Counting smaller trees in the Tamari order

Grégory Chatel, Viviane Pons

April 27, 2015

- Introduction
 - Basic definitions
 - Tamari lattice
 - Goal
- Our work
 - Main result
 - Example
 - Sketch of proof

Permutation and weak order

Permutations

A permutation σ is a word of size n where every letter of $\{1,\ldots,n\}$ appear only once.

Ex: 1234, 15234, 4231.

Weak order: partial order on permutations

At each step, we inverse two increasing consecutives values.

Binary trees

Binary search tree insertion

4

1532**4** →

Basic definitions

Permutation to binary tree

Order relation

Right rotation

This gives a partial order on binary trees.

Tamari lattice

Figure: Tamari lattices of size 3 and 4.

Tamari lattice as a quotient of the weak order

What do we want to do?

Goal

We want a formula that computes, for any given tree T the number of trees smaller than T in the Tamari order.

Example: how many trees are smaller than this one?

- Introduction
 - Basic definitions
 - Tamari lattice
 - Goal
- Our work
 - Main result
 - Example
 - Sketch of proof

Tamari polynomials

Tamari polynomials

Given a binary tree T, we define:

$$\mathcal{B}_{\emptyset} := 1$$
 (1)

$$\mathcal{B}_{T}(x) := x \mathcal{B}_{L}(x) \frac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$
 (2)

with
$$T = \bigcup_{L \in \mathcal{R}} \mathbf{r}$$

Main theorem

Theorem

Let T be a binary tree. Its Tamari polynomial $\mathcal{B}_{\mathcal{T}}(x)$ counts the trees smaller than T in the Tamari order according to the number of nodes on their left border. In particular, $\mathcal{B}_{\mathcal{T}}(1)$ is the number of trees smaller than T.

$$\mathcal{B}_{\emptyset} := 1$$
 $\mathcal{B}_{\mathcal{T}}(x) := x\mathcal{B}_{\mathcal{L}}(x) \frac{x\mathcal{B}_{\mathcal{R}}(x) - \mathcal{B}_{\mathcal{R}}(1)}{x - 1}$

$$\mathcal{B}_{\emptyset} := 1$$

$$\mathcal{B}_{T}(x) := x\mathcal{B}_{L}(x) \frac{x\mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

$$\bullet \ \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x\mathcal{B}_{3}(x) \frac{\mathcal{B}_{6}(x) - \mathcal{B}_{6}(1)}{x - 1}$$

$$\mathcal{B}_{7}$$
 3
 4
 6
 1
 5

$$\mathcal{B}_\emptyset := 1$$

$$\mathcal{B}_{\sigma} := 1$$

$$\mathcal{B}_{T}(x) := x \frac{\mathcal{B}_{L}(x)}{x} \frac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

$$\bullet \quad \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x \mathcal{B}_{3}(x) \frac{\mathcal{B}_{6}(x) - \mathcal{B}_{6}(1)}{x - 1}$$

$$\bullet \quad \mathcal{B}_{3}(x) = x \frac{\mathcal{B}_{1}(x)}{x}$$

$$\bullet \ \mathcal{B}_3(x) = xB_1(x)$$

$$\mathcal{B}_{7}$$
 3
 4
 6
 1
 5

$$\mathcal{B}_\emptyset := 1$$

$$\mathcal{B}_{T}(x) := x\mathcal{B}_{L}(x) \frac{x\mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

$$\bullet \ \mathcal{B}_3(x) = xB_1(x)$$

•
$$\mathcal{B}_1(x) = x \frac{B_2(x) - B_2(1)}{x - 1}$$

$$\mathcal{B}_\emptyset := 1$$

$$\mathcal{B}_{T}(x) := x\mathcal{B}_{L}(x) \frac{x\mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

$$\begin{array}{ccc}
x - 1 \\
\bullet & \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = xB_{3}(x)\frac{B_{6}(x) - B_{6}(1)}{x - 1} \\
\bullet & \mathcal{B}_{3}(x) = xB_{1}(x) \\
\bullet & \mathcal{B}_{1}(x) = x\frac{B_{2}(x) - B_{2}(1)}{x - 1}
\end{array}$$

$$\bullet \ \mathcal{B}_3(x) = xB_1(x)$$

•
$$\mathcal{B}_1(x) = x \frac{B_2(x) - B_2(1)}{x - 1}$$

•
$$\mathcal{B}_2(x) = x$$

$$\mathcal{B}_7$$
 $\begin{pmatrix} 4 \\ & & \\ & & \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 6 \\ & & \\ & & \\ 5 \end{pmatrix}$

$$\mathcal{B}_\emptyset := 1$$

$$\mathcal{B}_T(x) := x \mathcal{B}_L(x) \frac{x \mathcal{B}_R(x) - \mathcal{B}_R(1)}{x - 1}$$

$$\begin{array}{ccc}
x & -1 \\
\bullet & \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = xB_{3}(x)\frac{B_{6}(x) - B_{6}(1)}{x - 1} \\
\bullet & \mathcal{B}_{3}(x) = xB_{1}(x) \\
\bullet & \mathcal{B}_{1}(x) = x\frac{B_{2}(x) - B_{2}(1)}{x - 1} \\
\bullet & \mathcal{B}_{2}(x) = x
\end{array}$$

$$\bullet \ \mathcal{B}_3(x) = xB_1(x)$$

•
$$\mathcal{B}_1(x) = x \frac{B_2(x) - B_2(1)}{x - 1}$$

•
$$\mathcal{B}_2(x) = x$$

•
$$\mathcal{B}_1(x) = x(1+x) = x + x^2$$

$$\mathcal{B}_{\emptyset}:=1$$

$$\mathcal{B}_{T}(x) := x\mathcal{B}_{L}(x) \frac{x\mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

•
$$\mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = xB_{3}(x)\frac{B_{6}(x) - B_{6}(1)}{x - 1}$$

• $\mathcal{B}_{3}(x) = xB_{1}(x)$
• $\mathcal{B}_{1}(x) = x\frac{B_{2}(x) - B_{2}(1)}{x - 1}$

$$\bullet \ \mathcal{B}_3(x) = xB_1(x)$$

•
$$\mathcal{B}_1(x) = x \frac{B_2(x) - B_2(1)}{x - 1}$$

•
$$\mathcal{B}_2(x) = x$$

•
$$\mathcal{B}_1(x) = x(1+x) = x + x^2$$

•
$$\mathcal{B}_3(x) = x(x+x^2) = x^2 + x^3$$

$$\mathcal{B}_\emptyset := 1$$

$$\mathcal{B}_{T}(x) := x \mathcal{B}_{L}(x) \frac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1}$$

•
$$\mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x(x^{2} + x^{3}) \frac{B_{6}(x) - B_{6}(1)}{x - 1}$$

$$egin{aligned} \mathcal{B}_{\emptyset} &:= 1 \ \mathcal{B}_{\mathcal{T}}(x) := x \mathcal{B}_{\mathcal{L}}(x) rac{x \mathcal{B}_{\mathcal{R}}(x) - \mathcal{B}_{\mathcal{R}}(1)}{x - 1} \end{aligned}$$

$$\bullet \ \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x(x^{2} + x^{3}) \frac{B_{6}(x) - B_{6}(1)}{x - 1}$$

$$\bullet \ \mathcal{B}_{6}(x) = x \mathcal{B}_{5}(x)$$

$$\bullet \ \mathcal{B}_6(x) = x\mathcal{B}_5(x)$$

$$egin{aligned} \mathcal{B}_{\emptyset} &:= 1 \ \mathcal{B}_{\mathcal{T}}(x) := x \mathcal{B}_{\mathcal{L}}(x) rac{x \mathcal{B}_{\mathcal{R}}(x) - \mathcal{B}_{\mathcal{R}}(1)}{x - 1} \end{aligned}$$

$$\begin{array}{cccc}
 & \bullet & \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x(x^{2} + x^{3}) \frac{B_{6}(x) - B_{6}(1)}{x - 1} \\
 & \bullet & \mathcal{B}_{6}(x) = x \mathcal{B}_{5}(x) \\
 & \bullet & \mathcal{B}_{5}(x) = x
\end{array}$$

$$\bullet \ \mathcal{B}_6(x) = x\mathcal{B}_5(x)$$

•
$$\mathcal{B}_5(x) = x$$

$$egin{aligned} \mathcal{B}_{\emptyset} &:= 1 \ \mathcal{B}_{T}(x) := x \mathcal{B}_{L}(x) rac{x \mathcal{B}_{R}(x) - \mathcal{B}_{R}(1)}{x - 1} \end{aligned}$$

$$\begin{array}{ccc}
\bullet & \mathcal{B}_{T}(x) = \mathcal{B}_{4}(x) = x(x^{2} + x^{3}) \frac{B_{6}(x) - B_{6}(1)}{x - 1} \\
\bullet & \mathcal{B}_{6}(x) = x \mathcal{B}_{5}(x) \\
\bullet & \mathcal{B}_{5}(x) = x
\end{array}$$

$$\bullet \ \mathcal{B}_6(x) = x\mathcal{B}_5(x)$$

•
$$\mathcal{B}_5(x) = x$$

•
$$\mathcal{B}_6(x) = xx = x^2$$

$$egin{aligned} \mathcal{B}_{\emptyset} &:= 1 \ \mathcal{B}_{\mathcal{T}}(x) := x \mathcal{B}_{\mathcal{L}}(x) rac{x \mathcal{B}_{\mathcal{R}}(x) - \mathcal{B}_{\mathcal{R}}(1)}{x - 1} \end{aligned}$$

• $\mathcal{B}_4(x) = x(x^2 + x^3)(1 + x + x^2)$

$$\mathcal{B}_{\emptyset} := 1$$
 $\mathcal{B}_{\mathcal{T}}(x) := x \mathcal{B}_{\mathcal{L}}(x) rac{x \mathcal{B}_{\mathcal{R}}(x) - \mathcal{B}_{\mathcal{R}}(1)}{x - 1}$

•
$$\mathcal{B}_4(x) = x(x^2 + x^3)(1 + x + x^2)$$

• $\mathcal{B}_4(x) = x^6 + 2x^5 + 2x^4 + x^3$

•
$$\mathcal{B}_4(x) = x^6 + 2x^5 + 2x^4 + x^3$$

$$3$$
 6
 $B_T(x) = x^3 + 2x^4 + 2x^5 + x^6$
 $B_T(1) = 6$

Initial and final intervals

Initial and final intervals

Initial and final intervals

Linear extensions of any interval

Sketch of proof

Linear extensions of any interval

Linear extensions of any interval

Sketch of proof

$$\mathcal{B}_T(x) = x\mathcal{B}_L(x) \frac{x\mathcal{B}_R(x) - \mathcal{B}_R(1)}{x - 1}$$

$$\mathcal{B}(f,g) = xf(x)\frac{xg(x) - g(1)}{x - 1}$$

Sketch of proof

Combinatorial interpretation

$$\sum_{T' < T} [T', T] = \mathbb{B}(\sum_{T1' < T1} [T1', T1], \sum_{T2' < T2} [T2', T2])$$

with
$$T = T_1$$

Example

Questions?