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Combinatorial sets
A combinatorial set is a set C equipped with a size function

| − | : C → N

such that each fiber C(n) := |n|−1, n ∈ N, is finite.

The generating series of C is the series

GC(t) :=
∑
n∈N

#C(n)tn =
∑
x∈C

t|x|

of N 〈〈t〉〉.

Example
The set S of the permutations, where the size of a permutation is its
length as a word, satisfies

S(0) = {ε}, S(1) = {1}, S(2) = {12, 21}, S(3) = {123, 132, 213, 231, 312, 321},

and its generating series satisfies

GS(t) =
∑
n∈N

n!tn = 1 + t+ 2t2 + 6t3 + 24t4 + 120t5 + · · · .
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Statistics on combinatorial sets

A statistic on a combinatorial set C is a map

s : C → N.

The coe�icients of the series

GsC(t, q) :=
∑
x∈C

t|x|qs(x)

of N 〈〈t, q〉〉 count the objects of C with respect to their sizes and the
values of s.

Example
On S, let s(σ) be the number of descents of σ (i.e., the number of i such
that σ(i) > σ(i+ 1)). Then,

GsS(t, q) = 1 + t+ (1 + q)t2 + (1 + 4q + q2)t3 + (1 + 11q + 11q2 + q3)t5 + · · · .

The coe�icients of the tn are the Eulerian polynomials.
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Algebraic approach

Aims
Let C be a combinatorial set. We would like to

1. describe the generating series of C ;

2. discover statistics on C ;

3. establish links between C and other combinatorial sets D.

Strategy

Endow C with the structure of an operad O.

As main benefits,
I the operations of O lead to operations on series;
I presentations of O by generators and relations highlight elementary

building blocks and branching rules for the objects of C ;
I operad morphisms involvingO show connections between the objects

of C and other combinatorial sets.
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Formal power series
Let K be the field Q(q0, q1, q2, . . . ) and X be a set.

An X-series is a map
f : X → K.

The coe�icient f(x) of x ∈ X in f is denoted by 〈x, f〉.

The set of all X-series is K 〈〈X〉〉.

Endowed with the pointwise addition

〈x, f + g〉 := 〈x, f〉+ 〈x,g〉

and multiplication by a scalar

〈x, λf〉 := λ 〈x, f〉 ,

the set K 〈〈X〉〉 is a space.

The sum notation of f is

f =
∑
x∈X
〈x, f〉x.
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Formal power series and algebraic structures

When X is endowed with an algebraic structure, its operations transfer on
X-series. For instance, if ∗ : X ×X → X is a binary product on X ,

f ∗ g :=
∑

x,y∈X
〈x, f〉 〈y,g〉x ∗ y.

This product ∗ on X-series is partially defined.

The most common examples are

Structure on X Series Reference

(N,+, 0) Usual series of K 〈〈t〉〉
Free comm. monoid Multivariate series

(A∗, ·, ε) Noncomm. series [Eilenberg, 1974]

Monoid Series on monoids [Salomaa, Soi�ola, 1978]

Operad Series on operads [Chapoton, 2002, 2008]
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Operators
An operator is a device with n > 1 inputs and one output, represented as

x

1 n. . .

.

Its arity is its number n of inputs.

Composing two operators x et y consists in

1. choosing an input of x specified by its position i;

2. gra�ing the output of y onto this input.

This produces a new operator x ◦i y of arity n+m− 1:

x

1 ni. . . . . .

◦i y

1 m. . .

=

x

y1 n+m−1. . . . . .

i m+i−1

i

. . .

.
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

An (nonsymmetric set-)operad is a triple (O, ◦i,1) such that

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a partial composition map

◦i : O(n)×O(m)→ O(n+m− 1), i ∈ [n];

3. 1 is an element of O(1), called unit.

This data satisfies some axioms.
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Axioms of operads
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)
x ∈ O(n), y ∈ O(m), z ∈ O
i ∈ [n], j ∈ [m]

x

y
. . . . . .

. . . . . .
z

. . .

= y

. . . . . .
z

. . .

x

. . . . . .

Commutativity:

(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y

x ∈ O(n), y ∈ O(m), z ∈ O
1 6 i < j 6 n

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

x ∈ O(n)
i ∈ [n]

1

x

. . .

= x

. . .

=
x

1
. . . . . .
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Complete composition

Let O be an operad.

The complete composition map of O is the map

◦ : O(n)×O(m1)× · · · × O(mn)→ O(m1 + · · ·+mn)

defined by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1.

Graphically, x ◦ [y1, . . . , yn] reads as

x

y1 yn

. . . . . .

. . . .
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Formal power series on operads
Let O be an operad.

The characteristic series of O is the O-series

fO :=
∑
x∈O

x.

Let
ev : K 〈〈O〉〉 → K 〈〈t〉〉

be the morphism linearly defined by ev(x) := t|x|.

Then, observe that

ev(fO) =
∑
x∈O

t|x| = GO(t).

Goals
Use the partial and complete compositions of O to obtain

I an expression for fO ;
I an expression for GO(t);
I new statistics on the objects of O.
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Free operads
Let G := tn>1G(n) be a graded set.

The free operad over G is the operad F(G) such that

I F(G)(n) is the set of the syntax trees on G with n leaves.

Example

Let G := G(2) tG(3) with G(2) := {a, b} and G(3) := {c}.
The elements of F(G)(3) are

a

a
,

a

b
,

a

a
,

b

a
, c ,

b

a
,

b

b
,

a

b
,

b

b
.

I The partial composition is a tree gra�ing.

Example

c

ba

c b ◦5 a

b

c
=

c

b

c

b

ba

c

a

I The unit is the tree with exactly one leaf.
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Presentations of operads

Let O be an operad.

A presentation of O is a pair (G,≡) such that

I G is a graded set, called generating set;

I ≡ is an operad congruence of F(G), i.e., an equivalence relation on
syntax trees such that if t ≡ t′ and s ≡ s′ then t ◦i s ≡ t′ ◦i s′;

with
O ' F(G)/≡.

A presentation (G,≡) of O is

I binary when G is concentrated in arity 2;

I quadratic when ≡ is generated, as an operad congruence, by an
equivalence relation involving only syntax trees with exactly 2
internal nodes.
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Poincaré-Birkho�-Wi� bases

Let O be an operad admi�ing a presentation (G,≡).

A Poincaré-Birkho�-Wi� basis (PBW) of O for (G,≡) is a set B of syntax
trees of F(G) such that for any ≡-equivalence class [t]≡ of F(G)/≡, there
is exactly one tree s ∈ B such that s ∈ [t]≡.

In other words, a PBW basis of O o�ers a way to see its elements in terms
of syntax trees satisfying some conditions.

Example

Let As be the associative operad, defined as the operad having the
presentation (G,≡) where G := G(2) := {a} and ≡ is the smallest
operad congruence satisfying

a ◦1 a ≡ a ◦2 a.

A PBW basis of As is the set of the syntax trees on G avoiding a ◦1 a.
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Operad of compositions
The operad of compositions is the operad Comp such that

I Comp(n) is the set of the ribbon diagrams of compositions of n.

Example

is a ribbon of arity 11.

I The partial composition r ◦i s is the ribbon obtained by inserting s

(resp. the transpose of s)

into the ith box of r when this box is

(resp. is
not)

the highest of its column.

Example

◦4 = , ◦5 =

I The unit is .
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Presentation of Comp

Proposition

The operad Comp admits the presentation (G,≡) where

G :=
{

,
}

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 .

This presentation is binary and quadratic.
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PBW basis of Comp and enumeration
Proposition

The set of the syntax trees on G avoiding

◦1 , ◦1 , ◦1 , ◦1

forms a PBW basis of Comp.

This leads to

fComp = + ◦ [ , fComp] + ◦ [ , fComp] .

Hence,

ev (fComp) = ev
(

+ ◦ [ , fComp] + ◦ [ , fComp]
)
,

so that

GComp(t) = t+ t2 ◦ [t,GComp(t)] + t2 ◦ [t,GComp(t)]

and

GComp(t) = t+ 2tGComp(t) = t+ 2t2 + 4t3 + 8t4 + 16t5 + · · · .
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Operad of Motzkin paths
The operad of Motzkin paths is the operad Motz such that

I Motz(n) is the set of the Motzkin paths with n− 1 steps.

Example

is a Motzkin path of arity 16.

I The partial composition x ◦i y is obtained by replacing the ith point
of x by a copy of y.

Exemple

◦4 =

I The unit is .
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Presentation of Motz

Proposition

The operad Motz admits the presentation (G,≡) where

G := { , }

and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦3 ,

◦1 ≡ ◦3 .

This presentation is not binary but is quadratic.
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PBW basis of Motz and enumeration

Proposition

The set of the syntax trees on G avoiding

◦1 , ◦1 , ◦1 , ◦1

forms a PBW basis of Motz.

This leads to

fMotz = + ◦ [ , fMotz] + ◦ [ , fMotz, fMotz] .

Hence,
GMotz(t) = t+ tGMotz(t) + tGMotz(t)

2.
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Statistics on Motz

Let us add some parameters in the expression of fMotz to obtain

gMotz = + q0 ◦ [ ,gMotz] + q1 ◦ [ ,gMotz,gMotz] .

We obtain

GMotz(t, q0, q1) := ev(gMotz) = t+ q0t
2 + (q20 + q1)t

3

+ (q30 + 3q0q1)t
4

+ (q40 + 6q20q1 + 2q21)t
5

+ (q50 + 10q30q1 + 10q0q
2
1)t

6

+ (q60 + 15q40q1 + 30q20q
2
1 + 5q31)t

7

+ (q70 + 21q50q1 + 70q30q
2
1 + 35q0q

3
1)t

8

+ (q80 + 28q60q1 + 140q40q
2
1 + 140q20q

3
1 + 14q41)t

9 + · · · .

This counts Motzkin paths following the number of horizontal steps
(parameter q0) and rising steps (parameter q1).

For instance, GMotz(t, 1, q1) is Triangle A055151.
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Operad of Schröder trees
The operad of Schröder trees is the operad Schr such that

I Schr(n) is the set of the Schröder trees with n+ 1 leaves.

Example

is a Schröder tree of arity 9.

I The partial composition t ◦i s is obtained by inserting a copy of s
between the ith and the i+ 1st leaves of t.

Example

◦6 =

I The unit is .
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Presentation of Schr

Proposition

The operad Schr admits the presentation (G,≡) where

G :=

{
, ,

}
and ≡ is the smallest operad congruence satisfying

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 ,

◦1 ≡ ◦2 .

This presentation is binary and quadratic.
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PBW basis of Schr and enumeration

Proposition

The set of the syntax trees on G avoiding
◦1 , ◦1 , ◦1 , ◦1 ,

◦1 , ◦1 , ◦2

forms a PBW basis of Schr.

This leads to

fSchr = + ◦
[

, fSchr

]
+ ◦

[
, fSchr

]
+ ◦

[
fSchr, + ◦

[
, fSchr

]
+ ◦

[
, fSchr

]]
.

Hence,
GSchr(t) = t+ 3tGSchr(t) + 2tGSchr(t)2.
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Statistics on Schr

Let us add some parameters in the expression of fSchr to obtain

gSchr = + q0 ◦
[

,gSchr

]
+ q1 ◦

[
,gSchr

]
+ q2 ◦

[
gSchr, + ◦

[
,gSchr

]
+ ◦

[
,gSchr

]]
.

We obtain

GSchr(t, q0, q1, q2) := ev(gSchr) = t+ (q0 + q1 + q2)t
2

+ (q20 + 2q0q1 + q21 + 2q0q2 + 2q1q2 + q22 + 2q2)t
3

+ (q30 + 3q20q1 + 3q0q
2
1 + q31 + 3q20q2 + 6q0q1q2

+ 3q21q2 + 3q0q
2
2 + 3q1q

2
2 + q32 + 6q0q2 + 6q1q2 + 6q22)t

4 + · · · .

The specialization GSchr(t, 1, 1, q2) is Triangle A114656 and the
specialization GSchr(t, q0, 1, 1) is Triangle A098473.

28 / 45

http://oeis.org/A114656
http://oeis.org/A098473


Statistics on Schr

Let us add some parameters in the expression of fSchr to obtain

gSchr = + q0 ◦
[

,gSchr

]
+ q1 ◦

[
,gSchr

]
+ q2 ◦

[
gSchr, + ◦

[
,gSchr

]
+ ◦

[
,gSchr

]]
.

We obtain

GSchr(t, q0, q1, q2) := ev(gSchr) = t+ (q0 + q1 + q2)t
2

+ (q20 + 2q0q1 + q21 + 2q0q2 + 2q1q2 + q22 + 2q2)t
3

+ (q30 + 3q20q1 + 3q0q
2
1 + q31 + 3q20q2 + 6q0q1q2

+ 3q21q2 + 3q0q
2
2 + 3q1q

2
2 + q32 + 6q0q2 + 6q1q2 + 6q22)t

4 + · · · .

The specialization GSchr(t, 1, 1, q2) is Triangle A114656 and the
specialization GSchr(t, q0, 1, 1) is Triangle A098473.

28 / 45

http://oeis.org/A114656
http://oeis.org/A098473


Statistics on Schr

Let us add some parameters in the expression of fSchr to obtain

gSchr = + q0 ◦
[

,gSchr

]
+ q1 ◦

[
,gSchr

]
+ q2 ◦

[
gSchr, + ◦

[
,gSchr

]
+ ◦

[
,gSchr

]]
.

We obtain

GSchr(t, q0, q1, q2) := ev(gSchr) = t+ (q0 + q1 + q2)t
2

+ (q20 + 2q0q1 + q21 + 2q0q2 + 2q1q2 + q22 + 2q2)t
3

+ (q30 + 3q20q1 + 3q0q
2
1 + q31 + 3q20q2 + 6q0q1q2

+ 3q21q2 + 3q0q
2
2 + 3q1q

2
2 + q32 + 6q0q2 + 6q1q2 + 6q22)t

4 + · · · .

The specialization GSchr(t, 1, 1, q2) is Triangle A114656 and the
specialization GSchr(t, q0, 1, 1) is Triangle A098473.

28 / 45

http://oeis.org/A114656
http://oeis.org/A098473


Operad of k-trees
The operad of k-trees is the operad FCat(k), k ∈ N, such that

I FCat(k)(n) is the set of the planar rooted trees with n internal nodes,
all having k + 1 children.

Example

is a 2-tree of arity 4.

I The partial composition t ◦i s is obtained by replacing the ith internal
node of t (with respect to the depth-first traversal) by a copy of s.

Example

◦1 =

I The unit is
. . .

.
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Presentation of FCat(k)

Proposition

The operad FCat(k) admits the presentation (G,≡) where

G :=

 a 0
. . . . . .

. . .

: 0 6 a 6 k + 1


and ≡ is the smallest operad congruence satisfying

a+b 0
. . . . . .

. . .

◦1 a 0
. . . . . .

. . .

≡ a 0
. . . . . .

. . .

◦2 b 0
. . . . . .

. . .

, 0 6 a, b, a+ b 6 k.

This presentation is binary and quadratic.
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PBW basis of FCat(k) and enumeration

Proposition

The set of the syntax trees on G avoiding

b 0
. . . . . .

. . .

◦1 a 0
. . . . . .

. . .

, 0 6 a 6 b 6 k

forms a PBW basis of FCat(k).

This leads to
fFCat(k) =

. . .
+
∑

06a6k

f
(a)

FCat(k) ,

where the f
(a)

FCat(k) are the FCat(k)-series satisfying

f
(a)

FCat(k) = a 0
. . . . . .

. . .

◦


. . .

+
∑

a+16b6k

f
(b)

FCat(k) , fFCat(k)

 .
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Enumeration in FCat(k)

By se�ing
GFCat(k)(t) := ev (fFCat(k))

and
G(a)
FCat(k)(t) := ev

(
f
(a)

FCat(k)

)
,

we obtain
GFCat(k)(t) = t+

∑
06a6k

G(a)
FCat(k)(t)

and

G(a)
FCat(k)(t) = tGFCat(k)(t) + GFCat(k)(t)

 ∑
a+16b6k

G(b)
FCat(k)(t)

 .

This leads to

G(a)
FCat(k)(t) = tGFCat(k)(t) (1 + GFCat(k)(t))

k−a

and

GFCat(k)(t) = t+ tGFCat(k)(t)
∑

06a6k

(1 + GFCat(k)(t))
k−a

.
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 ∑
a+16b6k

G(b)
FCat(k)(t)

 .

This leads to

G(a)
FCat(k)(t) = tGFCat(k)(t) (1 + GFCat(k)(t))

k−a

and

GFCat(k)(t) = t+ tGFCat(k)(t)
∑

06a6k

(1 + GFCat(k)(t))
k−a

.
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Statistics on FCat(k)

Let us add some parameters in the expressions of fFCat(k) to obtain

gFCat(k) =
. . .

+
∑

06a6k

g
(a)

FCat(k) ,

where the g
(a)

FCat(k) are the FCat(k)-series satisfying

g
(a)

FCat(k) = qa a 0
. . . . . .

. . .

◦


. . .

+
∑

a+16b6k

g
(b)

FCat(k) ,gFCat(k)

 .

We obtain, when k := 1,

G(t, q0, q1) := ev
(
gFCat(1)

)
= t+ (q0 + q1)t

2 + (q20 + 3q0q1 + q21)t
3

+ (q30 + 6q20q1 + 6q0q
2
1 + q31)t

4

+ (q40 + 10q30q1 + 20q20q
2
1 + 10q0q

3
1 + q41)t

5

+ (q50 + 15q40q1 + 50q30q
2
1 + 50q20q

3
1 + 15q0q

4
1 + q51)t

6

+ (q60 + 21q50q1 + 105q40q
2
1 + 175q30q

3
1 + 105q20q

4
1 + 21q0q

5
1 + q61)t

7 + · · · .

This is Triangle A001263, known as the triangle of Narayana numbers.
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General result

Theorem
Let O be an operad admi�ing a presentation (G,≡) and B be a PBW basis
of O for (G,≡). Let the O-series f satisfying

f = 1+
∑
x∈G

fx,

where for any syntax tree t on G of arity n, f t satisfies

f t = t ◦

f − ∑
t◦1s/∈B

fs, . . . , f −
∑

t◦ns/∈B

fs

 .
Then, f is the characteristic series of O.
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From monoids to operads
Let (M, ∗,1M) be a monoid.

We define (TM, ◦i,1) as the triple such that

I TM(n) is the set of all words of length n onM seen as an alphabet.

I For any u ∈ TM(n) and v ∈ TM(m),

u ◦i v := u1 . . . ui−1(ui ∗ v1) . . . (ui ∗ vm)ui+1 . . . un.

I 1 is defined as 1M seen as a word of length 1.

Example

In T(N,+, 0),
2100213 ◦5 3001 = 2100522313.

Theorem
For any monoidM, TM is an operad.
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From monoids to operads — main examples

Monoid Operad Generators First dimensions Combinatorial objects

(N,+, 0)

End — 1, 4, 27, 256, 3125 Endofunctions

PF — 1, 3, 16, 125, 1296 Parking functions

PW — 1, 3, 13, 75, 541 Packed words

Per0 — 1, 2, 6, 24, 120 Permutations

PRT 01 1, 1, 2, 5, 14, 42 Planar rooted trees

FCat(k) 00, 01, . . . , 0k Fuß-Catalan numbers k-trees

Schr 00, 01, 10 1, 3, 11, 45, 197 Schröder trees

Motz 00, 010 1, 1, 2, 4, 9, 21, 51 Motzkin words

(Z/2Z,+, 0) Comp 00, 01 1, 2, 4, 8, 16, 32 Compositions

(Z/3Z,+, 0)
DA 00, 01 1, 2, 5, 13, 35, 96 Directed animals

SComp 00, 01, 02 1, 3, 27, 81, 243 Seg. compositions

(N,max, 0)
Dias 01, 10 1, 2, 3, 4, 5 Bin. words with exact. one 0

Trias 00, 01, 10 1, 3, 7, 15, 31 Bin. words with at least one 0
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From monoids to operads — diagram

T(N,+, 0)

T(Z/2Z,+, 0) T(Z/3Z,+, 0)End

PF

PW

Per0 Schr

FCat(1)

FCat(2)

FCat(3)

SComp

DAPRTMotzComp

FCat(0)

T(N,max, 0)

Trias

Dias
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From posets to operads
Let (P,4) be a finite poset. We denote by ↑ the binary (partial operation)
min on P with respect to the order relation 4.

Let PP be the operad admi�ing the presentation (G,≡) where

G := G(2) := {?a : a ∈ P}

and ≡ is the smallest operad congruence satisfying

?a ◦1 ?b ≡ ?a↑b ◦1 ?a↑b ≡ ?a↑b ◦2 ?a↑b ≡ ?a ◦2 ?b, a 4 b or b 4 a.

Example

Let the poset P := 1 2

3 4
.

Then, PP is generated by {?1, ?2, ?3, ?4} and these generators are
subjected to the relations

?1 ◦1 ?1 ≡ ?1 ◦1 ?3 ≡ ?3 ◦1 ?1 ≡ ?3 ◦2 ?1 ≡ ?1 ◦2 ?3 ≡ ?1 ◦2 ?1,

?2 ◦1 ?2 ≡ ?2 ◦1 ?3 ≡ ?2 ◦1 ?4 ≡ ?3 ◦1 ?2 ≡ ?4 ◦1 ?2
≡ ?4 ◦2 ?2 ≡ ?3 ◦2 ?2 ≡ ?2 ◦2 ?4 ≡ ?2 ◦2 ?3 ≡ ?2 ◦2 ?2,

?3 ◦1 ?3 ≡ ?3 ◦2 ?3, ?4 ◦1 ?4 ≡ ?4 ◦2 ?4.
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From posets to operads — PBW basis

Theorem
When P is a finite poset avoiding the pa�ern

1 2

3
,

the operad PP is a Koszul operad and the set of all syntax trees on G
avoiding

?a ◦1 ?b, a 4 b or b 4 a

and
?a ◦2 ?b, a 6= b and (a 4 b or b 4 a).

is a PBW basis of PP .

When the premises of this theorem hold, PP can be realized in terms of an
operad of Schröder trees labeled on P .
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From posets to operads — example
More precisely, the elements of PP(n) are Schröder trees with n leaves
such that the internal nodes are labeled on P and the label of a node and
any of its child are incomparable in P .

Example

Let

P :=
1

2 3

4

5

6

.

Then, in PP ,

4
6 ◦3 2

6
= 4

6

2

6

,

1
4
◦1

3

2

3
=

1

4
.
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From unitary magmas to operads — cliques

Let (M, ∗,1M) be a unitary magma.

AnM-clique p is a clique on [n+ 1] where each edge (x, y) is labeled by
an element p(x, y) ofM. The arity |p| of p is n.

Example

LetM be the unitary magma (Z/3Z,+, 0). Here is anM-clique:

0

0

1 1

22 1

0
1

0

1

2

3

4

5
= n + 1

←→
1 1

2

2

1
1

.

An edge (x, y) of p is solid if p(x, y) 6= 1M. Only solid edges are drawn.
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From unitary magmas to operads
Let (M, ∗,1M) be a unitary magma.

We define (CM, ◦i,1) as the triple such that

I CM(n) is the set of allM-cliques of arity n. By convention, CM(1)
is the singleton containing .

I For anyM-cliques p and q,

ai i+1

p ◦i
b

q := ai i+1

p

b

q

= i i+|q|a ∗ b .

I 1 is theM-cliques .

Theorem
For any unitary magmaM, CM is an operad.
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From unitary magmas to operads — example

Exemple

In C(Z,+, 0),

1
−2

−2
1 ◦2

1

3

1
2 =

1
−2

1
1

1

2

1
,

1
−2

−2
1 ◦2

1

2

1
2 =

1
−2

1
1

2

1
.
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From unitary magmas to operads — main examples

The construction C leads to alternative definitions of

I the operad NCT of noncrossing trees [Chapoton, 2007];

I the operad FF4 of some formal fractions [Chapoton, Hivert, Novelli, 2016];

I the operad BNC of bicolored noncrossing configurations [Chapoton,
Giraudo, 2014];

I the operad MT of multi-tildes [Luque, Mignot, Nicart, 2013];

I the operad DMT of double multi-tildes [Giraudo, Luque, Mignot, Nicart,
2016];

I the dipterous operad [Loday, Ronco, 2003];

I the gravity operad [Getzler, 1994].
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