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Scales

A scale is a subset of the 12 tones of the octave. These tones

are encoded as integers from 0 to 11.

� Examples �

I The C major scale is the subset {0, 2, 4, 5, 7, 9, 11}. s s s s s s s
I The C minor scale is the subset {0, 2, 3, 5, 7, 8, 10}. s ss s ss s
I The A minor scale is the subset {0, 2, 4, 5, 7, 9, 11}. s s s s s s s
I The A] minor pentatonic scale is the subset

{1, 3, 5, 8, 10}. s s s s s
I The A harmonic minor scale is the subset

{0, 2, 4, 5, 8, 9, 11}. s s s s ss s
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Degree patterns

Given a scale λ, a degree is an integer d ∈ Z. Each degree

specifies a note, located from the root note of λ.

� Examples �

Let λ be the C minor scale. s ss s ss s
Here is the correspondence between degrees and notes:

· · · u uu u uu u u uu u uu u · · ·

7̄ 6̄ 5̄ 4̄ 3̄ 2̄ 1̄ 0 1 2 3 4 5 6

Let `(λ) be the number of tones of λ.

I Degree 0 encodes the root note of λ.

I Degree d+ `(λ) encodes a note an octave above the one of d.

I Degree d− `(λ) encodes a note an octave below the one of d.
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Degree patterns

A degree pattern is a sequence d := (d1, . . . ,ds), s > 0, of degrees.

The size |d| of d is s.

A degree pattern d and a scale λ specify together a musical

phrase, called interpretation.

� Example �

Let the degree pattern d := 210 432 543 2̄1̄0.

I Interpreted in the C major scale, this gives

= 192

8
8

n

I Interpreted in the A minor scale, this gives

= 192

8
8

n

I Interpreted in the A minor pentatonic scale, this gives

= 192

8
8

n
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Rhythm patterns

A rhythm pattern is a sequence r := (r1, . . . , rt), t > 0, on the

alphabet {�,�}, where � is a rest and � is a beat. The size |r|
of r is its number of beats and the length `(r) of r is t.

A rhythm pattern r and a tempo specify together a rhythm, called

interpretation. By convention, a beat and a rest last each 1
8

the duration of a whole note.

� Examples �

I The rhythm pattern

r := �������

interpreted with a tempo of 128 gives

= 128

8
8

n

I The rhythm pattern

r
′

:= ��������

interpreted with a tempo of 128 gives

= 128

8
8

n
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Patterns

A pattern is a pair p := (d, r) such that |d| = |r|. The size |p| of
p is the size of d, and the length `(p) of p is the length of r.

� Example �

The pair
p := (0 2 1 2 1̄ 1 0 1 0 7, ���������������)

is a pattern of size 10 and of length 14.

The pattern p can be encoded by the sequence on the alphabet

{�} t Z obtained by replacing in r each i-th beat � by di.

� Example �

The previous pattern writes more concisely as

p = 0 2 1 2� 1̄ 1 0 1� 0���7.

Patterns can be interpreted as musical phrases.

� Example �

The previous pattern, interpreted in the A minor scale with a tempo of 192 gives

= 192

8
8

n
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Multi-patterns

An m-multi-pattern, m > 1, is a tuple m := (m1, . . .mm) of

patterns such that all mi have the same size and the same

length.

The size |m| of m is the size of any mi, the length `(m) of m

is the length of any mi, and the multiplicity of m is m.

An m-multi-pattern m is encoded as a matrix of dimension

m× `(m) where the i-th row contains the pattern mi.

� Examples �

I The matrix [
0 1 � 0

1̄ � 2 0

]
is a 2-multi-pattern of size 3 and length 4.

I The matrix 
0 � � �

2 � � �

4 � � �


is a 3-multi-pattern, encoding a triad chord in a scale of length 7.
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The model

Multi-patterns and their interpretations are our model to

represent, manipulate, and compute over musical sequences.

Such models can be seen as music boxes.

� Example �

Let λ := {0, 2, 3, 4, 7, 9} be the A minor blues scale.

The 2-multi-pattern

p :=

[
0 � � � 4 � 3 � 4

4 � � 0 � � 3 � 10

]
interpreted with a tempo of 128 gives

= 128

8
8

8
8

n
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Operations on patterns

11 / 36



Composition of degree patterns

Let us consider the degree patterns

d := 0 1 2 3 4 5 6 7 and d′ := 0 2 4.

The interpretations of d and d′ in the C major scale and with a

tempo of 192 are respectively

= 192

8
8

n

and

= 192

8
8

n

A natural way to blend these two patterns consists in replacing

each degree of d by an accordingly shifted version of d′, giving

= 192

8
8

n

This is the interpretation of the degree pattern

d′′ = 02 4 1 3 5 2 4 6 3 5 7 4 6 8 5 7 9 6 8 10 7 9 11.
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Composition of degree patterns

The composition of two degree patterns d and d′ is the degree
pattern

d� d′ :=
(
d1 + d′1, . . . ,d1 + d′m, d2 + d′1, . . . ,d2 + d′m,

. . . , dn + d′1, . . . ,dn + d′m
)
,

where n := |d| and m := |d′|.

� Examples �

All the following degree patterns are interpreted in the A harmonic minor scale

and with a tempo of 128.

I 0213� 01̄1 = 01̄1 213 102 324

n n n

= 128

8
8

I 202̄� 1353 = 3575 1353 1̄131

n n n

= 128

8
8

I 1353� 202̄ = 311̄ 531 753 531

n n n

= 128

8
8
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and with a tempo of 128.

I 0213� 01̄1 = 01̄1 213 102 324

n n n

= 128

8
8

I 202̄� 1353 = 3575 1353 1̄131

n n n

= 128
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I 1353� 202̄ = 311̄ 531 753 531
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= 128
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8
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Composition of rhythm patterns

Let us consider the rhythm patterns

r := ������ and r′ := ���.

The interpretation of r and r′ with a tempo of 96 are

respectively

= 96

8
8

n

and

= 96

8
8

n

A natural way to blend these two patterns consists in replacing

each beat of r by the whole rhythm pattern r′, giving

= 96

8
8

n

This is the interpretation of the rhythm pattern

r′′ = ��� ��� � ��� � �.
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The composition of two rhythm patterns r and r′ is the rhythm

pattern

r� r′ := �a1 r′ �a2 · · · �a|r| r′ �a|r|+1 ,

where
(
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Composition of patterns and multi-patterns

These two previous operations extend to patterns.

The composition of two patterns (d, r) and (d′, r′) is the pattern

(d, r)�
(
d′, r′

)
:=
(
d� d′, r� r′

)
.

� Example �

By using the concise notation for patterns,

3�� 1 2 0 1� 1̄ � 1� 0 = 4� 3 �� 2� 1 3� 2 1� 0 2� 1 � 0� 1̄.

The composition of two m-multi-patterns (m1, . . . ,mm) and

(m′1, . . . ,m
′
m) is the m-multi-pattern

(m1, . . . ,mm)�
(
m′1, . . . ,m

′
m

)
:=
(
m1 �m′1, . . . ,mm �m′m

)
.

� Example �

By using the matrix notation for 2-multi-patterns,[
� 0 5

3̄ � 1

]
�
[

2 � � �

� � 1̄ �

]
=

[
� 2 � � � 7 � � �

� � 4̄ � � � � 0 �

]
.
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Partial compositions

There is a refined a variant of the composition obtained my

composing the second multi-pattern only onto one beat of the

first one.

The partial composition of two m-multi-patterns (m1, . . . ,mm) and

(m′1, . . . ,m
′
m) at position 1 6 i 6 |m| is the m-multi-pattern

(m1, . . . ,mm) ◦i
(
m′1, . . . ,m

′
m

)
obtained by replacing the i-th beat of each mj by m′j.

� Examples �

0 � 1 � 3 � �

7̄ � � � � 2̄ 4̄

 ◦1
2 � 1

� 0 0

 =

2 � 1 � 1 � 3 � �

� 7̄ 7̄ � � � � 2̄ 4̄


0 � 1 � 3 � �

7̄ � � � � 2̄ 4̄

 ◦2
2 � 1

� 0 0

 =

0 � 3 � 2 � 3 � �

7̄ � � � � � 2̄ 2̄ 4̄


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Some algebraic properties

Let m and m′ be two m-multi-patterns.

One has the following properties:

I
∣∣m�m′

∣∣ = |m|
∣∣m′∣∣;

I `
(
m�m′

)
= |m|`

(
m′
)
+`(m)−|m|;

I
∣∣m ◦i m′∣∣ = |m|+

∣∣m′∣∣− 1;

I `
(
m ◦i m′

)
= `(m) + `

(
m′
)
− 1;

where i is any integer of {1, . . . , |m|}.

� Theorem �

For any m > 1, the set of all m-multi-patterns endowed with the partial

composition maps ◦i is an operad.

Operads are modern algebraic structures used in algebraic

topology, combinatorics, and theoretical computer science.

They offer a framework to mimic and generalize the usual

composition of operators.

Here, m-multi-patterns are therefore operators that can be

composed through the ◦i.
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Random generation
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A first simple algorithm

Let us describe a first (and simple) random generation algorithm

for patterns.

The idea is to consider a finite set of patterns, the generators,

and apply randomly some partial compositions on these elements to

obtain a large enough result.

� Algorithm RHM (Random Hook Monochrome generation) �

I Input:

1. A finite set R of m-multi-patterns;

2. An integer α > 0.

I Output: an m-multi-pattern.

1. Set m as the m-multi-pattern (0, . . . , 0);

2. Repeat α times:

2.1 Pick a position 1 6 i 6 |m| at random;

2.2 Pick an m-multi-pattern m′ of R at random;

2.3 Set m := m ◦i m′;

3. Returns m.
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A first simple algorithm

� Example �
Consider the input data

R :=


� 1 0 � 1 0

0 0 0 0 � �

 ,

1 1̄

0 2

 ,

0 �

0 �


and α := 4.

Here is a possible execution trace of Algorithm RHM:

0
0

 i=1,g=1
−−−−−−−→

� 1 0 � 1 0

0 0 0 0 � �

 i=3,g=3
−−−−−−−→

� 1 0 � 1 � 0

0 0 0 � 0 � �



i=1,g=2
−−−−−−−→

� 2 0 0 � 1 � 0

0 2 0 0 � 0 � �



i=5,g=1
−−−−−−−→

� 2 0 0 � 1 � � 1 0 � 1 0

0 2 0 0 � 0 0 0 0 � � � �

 .

The interpretation of this multi-pattern in the A minor pentatonic scale with 128

as tempo is

= 128

8
8

8
8

n
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A possible problem

Assume that R contains a multi-pattern0 1 2

2 3 4

 .
Then, at each step of Algorithm RHM, each partial composition

increases by 4 some degree of the current multi-pattern.

� Example �

[
0

0

]
−→

[
0 1 2

2 3 4

]
−→

[
0 1 2 3 2

2 5 6 7 4

]
−→

[
0 1 2 3 4 5 2

2 5 6 9 10 11 4

]

A problem can occur since the degrees of the generated patterns

can be too high (or, analogously, too low), and cannot be

interpreted as listenable notes.
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Colored multi-patterns

A solution to this problem consists in protecting some positions

of the pattern against some partial compositions.

For this, we consider a finite set C := {c1, . . . , cr} whose elements

are called colors, and augment multi-patterns with such colors.

A colored multi-pattern is a triple (a,m, u) where

I a ∈ C is the output color;

I m is a multi-pattern;

I u is a sequence of |m| elements of C, called word of input

colors.

� Example �

The triple c2,


0 � 2 � � 0

2 � � 4 � 0

4 � � � 6 0

 , c3c1c1


is a colored 3-multi-patterns.
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Colored partial composition

The partial composition of two colored m-multi-patterns (a,m, u)

and (a′,m′, u′) at position 1 6 i 6 |m| is defined only if a′ = ui

and is the colored m-multi-pattern

(a,m, u) ◦i
(
a′,m′, u′

)
:=
(
a,m ◦i m′, u ◦i u′

)
,

where u ◦i u′ is the word obtained by replacing the i-th letter of

u by u′.

� Examples �

Let

x :=

c1,

� 1 1 �

0 2̄ � �

 , c1c2

 and x
′

:=

c2,

3 0 0

1̄ 1̄ 1

 , c2c3c2


be two colored 2-multi-patterns.

Among others, the partial composition x ◦2 x′ is well-defined, and x ◦1 x′ is not

authorized.

� Theorem �

For any m > 1, the set of all colored m-multi-patterns endowed with the

partial composition maps ◦i is a colored operad.
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Random generation algorithm

The size |x| of a colored multi-pattern x := (a,m, u) is the size

of m.

Given a finite set R of colored m-multi-patterns and a color

a ∈ C, let Ra be the subset of R of the colored multi-patterns

having a as output color.

� Algorithm RH (Random Hook generation) �

I Input:

1. A finite set R of colored m-multi-patterns;

2. A color a ∈ C;
3. An integer α > 0.

I Output: an m-multi-pattern.

1. Set x as the colored m-multi-pattern (a, (0, . . . , 0) , a);

2. Repeat α times:

2.1 Pick a position 1 6 i 6 |x| at random;

2.2 Set b as the i-th input color of x;
2.3 If Rb 6= ∅:

2.3.1 Pick a color m-multi-pattern x′ of Ra at random;

2.3.2 Set x := x ◦i x′;

3. Returns the m-multi-pattern of x.
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Random generation algorithm

� Example �
Consider the input data

R :=


c1,

� 1 0 � 1 0

0 0 0 0 � �

 , c1c1c2c1

 ,

c1,

1 1̄

0 2

 , c2c1

 ,

c2,

0 �

0 �

 c3

 ,

a = c1, and α := 4.

Here is a possible execution trace of Algorithm RH:

c1,

0
0

 , c1

 i=1,g=1
−−−−−−−→

c1,

� 1 0 � 1 0

0 0 0 0 � �

 , c1c1c2c1


i=3,g=3
−−−−−−−→

c1,

� 1 0 � 1 � 0

0 0 0 � 0 � �

 , c1c1c3c1


i=3,∅
−−−−−→

c1,

� 1 0 � 1 � 0

0 0 0 � 0 � �

 , c1c1c3c1


i=1,g=2
−−−−−−−→

c1,

� 2 0 0 � 1 � 0

0 2 0 0 � 0 � �

 , c2c1c1c3c1



.

The interpretation of the multi-pattern in A the minor pentatonic scale with 128

as tempo is

= 128

8
8

8
8

n
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Some tool patterns

We focus on music generated by 2-multi-patterns. We set λ as

the scale used for the interpretation.

The color c1 is assumed to be the initial color.

The following patterns produce some interesting effects:

I
c1,

0 0

0 0

 , c1c1

 duplicates a beat;

I
c1,

0 �

0 �

 , c1

 prolongates a beat;

I
c1,

0 �

� 0

 , c1

 changes the distance of the two i-th beats;

I
c1,

 ¯`(λ)

¯`(λ)

 , c1

 transposes one octave below.

All these patterns can be altered by putting some colors c2 as

input colors to prevent further compositions. The color c2 is a

sink color: no colored multi-pattern has c2 as output color.
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Example zero

We work with the A minor harmonic scale with a tempo of 192.

Let

R :=


c1,

 1̄ � 0 � 1 �

� 1 � 0 � 1̄

 , c1c1c1

 .

n

Algorithm RH produces, for α = 20, the phrase

= 192

8
8

8
8

n
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A first example

We work with the A pentatonic scale with a tempo of 192.

Let

R :=


c1,

3 4 � 3 2 0 1 2 � 0 � �

5̄ 5̄ 5̄ 0 � � � � 0 0 0 0

 , c2c2c2c1c1c1c1c1

 .

n

Algorithm RH produces, for α = 8, the phrase

= 192

8
8

8
8

n
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A second example

We work with the A harmonic minor scale with a tempo of 192.

Let

R :=


c1,

0 � 2 � 4 � 7 � � 4 2

0 � 2 � 3̄ � 7̄ � � 0 0

 , c1c1c2c2c1c1

 .

n

Algorithm RH produces, for α = 16, the phrase

= 192

8
8

8
8

n
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A third example

We work with the A Hirajoshi scale {0, 4, 5,9, 11} with a tempo of

192.

Let

R :=


c1,

0 � 1 � 2

0 0 � � 5̄

 , c1c1c2

 ,

c1,

0

5̄

 , c2

 .

n n

Algorithm RH produces, for α = 64, the phrase

= 192

8
8

8
8

n
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A fourth example

We work with the A Hirajoshi scale with a tempo of 192.

Let

R :=


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0 0 � � 5̄

 , c1c1c2

 ,

c1,

0 �

� 0

 , c1

 .

n n

Algorithm RH produces, for α = 64, the phrase

= 192

8
8

8
8

n
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A fifth example

We work with the C major scale with a tempo of 192.

Let

R :=


c1,

0 �

� 0

 , c1

 ,

c3,

2̄

2̄

 , c1

 ,

c1,

0 0

0 0

 , c1c2

 ,

c1,

� 2 � 3

0 � 1 �

 , c3c3

 .

n n n n

Algorithm RH produces, for α = 128, the phrase

= 192

8
8

8
8

n
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