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Combinatorial sets

A combinatorial set is a set C endowed with a map

| − | : C → N

such that for any n ∈ N, C(n) := {x ∈ C : |x| = n} is finite.

For any x ∈ C , we call |x| the size of x.

Classical questions

1. Enumerate the objects of C of size n.

2. Generate all the objects of C of size n.

3. Randomly generate an object of C of size n.

4. Establish transformations between C and other combinatorial sets D.

5. Define statistics on C , that are maps s : C → N.
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Examples

Words
Let A := {a, b} be an alphabet and let A∗ be the combinatorial set of all words on
A where the size of a word is its length.

Then, A∗(0) = {ε}, A∗(1) = {a, b}, A∗(2) = {aa, ab, ba, bb}.
Words on A are enumerated by #A∗(n) = 2n.

The map sa sending a word on A to its number of occurrences of a is a statistics
on A∗.

Permutations
Let S be the combinatorial set of all permutations where the size of a permutation
is its length as a word.

Then, S(0) = {ε}, S(1) = {1}, S(2) = {12, 21},
S(3) = {123, 132, 213, 231, 312, 321}.
Permutations are enumerated by #S(n) = n!.

A descent of σ ∈ S is a position i such that σ(i) > σ(i+ 1).

The map s sending a permutation to its number of descents is a statistics on S. For
instance, s(35142) = 2.
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Examples
Binary trees
Let BT be the combinatorial set of all binary trees where the size of a binary tree is
its number of internal nodes.

Then, BT(0) =
{ }

, BT(1) =
{ }

, BT(2) =

{
,

}
.

Binary trees are enumerated by #BT(n) = 1
n+1

(
2n
n

)
(Catalan numbers).

The map s sending a binary tree to its number of leaves oriented to the right is a
statistics on BT.

The map bst : S→ BT sending a permutation σ to the binary tree obtained by
inserting the le�ers of σ from right to le� by following the binary search insertion
algorithm is a transformation from S to BT. For instance,

6317425
bst7−→

1 6

72

3

4

5

' .
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Generating series

The generating series of a combinatorial set C is

GC(t) :=
∑
n∈N

#C(n)tn =
∑
x∈C

t|x|.

Generating series are very powerful tools for enumeration. They encode
sequences of numbers and support many operations.

Examples

I GA∗(t) = 1 + 2t+ 4t2 + 8t3 + 16t4 + 32t5 + · · · = 1

1− 2t

I GS(t) = 1 + t+ 2t2 + 6t3 + 24t4 + 120t5 + · · ·

I GBT(t) = 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + · · · = 1−
√

1− 4t

2t
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Formal power series

Generating series forget a lot of information about the underlying
combinatorial objects of C .

First idea
Work with formal series of combinatorial objects of C .

We consider series wherein exponents are combinatorial objects.

Example

We work with the formal power series

fBT = t + t + t + t + t + t + t + t + t + · · ·

instead of the generating series GBT(t).
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Evaluations of characteristic series
The characteristic series of C is the formal series

fC :=
∑
x∈C

tx.

The evaluation morphism ev is linearly defined by

ev (tx) := t|x|.

for any x ∈ C .

Since
ev(fC) =

∑
x∈C

t|x| = GC(t),

we recover from the characteristic series of a combinatorial set its
generating series.

Example

fBT = t + t + t + t + t + t + t + t + t + · · ·
ev7−→

t0 + t1 + (t2 + t2) + (t3 + t3 + t3 + t3 + t3) + · · · = 1 + t+ 2t2 + 5t3 + · · · = GBT(t).
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Operations and generating series

Natural operations on series translate as operations on combinatorial sets.

Let C1 and C2 be two combinatorial sets.

I The addition GC1
(t) + GC2

(t) is the generating series of the
combinatorial set C1 + C2 satisfying

(C1 + C2)(n) := C1(n) t C2(n).

I The multiplication GC1
(t) · GC2

(t) is the generating series of the
combinatorial set C1 × C2 satisfying

(C1 × C2)(n) := {(x1, x2) : x1 ∈ C1, x2 ∈ C2, |x1|+ |x2| = n} .

I The composition GC1
(GC2

(t)) is the generating series of the
combinatorial set C1 ◦ C2 satisfying

(C1 ◦ C2)(n) :=
{(

x, y1, . . . , y|x|
)

: x ∈ C1, yi ∈ C2, |y1|+ · · ·+ |y|x|| = n
}
.
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Examples
Binary trees

A binary tree can be defined recursively to be either the leaf or an ordered pair
(t1, t2) of binary trees.

This leads to the expression GBT(t) = 1 +GBT(t)2 for the generating series of BT.

Binary trees of words
A binary tree of words is a binary tree wherein internal nodes are labeled by
nonempty words on A. The size of such an object is the sum of the sizes of the
words labeling it.

These are elements of BT ◦A+.

For instance,

a

bb

aba
a

is an object of size 7.

This leads to

GBT◦A+(t) =
1−

√
1− 4 2t

1−2t

2 2t
1−2t

= 1 + 2t+ 12t2 + 80t3 + 576t4 + 4384t5 + · · · .
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Operations and algebraic structures

Second idea
Endow C with operations to form an algebraic structure.

The study of C as an algebraic structure helps to discover combinatorial
properties.

In particular,

1. minimal generating families of C

; highlighting of elementary pieces of assembly;

2. morphisms involving C

; transformation algorithms and revelation of symmetries;

3. operations on C

; extensions to operations on formal power series.

12 / 31
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Formal power series
Let K be the field Q(q0, q1, q2, . . . ) and X be a (combinatorial) set.

A X-series is a map
f : X → K.

The coe�icient f(x) of x ∈ X in f is denoted by 〈x, f〉.

The set of all X-series is K 〈〈X〉〉.

Endowed with the pointwise addition

〈x, f + g〉 := 〈x, f〉+ 〈x,g〉

and the pointwise multiplication by a scalar

〈x, λf〉 := λ 〈x, f〉 ,

the set K 〈〈X〉〉 is a vector space.

The sum notation of f is

f =
∑
x∈X
〈x, f〉x.
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Formal series and algebraic structures

When X is an algebraic structure, its operations lead to operations on
X-series.

Indeed, if
? : Xk → X, k > 1,

is a product of arity k on X , one obtains the product ?̄ on K 〈〈X〉〉 defined
by

〈x, ?̄ (f1, . . . , fk)〉 :=
∑

y1,...,yk∈X
x=?(y1,...,yk)

∏
16i6k

〈yi, f i〉 .

Example
A binary product ? : X ×X → X leads to the (possibly partial) product

f ?̄ g :=
∑

x,y∈X

〈x, f〉 〈y,g〉x ? y

on K 〈〈X〉〉.
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Formal series and algebraic structures

Here are some examples of series on algebraic structures leading to
well-known objects.

Structure on X Sort of series
(N,+, 0) Usual series K[[t]]

Free comm. monoid Multivariate series K[[t1, t2, . . . ]]

Free monoid Noncomm. series K 〈〈t1, t2, . . . 〉〉 [Eilenberg, 1974]

Monoid Series on monoids [Salomaa, Soi�ola, 1978]

Operads Series on operads [Chapoton, 2002, 2008]
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Generalizing the product of generating series
Let C be a combinatorial set.

A binary product ? on C is graded if |x1 ? x2| = |x1|+ |x2|.

Proposition

The map ev is an algebra morphism between (K 〈〈C〉〉 , ?̄) and (K 〈〈t〉〉 , ·).

Moreover, this morphism is surjective when C(n) 6= ∅ for all n ∈ N.

Proof.
ev (f1 ?̄ f2) =

∑
x1,x2∈C

〈x1, f1〉 〈x2, f2〉 ev(x1 ? x2)

=
∑

x1,x2∈C

〈x1, f1〉 〈x2, f2〉 t|x1|+|x2|

=

(∑
x1∈C

〈x1, f1〉 t|x1|

)(∑
x2∈C

〈x2, f2〉 t|x2|

)
= ev(f1) · ev(f2)

Therefore, ?̄ o�ers a generalization of the usual product of generating
series.
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Example: series of paths

A path is an element of
⊔
n>1

Nn.

Let P be the (non combinatorial) set of all paths where the size of a path
u1 . . . un is n− 1 (number of steps).

Example
The path 1212232100112 is depicted as

and its size is 12.

18 / 31



Example: series of paths

A path is an element of
⊔
n>1

Nn.

Let P be the (non combinatorial) set of all paths where the size of a path
u1 . . . un is n− 1 (number of steps).

Example
The path 1212232100112 is depicted as

and its size is 12.

18 / 31



Example: series of paths

A path is an element of
⊔
n>1

Nn.

Let P be the (non combinatorial) set of all paths where the size of a path
u1 . . . un is n− 1 (number of steps).

Example
The path 1212232100112 is depicted as

and its size is 12.

18 / 31



Example: series of paths — a monoid of paths
Let ? be the binary product on P defined by

u1 . . . un ? v1 . . . vm :=

↑max(0,v1−un) (u1 . . . un−1) max(un, v1) ↑max(0,un−v1) (v2 . . . vm)

where ↑i (w) is the word obtained by incrementing by i each le�er of w.

Example

? =

This product is associative, admits (the path 0) as unit, and is graded.

Hence, (P, ?, ) is a graded monoid.

The ?-Kleene star of a subset X of P is

X?∗ :=
⊔
`>0

X ? · · · ? X︸ ︷︷ ︸
×`

.
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Example: series of paths — Schröder paths

Let Schr be the subset of
{

, ,
}?∗ restrained to the paths starting

and finishing by 0. We call these Schröder paths.

The set Schr is combinatorial and is a submonoid of P

The characteristic series of Schr is

fSchr := + + + + + + + + +· · ·

and, by using the product ?̄ on P-series, we obtain the relation

fSchr = + ?̄ fSchr + ?̄ fSchr ?̄ ?̄ fSchr.

By evaluation, we get the expression

GSchr(t) = 1 + t2GSchr(t) + t2GSchr(t)2

for the generating series of the Schröder paths.

20 / 31



Example: series of paths — Schröder paths

Let Schr be the subset of
{

, ,
}?∗ restrained to the paths starting

and finishing by 0. We call these Schröder paths.

The set Schr is combinatorial and is a submonoid of P

The characteristic series of Schr is

fSchr := + + + + + + + + +· · ·

and, by using the product ?̄ on P-series, we obtain the relation

fSchr = + ?̄ fSchr + ?̄ fSchr ?̄ ?̄ fSchr.

By evaluation, we get the expression

GSchr(t) = 1 + t2GSchr(t) + t2GSchr(t)2

for the generating series of the Schröder paths.

20 / 31



Example: series of paths — Schröder paths

Let Schr be the subset of
{

, ,
}?∗ restrained to the paths starting

and finishing by 0. We call these Schröder paths.

The set Schr is combinatorial and is a submonoid of P

The characteristic series of Schr is

fSchr := + + + + + + + + +· · ·

and, by using the product ?̄ on P-series, we obtain the relation

fSchr = + ?̄ fSchr + ?̄ fSchr ?̄ ?̄ fSchr.

By evaluation, we get the expression

GSchr(t) = 1 + t2GSchr(t) + t2GSchr(t)2

for the generating series of the Schröder paths.

20 / 31



Example: series of paths — Schröder paths

Let Schr be the subset of
{

, ,
}?∗ restrained to the paths starting

and finishing by 0. We call these Schröder paths.

The set Schr is combinatorial and is a submonoid of P

The characteristic series of Schr is

fSchr := + + + + + + + + +· · ·

and, by using the product ?̄ on P-series, we obtain the relation

fSchr = + ?̄ fSchr + ?̄ fSchr ?̄ ?̄ fSchr.

By evaluation, we get the expression

GSchr(t) = 1 + t2GSchr(t) + t2GSchr(t)2

for the generating series of the Schröder paths.

20 / 31



Example: series of paths — Schröder paths

Let Schr be the subset of
{

, ,
}?∗ restrained to the paths starting

and finishing by 0. We call these Schröder paths.

The set Schr is combinatorial and is a submonoid of P

The characteristic series of Schr is

fSchr := + + + + + + + + +· · ·

and, by using the product ?̄ on P-series, we obtain the relation

fSchr = + ?̄ fSchr + ?̄ fSchr ?̄ ?̄ fSchr.

By evaluation, we get the expression

GSchr(t) = 1 + t2GSchr(t) + t2GSchr(t)2

for the generating series of the Schröder paths.

20 / 31



Example: series of paths — statistics

We can add formal parameters to refine the enumeration by taking into
account of statistics. Then,

gSchr = + q0 ?̄ gSchr + q1 ?̄ gSchr ?̄ ?̄ gSchr

is the formal series of Schröder paths where the coe�icient of a path u is
qα0
0 qα1

1 where α0 (resp. α1) is half of the number of (resp. the number
of ) appearing in it.

Its evaluation is

ev (gSchr) = 1 + (q0 + q1) t2 +
(
q20 + 3q0q1 + 2q21

)
t4

+
(
q30 + 6q20q1 + 10q0q

2
1 + 5q31

)
t6

+
(
q40 + 10q30q1 + 30q20q

2
1 + 35q0q

3
1 + 14q41

)
t8 + · · · .

Its specialization ev (gSchr)|q1:=1 is Triangle A088617 of OEIS and
ev (gSchr)|q0:=1 is Triangle A060693 of OEIS.
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Outline

Operads and composition
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Operators
An operator is an entity having n > 1 inputs and a single output:

x

1 n. . .

.

Its arity is its number n of inputs.

Composing two operators x and y consists in

1. selecting an input of x specified by its position i;

2. gra�ing the output of y onto this input.

This produces a new operator x ◦i y of arity n+m− 1:

x

1 ni. . . . . .

◦i y

1 m. . .

=

x

y1 n+m−1. . . . . .

i m+i−1

i

. . .

.
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Operads

Operads are algebraic structures formalizing the notion of operators and
their composition.

A (nonsymmetric set-theoretic) operad is a triple (O, ◦i,1) where

1. O is a graded set
O :=

⊔
n>1

O(n);

2. ◦i is a map, called partial composition map,

◦i : O(n)×O(m)→ O(n+m− 1), 1 6 i 6 n, 1 6 m;

3. 1 is an element of O(1) called unit.

This data has to satisfy some axioms.
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Operad axioms
Associativity:

(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z)

1 6 i 6 |x|, 1 6 j 6 |y|

x

y
. . . . . .

. . . . . .
z

. . .

= y

. . . . . .
z

. . .

x

. . . . . .

Commutativity:

(x ◦i y) ◦j+|y|−1 z = (x ◦j z) ◦i y

1 6 i < j 6 |x|

x

y
. . .

. . .

. . .
z

. . .

. . .

=

x

. . .
z

. . .

y
. . . . . .

. . .

Unitality:

1 ◦1 x = x = x ◦i 1

1 6 i 6 |x|

1

x

. . .

= x

. . .

=
x

1
. . . . . .
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Complete composition

Let O be an operad

The complete composition map of O is the map

◦ : O(n)×O(m1)× · · · × O(mn)→ O (m1 + · · ·+mn)

defined by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1.

Then, x ◦ [y1, . . . , yn] is the operator

x

y1 yn

. . . . . .

. . . .

26 / 31



Complete composition

Let O be an operad

The complete composition map of O is the map

◦ : O(n)×O(m1)× · · · × O(mn)→ O (m1 + · · ·+mn)

defined by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1.

Then, x ◦ [y1, . . . , yn] is the operator

x

y1 yn

. . . . . .

. . . .

26 / 31



An operad of Motzkin paths
Let Motz be an operad wherein:

I Motz(n) is the set of all Motzkin paths with n points.

Example

is a Motzkin path of arity 16.

I The partial composition x ◦i y is computed by replacing the ith point
of x by a copy of y.

Example

◦4 =

I The unit is .

27 / 31



An operad of Motzkin paths
Let Motz be an operad wherein:

I Motz(n) is the set of all Motzkin paths with n points.

Example

is a Motzkin path of arity 16.

I The partial composition x ◦i y is computed by replacing the ith point
of x by a copy of y.

Example

◦4 =

I The unit is .

27 / 31



An operad of Motzkin paths
Let Motz be an operad wherein:

I Motz(n) is the set of all Motzkin paths with n points.

Example

is a Motzkin path of arity 16.

I The partial composition x ◦i y is computed by replacing the ith point
of x by a copy of y.

Example

◦4 =

I The unit is .

27 / 31



A composition product on series on operads
Let O be an operad.

The complete composition map ◦ of O leads to the product

◦̄ : K 〈〈O〉〉 ⊗K 〈〈O〉〉⊗n → K 〈〈O〉〉 , n > 1,

on O-series, satisfying for any f ,g1, . . . ,gn ∈ K 〈〈O〉〉 and x ∈ O,

〈x, f ◦̄ [g1, . . . ,gn]〉 =
∑

y∈O(n)
z1,...,zn∈O

x=y◦[z1,...,zn]

〈y, f〉
∏

16i6n

〈zi,gi〉 .

The composition product � is the product

� : K 〈〈O〉〉 ×K 〈〈O〉〉 → K 〈〈O〉〉

defined, for any f ,g ∈ K 〈〈O〉〉 and x ∈ O, by

〈x, f � g〉 :=
∑

16n6|x|

〈
x, f ◦̄

g, . . . ,g︸ ︷︷ ︸
×n

〉

=
∑
y∈O

z1,...,z|y|∈O
x=y◦[z1,...,z|y|]

〈y, f〉
∏

16i6|y|
〈zi,g〉 .
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defined, for any f ,g ∈ K 〈〈O〉〉 and x ∈ O, by

〈x, f � g〉 :=
∑

16n6|x|

〈
x, f ◦̄

g, . . . ,g︸ ︷︷ ︸
×n

〉

=
∑
y∈O

z1,...,z|y|∈O
x=y◦[z1,...,z|y|]

〈y, f〉
∏

16i6|y|
〈zi,g〉 .
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Generalizing the composition of generating series
Proposition

The map ev is a monoid morphism between (K 〈〈O〉〉 ,�,1) and
(tK 〈〈t〉〉 , ◦, t).

Moreover, this morphism is surjective when O(n) 6= ∅ for all n > 1.

Proof.

ev(f � g) =
∑
y∈O

z1,...,z|y|∈O

〈y, f〉

 ∏
16i6|y|

〈zi,g〉

 ev
(
y ◦
[
z1, . . . , z|y|

])

=
∑
y∈O

z1,...,z|y|∈O

〈y, f〉

 ∏
16i6|y|

〈zi,g〉

 t|z1|+···+|z|y||

=

∑
y∈O
〈y, f〉 t|y|

 ◦
∑

z∈O
〈z,g〉 t|z|


= ev(f) ◦ ev(g)

Therefore, � o�ers a generalization of the usual composition of generating
series.
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Example — Motzkin paths

Proposition [G., 2015]

The set {
,

}
is the unique minimal generating set of the operad Motz.

From this (and a reasoning about unambiguous decompositions of
Motzkin paths), we obtain that the characteristic series of Motz satisfies

fMotz = + ◦̄ [ , fMotz] + ◦̄ [ , fMotz, fMotz] .

Now, the evaluation GMotz(t) of fMotz satisfies

GMotz(t) = t+ tGMotz(t) + tGMotz(t)
2

and is the generating series of Motzkin paths.
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Summary of the main ideas
To understand (enumerate, discover statistics, etc.) a combinatorial set C , we

1. work with series on C (objects of K 〈〈C〉〉) instead of usual generating series
(objects of K 〈〈t〉〉);

2. define operations ? on C ;

3. extends these operations to operations ?̄ on C-series;

4. use these operations to express the characteristic series fC of C ;

5. evaluate fC to obtain a expression for the generating series GC(t) of C .

We have in passing defined generalizations of natural operations on
generating series:

Operation on C Operation on K 〈〈C〉〉
— Addition +

Binary graded product ? Analog ?̄ of the multiplication

Operadic product ◦ Analogs ◦̄ and � of the composition
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