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A combinatorial set is a set C' equipped with a size function

|—]:C—N
such that each fiber C(n) := |n|~1, n € N, is finite.
The generating series of C'is the series

Gol(t) =Y #Cm)n = > il
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of N ({£)).

Example

The set & of the permutations, where the size of a permutation is its
length as a word, satisfies

6(0) = {e}, 6(1) = {1}, &(2) = {12,21}, &(3) = {123,132,213,231,312,321},
and its generating series satisfies

Ge(t) =Y nlt" =1+t+2t> +6t° + 24t* +120t° + - --
neN
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Statistics on combinatorial sets

A statistic on a combinatorial set C' is a map
s:C — N,

The coefficients of the series

zeC

of N ((¢, q)) count the objects of C' with respect to their sizes and the
values of s.

Example

On G, let s(o) be the number of descents of o (i.e., the number of 4 such
that (i) > o(i + 1)). Then,

GE(t, ) =1+t+ 1 +q)t2+ (L +49+¢)3+ (1 +11g+11¢% + )P +-- - .

The coefficients of the t" are the Eulerian polynomials.
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Algebraic approach

Aims

Let C be a combinatorial set. We would like to
1. describe the generating series of C;,
2. discover statistics on C;

3. establish links between C' and other combinatorial sets D.

Strategy

Endow C' with the structure of an operad O.

As main benefits,
> the operations of O lead to operations on series;

> presentations of O by generators and relations highlight elementary
building blocks and branching rules for the objects of C}

» operad morphisms involving O show connections between the objects
of C and other combinatorial sets.
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The coefficient f(x) of x € X in f is denoted by (z, f).
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Formal power series
Let K be the field Q(qo, ¢1, 42, - -.) and X be a set.

An X-series is a map
f: X -k

The coefficient f(x) of x € X in f is denoted by (z, f).
The set of all X-series is K ({(X)).
Endowed with the pointwise addition
(2, f+g):= (z,) + (z,8)
and multiplication by a scalar
(x, M) == Az, ),
the set K ((X)) is a space.

The sum notation of f is

f= Z (x,f)x.

zeX



Formal power series and algebraic structures

When X is endowed with an algebraic structure, its operations transfer on
X-series. For instance, if x : X x X — X is a binary product on X,

frgi= Y (2,f)(y,8)zxy.
z,yeX

This product * on X-series is partially defined.



Formal power series and algebraic structures

When X is endowed with an algebraic structure, its operations transfer on
X-series. For instance, if x : X x X — X is a binary product on X,

frgi= Y (2,f)(y,8)zxy.
z,yeX

This product * on X-series is partially defined.

The most common examples are

Structure on X Series Reference
(N,+,0) Usual series of K ((t))
Free comm. monoid Multivariate series
(A*,-¢€) Noncomm. series [Eilenberg, 1974]
Monoid Series on monoids [Salomaa, Soittola, 1978]
Operad Series on operads [Chapoton, 2002, 2008]



Operators
An operator is a device with n > 1 inputs and one output, represented as

SN

Its arity is its number n of inputs.

1



Operators
An operator is a device with n > 1 inputs and one output, represented as

SN

Its arity is its number n of inputs.

1

Composing two operators x et y consists in
1. choosing an input of x specified by its position i;

2. grafting the output of y onto this input.



Operators
An operator is a device with n > 1 inputs and one output, represented as

SN

Its arity is its number n of inputs.

1

Composing two operators x et y consists in
1. choosing an input of x specified by its position i;
2. grafting the output of y onto this input.

This produces a new operator x o; y of arity n +m — 1:
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

An (nonsymmetric set-)operad is a triple (O, o;, 1) such that

1. O is a graded set

O := |_| O(n);

n>1

2. o; is a partial composition map
0; : O(n) x O(m) = O(n+m —1), i€ [n];
3. 1is an element of O(1), called unit.

This data satisfies some axioms.

10/45
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Axioms
Associativity:

(z0;y) 0i4j—1 2 =1x0; (yoj 2)
z € O(n),y € O(m),z€ O

Commutativity:
(¥0i9) 0j4m—12 = (w0 2) 0 y

z € O(n),y€O(m),z€ O
1<i<j<n

Unitality:

lojz=x=2x0;1
xz € O(n) 2
i

i € [n]

of operads




Complete composition
Let O be an operad.
The complete composition map of O is the map
0:0(n) x O(mq) X -+ x O(my) = O(my + -+ my,)
defined by

zoy,...,yn] == (.. ((x on Un) On—1Yn-1)--.) o1 Y1



Complete composition

Let O be an operad.

The complete composition map of O is the map

0:0(n) x O(mq) X -+ x O(my) = O(my + -+ my,)

defined by
oY1,y Yn] = (- ((Ton Yn) On—1Yn-1)-..) 1 Y1.
Graphically, x o [y1, ..., yn] reads as

W
oS =



Formal power series on operads
Let O be an operad.

The characteristic series of O is the O-series

f() = Z xZ.

x€0
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Formal power series on operads
Let O be an operad.

The characteristic series of O is the O-series
f() = Z Z.
zeO

Let
ev 1 K ({0)) = K{(1))

be the morphism linearly defined by ev(z) := tl%.
Then, observe that

ev(fo) = Yt =go(#).

zeO

Goals

Use the partial and complete compositions of O to obtain
> an expression for f;
> an expression for G (t);

> new statistics on the objects of O.
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Free operads
Let & := LI,>1®(n) be a graded set.
The free operad over & is the operad F(®) such that

> F(&)(n) is the set of the syntax trees on & with n leaves.

Example
Let & := &(2) U &(3) with &(2) := {a,b} and &(3) := {c}.
The elements of F(&)(3) are

» The partial composition is a tree grafting.

Example
| Cc
c ' / \
— \c\b o5 PN = /?\ ,
N 7\ a @ a b
a b /7 \ AR RN s N
a c

/ N\ 7N\
/7 N\ VAR

» The unit is the tree with exactly one leaf.
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Presentations of operads

Let O be an operad.

A presentation of O is a pair (&, =) such that

> & is a graded set, called generating set;

> = is an operad congruence of F(®), i.e, an equivalence relation on
syntax trees such that if t =t/ and s = s’ then to; 5 =t/ o; &';

with
O~F(®)/=.
A presentation (&, =) of O is
» binary when & is concentrated in arity 2;

» quadratic when = is generated, as an operad congruence, by an
equivalence relation involving only syntax trees with exactly 2
internal nodes.
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Poincaré-Birkhoff-Witt bases

Let O be an operad admitting a presentation (&, =).

A Poincaré-Birkhoff-Witt basis (PBW) of O for (&, =) is a set 3 of syntax
trees of F'(®) such that for any =-equivalence class [t]= of F(®)/=, there
is exactly one tree s € I3 such that s € [t]=.

In other words, a PBW basis of O offers a way to see its elements in terms
of syntax trees satisfying some conditions.

Example

Let As be the associative operad, defined as the operad having the
presentation (&, =) where & := &(2) := {a} and = is the smallest
operad congruence satisfying

aoja=aoga.

A PBW basis of As is the set of the syntax trees on & avoiding a o5 a.
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» Comp(n) is the set of the ribbon diagrams of compositions of n.

EE is a ribbon of arity 11.
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Operad of compositions
The operad of compositions is the operad Comp such that

» Comp(n) is the set of the ribbon diagrams of compositions of n.

EE is a ribbon of arity 11.

» The partial composition t o; 5 is the ribbon obtained by inserting s
(resp. the transpose of s) into the ith box of t when this box is (resp. is
not) the highest of its column.

Example

Example

My B o H - by

» The unitis (.



Presentation of Comp

Proposition

The operad Comp admits the presentation (&, =) where

o= {o0)

and = is the smallest operad congruence satisfying

D e1 00 =002 (0,
HerD=0De
3e13=8am
@ B=FeH

This presentation is binary and quadratic.



PBW basis of Comp and enumeration
Proposition

The set of the syntax trees on & avoiding
Mo Hoam o el

forms a PBW basis of Comp.
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PBW basis of Comp and enumeration
Proposition

The set of the syntax trees on & avoiding
Mo Hoam o el
forms a PBW basis of Comp.

This leads to
feomp =Q + Q0[O feomp] + Fo [0 Feomp]-
Hence,
ev (feomp) = ev (O + 00O, fcomp] + 80 (@]} fComp]) ;
so that
Geomp(t) =t + 12 0 [t, Geomp(t)] + 2 © [t, Geomp ()]
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PBW basis of Comp and enumeration
Proposition

The set of the syntax trees on & avoiding

Mo Hoam o el
forms a PBW basis of Comp.
This leads to

fComp = O + CI:) © [07 fComp] + 8 o [Oa fComp] .

Hence,

ev (fCOmp) =ev (O + (0o [Oy fComp] + 8 o [07 fComp]) y
so that

gComp(t) =1+ t2 o [t7 gComp(t)] + tz o [t, gComp(t)]

and

Geomp(t) =t 4+ 2tGcomp(t) = t + 262 + 4% + 8t* + 1615 + - - - .

20/45
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Operad of Motzkin paths

The operad of Motzkin paths is the operad Motz such that

» Motz(n) is the set of the Motzkin paths with n — 1 steps.

Example

Odéjoqoo‘f‘o is a Motzkin path of arity 16.
& 5

> The partial composition x o; y is obtained by replacing the ith point
of = by a copy of y.

Exemple

BRI - AR - N

» The unit is o.



Presentation of Motz

Proposition
The operad Motz admits the presentation (&, =) where
6 := {00, o}
and = is the smallest operad congruence satisfying
0007 00 = 00 03 00,
& 01 00 = 00 03 F,
0001 & = §% 03 00,
& 01 &% = & 03 o

This presentation is not binary but is quadratic.



PBW basis of Motz and enumeration

Proposition
The set of the syntax trees on & avoiding
000100, o100, o001, Fhordh

forms a PBW basis of Motz.
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Proposition

The set of the syntax trees on & avoiding
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PBW basis of Motz and enumeration

Proposition

The set of the syntax trees on & avoiding
000100, &SX0100, 0001 &%, &o1&%D
forms a PBW basis of Motz.

This leads to

fl\/Iotz =0 + 00o [07 f.Motz] + O'QO o [oa fMotz7 fl\/lotz] .

Hence,
gl\/lotz(t) =t+ thotz(t) + thotz (t)2~



Statistics on Motz

Let us add some parameters in the expression of )., to obtain

Motz = O + Joo-0©° [Oa gl\/lotz] + (J1op‘o © [07 Motz gl\/lotz] .
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Statistics on Motz

Let us add some parameters in the expression of )., to obtain

Motz = O + Joo-0©° [Oa gl\/lotz] + (J1op‘o © [07 Motz gl\/lotz] .

We obtain

GMotz(t, 90, q1) = ev(8Motz) = t + qot® + (a§ + q1)t>
+ (43 + 3q0q1)t*
+ (g5 + 6q5q1 + 2¢7)t°
+ (g8 + 103 g1 + 10g0q3)°
+ (4§ + 15g3q1 + 306343 + 5¢3)¢7
+ (gb + 21g5q1 + T0q343 + 35q0q3)t®

+ (g8 + 28¢8q1 + 140q3q? 4 1404343 + 14¢1)t% + - -+
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Statistics on Motz

Let us add some parameters in the expression of )., to obtain

Motz = O + Joo-0©° [O, gl\/lotz] + (1109‘0 © [07 Motz gl\/lotz] .

We obtain

GMotz(t, 90, q1) = ev(8Motz) = t + qot® + (a§ + q1)t>
+ (a8 + 3q0q1)t*
+ (a8 + 6ada1 + 24}t
+ (a3 +10g3q1 + 10g043)t°
+ (4§ + 15¢3q1 + 30g343 + 543)t"
+ (g& + 21g3q1 + T0g3 4% + 35q0q3)t

+ (a8 + 28q0q1 + 140q4q7 + 140q3q3 + 14q7)t° + - -

This counts Motzkin paths following the number of horizontal steps
(parameter qg) and rising steps (parameter ¢1).
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Statistics on Motz

Let us add some parameters in the expression of )., to obtain

Motz = O + Joo-0©° [O, gl\/lotz] + (1109‘0 © [O, Motz gl\/lotz] .

We obtain

GMotz(t, 90, q1) = ev(8Motz) = t + qot® + (a§ + q1)t>
+ (a8 + 3q0q1)t*
+ (a8 + 6ada1 + 24}t
+ (a3 +10g3q1 + 10g043)t°
+ (4§ + 15¢3q1 + 30g343 + 543)t"
+ (gf + 21¢3q1 + 70343 + 35q0q3)

+ (g8 + 28¢8q1 + 140q3q? 4 1404343 + 14¢1)t% + - -+

This counts Motzkin paths following the number of horizontal steps
(parameter qg) and rising steps (parameter ¢1).

For instance, Gvior, (¢, 1, ¢1) is Triangle A055151.


http://oeis.org/A055151

Operad of Schroder trees
The operad of Schrader trees is the operad Schr such that

» Schr(n) is the set of the Schréder trees with n + 1 leaves.

@“ is a Schroder tree of arity 9.

Example



Operad of Schroder trees
The operad of Schrader trees is the operad Schr such that

» Schr(n) is the set of the Schréder trees with n + 1 leaves.

@“ is a Schroder tree of arity 9.

» The partial composition t o; 5 is obtained by inserting a copy of s
between the ith and the ¢ + 1st leaves of t.

Example

Example



Operad of Schroder trees
The operad of Schrader trees is the operad Schr such that

» Schr(n) is the set of the Schréder trees with n + 1 leaves.

@“ is a Schroder tree of arity 9.

» The partial composition t o; 5 is obtained by inserting a copy of s
between the ith and the ¢ + 1st leaves of t.

Example

» The unitis a:



Presentation of Schr

Proposition

The operad Schr admits the presentation (&, =) where

o= {sf o)
and = is the smallest operad congruence satisfying
ROAZRR RO A= R0 g
PR A= 2 Py o
K185 = 802 8 PRERER A
p}%ol&z&ozm, ﬁol&EﬁOQRq’.

This presentation is binary and quadratic.



PBW basis of Schr and enumeration

Proposition

The set of the syntax trees on & avoiding
{?\ol&a PROIRQ7 &Ol .PR7 PROI {?\7
Rrgy Ry gl

forms a PBW basis of Schr.



PBW basis of Schr and enumeration

Proposition

The set of the syntax trees on & avoiding
&ol&a PROIRQ7 {?\Ol .PR7 PROI &7
Rrgy Ry gl
forms a PBW basis of Schr.

This leads to

fse=g + @0 [R,fSchr:| + ,PRO [RafSchr]
+ RO"O |:f5chr,8 + Qo [R7f5chri| + }IRO[R,fschrH.



PBW basis of Schr and enumeration

Proposition

The set of the syntax trees on & avoiding
{?\ol&a PROIRQ7 &Ol .PR7 PROI {?\7
Rrgy Ry gl
forms a PBW basis of Schr.

This leads to

fse=g + @0 [R,fSchr} + ,PRO [R, fSchr}
+ .FCQ'O [fschr,R + R0 [R7f5chr:| + ,QRO [RafSchr]:|~

Hence,
Gsehr (1) =t + 3tGsen (1) + 2tGsen (1),



Statistics on Schr

Let us add some parameters in the expression of fs.,, to obtain

gschr = &+ qo g © [R: gSchr] + qlp}Ro [}5\,’ gs:hy]

+ (12';{3\,0 |:gSchr»RI T R° [‘R’ gsc'"] + ‘P}{O [R,’ gSChrH ’
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Statistics on Schr

Let us add some parameters in the expression of fs.,, to obtain

gschr = &+ qo g © [R: gSchr] + qlp}Ro [}5\,’ gSchr]

+ (12';{3\,0 |:gSchr»RI T R° [‘R’ gsc'"] + ‘P}{O [R,’ gSChrH ’

We obtain

Gsene(t,q0, 1, 92) = ev(gschr) =t + (g0 + g1 + g2)t?
+ (43 + 2q0q1 + 43 + 29092 + 2q192 + 43 + 2¢2)t3
+ (g8 + 3a8a1 + 3q04% + 43 + 3¢592 + 6900102

+3q3az2 + 30003 + 39103 + g3 + 69042 + 6q102 + 63)t* + -+ .
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Statistics on Schr

Let us add some parameters in the expression of fs.,, to obtain

gschr = &+ qo g © [R: gSchr] + lhptqo [,P\,’ gSchr]

+ (12'%'3\,0 |:g5chr»R T R° [‘R’ gsc'"] + ‘PRO [R’ gSChrH ’

We obtain

Gsene(t,q0, 1, 92) = ev(gschr) =t + (g0 + g1 + g2)t?
+ (a§ + 2q0q1 + a3 + 20002 + 2q192 + 43 + 2q2)t3
+ (g8 + 3a8a1 + 3q04% + 43 + 3¢592 + 6900102

+3q3az2 + 30003 + 39103 + g3 + 69042 + 6q102 + 63)t* + -+ .

The specialization Gscn (¢, 1,1, g2) is Triangle A114656 and the
specialization Gscp, (¢, go, 1, 1) is Triangle A098473.


http://oeis.org/A114656
http://oeis.org/A098473

Operad of k-trees
The operad of k-trees is the operad FCat'*), k € N, such that

» FCat'*)(n) is the set of the planar rooted trees with n internal nodes,
all having k + 1 children.

ﬁj;n is a 2-tree of arity 4.

Example



Operad of k-trees
The operad of k-trees is the operad FCat'*), k € N, such that

» FCat'*)(n) is the set of the planar rooted trees with n internal nodes,
all having k + 1 children.

ﬁj;n is a 2-tree of arity 4.

» The partial composition t o; 5 is obtained by replacing the ith internal
node of t (with respect to the depth-first traversal) by a copy of s.

Example

Example



Operad of k-trees
The operad of k-trees is the operad FCat'*), k € N, such that

» FCat'*)(n) is the set of the planar rooted trees with n internal nodes,
all having k + 1 children.

ﬁj;n is a 2-tree of arity 4.

» The partial composition t o; 5 is obtained by replacing the ith internal
node of t (with respect to the depth-first traversal) by a copy of s.

» The unit is :(O\:

Example

Example



Presentation of FCat!"

Proposition

The operad FCat'") admits the presentation (&, =) where

© e= D/%Q\nzogaék—i—l

and = is the smallest operad congruence satisfying

nﬁhmnﬁ\nznﬁ\ﬂ%nﬁh, 0<ab, a+b<k.
This presentation is binary and quadratic.
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PBW basis of FCat”) and enumeration

Proposition

The set of the syntax trees on & avoiding

Joncy recers

forms a PBW basis of FCat".



PBW basis of FCat”) and enumeration

Proposition

The set of the syntax trees on & avoiding

Joncy recers

forms a PBW basis of FCat".

This leads to

fFCat“‘”) ::(O\:+ Z f(plz:)at(k),

0<a<k

where the f(F(é)at(,‘,) are the FCat'")-series satisfying

(a) _ (b)
f e = o & 0 © E(O\j+ Z fe carm Freaem
dﬂlh a+1<b<k



Enumeration in FCat")
By setting
Grcarm (t) == ev (Frcar))
and

(a) oo [¢(@
G (1) i=ev (fFaCat““)) ;



Enumeration in FCat'*

By setting
Grcarw () = ev (frearm)
and
gl(iac)at“‘)(t) = (fl(iac)at > ’
we obtain

(a)
Grear () =t+ 3 Gy (®)

0<a<k



Enumeration in FCat®)

By setting
Grcartw (1) = ev (frcaem)
and
G 1) = v (£2,).
we obtain
Grcaro () =t + Z gl(zcé)at(”
0<a<k
and

b
gl(:(?at%) (t) = tGrcam (1) + Grcarw (1) Z g'(:C)atm

a+1<b<k



Enumeration in FCat

By setting
Grcarw () = ev (frearm)
and
gl(iac)at“‘)(t) = (fl(iac)at > ’
we obtain
Grcan (1) =t+ 37 Gie o (®)
0<a<k
and

gl(:(é)at“”') (t) = tgFCat<"'> (t) + gFCat(k) (t)

(k)

(b
Z gFC)at<’ )

a+1<bgLk

This leads to
G o ()

= tGrcaem (1) (1 + Grcarm ()



Enumeration in FCat®)

By setting
Grcarw () = ev (frearm)
and
gl(iac)at“‘)(t) = (fl(iac)at > ’
we obtain
Grea () =t+ D G ®)
0<a<k
and

b
gl(:(?at%) (t) = tGrcam (1) + Grcarw (1) Z g'(:C)atm

a+1<b<Lk
This leads to
a k—a
G () = 10 (£) (1 + Grcan (1)

and

Gecarn () = t+t0ecaen (1) D (1 + Gecan (877

0<a<k



Statistics on FCat!")

Let us add some parameters in the expressions of f-_.) to obtain

Srcat(k) = ‘|‘ g gFCat“‘)’
0<a<k

where the g(Flé)at("") are the FCat'*)-series satisfying

(a) -
8rcaett) = Qo & %0 ® | AT Z gFCat“NgFCat“‘)
:/d\j a+1<b<k
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Statistics on FCat!")

Let us add some parameters in the expressions of f-_.) to obtain

gFCatU‘") - + E gFCat(A) )
0<a<k

where the g(Flé)at("") are the FCat'*)-series satisfying

a+1<bLk

@ _ D/Q
8rcate) = Ya I{é\j\n :(O\:+ Z gFCat“WgFCat(”

We obtain, when k& := 1,

G(t,q0,q1) = ev (8rc.u1)) =t + (qo + 1)t + (¢§ + 3q0q1 + ¢3)t3
+ (g8 + 6a3q1 + 6q043 + ¢3)t*
+ (g8 +10g3q1 + 204343 + 10q043 + ¢}t
+ (g6 + 15q4q1 + 509343 + 50q3q3 + 15q041 + q3)°

+ (g6 + 218 q1 + 105q3q7F + 175q8q3 + 1053q7 + 21q0q5 + ¢$)t™ + -+ .
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Statistics on FCat!")

Let us add some parameters in the expressions of f-_.) to obtain

Srcat(k) = ‘|‘ g gFCatU‘)’
0<a<k

where the g(FaC)at(""> are the FCat'*)-series satisfying

@ _ D/Q
8rcatt) = da .{é\:\n L2t Z gFCat“NgFCat“‘)

a+1<bLk

We obtain, when k& := 1,

G(t,q0,q1) = ev (8rc.u1)) =t + (qo + 1)t + (¢§ + 3q0q1 + ¢3)t3
+ (g8 + 6a3q1 + 6q043 + ¢3)t*
+ (46 + 10g3q1 + 209343 + 10q0q} + 1)t
+ (g6 + 15q4q1 + 509343 + 50q3q3 + 15q041 + q3)°

+ (g6 + 218 q1 + 105q3q7F + 175q8q3 + 1053q7 + 21q0q5 + ¢$)t™ + -+ .

This is Triangle A001263, known as the triangle of Narayana numbers.


http://oeis.org/A001263

General result

Theorem

Let O be an operad admitting a presentation (&, =) and 3 be a PBW basis
of O for (B, =). Let the O-series f satisfying

f=1+> fa,

ze®

where for any syntax tree t on & of arity n, f; satisfies

f,=to [f— Z fo, ..., f— Z f,

to15¢8 to,s¢B

Then, f is the characteristic series of O.
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We define (TM, 0;,1) as the triple such that
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» TM(n) is the set of all words of length n on M seen as an alphabet.



From monoids to operads
Let (M, %, 1 o¢) be a monoid.

We define (TM, 0;,1) as the triple such that

» TM(n) is the set of all words of length n on M seen as an alphabet.

> Forany u € TM(n)and v € TM(m),
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Example

In T(N, +,0),
2100213 o5 3001 = 2100522313.
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We define (TM, 0;,1) as the triple such that

» TM(n) is the set of all words of length n on M seen as an alphabet.

> Forany u € TM(n)and v € TM(m),
Wo; U=y .. Ui (g % 01) o (W % U ) U e Uy

» 1 is defined as 1 o seen as a word of length 1.

Example

In T(N, +,0),
2100213 o5 3001 = 2100522313.



From monoids to operads
Let (M, %, 1 o¢) be a monoid.
We define (TM, 0;,1) as the triple such that

» TM(n) is the set of all words of length n on M seen as an alphabet.
> Forany u € TM(n)and v € TM(m),
Wo; U=y .. Ui (g % 01) o (W % U ) U e Uy

» 1 is defined as 1 o seen as a word of length 1.

Example

In T(N, +,0),
2100213 o5 3001 = 2100522313.

Theorem
For any monoid M, TM is an operad.



From monoids to operads — main examples

Monoid Operad Generators First dimensions Combinatorial objects
End — 1,4,27,256,3125 Endofunctions
PF — 1,3,16,125,1296 Parking functions
PW — 1,3,13,75,541 Packed words
P, — 1,2,6,24,120 P tati
(N, +,0) erp ermutations
PRT 01 1,1,2,5,14,42 Planar rooted trees
FCat(®) 00,01, ...,0k Fuf3-Catalan numbers k-trees
Schr 00,01, 10 1,3,11,45,197 Schroder trees
Motz 00,010 1,1,2,4,9,21,51 Motzkin words
(Z/2z,+,0) Comp 00,01 1,2,4,8,16,32 Compositions
DA 00,01 1,2,5,13,35,96 Directed animals
(Z/3z,+,0) .
SComp 00, 01, 02 1,3,27,81,243 Seg. compositions
Dias 01,10 1,2,3,4,5 Bin. words with exact. one 0
(N, max, 0) _ ’
Trias 00, 01, 10 1,3,7,15,31 Bin. words with at least one 0

37 /45



From monoids to operads — diagram

T(Z/QZ7 +70) End

I

PW

LN\

Perg Schr

Comp A{/ PRT
\\»(

T(N,+,0)

]

FCat(®

™ ]

FCat™®

FCat(®

T(Z/3z,+,0)

T(N, max, 0)

Trias

Dias
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Let (P, <) be a finite poset. We denote by 1 the binary (partial operation)
min on P with respect to the order relation <.
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From posets to operads
Let (P, <) be a finite poset. We denote by 1 the binary (partial operation)
min on P with respect to the order relation <.

Let PP be the operad admitting the presentation (&, =) where
& :=06(2):={x,:a€P}
and = is the smallest operad congruence satisfying

*a O1 Xb = *atb O1 *atb = *ath O2 *atb = *a 02 *b; axborb<a.



From posets to operads

Let (P, <) be a finite poset. We denote by 1 the binary (partial operation)
min on P with respect to the order relation <.

Let PP be the operad admitting the presentation (&, =) where
& :=06(2):={x,:a€P}
and = is the smallest operad congruence satisfying

*a O1 Xb = *atb O1 *atb = *ath O2 *atb = *a 02 *b; axborb<a.

Example
Let the poset P := .

Then, PP is generated by {x1, %2, x3, x4} and these generators are
subjected to the relations

%1 O1 X1 = %1 O1 *3 = %3 O] x] = %3 02 *x1] = *1 02 k3 = %1 02 %1,
*Q O] k2 = %2 O] %3 = %2 O] k4 = %3 O] x2 = %4 O] *2
= %4 02 %2 = %3 092 %3 = %2 092 %4 = %2 02 *x3 = %2 09 %2,

*3 01 x3 = %3 02 *3, k4 O1 k4 = %4 02 *4.



From posets to operads — PBW basis

Theorem

When P is a finite poset avoiding the pattern

0.

the operad PP is a Koszul operad and the set of all syntax trees on &
avoiding
*q 01 *p, a<borbxa
and
*q 02 *p, a#band (a < borb < a).

is a PBW basis of PP.



From posets to operads — PBW basis

Theorem

When P is a finite poset avoiding the pattern

0.

the operad PP is a Koszul operad and the set of all syntax trees on &
avoiding
*q 01 *p, a<borbxa
and
*q 02 *p, a#band (a < borb < a).

is a PBW basis of PP.

When the premises of this theorem hold, PP can be realized in terms of an
operad of Schroder trees labeled on P.



From posets to operads — example
More precisely, the elements of PP(n) are Schroder trees with n leaves
such that the internal nodes are labeled on P and the label of a node and
any of its child are incomparable in P.



From posets to operads — example
More precisely, the elements of PP(n) are Schroder trees with n leaves
such that the internal nodes are labeled on P and the label of a node and
any of its child are incomparable in P.

Example
Let a
P = ®/®\® .
©®
Then, in PP,
% o




From unitary magmas to operads — cliques

Let (M, x, 1 o) be a unitary magma.
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Let (M, x, 1 o) be a unitary magma.

An M-clique p is a clique on [n + 1] where each edge (z,y) is labeled by
an element p(z,y) of M. The arity |p| of p is n.
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an element p(z,y) of M. The arity |p| of p is n.

Example

Let M be the unitary magma (Z/sz, +,0). Here is an M-clique:




From unitary magmas to operads — cliques

Let (M, x, 1 o) be a unitary magma.

An M-clique p is a clique on [n + 1] where each edge (z,y) is labeled by
an element p(z,y) of M. The arity |p| of p is n.

Example

Let M be the unitary magma (Z/sz, +,0). Here is an M-clique:

An edge (,y) of p is solid if p(x,y) # 1.



From unitary magmas to operads — cliques

Let (M, x, 1 o) be a unitary magma.

An M-clique p is a clique on [n + 1] where each edge (z,y) is labeled by
an element p(z,y) of M. The arity |p| of p is n.

Example

Let M be the unitary magma (Z/sz, +,0). Here is an M-clique:

3
1/2/\1
2 o N
\\ 1// .
\ 1 2
\ /

An edge (x,y) of p is solid if p(z,y) # L . Only solid edges are drawn.
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Let (M, %, 1 o) be a unitary magma.
We define (CM, o;, 1) as the triple such that
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Let (M, %, 1 o) be a unitary magma.
We define (CM, o;, 1) as the triple such that

» CM(n) is the set of all M-cliques of arity n. By convention, CM(1)
is the singleton containing o -e.



From unitary magmas to operads

Let (M, %, 1 o) be a unitary magma.
We define (CM, o;, 1) as the triple such that

» CM(n) is the set of all M-cliques of arity n. By convention, CM(1)

is the singleton containing o -e.

» For any M-cliques p and g,

. (o)
Z/«;»aa:*\z+1 //7‘\\ \«—W,b,ﬁ/
< p > o (1 ) = io-a—qit+1

n__/ \<:>—b—<:>/ \

P

/
(
N

SN

= i¢—axb— it+|q| .

N



From unitary magmas to operads

Let (M, %, 1 o) be a unitary magma.
We define (CM, o;, 1) as the triple such that

» CM(n) is the set of all M-cliques of arity n. By convention, CM(1)

is the singleton containing o -e.

» For any M-cliques p and g,

/7N

. Ca )
Z/«;»aa:*\z+1 //7‘\\ \«—W,b,ﬁ/
< p > op L 9 ) = io-a-q i+1
\«—:,b,«—/ / \

./

> 1 is the M-cliques o- .

SN

= i¢—axb— it+|q| .

N



From unitary magmas to operads
Let (M, %, 1 o) be a unitary magma.
We define (CM, o;, 1) as the triple such that

» CM(n) is the set of all M-cliques of arity n. By convention, CM(1)
is the singleton containing o -e.

» For any M-cliques p and g,

/ \ —
i s it 1 /7 Ca ) N
/ \ / \ N d
o = i¢—axb— it+|q| .

. q = .Y -
<\;pJ> O; \\‘Fb;‘// i ‘raa»\z-‘rl L/
> 1 is the M-cliques o- .

Theorem
For any unitary magma M, CM is an operad.



From unitary magmas to operads — example

Exemple
In C(Z, +,0),



From unitary magmas to operads — main examples

The construction C leads to alternative definitions of

v

the operad NCT of noncrossing trees [Chapoton, 2007];
> the operad FF, of some formal fractions [Chapoton, Hivert, Novelli, 2016];

» the operad BNC of bicolored noncrossing configurations [Chapoton,
Giraudo, 2014];

> the operad MT of multi-tildes [Luque, Mignot, Nicart, 2013];

> the operad DMT of double multi-tildes [Giraudo, Luque, Mignot, Nicart,
2016];

> the dipterous operad [Loday, Ronco, 2003];

> the gravity operad [Getzler, 1994].



