdots \]

1

... n
Trees and elements of operads

Element of $\mathcal{P}(n)$ \leadsto operator of arity n:

Operator of arity n \leadsto planar rooted tree with n leaves:

Grafting application \leadsto grafting of trees:
Trees and elements of operads

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

\[\begin{array}{c}
\vdots \\
\hline \\
\vdots \\
\hline \\
x \\
\hline \\
1 \text{ output}
\end{array} \]

n inputs

Operator of arity $n \rightsquigarrow$ planar rooted tree with n leaves:

\[x \]

Grafting application \rightsquigarrow grafting of trees:

\[x \circ_i y = \]
Trees and relations of operads

Associativity relation:

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y)\]

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[
(x \circ_i y) \circ_{i+j-1} z
\]

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z \quad (y \circ_j z)\]

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z \quad x \circ_i (y \circ_j z)\]

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y)\]

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z\]

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z)\]

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z \quad (x \circ_j z) \circ_i y\]

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y\]

Unitarity relation:
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y\]

Unitarity relation:

\[1 \circ_1 x\]
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y\]

Unitarity relation:

\[1 \circ_1 x \quad x\]
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y\]

Unitarity relation:

\[1 \circ_1 x \quad x \quad x \circ_i 1\]
Trees and relations of operads

Associativity relation:

\[(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)\]

Commutativity relation:

\[(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y\]

Unitarity relation:

\[1 \circ_1 x = x = x \circ_i 1\]
Typical questions about operads

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in
Typical questions about operads

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in

1. computing the dimensions of \mathcal{P}, that is the sequence

$$\#\mathcal{P}(1), \#\mathcal{P}(2), \#\mathcal{P}(3), \ldots;$$
Typical questions about operads

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in

1. computing the **dimensions** of \mathcal{P}, that is the sequence

 $\#\mathcal{P}(1), \#\mathcal{P}(2), \#\mathcal{P}(3), \ldots$;

2. finding a **set of generators** of \mathcal{P};
Typical questions about operads

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in

1. computing the dimensions of \mathcal{P}, that is the sequence

 $\#\mathcal{P}(1), \#\mathcal{P}(2), \#\mathcal{P}(3), \ldots$;

2. finding a set of generators of \mathcal{P};

3. giving a presentation of \mathcal{P} by generators and relations.
Contents

Non-symmetric set-operads
 Definitions
 Examples of operads
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, \ldots
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, …

Assoc is generated by \(a_2\):
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, \ldots

Assoc is generated by \(a_2\):

\[
a_1,
\]
The associative operad

Let $(\text{Assoc}, \circ_i, a_1)$ be the operad defined for all $n \geq 1$ by

$$\text{Assoc}(n) := \{a_n\},$$

and for all $n, m \geq 1$ and $i \in [n]$ by

$$a_n \circ_i a_m := a_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

Assoc is generated by a_2:

$$a_1, \quad a_2,$$
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, \ldots

Assoc is generated by \(a_2\):

\[
a_1, \quad a_2, \quad a_3 = a_2 \circ_1 a_2,
\]
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, \ldots

Assoc is generated by \(a_2\):

\[
a_1, \ a_2, \ a_3 = a_2 \circ_1 a_2, \ a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \ \ldots
\]
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: 1, 1, 1, 1, 1, 1, \ldots

Assoc is generated by \(a_2\):

\[
a_1, \quad a_2, \quad a_3 = a_2 \circ_1 a_2, \quad a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \quad \ldots
\]

The generator \(a_2\) is subject to the relation

\[
a_2 \circ_1 a_2 = a_2 \circ_2 a_2.
\]
The associative operad

Let \((\text{Assoc}, \circ_i, a_1)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Assoc}(n) := \{a_n\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
a_n \circ_i a_m := a_{n+m-1}.
\]

Dimensions: \(1, 1, 1, 1, 1, 1, \ldots\)

Assoc is generated by \(a_2\):

\[
a_1, \quad a_2, \quad a_3 = a_2 \circ_1 a_2, \quad a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \quad \ldots
\]

The generator \(a_2\) is subject to the relation

\[
a_2 \circ_1 a_2 = a_2 \circ_2 a_2.
\]

Presentation by generators and relations:

\[
\text{Assoc} = \langle a_2 \mid a_2 \circ_1 a_2 = a_2 \circ_2 a_2 \rangle.
\]
The magmatic operad

Let \((\text{Mag}, \circ_i, \sqcup)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{ T : T \text{ binary tree with } n \text{ leaves} \},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]
The magmatic operad

Let \((\text{Mag}, \circ_i, \mathbf{1})\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

\[
\begin{array}{c}
\begin{array}{c}
\circle & \circle \\
\square & \square \\
\end{array} & \begin{array}{c}
\circle & \circle & \circle \\
\square & \square & \square \\
\end{array} \\
1 & 4
\end{array}
\]

Dimensions : 1, 1, 2, 5, 14, 42, ...(Catalan numbers).

\text{Mag} is generated by (proof by induction on the arities).

There is no relation between the generator and itself (\text{Mag} is the free operad on one generator of arity 2).
The magmatic operad

Let \((\text{Mag}, \circ_i, 1)\) be the operad defined for all \(n \geq 1\) by
\[
\text{Mag}(n) := \{ T : T \text{ binary tree with } n \text{ leaves}\},
\]
and for all \(n, m \geq 1\) and \(i \in [n]\) by
\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

\[
\begin{array}{ccc}
\text{Example} & \circ_4 & = \\
\begin{array}{c}
\text{Tree 1} \\
\text{Tree 2}
\end{array} & \begin{array}{c}
\text{Tree 3} \\
\text{Tree 4}
\end{array} & \begin{array}{c}
\text{Tree 5} \\
\text{Tree 6}
\end{array}
\end{array}
\]
The magmatic operad

Let \((\text{Mag}, \circ_i, \Box)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{ T : T \text{ binary tree with } n \text{ leaves} \},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

Dimensions: 1, 1, 2, 5, 14, 42, ... (Catalan numbers).
The magmatic operad

Let \((\text{Mag}, \circ_i, \circ)\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{ T : T \text{ binary tree with } n \text{ leaves} \},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

\[
\begin{align*}
\circ_4 & \quad \text{Dimensions: } 1, 1, 2, 5, 14, 42, \ldots \text{(Catalan numbers).}
\end{align*}
\]

Mag is generated by \(\circ\) (proof by induction on the arities).
The magmatic operad

Let \((\text{Mag}, \circ_i, \mathbb{1})\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{ T : T \text{ binary tree with } n \text{ leaves} \},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

\[
\begin{array}{ccc}
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\end{array}
\quad \circ_4 \quad \begin{array}{ccc}
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\end{array}
= \begin{array}{ccc}
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\circ \circ & \circ \circ & \circ \circ \\
\end{array}
\]

Dimensions: 1, 1, 2, 5, 14, 42, \ldots (Catalan numbers).

Mag is generated by \(\circ \circ \) (proof by induction on the arities).

There is no relation between the generator \(\circ \circ \) and itself (Mag is the free operad on one generator of arity 2).
The magmatic operad

Let \((\text{Mag}, \circ_i, \mathbb{1})\) be the operad defined for all \(n \geq 1\) by

\[
\text{Mag}(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},
\]

and for all \(n, m \geq 1\) and \(i \in [n]\) by

\[
S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i\text{th leaf of } S.
\]

Example

\[
\text{Dimensions} : 1, 1, 2, 5, 14, 42, \ldots \text{(Catalan numbers)}.
\]

Mag is generated by \(\circ\) (proof by induction on the arities).

There is no relation between the generator \(\circ\) and itself (Mag is the free operad on one generator of arity 2).

Presentation by generators and relations:

\[
\text{Mag} = \langle \circ \mid \rangle.
\]
Contents

From monoids to operads
 The construction
 Properties of the construction
The T construction

Let us start with a monoid $(M, \bullet, 1)$.
The T construction

Let us start with a monoid $(M, \cdot, 1)$.

Let TM be the graded set $TM := \biguplus_{n \geq 1} TM(n)$ where

$TM(n) := \{x_1 \ldots x_n : x_i \in M \text{ for all } i \in [n]\}.$
The T construction

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \bigoplus_{n \geq 1} TM(n)$ where

$$TM(n) := \{x_1 \ldots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i : TM(n) \times TM(m) \to TM(n + m - 1),$$
The T construction

Let us start with a monoid $(M, \cdot, 1)$.

Let TM be the graded set $TM := \bigoplus_{n \geq 1} TM(n)$ where

$$TM(n) := \{x_1 \ldots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i : TM(n) \times TM(m) \to TM(n + m - 1),$$

defined for all $x \in TM(n), y \in TM(m)$, and $i \in [n]$ by

$$x \circ_i y := x_1 \ldots x_{i-1} x_i y_1 \ldots y_m x_{i+1} \ldots x_n.$$
The T construction

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \biguplus_{n \geq 1} TM(n)$ where

$$TM(n) := \{x_1 \ldots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i : TM(n) \times TM(m) \rightarrow TM(n + m - 1),$$

defined for all $x \in TM(n)$, $y \in TM(m)$, and $i \in [n]$ by

$$x \circ_i y := x_1 \ldots x_{i-1} (x_i \bullet y_1) \ldots (x_i \bullet y_m) x_{i+1} \ldots x_n.$$
Let M and N be two monoids and $\theta : M \rightarrow N$ be a monoid morphism.
The T construction

Let M and N be two monoids and $\theta : M \to N$ be a monoid morphism.

Let $T\theta$ be the application

$$T\theta : TM \to TN,$$

defined for all $x_1 \ldots x_n \in TM(n)$ by

$$T\theta(x_1 \ldots x_n) := \theta(x_1) \ldots \theta(x_n).$$
Some examples of the \(\mathbb{T} \) construction

\[M := (\mathbb{N}, +) \]. Elements of \(\mathbb{T}M \): words over the alphabet \(\mathbb{N} \).
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

$2123 \odot_2 30313$
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

$2123 \circ_2 30313 = 24142423$
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2123 \circ_2 30313 = 24142423$</td>
</tr>
</tbody>
</table>

$N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

$2123 \circ_2 30313 = 24142423$

$N := \{a, b\}^\ast$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

\[
\begin{array}{cccccc}
 b & a & a & \varepsilon & b \\
 b & b & \circ_3 & a & \varepsilon & b \\
 a & & & & & b
\end{array}
\]
Some examples of the T construction

\(M := (\mathbb{N}, +) \). Elements of \(TM \): words over the alphabet \(\mathbb{N} \).

Example

\[2123 \circ_2 30313 = 24142423 \]

\(N := \{a, b\}^* \). Elements of \(TN \): multiwords over the alphabet \(\{a, b\} \).

Example

\[
\begin{array}{cccc}
 b & a & a & \epsilon & b \\
 b & b & \circ_3 & a & \epsilon & b \\
 a & b & a & a & a & a & \epsilon & b \\
\end{array}
\]

\[= \]

\[
\begin{array}{cccc}
 b & a & a & a & a & a & \epsilon & b \\
 b & a & b & b & b \\
 a & b \\
\end{array}
\]
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

\[
2123 \circ_2 30313 = 24142423
\]

$N := \{a, b\}^\ast$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

\[
\begin{align*}
b & \ a & a & \epsilon & b \\
& b & b & \epsilon & a & \epsilon & b \\
& a & b & \circ_3 & b & a & b & b
\end{align*}
\]

\[
= \begin{align*}
& b & a & a & a & a & a & \epsilon & b \\
& b & & & \epsilon & a & \epsilon & b \\
& a & b & \epsilon & b & a & b
\end{align*}
\]

Let $\theta : N \rightarrow M$ be the monoid morphism defined by $\theta(u) := |u|$.
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

$$2123 \circ_2 30313 = 24142423$$

$N := \{a, b\}^\ast$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

$$\begin{align*}
\begin{array}{ccccccc}
b & a & a & \epsilon & b \\
 b & b & \circ_3 & \epsilon & a & \epsilon & b \\
 a
\end{array} & = \\
\begin{array}{ccccccc}
b & a & a & a & a & a & \epsilon & b \\
 b & a & b & b
\end{array}
\end{align*}$$

Let $\theta : N \to M$ be the monoid morphism defined by $\theta(u) := |u|$.

Example

$$T\theta \left(\begin{array}{ccccccc}
b & a & a & \epsilon & a & a \\
 b & a \\
 a
\end{array} \right)$$
Some examples of the T construction

$M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N}.

Example

$$2123 \circ_2 30313 = 24142423$$

$N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

$$\begin{array}{cccc}
 b & a & a & \epsilon & b \\
 b & b & \circ_3 & \epsilon & a & \epsilon & b \\
 b & a & a & a & a & a & \epsilon & b
\end{array}$$

$$\begin{array}{cccc}
 \epsilon & a & \epsilon & b \\
 b & a & b & b
\end{array}$$

Let $\theta : N \rightarrow M$ be the monoid morphism defined by $\theta(u) := |u|$.

Example

$$T\theta \begin{pmatrix} b & a & a & \epsilon & a & a \\
 \epsilon & a & \epsilon & b \\
 b & a & b & b \\
 a & a & b
\end{pmatrix} = 131021$$
Properties of the \mathcal{T} construction

Theorem

If M is a monoid, $\mathcal{T}M$ is an operad.

If $\theta : M \to N$ is a monoid morphism, $\mathcal{T}\theta$ is an operad morphism.

Moreover, \mathcal{T} preserves injections and surjections.
Properties of the T construction

Theorem

If M is a monoid, $T M$ is an operad.

If $\theta : M \to N$ is a monoid morphism, $T \theta$ is an operad morphism.

Moreover, T preserves injections and surjections.

Hence, T is an exact functor from the category of monoids with monoid morphisms to the category of operads with operad morphisms.
Properties of the T construction

The sets $T^M(n)$ are finite iff M is finite. In this case, the dimensions of T^M are

$$m, m^2, m^3, m^4, \ldots$$

where $m := \#M$.
Properties of the T construction

The sets $T^M(n)$ are finite iff M is finite. In this case, the dimensions of T^M are

$$m, m^2, m^3, m^4, \ldots$$

where $m := \#M$.

T^M is generated by the set

$$G(M) \cup \{1\},$$

where $G(M)$ is a set of generators of M and 1 is its unit.
Properties of the T construction

The sets $TM(n)$ are finite iff M is finite. In this case, the dimensions of TM are

$$m, m^2, m^3, m^4, \ldots$$

where $m := \#M$.

TM is generated by the set

$$G(M) \uplus \{11\},$$

where $G(M)$ is a set of generators of M and 1 is its unit.

Example

$\{1\} \uplus \{00\}$ is a generating set of $T(\mathbb{N}, +)$. For instance,

$$02001 = (((((00 \circ_1 00) \circ_1 00) \circ_1 00) \circ_2 1) \circ_2 1) \circ_5 1.$$
Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;
2. Construct new operads.
Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;
2. Construct new operads.

The general line is as following:

Choose a monoid

Monoid M
Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;
2. Construct new operads.

The general line is as following:
Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;
2. Construct new operads.

The general line is as following:

Choose a monoid

Monoid M \quad T \quad Operad TM

Choose some elements of TM

Set G
Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;
2. Construct new operads.

The general line is as following:
Objectives and goals
Main motivations for introducing the T construction:
1. Give alternative constructions of some well-known operads;
2. Construct new operads.

The general line is as following:

```
Choose a monoid

Monoid $M$  $\xrightarrow{T}$  Operad $TM$

Choose some elements of $TM$

Set $G$  $\xrightarrow{\text{Operad generated}}$  Operad $\langle G \rangle$
```

We then ask usual questions about operads on $\langle G \rangle$.
Contents

Applications of the construction
 Survey of the constructed operads
 The operad of Motzkin paths
 The diassociative and triassociative operads
Survey of some obtained operads

Here are the operads obtained using the T construction with some usual monoids:

<table>
<thead>
<tr>
<th>Monoid</th>
<th>Operad</th>
<th>Generators</th>
<th>First dimensions</th>
<th>Combinatorial objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}, $+$</td>
<td>End</td>
<td>—</td>
<td>1, 4, 27, 256, 3125</td>
<td>Endofunctions</td>
</tr>
<tr>
<td>\mathbb{N}, $+$</td>
<td>PF</td>
<td>—</td>
<td>1, 3, 16, 125, 1296</td>
<td>Parking functions</td>
</tr>
<tr>
<td>\mathbb{N}, $+$</td>
<td>PW</td>
<td>—</td>
<td>1, 3, 13, 75, 541</td>
<td>Packed words</td>
</tr>
<tr>
<td>$(\mathbb{N}, +)$</td>
<td>Per</td>
<td>—</td>
<td>1, 2, 6, 24, 120</td>
<td>Permutations</td>
</tr>
<tr>
<td>$(\mathbb{N}, +)$</td>
<td>PRT</td>
<td>01</td>
<td>1, 1, 2, 5, 14, 42</td>
<td>Planar rooted trees</td>
</tr>
<tr>
<td>\mathbb{Z}, $+$</td>
<td>FCatk</td>
<td>00, 01, \ldots, 0k</td>
<td>Fuß-Catalan num.</td>
<td>Trees of arity $k+1$</td>
</tr>
<tr>
<td>$(\mathbb{Z}, +)$</td>
<td>Schr</td>
<td>00, 01, 10</td>
<td>1, 3, 11, 45, 197</td>
<td>Schröder trees</td>
</tr>
<tr>
<td>$(\mathbb{Z}, +)$</td>
<td>Motz</td>
<td>00, 010</td>
<td>1, 1, 2, 4, 9, 21, 51</td>
<td>Motzkin paths</td>
</tr>
<tr>
<td>$(\mathbb{Z}/2\mathbb{Z}, +)$</td>
<td>Comp</td>
<td>00, 01</td>
<td>1, 2, 4, 8, 16, 32</td>
<td>Int. compo.</td>
</tr>
<tr>
<td>$(\mathbb{Z}/3\mathbb{Z}, +)$</td>
<td>DA</td>
<td>00, 01</td>
<td>1, 2, 5, 13, 35, 96</td>
<td>Directed animals</td>
</tr>
<tr>
<td>$(\mathbb{Z}/3\mathbb{Z}, +)$</td>
<td>SComp</td>
<td>00, 01, 02</td>
<td>1, 3, 27, 81, 243</td>
<td>Segmented int. compo.</td>
</tr>
<tr>
<td>${0, 1}, \times$</td>
<td>Dias</td>
<td>01, 10</td>
<td>1, 2, 3, 4, 5, 6</td>
<td>Words with exactly one 1</td>
</tr>
<tr>
<td>${0, 1}, \times$</td>
<td>Trias</td>
<td>01, 10, 11</td>
<td>1, 3, 7, 15, 31, 63</td>
<td>Words with at least one 1</td>
</tr>
</tbody>
</table>
Contents

Applications of the construction
 Survey of the constructed operads
 The operad of Motzkin paths
 The diassociative and triassociative operads
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```
sage: M = AdditiveMonoid()
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```python
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
```

```python
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
sage: print Motz.elements(3)
[000, 010]
sage: print Motz.elements(6)
[000000, 000010, 000100, 000110, 001000, 001010, 001100, 001110, 001210, 010000, 010010, 010100, 010110, 011000, 011010, 011100, 011110, 011210, 012100, 012110, 012210]
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
sage: print Motz.elements(3)
[000, 010]
sage: print Motz.elements(6)
[000000, 000010, 000100, 000110, 001000, 001010, 001100, 001110, 001210, 010000, 010010, 010100, 010110, 011000, 011010, 011100, 011110, 011210, 012100, 012110, 012210]
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
```

```python
[1, 1, 2, 4, 9, 21, 51, 127, 323]
```

```python
[0]
```

```python
[00]
```

```python
[000, 010]
```

```python
[000000, 000010, 000100, 000110, 001000, 001010, 001100, 001110, 001210, 010000, 010010, 010100, 010110, 011000, 011010, 011100, 011110, 011210, 012100, 012110, 012210]
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```python
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```python
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
```
Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```python
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
```
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]

sage: print Motz.elements(1)
[0]

sage: print Motz.elements(2)
[00]

sage: print Motz.elements(3)
[000, 010]
Experimenting with Sage

Let Motz be the suboperad of $T(\mathbb{N}, +)$ generated by 00 and 010.

```python
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
sage: print Motz.elements(3)
[000, 010]
sage: print Motz.elements(6)
[000000, 000010, 000100, 000110, 001000, 001010, 001100, 001110, 001210, 010000, 010010, 010100, 010110, 011000, 011010, 011100, 011110, 011210, 012100, 012110, 012210]```
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$. 
Elements of Motz

Proposition

*The elements of Motz are exactly the words* $x$ *on the alphabet* $\mathbb{N}$ *beginning and ending by* $0$ *and such that, for any factor* $ab$ *of* $x$, *$|a - b| \leq 1$.*

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} \begin{array}{l} \text{ if } b - a = -1, \\
\text{ if } b - a = 0, \\
\text{ if } b - a = 1. 
\end{array} \end{cases}$$
Elements of Motz

**Proposition**

*The elements of Motz are exactly the words* $x$ *on the alphabet* $\mathbb{N}$ *beginning and ending by* $0$ *and such that, for any factor* $ab$ *of* $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} 
\square & \text{if } b - a = -1, \\
\bigcirc & \text{if } b - a = 0, \\
\bigcirc & \text{if } b - a = 1.
\end{cases}$$

**Example**

$$001123221010 \mapsto \begin{array}{c}
\text{Motz Path}
\end{array}$$
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$ab \mapsto \begin{cases} \begin{array}{ll} \text{if } b - a = -1, & \text{square} \\ \text{if } b - a = 0, & \\
\text{if } b - a = 1. & \text{triangle} \end{array} \end{cases}$

Example

$001123221010 \mapsto \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline \hline \end{array}$
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} \begin{array}{ll} \begin{array}{c} \begin{array}{c} \text{if } b - a = -1, \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \text{if } b - a = 0, \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \text{if } b - a = 1. \end{array} \end{array} \end{cases} \end{cases}$$

Example

001123221010 $\mapsto$ \[ \text{Motzkin path} \]
Elements of Motz

Proposition

The elements of Motz are exactly the words \( x \) on the alphabet \( \mathbb{N} \) beginning and ending by 0 and such that, for any factor \( ab \) of \( x \), \(|a - b| \leq 1\).

Bijection between elements of Motz and Motzkin paths:

\[
ab \mapsto \begin{cases} 
& \text{if } b - a = -1, \\
& \text{if } b - a = 0, \\
& \text{if } b - a = 1.
\end{cases}
\]

Example

\[001123221010 \mapsto \]

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
& & & & & & & & \\
\hline
& & & & & & & & \\
\hline
& & & & & & & & \\
\hline
\end{array}
\]
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$ab \mapsto \begin{cases} 
\begin{array}{c} 
\begin{array}{c} 
\end{array} 
\end{array} 
\end{cases}$ if $b - a = -1$, 

$\begin{array}{c} 
\begin{array}{c} 
\end{array} 
\end{array}$ if $b - a = 0$, 

$\begin{array}{c} 
\begin{array}{c} 
\end{array} 
\end{array}$ if $b - a = 1$.

Example

$001123221010 \mapsto$
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} \square & \text{if } b - a = -1, \\ \circ & \text{if } b - a = 0, \\ \triangle & \text{if } b - a = 1. \end{cases}$$

Example

$$001123221010 \mapsto \begin{array} \text{Motzkin path} \end{array}$$
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

\[
ab \mapsto \begin{cases} 
\bullet & \text{if } b - a = -1, \\
\circ & \text{if } b - a = 0, \\
\triangle & \text{if } b - a = 1.
\end{cases}
\]

Example

001123221010 $\mapsto$

\[\text{Diagram of Motzkin path}\]
Elements of Motz

**Proposition**

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

\[
ab \mapsto \begin{cases} 
\begin{array}{l}
\text{if } b - a = -1, \\
\text{if } b - a = 0, \\
\text{if } b - a = 1.
\end{array}
\end{cases}
\]

**Example**

001123221010 $\mapsto$ 

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

\[
ab \mapsto \begin{cases} 
\begin{array}{l}
\text{if } b - a = -1, \\
\text{if } b - a = 0, \\
\text{if } b - a = 1.
\end{array}
\end{cases}
\]

Example

001123221010 $\mapsto$
Elements of Motz

**Proposition**

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

\[
ab \mapsto \begin{cases} 
\quad \text{if } b - a = -1, \\
\quad \text{if } b - a = 0, \\
\quad \text{if } b - a = 1.
\end{cases}
\]

**Example**

\[
001123221010 \mapsto \quad 
\]

$\ldots$
Elements of Motz

**Proposition**

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} 
\text{if } b - a = -1, \\
\text{if } b - a = 0, \\
\text{if } b - a = 1.
\end{cases}$$

**Example**

$$001123221010 \mapsto \text{Motzkin path}$$
Elements of Motz

Proposition

The elements of Motz are exactly the words $x$ on the alphabet $\mathbb{N}$ beginning and ending by 0 and such that, for any factor $ab$ of $x$, $|a - b| \leq 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab \mapsto \begin{cases} 
\text{if } b - a = -1, \\
\text{if } b - a = 0, \\
\text{if } b - a = 1.
\end{cases}$$

Example

$$001123221010 \mapsto \begin{array}{c}
\text{Motzkin path}
\end{array}$$
Grafting of Motz

**Proposition**

Let $u$ and $v$ be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the $i$th point of $u$ by $v$. 

Example:

$01123210 \circ_4 0122110 = 01123443323210 \circ_4 = \frac{25}{33}$
Grafting of Motz

**Proposition**

Let \( u \) and \( v \) be two Motzkin paths. The grafting \( u \circ_i v \) in Motz returns to replace the \( i \)th point of \( u \) by \( v \).

**Example**

\[
01123210 \circ_4 0122110 = 01123443323210
\]
Grafting of Motz

**Proposition**

Let $u$ and $v$ be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the $i$th point of $u$ by $v$.

**Example**

01123210

01123443323210

$\circ_4$
Grafting of Motz

Proposition

Let $u$ and $v$ be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the $i$th point of $u$ by $v$.

Example

<table>
<thead>
<tr>
<th>01123210</th>
<th>$\circ_4$</th>
<th>0122110</th>
</tr>
</thead>
</table>

![Diagram of Motzkin paths and grafting process]
Proposition

Let $u$ and $v$ be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the $i$th point of $u$ by $v$.

Example

<table>
<thead>
<tr>
<th>01123210</th>
<th>$\circ_4$</th>
<th>0122110</th>
</tr>
</thead>
</table>

\[0122210 \circ_4 0122110 = 0122210\]

\[0122210 \circ_4 0122110 = 0122210\]
Grafting of Motz

**Proposition**

Let \( u \) and \( v \) be two Motzkin paths. The grafting \( u \circ_i v \) in Motz returns to replace the \( i \)th point of \( u \) by \( v \).

**Example**

\[
01123210 \circ_4 0122110 = 01123443323210
\]

![Diagram of grafting example]
Grafting of Motz

**Proposition**

Let $u$ and $v$ be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the $i$th point of $u$ by $v$.

**Example**

$$01123210 \circ_4 0122110 = 01123443323210$$
Presentation of Motz

Theorem

The operad Motz admits the following presentation

\[ \text{Motz} = \langle \bullet \bullet, \uparrow \uparrow \mid \uparrow \bullet \bullet = \bullet \uparrow \bullet \bullet, \]
\[ \uparrow \bullet \bullet = \bullet \uparrow \bullet \bullet, \]
\[ \uparrow \uparrow \bullet = \uparrow \bullet \bullet \uparrow \bullet \bullet, \]
\[ \uparrow \uparrow \bullet = \uparrow \bullet \bullet \uparrow \bullet \bullet \rangle. \]
Contents

Applications of the construction
Survey of the constructed operads
The operad of Motzkin paths
The diassociative and triassociative operads
The diassociative and triassociative operads

The diassociative operad $\text{Dias}$ [Loday, 2001] is the operad admitting the following presentation:

$$\text{Dias} := \langle \not\!, \top | \not\! \circ_1 \top = \top \circ_2 \not\!, \not\! \circ_1 \top = \not\! \circ_2 \top = \not\! \circ_2 \top, \top \circ_2 \top = \top \circ_1 \top = \top \circ_1 \top \rangle.$$
The diassociative and triassociative operads

The diassociative operad $\text{Dias}$ [Loday, 2001] is the operad admitting the following presentation:

$$\text{Dias} := \langle \vdash, \triangleright \mid \vdash o_1 \triangleright = \vdash o_2 \vdash, \vdash o_1 \vdash = \vdash o_2 \vdash = \vdash o_2 \triangleright, \vdash o_2 \triangleright = \vdash o_1 \triangleright = \vdash o_1 \vdash \rangle.$$ 

The triassociative operad $\text{Trias}$ [Loday, Ronco, 2004] is the operad admitting the following presentation:

$$\text{Trias} := \langle \vdash, \vdash \mid \vdash o_1 \vdash = \vdash o_2 \vdash, \vdash o_1 \vdash = \vdash o_2 \vdash = \vdash o_2 \vdash, \vdash o_2 \vdash = \vdash o_1 \vdash = \vdash o_1 \vdash \rangle.$$
The diassociative and triassociative operads

The diassociative operad Dias [Loday, 2001] is the operad admitting the following presentation:

\[
\text{Dias} := \langle \perp, \top \mid \perp \circ \top = \top \circ \perp, \\
\perp \circ \perp = \perp \circ \perp = \top \circ \top, \\
\top \circ \perp = \top \circ \perp \rangle.
\]

The triassociative operad Trias [Loday, Ronco, 2004] is the operad admitting the following presentation:

\[
\text{Trias} := \langle \perp, \bot, \top \mid \perp \circ \top = \top \circ \perp, \\
\perp \circ \bot = \perp \circ \perp = \top \circ \top, \\
\perp \circ \top = \top \circ \perp, \\
\bot \circ \perp = \bot \circ \bot, \\
\top \circ \top = \bot \circ \bot, \\
\perp \circ \top = \perp \circ \top \rangle.
\]
Let $D$ be the suboperad of $T(\{0, 1\}, \times)$ generated by 01 and 10.
Experimenting with Sage

Let $D$ be the suboperad of $T(\{0, 1\}, \times)$ generated by $01$ and $10$.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
```

```python
dimension: D.dimension(n) for n in xrange(1, 10)
dimension: [1, 2, 3, 4, 5, 6, 7, 8, 9]
elements: D.elements(5)
elements: [10000, 01000, 00100, 00010, 00001]
```
Let $D$ be the suboperad of $T(\{0, 1\}, \times)$ generated by 01 and 10.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
sage: print [D.dimension(n) for n in xrange(1, 10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```
Let $D$ be the suboperad of $T(\{0, 1\}, \times)$ generated by $01$ and $10$.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
sage: print [D.dimension(n) for n in xrange(1, 10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: print D.elements(5)
[10000, 01000, 00100, 00010, 00001]
```
### Proposition

*The elements of $D$ are exactly the words on the alphabet $\{0, 1\}$ which have exactly one occurrence of $1$.***
The operad $D$

**Proposition**

The elements of $D$ are exactly the words on the alphabet $\{0, 1\}$ which have exactly one occurrence of 1.

**Proposition**

The operad $D$ is isomorphic to the operad $\text{Dias}$ through the operad isomorphism $\phi : \text{Dias} \rightarrow D$ defined by

\[
\phi(\vdash) := 10 \quad \text{and} \quad \phi(\dashv) := 01.
\]
The operad $D$

**Proposition**

The elements of $D$ are exactly the words on the alphabet $\{0, 1\}$ which have exactly one occurrence of $1$.

**Proposition**

The operad $D$ is isomorphic to the operad Dias through the operad isomorphism $\phi : \text{Dias} \to D$ defined by

$$\phi(\top) := 10 \quad \text{and} \quad \phi(\bot) := 01.$$ 

Hence, $D$ is a realization of Dias.
Let $T_r$ be the suboperad of $T(\{0, 1\}, \times)$ generated by 01, 10, and 11.
Let $\mathcal{T}r$ be the suboperad of $\mathcal{T}(\{0, 1\}, \times)$ generated by 01, 10, and 11.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]), Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
```

```
sage: print [Tr.dimension(n) for n in xrange(1, 10)]
[1, 3, 7, 15, 31, 63, 127, 255, 511]
sage: print Tr.elements(3)
[001, 010, 011, 100, 101, 110, 111]
```
Let $\mathcal{T}$ be the suboperad of $\mathcal{T}(\{0,1\}, \times)$ generated by 01, 10, and 11.

```python
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]), Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
sage: print [Tr.dimension(n) for n in xrange(1, 10)]
[1, 3, 7, 15, 31, 63, 127, 255, 511]
```
Let $T_r$ be the suboperad of $T(\{0, 1\}, \times)$ generated by 01, 10, and 11.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]), Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
sage: print [Tr.dimension(n) for n in xrange(1, 10)]
[1, 3, 7, 15, 31, 63, 127, 255, 511]
sage: print Tr.elements(3)
[001, 010, 011, 100, 101, 110, 111]
```
The operad $\text{Tr}$

**Proposition**

The elements of $\text{Tr}$ are exactly the words on the alphabet $\{0, 1\}$ which have at least one occurrence of 1.
The operad $\mathbf{Tr}$

**Proposition**

*The elements of $\mathbf{Tr}$ are exactly the words on the alphabet $\{0, 1\}$ which have at least one occurrence of $1$.***

**Proposition**

*The operad $\mathbf{Tr}$ is isomorphic to the operad $\mathbf{Trias}$ through the operad isomorphism $\phi : \mathbf{Trias} \to \mathbf{Tr}$ defined by

\[
\phi(\bot) := 11, \quad \phi(\top) := 01, \quad \text{and} \quad \phi(\mid) := 10.
\]
The operad $\text{Tr}$

**Proposition**

The elements of $\text{Tr}$ are exactly the words on the alphabet $\{0, 1\}$ which have at least one occurrence of $1$.

**Proposition**

The operad $\text{Tr}$ is isomorphic to the operad $\text{Trias}$ through the operad isomorphism $\phi : \text{Trias} \rightarrow \text{Tr}$ defined by

\[
\phi(\bot) := 10, \quad \phi(\top) := 01, \quad \text{and} \quad \phi(\bot) := 11.
\]

Hence, $\text{Tr}$ is a realization of $\text{Trias}$.
Survey of some obtained operads

These operads fit into following diagram.

\[ \rightarrow\rightarrow \ (\text{resp. } \rightarrow\rightarrow) \text{ stands for an injective (resp. surjective) operad morphism.} \]

\[
\begin{array}{c}
T(\mathbb{N}, +) \\
\downarrow \\
T(\mathbb{Z}/2\mathbb{Z}, +) \quad \text{End} \\
\downarrow \\
PF \\
\downarrow \\
PW \\
\downarrow \\
\text{Per} \quad \text{Schr} \\
\downarrow \\
\text{FCat}^{(1)} \\
\downarrow \\
\text{FCat}^{(0)} \\
\downarrow \\
\text{Comp} \\
\end{array}
\]

\[
\begin{array}{c}
T(\mathbb{Z}/3\mathbb{Z}, +) \\
\downarrow \\
\text{FCat}^{(3)} \\
\downarrow \\
\text{FCat}^{(2)} \\
\downarrow \\
\text{SComp} \\
\downarrow \\
T(\{0, 1\}, \times) \\
\end{array}
\]

\[
\begin{array}{c}
\text{Trias} \\
\text{Dias} \\
\end{array}
\]